Chaire Atomes et rayonnement

Cours 2021-22 Jean Dalibard

Prochains séminaires

Vendredi 18 mars : Matthias Weidemüller, Universität Heidelberg, Allemagne Does a disordered isolated spin system thermalize?

Vendredi 25 mars : Jean-Philippe Brantut, Ecole polytechnique fédérale de Lausanne, Suisse Exploring and controlling Fermi gases with light in a high-finesse cavity

Vendredi 1 avril : Anna Minguzzi, LPMMC, CNRS and Université Grenoble-Alpes Tan contact in one-dimensional quantum gases

Vendredi 8 avril : Atac Imamoglu, Institute for Quantum Electronics, ETH Zürich, Suisse Strongly correlated electrons in atomically thin semiconductors

Les interactions entre atomes dans les gaz quantiques

Cours 2 L'approche de Bogoliubov

Jean Dalibard Chaire *Atomes et rayonnement* Année 2021-22

Le gaz de Bose à température nulle

Assemblée de N bosons de spin nul (ou polarisés) dans une boîte de volume L^3

En absence d'interaction, toutes les particules s'accumulent dans l'état d'impulsion nulle k = 0

Comment ce résultat est-il modifié en présence d'interactions binaires ?

$$\hat{\mathcal{V}} = \sum_{i < j} V(\hat{\mathbf{r}}_i - \hat{\mathbf{r}}_j)$$

Quel potentiel choisir ?

Le potentiel réel ?

Compliqué avec tous ses états liés : l'état fondamental ne sera certainement pas un gaz d'atomes

Un potentiel de contact, après régularisation en terme de pseudo-potentiel ?

$$\hat{V}_{\text{pp}}\left[\psi(\boldsymbol{r})\right] = g\,\delta(\boldsymbol{r})\frac{\partial}{\partial r}\left[r\,\psi(\boldsymbol{r})\right]$$
 co

Un potentiel de faible amplitude, traitable par un développement de Born

5

ours de la semaine prochaine (subtilités mathématiques...)

L'essentiel est conserver la même longueur de diffusion que pour le problème réel

Le principe du développement de Born

Développement de l'amplitude de diffusion en puissances du potentiel V(r)

A basse énergie : $k_i, k_f \ll 1/b \longrightarrow$

Longueur de diffusion *a* à l'ordre 1

Critère de validité (cours 2021) : $|a| \ll b$

Amplitude de probabilité à l'ordre 1 en V: $\mathscr{A}(\mathbf{k}_i \to \mathbf{k}_f) \propto \left[e^{i(\mathbf{k}_f - \mathbf{k}_i) \cdot \mathbf{r}} V(\mathbf{r}) d^3 \mathbf{r} \right]$ *transformée de Fourier de V(r)*

$$\mathscr{A}(\mathbf{k}_i \to \mathbf{k}_f) \propto \int V(\mathbf{r}) \, \mathrm{d}^3 \mathbf{r} \equiv \tilde{V}_0$$

en V:
$$g \equiv \frac{4\pi\hbar^2 a}{m} \approx \tilde{V}_0$$

La démarche suivie dans le cours d'aujourd'hui

Simplification de l'hamiltonien en supposant que la population de l'état k = 0 reste voisine de N $\longrightarrow \hat{H}'$ quadratique vis-à-vis des opérateurs création et annihilation a_k^{\dagger} et a_k avec $k \neq 0$

Emergence d'une structure en paires de mod

Processus dominant pour faire apparaître une population d'un état $k \neq 0$: $0 \rightarrow 0$

Diagonalisation exacte de \hat{H}' pour une paire de modes Energie du fondamental et spectre d'excitation

des couplés
$$\{k, -k\}$$

Plan du cours

1. L'approximation quadratique pour l'hamiltonien

Préliminaire : terme de Hartree, terme de Fock Le condensat vu comme un champ classique

2. L'hamiltonien de Bogoliubov à deux modes

3. Une illustration du modèle à deux modes : le gaz de spin 1

Hamiltonien en seconde quantification

Energie cinétique et énergie d'interaction :

Opérateurs création et destruction d'une particule dans l'état d'impulsion $\hbar k$: a_k^{\dagger} et a_k

On obtient alors l'expression suivante pour l'hamiltonien à N corps :

