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Prochains séminaires 

Vendredi 25 mars : Jean-Philippe Brantut, Ecole polytechnique fédérale de Lausanne, Suisse
Exploring and controlling Fermi gases with light in a high-finesse cavity 

Vendredi 1 avril : Anna Minguzzi, LPMMC, CNRS and Université Grenoble-Alpes 
Tan contact in one-dimensional quantum gases 

Vendredi 8 avril : Atac Imamoglu, Institute for Quantum Electronics, ETH Zürich, Suisse  
Strongly correlated electrons in atomically thin semiconductors

Vendredi 15 avril :  Leticia Tarruell, ICFO -  The Institute of Photonic Sciences, Barcelone, Espagne  
Realizing a one-dimensional topological gauge theory in an optically dressed Bose-Einstein condensate  

Vendredi 15 avril, 14h00-18h00 : atelier “New trends in quantum fluid physics: mixtures and spinor gases”
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Bilan du cours 2

Assemblée d’atomes (bosons) en interaction binaire

�̂� = ∑
i<j

V( ̂rij) ̂rij = | ̂ri − ̂rj | Transformée de Fourier de  :   V(r) Ṽk

Hamiltonien en seconde quantification :  

         Développement restreint aux termes quadratiques en   pour ak, a†
k k ≠ 0

Hypothèse :      ,   i.e. faible déplétion du condensatN − N0 ≪ N
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Transformation canonique de Bogoliubov

Hamiltonien après approximation quadratique : 

Ĥ′ ′ = ∑
{k,−k}

[ϵk + nṼk] (a†
k ak + a†

−ka−k) + nṼk (a†
k a†

−k + aka−k)
Ĥ′ =

N2

2L3
Ṽ0 + Ĥ′ ′ 

Somme d’hamiltoniens de paires,  indépendants les uns des autres

Diagonalisation de  :Ĥ′ ′ bk = ukak + vka†
−k b−k = uka−k + vka†

k

Pour le choix               avec        ,    on arrive à :uk = cosh λk vk = sinh λk tanh(2λk) =
nṼk

ϵk + nṼk

Ĥ′ ′ = ∑
k≠0

[ℏωk b†
k bk +

1
2

ℏ (ωk − ω0,k)] ℏωk = [(ϵk + nṼk)2 − (nṼk)2]
1/2

= (ϵ2
k + 2nṼkϵk)1/2

ℏω0,k = ϵk + nṼk

{

< 0

ϵk =
ℏ2k2

2m
cinétique Fock
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Energie du fondamental et déplétion quantique

E = 0

Création/destruction de paires : passage de  (cinétique + Fock, état fondamental ) à :[ϵk + nṼk] (a†
k ak + a†

−ka−k) |Ψ0⟩ = |0,0⟩

Ĥ′ ′ k = [ϵk + nṼk] (a†
k ak + a†

−ka−k) + nṼk (a†
k a†

−k + aka−k)

Abaissement de l’énergie du fondamental (cf. perturbations du deuxième ordre ou théorème variationnel) :

ℏ (ωk − ω0,k) < 0

Création de paires    : {+k, − k}

n̄k = v2
k =

ω0,k − ωk

2ωk

ℏωk = (ϵ2
k + 2nṼkϵk)1/2 → 0 quand k → 0

  : est-ce compatible avec    ?n̄k → + ∞ N − N0 ≪ N

Efond

Efond ≤ ⟨Ψ | Ĥ′ ′ k |Ψ⟩ ∀ |Ψ⟩

   pour = 0 |Ψ0⟩

ϵk =
ℏ2k2

2m
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But de ce cours 

Prendre en compte pour tous les  les résultats obtenus pour chaque paire de mode  k {+k, − k}

•  Déplétion quantique (Bogoliubov, 1947)

n′ 

n
≈

8

3 π
na3 fournit l’infiniment petit du développement en 

N − N0

N

•  Energie du fondamental (Lee-Huang-Yang, 1957) 

E0

L3
=

1
2

gn2 [1 +
128

15 π
na3 + …]

T.D. Lee  &  C.N. Yang
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Plan du cours

1. Préliminaires 

Différents secteurs pour le vecteur d’onde k
Approximation de Born

Illustration : le spectre d’excitation de Bogoliubov

2. Energie LHY et déplétion quantique pour un potentiel régulier

3. Approche de Bogoliubov pour le pseudo-potentiel ̂Vpp

4. Mesures de la déplétion quantique
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1. Préliminaires 

Différents secteurs pour le vecteur d’onde k
Approximation de Born

Illustration : le spectre d’excitation de Bogoliubov
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Les différents régimes du spectre d’excitation ℏωk = [ϵk (ϵk + 2nṼk)]
1/2

k
0 k0 = 1/ξ 1/b

Bilan d’énergie :   ℏωk ≈ ϵk + n (Ṽ0 + Ṽk) − nṼ0

état final : énergie 
cinétique + Hartree +Fock

état initial :  
Hartree

Transfert de l’impulsion  et de l’énergie  au fluideℏk ℏωk

ℏωk = ϵk [1 +
2nṼk

ϵk ]
1/2

≈ ϵk + nṼk

Régime de particules uniques

Ṽk ≈ Ṽ0 ⇒ ℏωk ≈ ϵk + nṼ0 Ṽk → 0 quand k → ∞ ⇒ ℏωk ≈ ϵk

Ṽk ≈ Ṽ0 Ṽk ≈ Ṽ0 Ṽk ≠ Ṽ0

ωk ≈ ck

c = nṼ0/m

Régime de phonons, 
à la base de la superfluidité

ℏωk ≈ [2ϵknṼ0]1/2

ϵk = ℏ2k2/2m
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Plan du cours

1. Préliminaires 
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Energie de l’état fondamental

Efond =
1
2

nNṼ0 +
1
2 ∑

k≠0

ℏωk − ℏω0,k

Efond

L3
=

1
2

n2Ṽ0 +
1

2 (2π)3 ∫ [(ϵ2
k + 2nṼkϵk)1/2 − ϵk − nṼk] d3k .

champ  
moyen

correction liée aux créations et  
destructions de paires {+k, − k}

Convergence de l’intégrale ?

