
Quenches across phase transitions:
the density of topological defects

Leticia F. Cugliandolo

Université Pierre et Marie Curie – Paris VI

leticia@lpthe.jussieu.fr

www.lpthe.jussieu.fr/̃ leticia/seminars

In collaboration with

Giulio Biroli, Michikazu Kobayashi, Asja Jelić and Alberto Sicilia
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The problem

Predict the density of topological defects left over after

traversing a phase transition with a given speed.

Out of equilibrium relaxation:

the system does not have enough time to equilibrate to new changing

conditions.
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Motivation

From the statistical physics perspective

Classical systems with well-known equilibrium phases & transitions.

• Applications in, e.g. soft condensed-matter, phase separation.

• Hard problem to solve analytically : non-linear interacting field theory.

• Out of equilibrium dynamics in macroscopic systems with mechanisms

for relaxation that are understood.

• Comparison to more complex systems for which the phases and phase

transitions are not as well known, e.g. glassy systems.

Some open issues mentioned in orange

Quantum counterparts mentioned at the end.
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Plan of the talk

The problem’s definition from the statistical physics perspective

• Canonical setting: system and environment.

• Paradigmatic phase transitions with a divergent correlation length:

second-order paramagnetic – ferromagnetic transition

realized by the d > 1 Ising or d = 3 xy models.

Kosterlitz-Thouless disordered – quasi long-range order transit.

realized by the d = 2 xy model.

• Stochastic dissipative dynamics: g = T/J is the quench parameter.

• What are the topological defects to be counted ?

4



Plan of the talk

The analysis

• An instantaneous quench from the symmetric phase:

− initial condition (a question of length scales) and evolution.

− Critical dynamics and sub-critical coarsening.

− Dynamic scaling and the typical ordering length.

• Relation between the growing length and the density of topological

defects.

• A slow quench from the symmetric phase:

− Dynamic scaling, the typical ordering length, and the density of

topological defects. Corrections to the KZ scaling
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Density of topological defects
Kibble-Zurek mechanism for 2nd order phase transitions

The three basic assumptions

• Defects are created close to the critical point.

• Their density in the ordered phase is inherited from the value it takes

when the system falls out of equilibrium on the symmetric side of the

critical point. It is determined by

Critical scaling above gc

• The dynamics in the ordered phase is so slow that it can be neglected.

• results are universal. and one scaling law

that we critically revisit within ‘thermal’ phase transitions
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Open system

Equilibrium statistical mechanics

E = Esyst + Eenv + Eint
Neglect Eint (short-range interact.)

Much larger environment than system

Eenv ≫ Esyst
Canonical distribution

Environment

System

Interaction

P ({p⃗i, x⃗i}) ∝ e−βH({p⃗i,x⃗i})

Dynamics

Energy exchange with the environment or thermal bath (dissipation) and

thermal fluctuations (noise)

Esyst(t) ̸= ct
t

Zoom
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Statement

Defects exist and progressively annihilate even after an instanta-

neous quench into the symmetry-broken phase.

During the time spent in the critical region and/or in the ordered

phase the system evolves and the number of topological defects -

be them domain walls, vortices or other - decreases.

How much it does depends on how long it remains close or below

the critical point.
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Goal

Show these claims using a simple and well-understood system

Find a new scaling law
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d-dimensional magnets
Archetypical examples

H = −J
∑
⟨ij⟩

s⃗i · s⃗j

J > 0∑
⟨ij⟩

si = ±1

s⃗i = (sxi , s
y
i )

ℓdϕ⃗(r⃗) =
∑

i∈Vr⃗
s⃗i

L

Tc > 0

Ferromagnetic coupling constant.

Sum over nearest-neighbours on a d-dim. lattice.

Ising spins.

xy two-component spins.

Coarse-grained field over the volume V = ℓd

Linear size of the system L≫ ℓ

for d > 1 and L→ ∞.

Non-conserved order parameter dynamics [e.g., ↑↓ towards ↑↑ ] allowed.

Other microscopic rules - local order parameter conserved, etc.
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Stochastic dynamics
Open systems

• Microscopic: identify the ‘smallest’ relevant variables in the problem (e.g.,

the spins) and propose stochastic updates for them, as the Monte Carlo or

Glauber rules.