Transformée de Fourier \tilde{V}_{q} de $V(\mathbf{r})$

$$\hat{H} = \sum_{i=1}^{N} \frac{\hat{p}_{i}^{2}}{2m} + \sum_{i < j} V(\hat{r}_{i} - \hat{r}_{j})$$

conservation de l'impulsion lors d'une interaction élémentaire

:
$$\tilde{V}_q = \int V(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d^3r$$

Les hypothèses de l'approche de Bogoliubov

ON THE THEORY OF SUPERFLUIDITY*

By N. BOGOLUBOV

Mathematical Institute, Academy of Sciences of the Ukrainian SSR and Moscow State University

(Received October 12, 1946)

Hypothèse 1 : le condensat vu comme un champ classique

Pour l'état fondamental et les états faiblement excités, la population $\langle N_0 \rangle$ de k = 0 reste grande devant 1

$$a_0 |N_0\rangle = \sqrt{N_0} |N_0 - 1\rangle \qquad \text{Les op}$$

$$a_0^{\dagger} |N_0\rangle = \sqrt{N_0 + 1} |N_0 + 1\rangle \qquad \text{des not}$$

Hypothèse 2 : la faible déplétion du condensat

1909-1992

pérateurs a_0 et a_0^{\dagger} seront traités (presque toujours) comme ombres égaux à $\sqrt{N_0}$ (revient à prendre $[a_0, a_0^{\dagger}] = 0$)

On suppose que $N - \langle N_0 \rangle \ll N$: développement systématique en puissances de $(N - \langle N_0 \rangle)/N$

L'approximation quadratique pour l'hamiltonien

On part de l'hamiltonien "exact" : $\hat{H} = \sum$

L'énergie cinétique reste inchangée. Dans l'énergie d'interaction, on garde :

----- Les termes avec 4 opérateurs a_0^{\dagger} , a_0 :

→ Les termes avec 3 opérateurs a_0^{\dagger} , a_0 ?

$$\epsilon_k a_k^{\dagger} a_k + \frac{1}{2L^3} \sum_{k',k'',q} \tilde{V}_q a_{k'+q}^{\dagger} a_{k''-q}^{\dagger} a_{k''} a_{k''}$$

$$\frac{N_0^2}{2L^3}\tilde{V}_0 \qquad \qquad \tilde{V}_0 = \int V(\mathbf{r}) \, \mathrm{d}^3 \mathbf{r}$$

Néant.

La forme de travail pour l'hamiltonien

Expression en fonction de N plutôt que N_0 , en utilisant $N = \hat{N}_0 + \sum a_k^{\dagger} a_k \equiv \hat{N}_0 + \hat{N}'$ *k*≠0

$$\frac{N_0^2}{2L^3}\tilde{V}_0 + \underbrace{\frac{N_0}{L^3}\sum_{k\neq 0} \left(\tilde{V}_0 + \tilde{V}_k\right)a_k^{\dagger}a_k + \frac{1}{2}\tilde{V}_k(a_k^{\dagger}a_{-k}^{\dagger} + a_ka_{-k})}_{\text{On peut remplacer }N_0 \text{ par }N \text{ à cet ordre du calcul}} + \mathcal{O}(\sqrt{N_0})$$

$$\frac{\left(N - \hat{N'}\right)^2}{2L^3}\tilde{V}_0 \approx \frac{N^2}{2L^3}\tilde{V}_0 - \frac{N}{L^3}\tilde{V}_0\sum_{k\neq 0}a_k^{\dagger}a_k$$

En ajoutant l'énergie cinétique et en regroupant par paires, on arrive à :

$$\hat{H}' = \frac{N^2}{2L^3} \tilde{V}_0 + \hat{H}'' \qquad \qquad \hat{H}'' = \sum_{\{k, -k\}} \left[\epsilon_k + n \right]$$

 $n\tilde{V}_{k}\left[\left(a_{k}^{\dagger}a_{k}+a_{-k}^{\dagger}a_{-k}\right)+n\tilde{V}_{k}\left(a_{k}^{\dagger}a_{-k}^{\dagger}+a_{k}a_{-k}\right)\right]$

