

Time

2

4

6

Entanglement creation and characterization in a trapped-ion quantum simulator

AG Quantenoptik und Spektroskopie

Institute for Quantum Optics and Quantum Information Innsbruck, Austria

- Highly entangled state or noisy mess?
- How to characterize entangled states with >8 ions

lon number

10

8

12

14

16

18

20

• How coherent is the engineered spin-spin interaction?

Time

2

4

Entanglement creation and characterization in a trapped-ion quantum simulator

AG Quantenoptik und Spektroskopie

Institute for Quantum Optics and Quantum Information Innsbruck, Austria

Outline:

- Trapped-ion experiments: time scales and tools
- Making trapped ions interact with each other
- Experimental characterization of entangled states

lon number

10

12

14

16

18

20

8

6

Quantum physics with linear ion strings

Quantum physics with linear ion strings

- Spatially resolved fluorescence
- Individual addressing
- No direct state-dependent interactions between ions

How to make ions interact

State-dependent interactions via

- Coulomb interaction (collective motional modes) + lasers / μ-waves
- Rydberg interactions
- coupling to other quantum systems:
 - photons (cavity-QED experiments)
 - atomic quantum gases
 - transmission lines

Encoding a (pseudo-)spin in a trapped ion

Experimental setup

Linear trap with anisotropic harmonic potential:

 $\omega_{\perp}/\omega_{ax} pprox 15-20 \implies$ linear strings of up to 20 ions

Spatially resolved fluorescence: detection of individual spin states

focused steerable laser beam: coherent single-spin manipulation

beam switching time ~ 10 μ s

Measuring spins and spin correlations

 $\equiv |\!\downarrow\downarrow\downarrow\downarrow\downarrow\rightarrow\downarrow\downarrow\rangle$

 $\implies \text{ any correlation } \langle \sigma_{\alpha_1}^{(1)} \sigma_{\alpha_2}^{(2)} \dots \sigma_{\alpha_N}^{(N)} \rangle$ can be measured.

Quantum tomography: density matrix reconstruction

How to make spins interact with each other

 $U\propto \frac{1}{2}$

 $0 < \alpha < 3$

Coupling to transverse vibrational modes

Spin-spin interaction by off-resonant laser coupling to vibrational modes

$$|\downarrow\downarrow\rangle|0\rangle\longleftrightarrow|\downarrow\uparrow\rangle|1\rangle\longleftrightarrow|\uparrow\uparrow\rangle|0\rangle$$
$$|\downarrow\uparrow\rangle|0\rangle\longleftrightarrow|\downarrow\downarrow\rangle|1\rangle\longleftrightarrow|\uparrow\downarrow\rangle|0\rangle$$

$$H\propto\sigma_i^x\sigma_j^x$$

Variable-range interactions by coupling to transverse modes

Measurement of the coupling matrix

Protocol:

- 1. Initialize ions in state $|\uparrow\rangle_i|\downarrow\rangle_j$
- 2. Switch on Ising Hamiltonian $|\uparrow\rangle_i|\downarrow\rangle_j \longleftrightarrow |\downarrow\rangle_i|\uparrow\rangle_j$
- 3. Measure coherent hopping rate

Spread of correlations after local quenches

$$H \approx \sum_{i < j} J_{ij} (\sigma_i^+ \sigma_j^- + \sigma_i^- \sigma_j^+) + B \sum_i \sigma_i^z \qquad B \gg J_{ij}$$

Ground state: all spins aligned with transverse field

3. Measure magnetization or spin-spin correlations

Spread of correlations after a local quench

Nature **511**, 198 (2014)

Spread of entanglement after a local quench

density matrix reconstruction of spins 3 + 5 9 ms after the quench

P. Jurcevic et al., Nature **511**, 202 (2014)

Creation of complex N-particle quantum states

ground state: all spins aligned with external field

Characterization of large complex entangled states

Spread of entanglement in the system

Neighbouring spins get entangled ...

... and disentangled with correlations spreading further out

B. Lanyon, C. Maier *et al.*, Nat. Phys. **13**, 1158 (2017)
with 20 ions: N. Friis *et al.*, PRX **8**, 021012 (2018)

Entanglement creation across the 8-spin chain

Propagation of spin correlation 0 0.5 unpublished 0.4 5 data 0.3 0.2 10 0.1 0 -0.1 15 -0.2 -0.3 20 -0.4 -0.5 25 2 3 5 6 7 8 4 Ion number

Entanglement between the ends of the chain!

At early times: n-qubit entangled state, with finite correlation length

Strategy: find compact matrix product state representation of the global state by measuring local spin correlations T. Baumgrat

T. Baumgratz et al, PRL **111**, 020401 (2013) M. Cramer et al, Nat. Comm. **1**, 149 (2010)

MPS tomography procedure

Step 1: Search for MPS state that optimally reproduces the experimentally observed local spin correlations

But what does the MPS state tell us about the state in the lab?

Step 2: Find a certificate: determine minimum fidelity of the lab state with the MPS state reconstruction

MPS tomography results for 8-spin quench

Dashed lines: MPS reconstruction for model state

Data points: Certified minimum fidelity of lab state with MPS state

MPS tomography:

- Resource-efficient in the number of particles
- but: restricted to states with little entanglement

B. Lanyon, C. Maier *et al.*, Nat. Phys. **13**, 1158 (2017)

State reconstruction: Direct fidelity estimation vs. lower fidelity bounds

B. Lanyon, C. Maier et al., Nat. Phys. 13, 1158 (2017)

Characterization of complex entangled states

How mixed is the quantum state?