• Coarse-grained: write down a stochastic differential equation for the field,

such as the effective (Markov) Langevin equation

m
¨⃗
ϕ(r⃗, t)︸ ︷︷ ︸ + γ0

˙⃗
ϕ(r⃗, t)︸ ︷︷ ︸ = F⃗ (ϕ⃗)︸ ︷︷ ︸ + ξ⃗(r⃗, t)︸ ︷︷ ︸

Inertia Dissipation Deterministic Noise

with F⃗ (ϕ⃗) = −δf(ϕ⃗)/δϕ⃗ (see next-to-next slide for f )

e.g., time-dependent stochastic Ginzburg-Landau equation

• Stochastic Gross-Pitaevskii equation
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Equilibrium configurations
Up & down spins in a 2d Ising model

g → ∞ g = gc g < gc

Equilibrium configurations
e.g. up & down spins in a 2d Ising model (IM)

〈φ〉 = 0 〈φ〉 = 0 〈φ〉 #= 0

g → ∞ g = gc g < gc

In a canonical setting the control parameter is g = T/J .
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⟨si⟩eq = 0 ⟨si⟩eq = 0 ⟨si⟩eq+ > 0

ϕ(r⃗) = 0 ϕ(r⃗) = 0 ϕ(r⃗) > 0

Coarse-grained scalar field ϕ(r⃗) ≡ 1
Vr⃗

∑
i∈Vr⃗

si
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2nd order phase-transition
Continuous phase trans. with spontaneous symmetry breaking

Ginzburg-Landau free-energy Scalar order parameter

e.g. g = T/J is the control parameter
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The eq. correlation length
From the spatial correlations of equilibrium fluctuations

C(r⃗) = ⟨δϕ(r⃗)δϕ(⃗0)⟩eq ≃ e−r/ξeq(g)

ξeq(g) ≃ |g − gc|−ν = |∆g|−ν

In KT transitions, ξeq diverges exponentially on the disordered and it is ∞ in the quasi

long-range ordered side of gc, that is a critical phase, e..g. 2d xy model.
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Topological defects
Definition via one example

Exact, locally stable, solutions to non-linear field equations such as

∂2t ϕ(r⃗, t)−∇2ϕ(r⃗, t) = −δf [ϕ(r⃗, t)]
δϕ(r⃗, t)

= −uϕ(r⃗, t)− λϕ3(r⃗, t)

u < 0 with finite localized energy.

d = 1 domain wall ϕ

ϕ(x, t) ∝
√

−u
λ tanh

(√
−u
λ x

)
Interface between oppositely ordered

FM regions

Boundary conditions

ϕ(x→ ∞, 0) = −ϕ(x→ −∞, 0)

The field vanishes at the center of the wall

x
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2d Ising model
Snapshots after an instantaneous quench at t = 0
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gf < gc

At gf = gc critical dynamics At gf < gc coarsening

A certain number of interfaces or domain walls in the last snapshots.
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Statement

In both cases one sees the growth of ‘red and white’ patches and

interfaces surrounding such geometric domains.

More precisely, spatial regions of local equilibrium (with vanishing or

non-vanishing order parameter) grow in time and

a growing length R(t, g) can be computed with the

help of dynamic scaling.
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Instantaneous quench
Dynamic scaling

very early MC simulations Lebowitz et al 70s & experiments

One identifies a growing linear size of equilibrated patches

R(t, g)

If this is the only length governing the dynamics, the space-time corre-

lation functions should scale with R(t, g) according to

At gf = gc C(r, t) ≃ Ceq(r) fc(
r

Rc(t)
) proven w/dyn-RG

At gf < gc C(r, t) ≃ Ceq(r) + f( r
R(t,g)) argued & MF

and the number density of interfaces should scale as

n(t, g) = N(t, g)/Ld ≃ [R(t, g)]−d

Reviews Hohenberg & Halperin 77 (critical) Bray 94 (sub-critical)
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Instantaneous quench
Dynamic scaling

very early MC simulations Lebowitz et al 70s & experiments

One identifies a growing linear size of equilibrated patches

R(t, g)

If this is the only length governing the dynamics, the space-time corre-

lation functions should scale with R(t, g) according to

At gf = gc C(r, t) ≃ Ceq(r) fc(
r

Rc(t)
) Scaling fct fc 4

At gf < gc C(r, t) ≃ Ceq(r) + f( r
R(t,g)) Scaling fct f ?

and the number density of interfaces should scale as

n(t, g) = N(t, g)/Ld ≃ [R(t, g)]−d

Reviews Hohenberg & Halperin 77 (critical) Bray 94 (sub-critical)
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Instantaneous quench
Control of cross-overs
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Instantaneous quench to gc+ϵ
Growth and saturation

The length grows and saturates

R(t, g) ≃

 t1/zc t≪ τeq(g)

ξeq(g) t≫ τeq(g)

with τeq(g) ≃ ξzceq(g) ≃ |g − gc|−νzc the equilibrium relaxation time.