 \mathbf{e}_k

Le terme dominant

Terme constant d'énergie $E = \frac{N^2}{2I^3} \tilde{V}_0 = \frac{1}{2}nl$

A l'ordre 1 du développement de Born : $g \equiv$

On a donc :
$$E \approx \frac{1}{2}gnN$$

Rappel : pour un gaz de Bose faiblement dégénéré, on a trouvé au cours 1 :

$$E = gnN$$

 $\hat{H}' = \frac{N^2}{2L^3} \tilde{V}_0 + \hat{H}''$

$$n = N/L^3$$

$$\equiv \frac{4\pi\hbar^2 a}{m} \approx \tilde{V}_0$$

énergie de champ moyen

Correspond au résultat de la théorie des perturbations à l'ordre 1 en V: $E = \langle N : \mathbf{k} = 0 | \hat{\mathcal{V}} | N : \mathbf{k} = 0 \rangle$

Facteur 2 de type Hanbury-Brown & Twiss

Non-conservation du nombre de particules

considéré comme un réservoir "infini" de particules

Analogie avec la conversion paramétrique en optique

Il faut vérifier a posteriori que le nombre de paires effectivement créées reste petit devant N

L'hamiltonien de Bogoliubov contient des termes de création de paires $\{k, -k\}$ à partir du condensat,

Très utilisée pour générer des paires de photons corrélés

Le champ pompe est lui aussi traité comme un champ classique

Approches équivalentes conservant le nombre de particules

Gardiner (1997), Castin & Dum (1998), Leggett (2001, 2006)

Approche variationnelle pour déterminer l'état fondamental du gaz de Bose

$$|\Psi\rangle \propto \left(a_0^{\dagger}a_0^{\dagger} - \sum_{k\neq 0} c(k)a_k^{\dagger}a_{-k}^{\dagger}\right)^{N/2} |0\rangle$$

 $\rightarrow a_0^{\dagger} a_0^{\dagger} - \sum c(k) a_k^{\dagger} a_{-k}^{\dagger}$ crée une paire de particules corrélées

 \rightarrow Les coefficients $c(\mathbf{k})$ sont des paramètres variationnels utilisés pour minimiser l'énergie moyenne

```
Calcul détaillé dans Cohen-Tannoudji, Diu, Laloe (M.Q., tome 3)
```


Plan du cours

1. L'approximation quadratique pour l'hamiltonien

2. L'hamiltonien de Bogoliubov à deux modes

Transformation canonique L'état fondamental vu comme un état comprimé du vide

3. Une illustration du modèle à deux modes : le gaz de spin 1

Le problème à deux modes

Problème générique de l'optique quantique ou de la matière condensée

• Deux modes bosoniques décrits par $\{a_1^{\dagger}, a_2^{\dagger}\}$

Ici, hamiltonien non perturbé : $\hat{H}_0 =$

Etat fondamental $n_1 = n_2$

• Couplage quadratique vis-à-vis des a_i^{\dagger}, a_j Ici, création et destruction par paires

- $\{b_1^{\dagger}, b_1\}$ et $\{b_2^{\dagger}, b_2\}$ combinaisons linéaires de $\{a_1^{\dagger}, a_1\}$ et $\{a_2^{\dagger}, a_2\}$
- "Diagonalise" l'hamiltonien : $\hat{H}_0 + \hat{V} = \hbar \omega_1 b_1^{\dagger} b_1 + \hbar \omega_2 b_2^{\dagger} b_2 + \text{cte.}$ avec $\omega_1, \omega_2 \ge 0$.

$$\begin{array}{l} = \hbar \omega_0 \left\{ a_2^{\dagger}, a_2 \right\} & 1 \equiv k, \ 2 \equiv -k, \$$

:
$$\hat{V} = \hbar \kappa \left(a_1^{\dagger} a_2^{\dagger} + a_1 a_2 \right)$$
 κ réel

On cherche une transformation canonique (*i.e.* préservant les relations de commutation) telle que :

Transformation canonique de Bogoliubov

On introduit les opérateurs : $b_1 = ua_1 + va_2^{\dagger}$

Pour préserver la relation de commutation $[b_1, b_1^{\dagger}] = 1$, il faut que : $u^2 - v^2 = 1 \Rightarrow u = \cosh \lambda$, $v = \sinh \lambda$

idem pour $[b_2, b_2^{\dagger}] = 1$. Par ailleurs, on vérifie que $[b_1, b_2] = 0$, $[b_1, b_2^{\dagger}] = 0$, ...