• En , pas de problème : toutes les fonctions sont régulièresk = 0

• En , développement en puissances de  :    le terme dominant est k = + ∞ nṼk /ϵk −
n2Ṽ2

k

2ϵk

∼ ∫
+∞ Ṽ2

k

k2
4πk2 dk : converge si  décroît assez vite    rôle essentiel du domaine 3 Ṽk ⇒

ϵk =
ℏ2k2

2m
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Une meilleure description du champ moyen 

Efond

L3
=

1
2

n2Ṽ0 +
1

2 (2π)3 ∫ [(ϵ2
k + 2nṼkϵk)1/2 − ϵk − nṼk] d3k .

1
2

n2Ṽ0 =
1
2

n2g(1) =
1
2

n2 (g(1) + g(2)) −
1
2

n2g(2)

correct à l’ordre 2  
inclus en V

à réinjecter  
dans l’intégrale

g(2) = −
1

(2π)3 ∫
| Ṽk |2

2ϵk
d3k

Efond

L3
=

1
2

n2 (g(1) + g(2)) +
1

2 (2π)3 ∫ [(ϵ2
k + 2nṼkϵk)1/2 − ϵk − nṼk +

n2Ṽ2
k

2ϵk ] d3k

Convergence de l’intégrale à l’infini ?

Elle est fortement améliorée : terme dominant   la convergence est assurée même si  est constant 
n3Ṽ3

k

2ϵ2
k

, Ṽk

La contribution du domaine 3 est alors négligeable, seuls contribuent les domaines 1 et 2

Ṽ0 = g(1)
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Calcul de ELHY

Efond

L3
=

1
2

n2g +
1

2 (2π)3 ∫ [(ϵ2
k + 2nṼkϵk)1/2 − ϵk − nṼk +

n2Ṽ2
k

2ϵk ] d3k

ELHY

Après calcul de l’intégrale, on arrive à

ELHY

L3
=

1
2

n2g ×
128

15 π
na3 on retrouve bien le petit paramètre na3

g ≈ g(1) + g(2)

Puisque seules les zones 1 et 2 ont une contribution significative, on peut remplacer  par Ṽk Ṽ0 ≈ g = 4πℏ2a/m

ELHY

L3
=

ℏ2

m
(na)5/2ℐ ℐ = 16 2π ∫

+∞

0 [x2 + 1 − (x2 + 2x)1/2 −
1
2x ] dx x =

ℏ2k2

2mṼ0
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Possibilité de resommer tout le développement de Born ?
Vo). XI, No. 1 JOURNAL of PHYSICS 1 9  4 7

ON THE THEORY OF SUPERFLUIDITY *

By N . BOGOLUBOV

Mathematical Institute , Academy of Sciences of the Ukrainian SSR 
and Moscow State University

(Received October 12, 1946)

This paper presents an attempt of explaining the phenomenon of superfluidity on the basis 
of the theory of degeneracy of a non-perfect Bose-Einstein gas.

By using the method of the second quantization together with an approximation procedure 
we show that in the case of the small interaction between molecules the low excited states of the 
gas can be described as a perfect Bose-Einstein gas of certain “quasi-particles”  representing 
the elementary excitations, which cannot be identified with the individual molecules.

The special form of the energy of a quasi-particle as a function of its momentum is shown to be 
connected with the superfluidity.

The object of this paper is an attempt to 
construct a consistent molecular theory explain-
ing the phenomenon of superfluidity without 
assumptions concerning the structure of the 
energy spectrum.

The most natural starting point for such 
a theory seems to be the scheme of a non-
perfect Bose-Einstein gas with a weak inter-
action between its particles.

It should be noted that similar attempts 
•were done some time ago by Tisza and London 
to explain the phenomenon of superfluidity 
on the basis of the degeneracy of a perfect 
Bose-Einstein gas, but these attempts raised 
a counterblast of objections.

It has been pointed out, for example, that 
helium II has nothing to do with a perfect 
gas, because of the strong interaction between 
its molecules. However, this objection cannot 
be regarded as an essential one. Indeed, it 
is clear that a rigorous theoretical computa-
tion of the properties of a real liquid is hope-
lessly beyond the reach of a pure molecular 
theory based on usual “ m icroscopic”  equations 
of quantum mechanics. A ll we can require 
from a molecular theory of superfluidity, at 
least at the first stage of investigation, is to 
be able to account for the qualitative picture

* Presented to the Session of the Physical Mathe-
matical Department of the Academy of Sciences of the 
USSR on October 21, 1946.

of this phenomenon being based on a certain 
simplified scheme.

A  really essential objection one can make 
against this idea is the following one. The 
particles of a degenerate perfect Bose-Einstein 
gas in the ground state cannot possess the 
property of superfluidity, since nothing pre-
vents them from exchanging their momenta 
with excited particles colliding with them, 
and, therefore, from friction in their move-
ment through the liquid.

In the present paper we try to overcome 
this d ifficu lty  and to show that under cer-
tain conditions the “ degenerate condensate”  
of a “nearly perfect”  Bose-Einstein gas can 
move without any friction with respect to 
the elementary excitations, with an arbit-
rary, sufficiently small velocity . It is to be 
pointed out that the necessity of considering 
the collective elementary excitations rather 
than individual molecules was suggested by 
L . Landau in his well known paper “Theory 
of Superfluidity of Helium II”  where he, by 
postulating their existence in form of pho- 
nons and rotons, was enabled to explain the 
property of the superfluidity.

In our theory the existence and the pro-
perties of the elementary excitations follow  
directly from the basic equations describing 
the Bose-Einstein condensation of non per-
fect gases.

—  23 —
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Hence, as the interaction of molecules for 
the low density gas reveals itself principally 
by means of these binary collisions, it seems 
that expression (30) is to be replaced* by the 
corresponding expression proportional to the 
amplitude of the exact probability of the 
binary collisions, calculated for the limiting 
rase of zero density, i. e. we have to put:

v (/ )=  ^Ф(|д|У<р(д,/)<* (31)

where <p(g, f) is the solution of the Schro- 
dinger equation for the relative movement 
of an isolated pair of molecules:

— -^- ? + {  (| 1)— £ } ?  =  °,

. (/ - q)
1 —

going over into e at infinity. The repla-
cement of (31) instead of (30) in the formula 
for E (/) w ill lead us to the results, referring 
to low density gases.