Saturation at t ≃ τeq(g) when R(τeq(g), g) ≃ ξeq(g)

zc is the exponent linking times and lengths in critical dynamics

e.g. zc ≃ 2.17 for the 2dIM with NCOP.

Dynamic RG calculations Bausch, Schmittmann & Jenssen 80s.
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Instantaneous quench to gc
Non-stop growth

The length grows

R(t, g) = Rc(t) ≃ t1/zc t≪ τeq(g) → ∞

with τeq(g) ≃ |g − gc|−νzc → ∞ the equilibrium relaxation time.

zc is the exponent linking times and lengths in critical dynamics

e.g. zc ≃ 2.17 for the 2dIM with NCOP.

Dynamic RG calculations Bausch, Schmittmann & Jenssen 80s.
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Instantaneous quench to g<gc
Deep quenches

The length grows as

R(t, g) = R(t, g) ≈ ζ(g) t1/zd t≫ τeq

with τeq the equilibrium relaxation time.

Non-conserved scalar order parameter zd = 2

Proven for time-dependent Ginzburg-Landau equation Allen & Cahn 79 &

arguments for lattice models Kandel & Domany 90, Chayes et al. 95

Not really a ‘formal’ proof & even harder for

vector order parameter and/or conservation laws
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Instantaneous quench to g<gc
Deep quenches

The length grows as

R(t, g) = R(t, g) ≈ ζ(g) t1/zd t≫ τeq

with τeq the equilibrium relaxation time.

Non-conserved scalar order parameter zd = 2

Proven for time-dependent Ginzburg-Landau equation Allen & Cahn 79 &

arguments for lattice models Kandel & Domany 90, Chayes et al. 95

Weak quench disorder effect on R?

Is there an R with strong disorder ?

24



Instantaneous quench to gc−ϵ
Control of cross-overs

The length grows with different laws

R(t, g) =

 Rc(t) ≈ t1/zc t≪ τeq

R(t, g) ≈ ξ
1−zc/zd
eq (g) t1/zd t ≳ τeq

with ξeq and τeq the equilibrium correlation length and relaxation time.

Crossover at t ≃ τeq(g) when R(τeq(g), g) ≃ ξeq(g)

Arenzon, Bray, LFC & Sicilia 08

Note that zc ≥ zd

e.g. zc ≃ 2.17 and zd = 2 for the 2dIM with NCOP

zc ≃ 2.13 and zd = 2 for the 3d xy with NCOP
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Topological defects
configurations after a sub-critical instantaneous quench

n(t, g) = N(t, g)/Ld ≃ [R(t, g)]−d

Remember the initial (g → ∞) configuration: germs already there !
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Finite rate quenching protocol
How is the scaling modified for a very slow quenching rate ?

∆g ≡ g(t)− gc = −t/τQ with τQ1 < τQ2 < τQ3 < τQ4

Standard time parametrization g(t) = gc − t/τQ

Simplicity argument: linear cooling could be thought of as an approxima-

tion of any cooling procedure g(t) close to gc.
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Zurek’s argument
Slow quench from equilibrium well above gc

The system follows the pace imposed by the changing conditions, ∆g(t) =

−t/τQ, until a time −t̂ < 0 (or value of the control parameter ĝ > gc) at

which its dynamics are too slow to accommodate to the new rules. The

system falls out of equilibrium.

−t̂ is estimated as the moment when the relaxation time, τeq , is of the order of

the typical time-scale over which the control parameter, g, changes :

τeq(g) ≃
∆g

dt∆g

∣∣∣∣
−t̂

≃ t̂ ⇒ t̂ ≃ τ
νzc/(1+νzc)
Q

The density of defects is n̂KZ ≃ ξ−d
eq (ĝ) ≃ (∆ĝ)νd ≃ τ

−νd/(1+νzc)
Q

and the claim is that it gets blocked at this value ever after Zurek 85
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Finite rate quench
Sketch of Zurek’s proposal for RτQ
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Finite rate quench
Critical coarsening out of equilibrium

In the critical region the system coarsens through critical dynamics and

these dynamics operate until a time t∗ > 0 at which the growing length

is again of the order of the equilibrium correlation length,R∗ ≃ ξeq(g
∗).

For a linear cooling a simple calculation yields

R∗ ≃ ζ R̂ ≃ ζ ξeq(ĝ)

(if the scaling for an infinitely rapid critical quench, ∆R(∆t) ≃ ∆t1/zc , with

∆t = t∗ − t̂ the time spent since entering the critical region holds)

No change in leading scaling with τQ.