Un calcul simple permet alors de vérifier qu'on obtient l'hamiltonien diagonal

$$\hat{H} = \hbar\omega \left(b_1^{\dagger} b_1 + \frac{1}{2} \right) + \hbar\omega \left(b_2^{\dagger} b_2 + \frac{1}{2} \right)$$

pour le choix

 $\tanh(2\lambda) = \frac{\kappa}{\omega}$

Ce choix n'est possible que si $|\kappa| < \omega_0$ (sinon, problème singulier)

$$\hat{H}_0 = \hbar \omega_0 \left(a_1^{\dagger} a_1 + a_2^{\dagger} a_2^{\dagger} + a_1^{\dagger} a_2^{\dagger$$

$$b_2 = ua_2 + va_1^{\dagger}$$

$$\omega = \sqrt{\omega_0^2 - \kappa^2}$$

Le spectre de l'hamiltonien

<u>Abaissement</u> de l'énergie du fondamental : $\Delta E = \hbar (\omega - \omega_0) < 0$

$$\hat{H}_0 = \hbar \omega_0 \left(a_1^{\dagger} a_1 + a_2^{\dagger} a_2^{\dagger} \right)$$
$$\hat{V} = \hbar \kappa \left(a_1^{\dagger} a_2^{\dagger} + a_1 a_2^{\dagger} \right)$$

Comparaison avec un couplage de modes "normal"

On rencontre souvent le problème de deux oscillateurs couplés :

$$\hat{H}_{0} = \hbar \omega_{0} \left(a_{1}^{\dagger} a_{1} + \frac{1}{2} \right) + \hbar \omega_{0} \left(a_{2}^{\dagger} a_{2} + \frac{1}{2} \right)$$

La transformation canonique est dans ce cas : b_1

et elle conduit à

$$\hat{H} = \hbar \omega_1 \left(b_1^{\dagger} b_1 + \frac{1}{2} \right) + \hbar \omega_2 \left(b_2^{\dagger} b_2 + \frac{1}{2} \right)$$

$$\hat{V}' = \hbar \kappa \left(a_1^{\dagger} a_2 + a_1 a_2^{\dagger} \right)$$
$$= \frac{1}{\sqrt{2}} \left(a_1 + a_2 \right) \qquad b_2 = \frac{1}{\sqrt{2}} \left(a_1 - a_2 \right)$$

$$\omega_1 = \omega_0 + \kappa \qquad \qquad \omega_2 = \omega_0 - \kappa$$

Emergence de deux fréquences propres distinctes

Etat fondamental non modifié par le couplage

Structure de l'état fondamental

On décompose $|\Psi\rangle$ sur la base des états propres

- Symétrie entre les deux modes : seuls les c(n)
- Relation de récurrence entre les c(n, n) ?

$$c(n,n) = \left(-\frac{v}{u}\right)^n c(0,0)$$

$$|\Psi\rangle = \frac{1}{\cosh\lambda} \sum_{n} \left(-\tanh\lambda\right)^{n} |n,n\rangle$$

$$\hat{H}_0 = \hbar \omega_0 \left(a_1^{\dagger} a_1 + a_2^{\dagger} a_2^{\dagger} \right)$$
$$\hat{V} = \hbar \kappa \left(a_1^{\dagger} a_2^{\dagger} + a_1 a_2^{\dagger} \right)$$

$$\hat{H} = \hbar\omega \left(b_1^{\dagger} b_1 + b_2^{\dagger} b_2 + 1 \right) \qquad \qquad \omega = \sqrt{\omega_0^2 - \kappa^2}$$

L'état fondamental $|\Psi\rangle$ est obtenu en résolvant

$$b_1 |\Psi\rangle = 0$$
 $b_2 |\Psi\rangle = 0$

s de
$$a_1^{\dagger}a_1$$
 et $a_2^{\dagger}a_2$: $|\Psi\rangle = \sum_{n_1,n_2} c(n_1,n_2) |n_1,n_2\rangle$
 (n,n) sont non nuls (excitation par paires)

$$b_1 = ua_1 + va_2^{\dagger} \rightarrow uc(n, n) + vc(n - 1, n - 1) =$$

avec $v/u = \tanh \lambda < 1$

Two-mode squeezed vacuum state Etat comprimé du vide à deux modes

La distribution du nombre de paires dans $|\Psi\rangle$

Etat fondamental
$$|\Psi\rangle = \frac{1}{\cosh \lambda} \sum_{n} (-\tanh \lambda)^{n} |n, n\rangle$$