This being admitted we see, e. g., that the 
ondition of the superfluidity v (0) >  0 may 

be written in the form:

$ — ~t  jj ф (1 д I) G(! д l)^g. (ззу

where T is the mean kinetic energy of one 
molecule and G(r) is the molecular distribu-
tion function normalized in the way that 
G{r)—> 1 as   —> oo . On the other hand, by 
using the virial theorem we see that the 
pressure P can be determined by  the formula

^ = 4 ^ - ^ Д ф ' ( !д ! ) !д |С ( |д | )< / д .  (34)

Let us now remark that for 0  =  0 the prin-
cipal term in the expansion of the molecu-
lar distribution function in powers of density 
is obviously equal to <p2 (| q |). Therefore, by 
neglecting in (33), (34) the terms of the se-
cond order in density one gets:

£  =  T +  l\<S>{\q\)tf{\q\)dq-, 

P v = * T - l - \ ® '  i},q\)\q\tf{\q\)dq.

Hence, taking into account that

$ф ( |д1М |? | )< /д>о .  (32)

where <p (| q |) is the radially symmetric solu-
tion of the equation:

 ? +   (1?1)? =   

zoing over into unity at infinity.
In order to connect, as before, inequa-

lity (32) with the condition of the thermo-
dynamic stability let us compute the prin-
cipal term in the expansion of the free energy 
in powers of density at the absolute zero of 
temperature. The free energy at absolute zero 
being equal to the mean energy, we have 
the following expression for this energy per 
one molecule:

we obtain the equation for the evaluation 
of the principal term in the expression for T . 
Iu this way one gets:

< £ = | $  (|  |  |  |    =  ^ ,  ?  =  •&>

and thus the condition of superfluidity in 
the considered case of low density gas is 
also equivalent to the usual condition of the 
thermodynamic stability at absolute zero:

It can also be seen that the energy of a 

quasi-particle goes over again into c\f\ for 
small / .

Consider now, for instance, the model o f 
hard impenetrable spheres of the radius r0/2 
and put:

* I am indebted to L, D. Landau for this impor-
tant remark.

Ф(г)=+оо, r < r 0; 

Ф(г)=0, r < r 0.
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Beliaev (1958), Hugenholtz & Pines (1959), Gavoret & Nozières (1964), Nozières & Pines (1990), …

Lieb, Seiringer, Solovej, Yngvason (2005) :  
They all rely on some special assumptions about the ground state that have never been proved, 
or on the selection of special terms from a perturbation series which likely diverges.
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La déplétion quantique

Nombre de particules en dehors du condensat   :k = 0 N′ = ∑
k≠0

v2
k =

1
2

L3

(2π)3 ∫
ϵk + nṼk

(ϵ2
k + 2nṼkϵk)1/2 − 1 d3k

Convergence de l’intégrale ?

• En , divergence de l’intégrande en  , compensée par le jacobien à 3D :  k = 0 1/k 4πk2dk

• En , terme dominant de l’intégrande :   k = + ∞
n2

0Ṽ2
k

2 ϵ2
k

Décroissance rapide : convergence assurée quelle que soit le comportement de Ṽk

Seuls les domaines 1 et 2 contribuent significativement : on remplace  par Ṽk Ṽ0 ≈ g

n′ = (na)3/2 4 2

π ∫
+∞

0 ( x2 + 1

x2 + 2
− x) x dx

n′ 

n
=

8

3 π
na3

g =
4πℏ2a

m
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Plan du cours

1. Préliminaires 

2. Energie LHY et déplétion quantique

3. Approche de Bogoliubov pour le pseudo-potentiel ̂Vpp

4. Mesures de la déplétion quantique
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Potentiel de contact et ̂Vpp

Potentiel de contact “naïf” : V(r) = g δ(r) ⇔ ∀k : Ṽk = g

Difficulté mathématique immédiate : dans la théorie de la diffusion, on voit apparaître les ondes sphériques 
eikr

r
L’action de  n’est pas définie sur ces fonctions…δ(r)

Le pseudo-potentiel  : construit pour effacer les divergences en ̂Vpp 1/r

Vpp [ψ(r)] = g δ(r)
∂
∂r [r ψ(r)]r=0

ψ(r) =
α
r

+ ψreg(r) ⇒ Vpp [ψ(r)] = g ψreg(0) δ(r)On a ainsi :

Généralisation du pseudo-potentiel : Olshanii & Pricoupenko, 2001
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Subtilités de Vpp

On part de l’identité 
1
r

=
1

2π2 ∫
eik⋅r

k2
d3k

1
r

⟷
1
k2

TF

̂Vpp [ 1
r ] = 0

On fait agir  sur les deux membres de l’égalité̂Vpp

̂Vpp [ 1
2π2 ∫

eik⋅r

k2
d3k] ?=

1
2π2 ∫

̂Vpp [eik⋅r]
k2

d3k

=
g δ(r)
2π2 ∫

1
k2

d3k =
g δ(r)
2π2 ∫ 4π dk

diverge !

Un résultat de calcul présentant une divergence du type  

signale généralement une manipulation hasardeuse de ce type 

g∫
+∞

dk

ψ(r) =
α
r

+ ψreg(r) ⇒ Vpp [ψ(r)] = g ψreg(0) δ(r)
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Comment utiliser ̂Vpp

Exemple : énergie d’interaction d’un gaz de Bose en seconde quantification

�̂� =
1
2 ∫ Ψ̂†(r′ ) Ψ̂†(r) ̂Vpp [Ψ̂(r) Ψ̂(r′ )] d3r d3r′ Ψ̂(r) =

1
L3/2 ∑

k

eik⋅r ak

Stratégie 1 : on s’autorise à écrire ̂Vpp (∑
k

eik⋅r ak) = g∑
k

ak δ(r)

Si on voit apparaître    dans le résultat d’un calcul,  on annule ce termeg∫
+∞ d3k

k2

Revue par Braaten, Kusunoki, Zhang

Stratégie 2 : on s’interdit cette inversion, au prix de calculs beaucoup plus lourds

Lee, Huang, Yang

ψ(r) =
α
r

+ ψreg(r) ⇒ Vpp [ψ(r)] = g ψreg(0) δ(r)
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Diagonalisation de  pour le pseudo-potentiel Ĥ

On adopte la stratégie 1 :