 \implies measure the purity $P = \text{Tr}(\rho^2)$

(How close to unitary is the quantum dynamics generating the state?)

- How much entanglement is generated by non-equilibrium quantum dynamics?
 - measure entanglement entropy

von-Neumann entropy $S = -\text{Tr}(\rho_A \log \rho_A)$

Renyi entropy $S^{(2)} = -\log_2 \operatorname{Tr}(\rho_A^2)$

measurement of nonlinear functionals of the density matrix

Measuring the purity / second Renyi entropy S⁽²⁾

Measurement options:

quantum state tomography

resources scale exponentially with system size

difficult with ions

joint measurement on two copies of a system

 $P = \operatorname{Tr}(\rho \otimes \rho \mathcal{O})$

A. K. Ekert et al., PRL **88**, 217901 (2002) Islam et al., Nature **528**, 77 (2015)

random measurement on two virtual copies of a system

$$P = \operatorname{Tr}(U_{\alpha}\rho U_{\alpha}^{\dagger}\mathcal{O})^{2}$$

average over:

van Enk, Beenacker, PRL **108**, 110503 (2012) A. Elben et al., PRL **120**, 050406 (2018) random gate circuits global or local quenches

Random unitaries: single qubit

Pure state:

Fully mixed state:

$$|\vec{a}| = 1 \rightarrow \operatorname{Tr}(\rho^2) = 1$$

 $|\vec{a}| = 0 \to \operatorname{Tr}(\rho^2) = \frac{1}{2}$

Local random unitaries on multiple qubits

Average over random measurements

$$\operatorname{Tr}\left[\rho_{A}^{2}\right] = \sum_{s_{A},s_{A}^{\prime}} A_{s_{A}s_{A}^{\prime}} \overline{P(s_{A})P(s_{A}^{\prime})}$$
analytically known
$$P(s_{A}) = \operatorname{Tr}\left[U_{A}\rho_{A}U_{A}^{\dagger}|s_{A}\rangle\langle s_{A}|\right]$$

Local random unitaries: experimental realization

Single-qubit random unitaries are realized by

 $U(\alpha, \beta, \gamma) = Z(\alpha)X(\beta)Z(\gamma)$ = $Z(\alpha)Y(\pi/2)Z(\beta)Y(-\pi/2)Z(\gamma)$

 $(\alpha,\beta,\chi$ drawn from suitable distributions)

 $U(\alpha_1, \beta_2, \gamma_2)U(\alpha_1, \beta_1, \gamma_1)$: Concatenation of two such random unitaries to make the experiment robust against calibration errors.

Resulting pulse sequence:

Measurement scheme

Purity and Renyi entropy measurement

Number of projective measurements $N_U N_M$

Entropy measurements

Subsystems acquire high entropies over time (hard to measure)

T. Brydges et al, manuscript in preparation

Interplay of interactions and disorder

T. Brydges et al, manuscript in preparation

Mutual information (correlations) decaying with distance

Complex quantum states as a resource for variational quantum eigensolvers (VQE)

Goal: find the ground state energy of the Hamiltonian $H = \sum_{l} a_l H_l$

"Quantum-classical hybrid approach":

- use quantum co-processor for calculating <H> for a variational state
- classical computer for updating parameters of the variational state

VQEs for spin lattice Hamiltonians

Mapping a 1d lattice Schwinger model to a spin lattice Hamiltonian:

Preparing the Schwinger ground state in a trapped-ion experiment and measuring its energy

 $|\psi(\delta t,\Theta)
angle$

State preparation:

$$\begin{split} |\psi(\boldsymbol{\delta t},\boldsymbol{\Theta})\rangle &= \prod_{j=1}^{Q} R_{1}^{j}(\boldsymbol{\Theta}_{1}^{z}) \cdots R_{N-1}^{j}(-\boldsymbol{\Theta}_{2}^{z}) R_{N}^{j}(-\boldsymbol{\Theta}_{1}^{z}) \\ &\times e^{-i\delta t_{j}H_{\text{eff}}^{j}} |\psi_{i}\rangle \,. \end{split}$$

Energy measurement:

Measurement of all 1- and 2-body correlations for determining $\langle H_T \rangle$

 H_T : Schwinger target Hamiltonian H_{eff} : trapped-ion spin-spin Hamiltonian

Experimental results

work in progress...

Acknowledgments

IQOQI Innsbruck (Experiment)

- P. Jurcevic
- C. Maier
- T. Brydges

B. Lanyon

R. Blatt

IQOQI Innsbruck (Theory)

- P. Hauke
- A. Elben
- B. Vermersch
- P. Zoller
- C. Kokail
- R. van Bijnen

Quasiparticle propagation

Random measurements

Variational eigensolvers

University of Ulm University of Strathclyde

T. Baumgratz
M. Holzapfel
I. Dhand
M. Cramer
M. Plenio
M. Friis
M. Huber

MPS tomography + entanglement witnesses:

Summary and outlook

Trapped-ion quantum simulations

- Realization of long range Ising models in trapped ions
- Fully addressable for up to 20 ions
- Single-shot measurements of arbitrary spin correlations

 Entanglement characterization in small subsystems by tomography and random measurements

P. Jurcevic et al., Nature **511**, 202 (2014)
B. Lanyon, C. Maier *et al.*, Nat. Phys. **13**, 1158 (2017)
N. Friis *et al.*, PRX **8**, 021012(2018)

T. Brydges et al., in preparation

Outlook:

- Exploration of non-equilibrium quantum dynamics in larger systems
- Scaling the system up: longer 1d strings, experiments with planar ion crystals