Nombre moyen de paires : $\bar{n} = \frac{\sum_{n} n (\tanh \lambda)^{2n}}{\sum_{n} (\tanh \lambda)^{2n}} = \sinh^{2} \lambda = v^{2} = \frac{\omega_{0} - \omega}{2\omega}$

Variance : $\Delta n^2 = \bar{n} (1 + \bar{n})$

$$\hat{H}_0 = \hbar \omega_0 \left(a_1^{\dagger} a_1 + a_2^{\dagger} a_1 \right)$$
$$\hat{V} = \hbar \kappa \left(a_1^{\dagger} a_2^{\dagger} + a_1 a_2 \right)$$

 $tanh(2\lambda)$

$$\omega = \sqrt{c}$$

Pour $\bar{n} \gtrsim 1$, on a l'écart-type $\Delta n \approx \bar{n}$

Plan du cours

1. L'approximation quadratique pour l'hamiltonien

2. L'hamiltonien de Bogoliubov à deux modes

3. Une illustration du modèle à deux modes : le gaz de spin 1

L'approximation du mode spatial unique Dynamique réversible à N corps

Interaction entre deux atomes de spin 1

Situation rencontrée fréquemment pour la colonne des alcalins du tableau périodique : 7Li, 23Na, 39K, 41K, 87Rb

On ne s'intéresse qu'aux interactions de type van der Waals (interactions magnétiques négligées)

Spin total $s = s_1 + s_2$ $s_2 = 1$ $s_1 = 1$ 3 valeurs possible

Seuls les canaux s = 0 et s = 2 contribuent à l'interaction

Ecriture sous forme d'une interaction de contact (notion précisée au cours 3) :

$$\hat{V}_{\text{int.}} = \delta(\mathbf{r}_1 - \mathbf{r}_2) \otimes \left(g_0 \mathscr{P}_0 + g_2 \mathscr{P}_2\right) \qquad \qquad g_i = \frac{4\pi \hbar^2 a_i}{m}$$

+
$$s_2$$

es pour s
 $s = 1$: état symétrique dans l'échange 1
 $s = 2$: état symétrique dans l'échange 1

Basse température : seules les interactions en onde s (état orbital symétrique) jouent un rôle significatif

Interaction magnétique <u>effective</u>

Réécriture de \hat{V}_{int} en terme du produit scalaire \hat{s}_1 $\hat{s}_1 \cdot \hat{s}_2 = \frac{1}{2} \left(\hat{s}^2 - \frac{1}{2} \right) \hat{s}_2 \hat{s}_2$ $\longrightarrow \hat{V}_{\text{int.}} = \delta(\mathbf{r}_1 - \mathbf{r}_2) \otimes \left(\bar{g}\,\hat{1} + g_s\,\hat{s}_1\cdot\hat{s}_1\cdot\hat{s}_1\right)$ $\bar{g} = \frac{1}{3} \left(g_0 + 2g_2 \right)$ Interaction "scalaire",

indépendante de l'état de spin

$$\hat{V}_{\text{int.}} = \delta(\mathbf{r}_1 - \mathbf{r}_2) \otimes (g_0 \mathscr{P}_0 +$$

$$\hat{s}_{2} = -2 \text{ dans le canal } s = 0$$

$$\hat{s}_{1}^{2} - \hat{s}_{2}^{2} = \frac{1}{2}\hat{s}^{2} - 2$$

$$= -2 \text{ dans le canal } s = 0$$

$$= +1 \text{ dans le canal } s = 2$$

$$\hat{s}_{2} \left(\mathscr{P}_{0} + \mathscr{P}_{2} \right)$$

$$f_{s} = \frac{1}{3} \left(g_{2} - g_{0} \right)$$

$$\text{Interaction effective "spin-spin", ferromagnétique si } g_{s} < 0 \quad (^{87}\text{Rb})$$

$$\text{antiferromagnétique si } g_{s} > 0 \quad (^{23}\text{Na})$$

Longueurs de diffusion associées pour ²³Na : $\bar{a} \approx 2.8 \,\mathrm{nm}, \ a_{s} \approx 0.1 \,\mathrm{nm}$

L'approximation du mode spatial unique

On suppose que l'énergie d'interaction / atome est petite devant $\hbar\omega$

Les atomes occupent essentiellement l'état fondamental du piège

La dynamique spatiale est gelée et il ne reste que la dynamique de spin SMA : single mode approximation