Ĥ′ =
1
2

gnN + Ĥ′ ′ Ĥ′ ′ = ∑ [ϵk + gn] (a†
k ak + a†

−ka−k) + gn (a†
k a†

−k + aka−k)
{+k, − k}

Tout se passe comme si on avait pris   V(r) = g δ(r)

Procédure de diagonalisation identique au cas d’un potentiel    régulier, avec   V(r) Ṽ0, Ṽk ⟶ g

Ĥ = ∑
k≠0

ℏωk b†
k bk + E0 ℏωk = ϵ2

k + 2gnϵk

Déplétion quantique inchangée : n′ 

n
=

1
N ∑

k≠0

v2
k =

8

3 π
na3

    :  il n’y a plus de zone 3 (aux grands ) dans laquelle ∀k : Ṽk = g k Ṽk → 0
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Energie LHY pour le pseudo-potentiel

Efond
?=

1
2

gnN +
1
2 ∑

k≠0
[(ϵ2

k + 2gnϵk)1/2 − ϵk − gn]

Terme dominant ( )  de la somme aux grands  :  < 0 k −
g2n2

2ϵk

Terme suivant ( )  de la somme aux grands  :   > 0 k +
g3n3

2ϵ2
k

Le terme dominant conduit à une divergence du type        : on annule “à la main” cette divergenceg∫
+∞ d3k

k2

Efond =
1
2

gnN +
1
2 ∑

k≠0 [(ϵ2
k + 2gnϵk)1/2 − ϵk − gn +

g2n2

2ϵk ]
quantité positive, finie, et identique à 

celle trouvée pour un potentiel régulier
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Comparaison entre les deux démarches

Pour  régulier et traité par le développement de Born :V(r)

1
2

nNṼ0 + E′ ′ ⏟
<0

1
2

nNṼ0 +
1
2

g(2)nN

1
2 gnN

+ E′ ′ −
1
2

g(2)nN

ELHY>0

Pour le pseudo-potentiel ̂Vpp

1
2

nNg + E′ ′ ⏟
=−∞

1
2

nNg + E′ ′ + ∑
k≠0

g2n2

4ϵk

ELHY>0

L’augmentation d’énergie liée au couplage    contredit-il le théorème variationnel ? ng (a†
k a†

−k + aka−k)
En fait non ! L’utilisation du pseudo-potentiel change le domaine des fonctions utilisables (condition aux limites de Bethe-Peierls)

Ṽ0 = g(1)
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Plan du cours

1. Préliminaires 

2. Energie LHY et déplétion quantique

3. Approche de Bogoliubov pour le pseudo-potentiel ̂Vpp

4. Mesures de la déplétion quantique

L’hélium liquide superfluide

Un gaz d’atomes froids (39K)

Observation de paires corrélées de Bogoliubov
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Le cas de l’hélium liquide

Diffusion inélastique de neutrons

P H YSI CAL R EVI EW VOLUME 152, NUMBER 1 2 DECEM B ER 1966

High-Energy Neutron Scattering from Liquid He'
P. C. HQHENBERG AND P. M. PLATzINAN

Bell Telephone Laboralories, Murray Hill, Sew Jersey
(Received 8 Ju]y 1966)

An experiment is proposed using high-energy neutrons to probe the momentum distribution of helium
atoms in liquid helium, and detect the presence of a zero-momentum condensate below Tz. It is suggested
that for momentum transfers to the neutron much larger than a roton momentum, the energy transfer
should be equal to the recoil energy of a single helium atom, Doppler-shifted by its initial motion in the
helium bath. Thus, if a finite fraction of atoms are initially in the zero-momentum state, they will contribute
a peak to the spectrum of scattered neutrons. Corrections due to final-state interactions are discussed
briefly and estimated.

INTRODUCTION

CONSIDER the scattering of neutrons from He4. If~ the scattering is weak (i.e., the intensity of the
scattered beam is much less than the intensity of the
incident beam), then the differential cross section
do/da&dQ for scattering with momentum transfer k and
energy transfer her is proportional to the structure
factor S(k,&v) of the liquid (see Fig. 1).' The neutron
scattering acts as a microscopic probe whose resolution
has a characteristic length X... k/k. This length may be
compared to the typical interparticle distances over
which the wave function of the helium will vary,
X;„q=X„&„=1 A. In the Iong-wavelength limit X...
&);„»,the scattering takes place from a large number of
He' atoms, and the dependence of S(k,~) on k and ~
gives information about the collective (or quasi
particle) excitations in the liquid. ' These are the
well-known phonons and rotons. In the short-wave-
length limit (X„,«X;„,.) the scattering takes place from
individual He atoms (bare particles). If in addition, the
scattering takes place in a time which is short compared
to interparticle collision times, i.e., by the uncertainty
principle, if the recoil energy k /2m&, is much greater
than a characteristic helium atom energy (kv, h.. .i/X;,
or e„i, ) then the S(k,a&) can give information about
the single-particle momentum distribution of helium
atoms. In effect the high-energy neutron scatters from
an individual helium atom, catching it between colli-
sions, and experiences a Doppler shift due to the

initial motion of the atom in the helium bath. We
propose to use neutrons in the range of 1 eV to measure
the momentum distribution of helium atoms and in
particular the occupancy of the zero-momentum state
in He II.
A similar situation occurs in the scattering of x rays

from an electron gas. This case was studied in Ref. 2.
In terms of the well-known formula

dt e '"'(ay (t)ai+~(t)ay+~ (0)ay (O)) (1)
dMZQ p, y'

Here

d'p k' p k)
ti co-

(2s k) 2mH, mH, ) (3)

it was shown in Ref. 2 that the qualitative discussion
given above corresponds to the quantitative statement
that the operator a+q(t) in (1) behaves like a free-
particle operator, i.e.,

aii+q(t) e "r+&""a&yi e~p= (p+k)'/2m«. (2)

Since the bracket in (1) denotes an average over the
equilibrium ensemble for the helium at some tempera-
ture, the momenta p and p' will be typical helium-
particle momenta, p k/X;~& P«i,„. Since k))p or P',
the momentum p+k corresponds to the high-energy
recoiling helium atom, and assumption (2) implies the
neglect of the interaction of this high-energy particle
with the remainder of the helium bath. If we make this
assumption and in addition neglect' energies of order
~&rotonp

