EXACT RESULTS FOR DISORDERED SYSTEMS I: Theorem of Inclusions & the Weak Disorder Limit

Nikolay Prokof'ev, UMass, Amherst

Collège de France, June 8, 2016

Collaborators: Boris Svistunov (Umass, Amherst)

Lode Pollet (LMU, Munich)

Matthias Troyer (ETH, Zurich)

Victor Gurarie (Univ. of Colorado, Boulder)

Mikhail Kiselev (ICTP, Trieste)

Gunes Soyler (MPICS, Drezden)

Exact results with illustrations

- Theorem of inclusions
- Phase transitions out of fully gapped states have to be of the Griffith type
- phase transitions between fully gapped and conducting phases are prohibited
- Disordered lattice superfluids

- Weak disorder limit
- Universal Gaussian distribution
- critical disorder strength $\propto U^{(4-d)/4}$

Model to keep in mind

Bose-Hubbard: Bosons on a lattice with on-site repulsion U and nearest-neighbor hopping amplitude t. Disorder is added as random on-site potential \mathcal{E}_i

$$H = -t \sum_{\langle ij \rangle} b_i^{\dagger} b_j^{\dagger} + \frac{U}{2} \sum_i n_i (n_i - 1) - \sum_i (\mu - \varepsilon_i) n_i$$

$$H = -t\sum_{\langle ij \rangle} b_i^{\dagger} b_j + \frac{U}{2}\sum_i n_i (n_i - 1) - \sum_i (\mu - \boldsymbol{\varepsilon}_i) n_i$$

Ground-state phases

Superfluid

 $\kappa \neq 0$ compressibility

 $\Lambda \neq 0$ superfluid stiffness

 $\Delta = 0, t >> U$

- $\kappa = 0$ Incompressible
- $\Lambda = 0$ insulator

 $\Delta = 0, \ U >> t$

Bose Glass $\kappa \neq 0$ Compressible $\Lambda = 0$ insulator

 $U,t<<\Delta$

Theorem of Inclusions

Mathematical background required

Lemma:

Product of a finite number of non-zero numbers is non-zero

(Anything is possible within the allowed bounds)

Theorem of Inclusions A

Def: Generic disorder = non-zero probability density for any $\mathcal{E}_i \in (-\Delta, \Delta)$

For an arbitrary transition in a system with generic disorder with transition point Δ_C depending on disorder properties

There exist rare, but arbitrarily large, inclusions of A(B) inside B(A) across the transition line.

Theorem of Inclusions B

Transition is driven by statistically rare fluctuations when locally disorder emulates a regular external field with amplitude Δ , e.g. $\mathcal{E}_i = \Delta = E_{MI \, GAP} / 2$

= Griffiths type transition

Theorem of Inclusions

There exist rare, but arbitrarily large, inclusions of A(B) inside B(A) across the transition line.

Consequences:

- For generic transitions: if A is gapless then B is gapless too and vise versa .

- All transitions between gapfull and gapless phases are of the Griffiths type.

- All phases next to the **gapfull** one are **insulating**

→ SF-to-Mott insulator transition is forbidden (any D).
 Same for (fully gapped) – (metallic) transitions in any system.

 \rightarrow an intermediate phase (BG) must separate the two

- For **generic transitions**: if A is **superfluid** then B is

→ compressible (in the absence of particle-hole symmetry)

→ gapless (possibly incompressible in particle-hole symmetric case)

$$H = -t\sum_{\langle ij \rangle} b_i^{\dagger} b_j^{\dagger} + \frac{U}{2} \sum_i n_i (n_i^{\dagger} - 1) - \sum_i (\mu - \varepsilon_i) n_i^{\dagger}$$

Ground-state phases

Superfluid

 $\kappa \neq 0$ compressibility $\Lambda \neq 0$ superfluid stiffness

 $\Delta = 0, \ t >> U$

 $\Delta = 0, \ U >> t$

Bose Glass $\kappa \neq 0$ Compressible $\Lambda = 0$ Insulator

 $U,t<<\Delta$

gapless

gapped

as it should be!

Bose Hubbard model with $\mathcal{E}_i \in (-\Delta, \Delta)$ at $\langle n_i \rangle = 1$ (or other integer filling)

Lugan, Clement, Bouyer, Aspect, Lewenstein, Sanchez-Pelencia '07 **3D**

2D

Universal Gaussian distribution for weak disorder:

Central Limit Theorem

$$P(\varepsilon_{\lambda}) \propto \exp\left\{-\varepsilon_{\lambda}^{2} / 2\sigma_{\lambda}^{2}\right\}$$

$$\sigma_{\lambda} = \sigma_c (r_c / \lambda)^{d/2} : \Delta (a / \lambda)^{d/2}$$

Universal Gaussian distribution for weak disorder:

Ideal gas is a "pathological" because all particles go to the deepest available well; density inside this well is infinite.

Finite interaction U prevents infinite densities and leads to a picture of isolated (locally "superfluid") lakes, or Bose Glass; not superfluid on a global scale.

Counting:
$$N = N_{lakes} \times N_{per \, lake}$$

Global superfluidity condition: typical lakes localizing particles start to overlap at the Bose-glass --- superfluid quantum phase transition

Universal Gaussian distribution for weak disorder:

 λ – wells with bound states inside them need to be deep enough : ε_{λ} : $1/m\lambda^2$ (1)

They occur with probability
$$\propto \exp\left\{-\varepsilon_{\lambda}^{2}/2\sigma_{\lambda}^{2}\right\} \propto \exp\left\{-\frac{\#}{m^{2}\Delta^{2}a^{d}\lambda^{4-d}}\right\}$$

They start to overlap when $\lambda \sim (m^2 \Delta^2 a^d)^{1/(d-4)}$ (2)

Particle density in
$$\lambda$$
 – lakes:
 $1/m\lambda^2 \int \frac{\mu = U n_{\lambda}}{n_{\lambda} \sim 1/mU\lambda^2 \sim n}$ (3)

Global superfluidity condition: $n \sim n$

$$\sim \frac{(m^2 \Delta^2 a^d)^{2/(4-d)}}{mU} \propto \frac{\Delta^{4/(4-d)}}{U}$$

Bose Hubbard model with $\mathcal{E}_i \in (-\Delta, \Delta)$

Lewenstein, Sanchez-Pelencia '07

Interacting bosonic superfluids are extremely robust against disorder!

[Recall Anderson localization at the single-particle level: $\Delta_c / t \approx 2z = 16$, not 350]

Next lecture: 1D

Tri-critical point separating sXY and GS lines