N atomes de 23 Na confinés dans un piège isotrope de fréquence ω

L'interaction de spin dans l'approximation du mode unique

On revient à
$$\hat{V}_{int.} = \delta(\mathbf{r}_1 - \mathbf{r}_2) \otimes \left(\bar{g} \ \hat{1} + g_s \ \hat{s}_1 \cdot \hat{s}_2\right)$$

terme constant, terme sans effet sur la dynamique "c

Analyse de $\hat{s}_i \cdot \hat{s}_i$: d'où vient la dynamique de spin ?

$$m_i = + 1$$

 $m_i = 0$ -----
 $m_i = -1$ -----

Conservation de $m_i + m_i$: le seul terme modifiant la composition en spin du gaz est :

$$(m=0) + (m=0) \leftrightarrows (m=0)$$

Création de paires (+1, -1) à partir d'une source d'atomes en m = 0 : on retrouve Bogoliubov

 $(\mathscr{P}_0 + \mathscr{P}_2)$ que l'on évalue pour l'état orbital $\psi_0^{\otimes N}$

me intéressant, avec un couplage deux à deux" entre tous les spins

$$\hat{V}_{\text{int.}}^{\text{SMA}} = \frac{U_s}{2N} \sum_{i,j \neq i} \hat{s}_i \cdot \hat{s}_j \qquad \qquad \frac{U_s}{N} = g_s \int |\psi_0(\mathbf{r})|^4 \, \mathrm{d}^3 \mathbf{r}$$

$$m_j = +1$$

 $m_j = 0$
 $m_j = -1$

Etats de spin dans un champ magnétique

= +1) + (m = -1)

Le mode m = 0 traité comme un champ classique

On s'intéresse à une situation où les N atomes occupent très majoritairement l'état de spin m = 0

$$m = + 1 - m$$
$$m = 0 - m$$

L'interaction spin-spin dans cette approximation (cf. notes de cours):

$$\hat{V}_{\text{int.}}^{\text{SMA}} \approx U_s \left(a_{+1}^{\dagger} a_{+1} + a_{-1} \right)$$
interaction
interaction
intra-espèce

Ingrédient manquant : rôle du champ magnétique extérieur ?

 $(a_{-1}^{\dagger}a_{-1}) + U_s\left(a_{+1}^{\dagger}a_{-1}^{\dagger} + a_{+1}a_{-1}\right)$ création et destruction de paires (+1, -1)

Prise en compte de l'effet Zeeman

On suppose que le champ magnétique est relativement faible (de l'ordre du gauss) : on se limite aux termes linéaires et quadratiques en champ

Effet Zeeman quadratique :

L'hamiltonien de Bogoliubov retrouvé

- Interaction effective spin-spin U_s à l'approximation du mode spatial unique
- Effet Zeeman quadratique q
- Etat m = 0 majoritairement peuplé et traité comme un champ classique

Stabilité ? Pour les atomes ²³Na, on a $q, U_s > 0$ et la condition $|\kappa| < \omega_0$ est satisfaite

Fréquence ω du système obtenue par la transformation canonique :

$$\hbar\omega = \left[\left(q+U_s\right)^2 - U_s^2\right]^{1/2} = \sqrt{q\left(q+2U_s\right)}$$

m = + 1

à un atome près

$$\hat{H} = (q + U_s) \left(a_{+1}^{\dagger} a_{+1} + a_{-1}^{\dagger} a_{-1} \right) + U_s \left(a_{+1}^{\dagger} a_{-1}^{\dagger} + a_{-1}^{\dagger} \right) + U_s \left($$

 $N \approx 5000$ atomes de ²³Na dans un piège optique de fréquence ~ 2 kHz Refroidissement par laser + évaporation pour obtenir un condensat quasi-pur Interaction spin-spin effective : $U_{\rm s}/h \sim 20 \, {\rm Hz}$ Champ magnétique ambiant ~ 1 G : effet Zeeman quadratique $q/h \sim 300 \,\mathrm{Hz}$ *: tous les atomes sont initialement dans l'état de spin* m = 0

- On abaisse soudainement le champ magnétique pour atteindre $q \lesssim U_s$ et on étudie la dynamique induite
 - Expérience de Stern-Gerlach + phase de mélasse optique
 - On compte la population des 3 états Zeeman m = -1, 0, +1