TAKE k= k,—k&

= i-a»~rot,

FrG. 1. Diagram-
matic description of
the inelastic scatter-
ing of neutrons from
He.

is the momentum distribution of helium atoms in the
interacting finite-temperature ensemble. Equation (3)
states that for fixed momentum transfer k(k))p„~,„)the
scattered neutrons are shifted in energy by the recoil
energy of the helium atom k'/2mH„Ptls the Doppler
shift p k/mH„weighted by the initial momentum distri-
bution n~ in the helium bath. Before discussing the

2 P. Platzman and N. Tzoar, Phys. Rev. 139, A410 (1965).
M. Cohen and R. P. Feynman, Phys. Rev. 107, 13 (1957). 3 G. F. Chew, Phys. Rev. 80, 196 (1950).
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Hohenberg & Platzman, 1966 Un neutron diffusé transfert au fluide :  

• l’impulsion   ℏk = pfin
neutron − pinit

neutron

• l’énergie   ℏω = ϵfin
neutron − ϵinit

neutron

On cherche à sonder la distribution en impulsion du fluide, avec un éventuel pic en p = 0

Observable à une particule : il faut des neutrons de haute énergie
ℏ

pneutron
ini

≲ distance interatomique  ∼ 1Å deep inelastic scattering

On mesure le transfert d’impulsion et d’énergie (k, ω)
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L’approximation soudaine (impulse approximation)

On suppose que le temps de diffusion du neutron par l’atome est très court 

On néglige l’énergie d’interaction entre l’atome diffusant et ses voisins

pfin
at = pini

at + ℏk

(pfin
at )2

2mat.
=

(pini
at )2

2mat.
+ ℏω

dont on déduit : ℏω =
ℏ2k2

2m
+

pini
at ⋅ k
mat

énergie de recul  
ℏωrec

effet Doppler

{

Signal obtenu en mesurant l’impulsion et l’énergie des neutrons diffusés

I(k, ω) ∝ ∫ d3p n(p) δ [ℏ(ω − ωrec) −
p ⋅ k
mat ] p ≡ pini

at
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Forme du signal attendu I(k, ω) ∝ ∫ n(p) δ [ℏ(ω − ωrec) −
p ⋅ k
mat ] d3p

Coordonnées sphériques : I(k, ω) ∝ 2π∫ n(p) δ [ℏ(ω − ωrec) −
pk
mat

cos θ] p2 sin θ dp dθ

= J ( ω − ωrec

k ) ∝ ∫
+∞

|Y|
p n(p) dp

{

≡ Y

Malheureusement peu sensible aux détails de  autour de n(p) p = 0
BEC in Liquid Helium 65
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Fig. 5. (a) Two theoretical calculations of n(p) in liquid helium at T = 0. The solid
curve is the GFMC result, and the dashed curve is the HNC/S variational result,
(b) The longitudinal momentum distributions described by J(Y) corresponding
to the two ground state n(p) in (a), (c) The combined effects of the convolution
of J(Y) in (b) with the instrumental resolution function and Silver's final-state
broadening.

Directly extracting n(p) from J(Y) suffers similar problems. Statistical
noise, which is present in any measurement, will allow a variety of
different scattering functions to be consistent with the data. This problem
is particulaly severe at small p where the inversion procedure magnifies
the errors. Therefore, in view of the difficulties in extracting n(p) from the
experimental results, we find it more appropriate to work directly with
J(Y). Theoretical predictions can be compared to the experimental data
using the I A. Working with J(Y), as opposed to n(p), has the distinct
advantage that the statistical errors on the data provide a direct measure
of the 'goodness-of-fit' between theory and experiment.
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Fig. 5. (a) Two theoretical calculations of n(p) in liquid helium at T = 0. The solid
curve is the GFMC result, and the dashed curve is the HNC/S variational result,
(b) The longitudinal momentum distributions described by J(Y) corresponding
to the two ground state n(p) in (a), (c) The combined effects of the convolution
of J(Y) in (b) with the instrumental resolution function and Silver's final-state
broadening.

Directly extracting n(p) from J(Y) suffers similar problems. Statistical
noise, which is present in any measurement, will allow a variety of
different scattering functions to be consistent with the data. This problem
is particulaly severe at small p where the inversion procedure magnifies
the errors. Therefore, in view of the difficulties in extracting n(p) from the
experimental results, we find it more appropriate to work directly with
J(Y). Theoretical predictions can be compared to the experimental data
using the I A. Working with J(Y), as opposed to n(p), has the distinct
advantage that the statistical errors on the data provide a direct measure
of the 'goodness-of-fit' between theory and experiment.

Sokol, 1993

après convolution  
et termes correctifs
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Résultats récents sur l’hélium liquide

lated using the known instrument parameters, sample cell
geometry, and an estimate for the sample scattering function.
The incident neutron beam characteristics were modeled us-
ing the Ikeda-Carpenter45 speed and time distribution func-
tion with the adjustable parameters determined from a fit to
the experimental monitor peaks before and after the sample.
The simulation results are obtained in TOF and are then
treated in the same way as the experimental data. The result
is a convolution between the instrumental resolution function
I(Q ,y), and the model scattering function input to the simu-
lation. I(Q ,y) is then simply deconvoluted from the simula-
tion. The resulting instrumental resolution function is shown
as a dashed line in the top left frame of Fig. 3. We observe
that I(Q ,y) narrows significantly with increasing Q and is
quite small at large Q, thus increasing the reliability of the
data.