However, for a non-linear cooling, e.g. ∆g = (t/τQ)
x with x > 1,

R∗ ≃ τaQ with a > ν/(1 + νzc) for x > 1
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Finite rate quench
Contribution from critical relaxation, R∗

τQ

g∗1

31



Finite rate quench
Far from the critical region, in the coarsening regime

In the ‘ordered’ phase usual coarsening takes over. The correlation length

R continues to evolve and its growth cannot be neglected.

Working assumption for the slow quench

R(∆t, g(∆t)) → R(∆t, g(∆t))

with ∆t the time spent since entering the sub-critical region at R∗.

∞-rapid quench with → finite-rate quench with

g = gf held constant g slowly varying.
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Finite rate quench
The two cross-overs

One needs to match the three regimes :

equilibrium, critical and sub-critical growth.

New scaling assumption for a linear cooling |∆g(t)| = t/τQ :

R(t, g(t)) ≃

 |∆g(t)|−ν t≪ −t̂ in eq.

|∆g(t)|−ν(1−zc/zd) t1/zd t ≳ t∗ out of eq.

Scaling on both sides of the critical (uninteresting for a linear cooling) region

Crossover at t ≃ t∗ ≃ ταQ with α < 1 ensured
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Finite rate quenching protocol
How is the scaling modified for a very slow quenching rate ?

R ≃ (t/τQ)
−ν+ νzc

zd t
1
zd ≃ |∆g|−ν+ 1+νzc

zd τ
1
zd
Q

∆g ≡ g(t)− gc = −t/τQ with τQ1 < τQ2 < τQ3 < τQ4

R depends on ]t and τQ] or on [∆g and τQ] independently

R increases with [∆g and τQ]
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Finite rate quench
Sketch of the effect of τQ on R(t, g)

cfr. constant thin lines, Zurek 85
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Simulations
Test of universal scaling in the 2dIM with NCOP dynamics

R |∆g|ν cst (|∆g|νzct)1/zd

zc ≃ 2.17 and ν ≃ 1 ; the square root (zd = 2) is in black

Also checked (analytically) in the O(N) model in the large N limit.
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Number of domain walls
Test of universal scaling in the 2dIM with NCOP dynamics

Dynamic scaling implies

n(t, τQ) ≃ [R(t, τQ)]
−d with d the dimension of space

Therefore

n(t, τQ) ≃ τ
dν(zc−zd)/zd
Q t−d[1+ν(zc−zd)]/zd

depends on both times t and τQ.

NB t can be much longer than t∗ (time for starting sub-critical coarse-

ning) ; in particular t can be of order τQ while t∗ scales as ταQ withα < 1.

Since zc is larger than zd this quantity grows with τQ at fixed t.
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Density of domain walls
At t ≃ τQ in the 2dIM with NCOP dynamics

N(t ≃ τQ, τQ) = n(t ≃ τQ, τQ)L
2 ≃ τ−1

Q

while the KZ scaling yields NKZ ≃ τ
−ν/(1+νzc)
Q ≃ τ−0.31

Q .

Biroli, LFC, Sicilia, Phys. Rev. E 81, 050101(R) (2010)
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Topological defects
Definition via another example

A vector field

∂2t ϕ⃗(r⃗, t)−∇2ϕ⃗(r⃗, t) = −δf [ϕ⃗(r⃗, t)]
δϕ⃗(r⃗, t)

= −uϕ⃗(r⃗, t)− λϕ⃗(r⃗, t) ϕ2(r⃗, t)

in d = 2 for ϕ⃗ = (ϕx, ϕy) leads to a two dimensional vortex

Picture from the Cambridge Cosmology Group webpage

The two-component field turns around a point where it vanishes
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Dynamics in the 2d XY model
Vortices : planar spins turn around points

Schrielen pattern : gray scale according to sin2 2θi(t)

After a quench vortices annihilate and tend to bind in pairs

R(t, g) = Rc(t) ≃ ζ(g){t/ ln[t/t0(g)]}1/2

Pargellis et al 92, Yurke et al 93, Bray & Rutenberg 94
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Dynamics in the 2d XY model
KT phase transition & coarsening

• The high T phase is plagued with vortices. These should bind in pairs

(with finite density) in the low T quasi long-range ordered phase.

• Exponential divergence of the equilibrium correlation length above TKT

ξeq ≃ aξe
bξ[(T−TKT)/TKT]

−ν
with ν = 1/2.