B. Evrard, A. Qu, F. Gerbier, J. Dalibard

Oscillation réversible à N corps

$$\hat{H} = (q + U_s) \left(a_{+1}^{\dagger} a_{+1} + a_{-1}^{\dagger} a_{-1} \right) + U_s \left(a_{+1}^{\dagger} a_{-1}^{\dagger} - u_{-1}^{\dagger} \right)$$

$$N_{p} = \frac{1}{2} \left(N_{+1} + N_{-1} \right)$$

Pour $\langle N_{p} \rangle \gtrsim 1$, on trouve $\Delta N_{p} \approx \langle N_{p} \rangle$

$$S_z = N_{+1} - N_{-1}$$

On trouve $N_{+1} = N_{-1}$ au bruit de mesure près (de l'ordre de 1 atome)

valide le principe d'une création de paires

La fréquence de l'oscillation à N

L'état $|\Psi(t)\rangle$ est à chaque instant un état comprimé du vide à deux modes (algèbre SU(1,1))

Hamiltonien quadratique : résolution exacte des équations du mouvement en point de vue de

$$i\hbar \frac{da_{+1}}{dt} = [a_{+1}, \hat{H}] = (q + U_s)a_{+1} + U_s a_{-1}^{\dagger}$$

dont on déduit (*cf.* notes de cours) :
 $\bar{N}_p(t) = \left(\frac{U_s}{\hbar\omega}\right)^2 \sin^2(\omega t)$ avec $\hbar\omega = \sqrt{q(q + 2U_s)}$ •

Très bon accord théorie-expérience

$$\hat{H} = (q + U_s) \left(a_{+1}^{\dagger} a_{+1} + a_{-1}^{\dagger} a_{-1} \right) + U_s \left(a_{+1}^{\dagger} a_{-1}^{\dagger} - 1 \right)$$

e Heisenberg sa_{+1}

Bilan provisoire...

Les résultats acquis

Par un développement systématique en puissances de $(N - N_0)/N$, on a obtenu un hamiltonien quadratique en $\{a_k, a_k^{\dagger}\}$

$$\hat{H}' = \frac{N^2}{2L^3}\tilde{V}_0 + \sum_{\{k,-k\}} \left[\epsilon_k + n\tilde{V}_k\right] \left(a_k^{\dagger}a_k + a_{-k}^{\dagger}a_{-k}\right) + n\tilde{V}_k\left(a_k^{\dagger}a_{-k}^{\dagger} + a_ka_{-k}\right)$$

Pour une paire donnée, on a su "diagonaliser" l'hamiltonien par une transformation canonique

$$\hat{H} = \hbar \omega_0 \left(a_1^{\dagger} a_1 + a_2^{\dagger} a_2 + 1 \right) + \hbar \kappa \left(a_1^{\dagger} a_2^{\dagger} + a_1 a_2 \right) \xrightarrow{\omega = \sqrt{\omega_0^2 - \kappa^2}} \hat{H} = \hbar \omega \left(b_1^{\dagger} b_1 + b_2^{\dagger} b_2 + 1 \right)$$

Cet hamiltonien fait apparaître une somme de termes indépendants, chacun portant sur une paire (+k, -k)

En particulier : $\begin{cases} \cdot \text{ Abaissement de l'énergie du fondamental : } \Delta E = \hbar(\omega - \omega_0) < 0 \\ \cdot \text{ Nombre moyen de paires dans le fondamental : } \bar{n}_p = \frac{\omega_0 - \omega}{2\omega} \end{cases}$

Ce qu'il reste à faire

- Les sommes (infinies) sont-elles convergentes aux grands k?
- Pour le nombre de paires : quel est le nombre total d'atomes N' en dehors de l'état k = 0?

Les réponses seront apportées :

- pour un potentiel $V(\mathbf{r})$ dans le cadre du développement de Born
- pour le pseudo-potentiel $\hat{V}_{\rm nn}$

Sommer les résultats obtenus ici pour chaque paire (+k, -k) sur l'ensemble des paires possibles

• Pour l'énergie : quelle est l'énergie de l'état fondamental du gaz de Bose en interaction (faible) ? Peut-on l'écrire en fonction de la longueur de diffusion a uniquement ? Quel est le signe de ΔE ?

Ce nombre est-il petit devant N_0 comme supposé dans le cadre de l'approximation quadratique ?