V. RESULTS

The dynamic structure factor J(Q ,y)!vRS(Q ,!) was
determined at 28 Q values in the range 15"Q"29 Å at five
temperatures T!0.5 K, 1.3 K, 1.6 K, 2.3 K, and 3.5 K.
Figure 2 shows the observed J(Q ,y) at Q!28.5 Å"1 as a
function of energy transfer, y, including the instrument reso-
lution function #see Fig. 3$. In the upper frame, the J(Q ,y) at
the three temperatures T!0.5 K, 1.3 K, and 1.6 K in the
superfluid phase (T#T%!2.17 K) are shown together.
These J(Q ,y) are clearly all very similar. At T!0.5 K
J(Q ,y) is slightly higher in the peak region, y!0, where the
term n0R(Q ,y) makes its largest contribution. This reflects
the somewhat larger condensate fraction at T!0.5 K. The
two J(Q ,y) in normal 4He at T!2.3 and 3.5 K are plotted
together and are also very similar to each other. The peak
height at 3.5 K is slightly lower, reflecting a small broaden-

FIG. 2. Observed J(Q ,y) including the instrument resolution in liquid 4He at SVP at the temperatures indicated. Upper frame shows that
J(Q ,y) is similar at T!2.3 and T!3.5 K in normal 4He and similar at T!0.5 K, 1.3 K and 1.6 K in superfluid 4He. The lower frame
shows that J(Q ,y) is very different in superfluid and normal 4He (T%!2.17 K). J(q ,y) in the superfluid shows direct evidence of the
condensate term n0R(Q ,y): an increased peak height at y!0 and a right-left asymmetry around y!0.

PRB 62 14 341CONDENSATE, MOMENTUM DISTRIBUTION, AND . . .

Condensate, momentum distribution, and final-state effects in liquid 4He

H. R. Glyde
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716

R. T. Azuah and W. G. Stirling
Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom

!Received 15 February 2000"

We present benchmark, high precision measurements of the dynamic structure factor J(Q ,y) of liquid 4He
at several temperatures over a wide wave vector transfer range 15#Q#29 Å!1. J(Q ,y) is very different in
the superfluid phase below T$ and in the normal phase above T$ where T$"2.17 K. Below T$ , J(Q ,y)
contains a pronounced additional contribution near y"0 that is asymmetric about y"0, reflecting a condensate
contribution modified by asymmetric final-state !FS" effects. The asymmetry in J(Q ,y) is direct qualitative
evidence of a condensate. We analyze the data at all T using the same model of J(Q ,y) consisting of a
condensate fraction n0, a momentum distribution n*(k) for states k#0 above the condensate, and a FS
broadening function R(Q ,y). We find a condensate fraction given by n0(T)"n0(0)%1!(T/T$)&' with
n0(0)"(7.25$0.75)% and &"5.5$1.0 for T%T$ , which is 30% below existing observed values, and n0
"(0$0.3)% for T#T$ . We determine n(k) in both phases. The n*(k) is significantly narrower than a
Gaussian in both superfluid and normal 4He and narrowest in the normal phase. The final-state function is
determined from the data and is the same within precision above and below T$ . The precise form of R(Q ,y)
is important in determining the value of n0(T) below T$ . When independent, theoretical R(Q ,y) are used in
the analysis, the n0(T) is found to be the same as or smaller than the above value.

I. INTRODUCTION

Superfluidity and Bose-Einstein condensation !BEC" in
Bose gases and liquids are a topics of great current interest.
Superfluidity in liquid 4He has a long and rich history of
study1–8 and BEC has recently been demonstrated spectacu-
larly in dilute Bose gases.9–13 Einstein14 first showed that a
gas of particles obeying the statistics proposed by Bose15
could condense into a state having macroscopic occupation
of a single-particle quantum state !BEC" below a critical
temperature Tc . In the 1930s superfluidity was discovered
in1–3 liquid 4He below a temperature T$"2.17 K. London16
proposed that this superfluidity was associated with BEC
with T$"Tc .
Superfluidity can be readily demonstrated in liquid 4He

today. However, because liquid 4He is a strongly interacting
fluid, the fraction of the fluid condensed in the zero momen-
tum state is small,17–20,8 less than 10%. For this reason and
also because of the strong interaction,21,22 BEC in superfluid
4He is difficult to observe. Measurements to date6,7 are sum-
marized below. Unambiguous identification of a condensate
in liquid 4He and accurate determination of the condensate
fraction n0(T) remain important goals today.
In contrast, BEC has been unambiguously demonstrated

in dilute gases of trapped alkali-metal atoms.9–12 In this case,
the gas is dilute and weakly interacting so that nearly 100%
of the gas is condensed into the lowest single particle state at
low T. These condensed gases show remarkable properties
but superfluidity, stable persistent flow, is difficult to dem-
onstrate. Clear observation of superfluidity in trapped Bose
gases is an important research goal today.
The aim of the present investigation is to determine the

condensate fraction n0(T), the momentum distribution n(k),

and the final-state function R(Q ,y) in liquid 4He accurately
as a function of temperature. The most direct method to ob-
serve n0(T) is by neutron inelastic scattering at high energy
(()) and momentum ((Q) transfer.23,24 The quantity ob-
served is the dynamic structure factor !DSF" S(Q ,)).6,7 At
high ) and Q, S(Q)) depends on single-atom properties and
the energy transfer ) is Doppler broadened by the atomic
momentum distribution n(k). From this broadening, n(k) is
measured and n0(T) is determined.
Specifically, provided there are no perfectly hard core in-

teractions, S(Q ,)) at Q→* reduces to the impulse
approximation6 !IA",

SIA!Q ,)""! dkn!k"+!)!)R!vR•k", !1"

where (k is the 4He atom momentum in the fluid, n(k) is
the momentum distribution, and ()R"(2Q2/2m and vR
"(Q/m are the free 4He atom recoil energy and velocity,
respectively. SIA(Q ,)) depends solely on n(k).
At finite Q, interactions of the recoiling atom with its

neighbors, denoted final-state !FS" effects, contribute to
S(Q ,)). The observed S(Q ,)) is then21,6,7

S!Q ,)""! d)!SIA!Q ,)!"R!Q ,)!)!". !2"

Equation !2" may be regarded as the definition21 of the FS
broadening function R(Q ,)). At finite Q !e.g., Q
"20 Å!1) R(Q ,)) has a significant width and R(Q ,))
→+()) as Q→* .
When there is a condensate, n(k) contains a term n0+(k).