• Zurek’s argument for falling out of equilibrium in the disordered phase

ξ̂eq ≃ (τQ/ ln
3(τQ/t0))

1/zc with zc = 2 for NCOP.

• Logarithmic corrections to the sub-critical growing length

R(t, T ) ≃ ζ(T )
[

t
ln(t/t0)

]1/zd
with zd = 2 for NCOP
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Dynamics in the 2d XY model
KT phase transition & coarsening

nv(t ≃ τQ, τQ) ≃ ln[τQ/ ln
2 τQ + τQ]/(τQ/ ln

2 τQ + τQ)
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Simulations

τ
Q
−0.72

[(τ
Q

+t)/ln(τ
Q

+t)]−1^^

Large τQ

nv ≃ ln τQ
τQ

while

nKZ ≃ ln3 τQ
τQ

A. Jelić and LFC, J. Stat. Mech. P02032 (2011).
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Work in progress

Quench rate dependencies in the dynamics of the

3d O(2) relativistic field theory

c−2∂2t ψ(r⃗, t) + γ0∂tψ(r⃗, t) = [∇2 − g(|ψ|2 − ρ)] ψ(r⃗, t) + ξ(r⃗, t)

and the stochastic Gross-Pitaevskii equation

(−2iµ+ γL)∂tψ(r⃗, t) =
[
∇2 − g(|ψ|2 − ρ)

]
ψ(r⃗, t) + ξ(r⃗, t)

(ψ(r⃗, t) ∈ C)

Study of vortex lines. Kobayashi & LFC
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Beyond density of defects

2d Ising & voter models

Finite size effects &

short-time dynamics.

Distributions & geometry

Percolation & fractality

Arenzon, Blanchard, Bray

Corberi, LFC, Picco, Sicilia

& Tartaglia

Krapivsky & Redner
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Conclusions

• The criterium to find the time when the system falls out of equilibrium

above the phase transition (−t̂) is correct ; exact results in the 1d

Glauber Ising chain P. Krapivsky, J. Stat. Mech. P02014 (2010).

• However, defects continue to annihilate during the ordering dynamics ;

their density at times of the order of the cooling rate, t ≃ τQ, is

significantly lower than the one predicted in Zurek 85.

• Experiments should be revisited in view of this claim (with the proviso

that defects should be measured as directly as possible).

• Some future projects : annealing in systems with other type of phase

transitions and topological defects.

• Microcanonical quenches.
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Conclusions
Annealing in quantum dissipative systems

Same arguments apply though harder problem since

Quantum environment usually implies non-Ohmic ‘noise’ & non-Markov

‘dissipation’.

• Critical quenches Rc(t) ≃ t1/zc

Bonart, LFC & Gambassi 11 (classical non-Ohmic)

Gagel, Orth & Schmalian 14 (quantum non-Ohmic)

• Quantum coarsening R(t) ≃ t1/zd
Rokni & Chandra 04

Aron, Biroli & LFC 08

Slow quenches in a XY quantum spin chain coupled to a bath

Patané, Amico, Silva, Fazio, Santoro 09
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Finite rate quenching protocol
Some details

Standard time parametrization g(t) = gc − t/τQ

g = T/J implies gmax → ∞ and therefore tmin → −∞
gmin = 0 tmax = τQ gc

Zurek’s τeq(g) ≃
∆g

dt∆g

∣∣∣∣
−t̂

≃ t̂ ⇒ t̂ ≃ τ
νzc/(1+νzc)
Q

∆ĝ ≃ τ
−1/(1+νzc)
Q

R̂ ≃ τ
ν/(1+νzc)
Q

2dIM : t̂ ≃ τaQ with a ≃ 0.68, ∆ĝ ≃ τ−b
Q with b ≃ 0.31, R̂ ≃ τ cQ with c ≃ 0.31.
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Finite rate quenching protocol
Some details

Say g(t) = gc − (t/τQ)
x after −t̂ (tmax = τxQ gc)

Non-trivial growth within the critical region

R∗ ≃ |∆g∗|−ν ≃ (t∗/τQ)
−xν ≃ R̂ + c |t∗ − t̂|1/zc

yields t∗ and

R∗ ≃

 R̂ x < 1

R̂ τ
(x−1)/[xzc(1+νzc)]
Q x ≥ 1

2dIM and, e.g., x = 2 : R̂ ≃ τ0.31Q and R∗ ≃ τ0.39Q

2dIM and, e.g., x→ ∞ : R̂ ≃ τ0.31Q and R∗ ≃ R̂
1+νzc
νzc ≃ τ

1/zc
Q ≃ τ0.46Q
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