This term leads to a term SIA(Q ,))"n0+()!)R) in the IA

PHYSICAL REVIEW B 1 DECEMBER 2000-IVOLUME 62, NUMBER 21
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Fraction condensée : 7.25 (0.75) %

Déplétion quantique : 92.75 %

Glyde et al., 2000, 2011

J(y)
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L’expérience de Cambridge (2017)

and, hence, the condensed fraction. Finally, note that, since
the atomic states jki and jkþ qi are coherently coupled by
the Bragg beams, an atom undergoes Rabi oscillations
between the two states as a function of the duration of the
Bragg light pulse, with a period set by the two-photon Rabi
frequency Ω [see Fig. 2(a)].
In our setup [26], q is aligned with the axis of the

cylindrical box trap (z) and q ¼ 1.7 × 2π=λ, where
λ ¼ 767 nm. The Bragg resonance condition thus depends
only on an atom’s initial momentum along z, and by
counting the diffracted atoms we effectively probe the one-
dimensional (1D) momentum distribution of the cloud,
~nðkÞ, given by the integral of the 3D distribution along the
two transverse directions. We aim to diffract only the
condensed atoms, so we tune ω to ℏq2=ð2mÞ. In frequency
space, our spectroscopic resolution is set by Ω, which
corresponds to a momentum resolution of Ωm=q.

More specifically, we want to spatially separate the BEC
from the quantum depletion (QD), which relies on a
separation of three momentum scales, 1=L ≪ 1=ξ ≪ q,
where ξ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
8πna

p
is the healing length. In Fig. 1, we

illustrate the expected ~nðkÞ for a zero-temperature gas:
~nðkÞ ¼ ~nBECðkÞ þ ~nQDðkÞ, where ~nBEC has a Heisenberg-
limited width ∝ 1=L [27] and exponentially suppressed
high-k tails, while ~nQDðkÞ has a width ∝ 1=ξ and long
polynomial tails [18,28–30] (see [31] for details). The
inequality L=ξ ≫ 1 thus ensures that ~nQDðkÞ extends over
a much wider range of momenta than ~nBECðkÞ, so Ω can be
chosen such that a Bragg pulse diffracts essentially thewhole
BEC and almost none of the QD. The inequality qξ ≫ 1
ensures that the momentum kick received by a diffracted
atom, ℏq, is much larger than the QD momentum spread, so
that, after the Bragg pulse and a sufficiently long subsequent
time-of-flight, the diffracted and the nondiffracted portions
of the cloud clearly separate in real space [see Fig. 2(a)].
For all our measurements, L=ξ > 30 and qξ > 12.
We start by producing a quasipure weakly interacting

BEC of density n ≈ 3.5 × 1011 cm−3 in the lowest 39K
hyperfine state, jF ¼ 1; mF ¼ 1i in the low-field basis,

FIG. 2. Bragg filtering and reversible interaction tuning of the
condensed fraction. (a) Diffracted fraction (DF) as a function
of the Bragg pulse duration τ for Ω ¼ 2π × 1.8 kHz and
a ≈ 3000a0. Absorption images in the background show the
stationary (bottom) and diffracted (top) clouds, for the data points
indicated by the red diamonds. (b) Diffracted fraction for τ close
to π=Ω, for three different preparations of the cloud (see the
inset): at 700a0 (solid blue circles), after raising a from 700a0 to
3000a0 in 80 ms (orange diamonds), and after reducing it back
to 700a0 in another 80 ms (open green circles). We see that
increasing a reversibly reduces the maximal diffracted fraction.
All error bars show standard statistical errors in the mean.

FIG. 1. Momentum distribution of a zero-temperature homo-
geneous Bose gas. We consider a gas of density n and size L and
two different values of the scattering length a. We show the
expected 1D momentum distribution ~nðkÞ (see the text), normal-
ized so that ~nð0Þ ¼ 1 would correspond to no quantum depletion
[setting γ in Eq. (1) to 0]. The total ~nðkÞ consists of the BEC peak
(blue), with a Heisenberg-limited width ∝ 1=L, and a broad
quantum-depletion pedestal (orange) of characteristic width 1=ξ,
where ξ is the healing length. To a good approximation, the low-k
distribution is the same as for a pure BEC, just scaled by a factor of
1 − γ

ffiffiffiffiffiffiffiffi
na3

p
, indicated by the dashed lines. For this illustration, we

use experimentally relevant values of L=ξ, but exaggerated values
of

ffiffiffiffiffiffiffiffi
na3

p
, to make the orange shading visible in the main panels.

Also note that we assume that the very broad ~nQDðkÞ is not affected
by finite-size effects. The cartoons on the left depict the coherent
excitations out of the (blue) condensate, which occur as pairs of
atoms with opposite momenta. The right insets highlight the fact
that ~nQDðkÞ ≫ ~nBECðkÞ at large k.

PRL 119, 190404 (2017) P HY S I CA L R EV I EW LE T T ER S
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Gaz de potassium 39 (boson) de densité uniforme  atomes/cm3∼ 3 × 1011

Transfert d’impulsion et d’énergie par 
une transition à deux photons : 
absorption-émission stimulée

“diffraction de Bragg” k1, ω1

k2, ω2

Résonance de Fano-Feshbach à  : elle permet ∼ 400 G

• d’ajuster la valeur de travail souhaitée pour 

• de basculer ensuite  pour rendre négligeable l’interaction entre atomes diffractés et atomes non diffractés

a

a ≈ 0

Lopes, Eigen, Navon, Clément, Smith, Hadzibabic
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Procédure suivie à Cambridge

ℏω =
ℏ2k2

2m
+

pini
at ⋅ k
matk1, ω1

k2, ω2 k = k1 − k2

ω = ω1 − ω2

On choisit   :  sélectionne les atomes de , essentiellement le condensatℏω =
ℏ2k2

2m
pz = 0

Le processus de diffraction de Bragg est cohérent  
         On observe une oscillation de Rabi de la distribution spatiale après temps de vol⟶

and, hence, the condensed fraction. Finally, note that, since
the atomic states jki and jkþ qi are coherently coupled by
the Bragg beams, an atom undergoes Rabi oscillations
between the two states as a function of the duration of the
Bragg light pulse, with a period set by the two-photon Rabi
frequency Ω [see Fig. 2(a)].
In our setup [26], q is aligned with the axis of the

cylindrical box trap (z) and q ¼ 1.7 × 2π=λ, where
λ ¼ 767 nm. The Bragg resonance condition thus depends
only on an atom’s initial momentum along z, and by
counting the diffracted atoms we effectively probe the one-
dimensional (1D) momentum distribution of the cloud,
~nðkÞ, given by the integral of the 3D distribution along the
two transverse directions. We aim to diffract only the
condensed atoms, so we tune ω to ℏq2=ð2mÞ. In frequency
space, our spectroscopic resolution is set by Ω, which
corresponds to a momentum resolution of Ωm=q.

More specifically, we want to spatially separate the BEC
from the quantum depletion (QD), which relies on a
separation of three momentum scales, 1=L ≪ 1=ξ ≪ q,
where ξ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
8πna

p
is the healing length. In Fig. 1, we

illustrate the expected ~nðkÞ for a zero-temperature gas:
~nðkÞ ¼ ~nBECðkÞ þ ~nQDðkÞ, where ~nBEC has a Heisenberg-
limited width ∝ 1=L [27] and exponentially suppressed
high-k tails, while ~nQDðkÞ has a width ∝ 1=ξ and long
polynomial tails [18,28–30] (see [31] for details). The
inequality L=ξ ≫ 1 thus ensures that ~nQDðkÞ extends over
a much wider range of momenta than ~nBECðkÞ, so Ω can be
chosen such that a Bragg pulse diffracts essentially thewhole
BEC and almost none of the QD. The inequality qξ ≫ 1
ensures that the momentum kick received by a diffracted
atom, ℏq, is much larger than the QD momentum spread, so
that, after the Bragg pulse and a sufficiently long subsequent
time-of-flight, the diffracted and the nondiffracted portions
of the cloud clearly separate in real space [see Fig. 2(a)].
For all our measurements, L=ξ > 30 and qξ > 12.
We start by producing a quasipure weakly interacting

BEC of density n ≈ 3.5 × 1011 cm−3 in the lowest 39K
hyperfine state, jF ¼ 1; mF ¼ 1i in the low-field basis,

FIG. 2. Bragg filtering and reversible interaction tuning of the
condensed fraction. (a) Diffracted fraction (DF) as a function
of the Bragg pulse duration τ for Ω ¼ 2π × 1.8 kHz and
a ≈ 3000a0. Absorption images in the background show the
stationary (bottom) and diffracted (top) clouds, for the data points
indicated by the red diamonds. (b) Diffracted fraction for τ close
to π=Ω, for three different preparations of the cloud (see the
inset): at 700a0 (solid blue circles), after raising a from 700a0 to
3000a0 in 80 ms (orange diamonds), and after reducing it back
to 700a0 in another 80 ms (open green circles). We see that
increasing a reversibly reduces the maximal diffracted fraction.
All error bars show standard statistical errors in the mean.

FIG. 1. Momentum distribution of a zero-temperature homo-
geneous Bose gas. We consider a gas of density n and size L and
two different values of the scattering length a. We show the
expected 1D momentum distribution ~nðkÞ (see the text), normal-
ized so that ~nð0Þ ¼ 1 would correspond to no quantum depletion
[setting γ in Eq. (1) to 0]. The total ~nðkÞ consists of the BEC peak
(blue), with a Heisenberg-limited width ∝ 1=L, and a broad
quantum-depletion pedestal (orange) of characteristic width 1=ξ,
where ξ is the healing length. To a good approximation, the low-k
distribution is the same as for a pure BEC, just scaled by a factor of
1 − γ

ffiffiffiffiffiffiffiffi
na3

p
, indicated by the dashed lines. For this illustration, we

use experimentally relevant values of L=ξ, but exaggerated values
of

ffiffiffiffiffiffiffiffi
na3

p
, to make the orange shading visible in the main panels.

Also note that we assume that the very broad ~nQDðkÞ is not affected
by finite-size effects. The cartoons on the left depict the coherent
excitations out of the (blue) condensate, which occur as pairs of
atoms with opposite momenta. The right insets highlight the fact
that ~nQDðkÞ ≫ ~nBECðkÞ at large k.

PRL 119, 190404 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
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déplétion quantique + …

… = effets de taille finie, excitation thermique
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Résultat de l’expérience de Cambridge

which features a Feshbach resonance centred at 402.70(3) G
[32]. We prepare the BEC at a ¼ 200a0, where a0 is the
Bohr radius, so

ffiffiffiffiffiffiffiffi
na3

p
< 10−3, and in the time-of-flight

expansion we do not discern any thermal fraction. We then
(in 150–250 ms) increase a to a value in the range
700–3000a0 and measure the condensed fraction. To prepare
the initial quasipure BEC, we lower the trap depth U0 to
≈kB × 20 nK, but before increasing a we adiabatically raise
U0 by a factor of 5, to ensure that U0 ≫ ℏ2=ð2mξ2Þ. The
largest a that we explore here is limited by imposing
requirements that (i) during the whole experiment the atom
loss due to three-body recombination is < 10%, and (ii) if
we reduce a back to 200a0, we do not observe any signs
of heating; for a discussion of additional measurements at
even larger a (with larger particle loss), see [31].
Just before turning off the trap and applying the Bragg

pulse, we rapidly (in 60 μs) turn off the interactions, using a
radio-frequency pulse to transfer the atoms to the
jF ¼ 1; mF ¼ 0i state, in which a ≈ 0 [32]. This freezes
the momentum distribution before we probe it and allows
the diffracted and nondiffracted components of the gas to
separate in space without collisions.
After the Bragg pulse, we wait for 10 ms and then take

an absorption image along a direction perpendicular to z
[see Fig. 2(a)]. In 10 ms, the diffracted and nondiffracted
portions of the gas separate by ≈220 μm, while neither
expands significantly beyond the original size of the box-
trapped cloud.
In Fig. 2(a), we show a typical variation of the diffracted

fraction of the gas with the duration of the Bragg pulse, τ,
for our chosen Ω ¼ 2π × 1.8 kHz (see [31]). In the back-
ground, we show representative absorption images of the
stationary (bottom) and diffracted (top) clouds.
Assuming that we perfectly filter out the condensate

from the high-k components of the gas, the condensed
fraction of the cloud is given by the maximal diffracted
fraction, η, observed for τ ¼ π=Ω ≈ 0.28 ms. We see that η
is slightly below unity, which is expected due to quantum
depletion but can in practice also be observed for other
reasons, including experimental imperfections and the
inevitably nonzero temperature of the cloud. It is therefore
important that our measurements are differential—we study
the variation of η with a while keeping other experimental
parameters the same. It is also crucial to verify that the
tuning of η with a is adiabatically reversible, which
excludes the possibility that the condensed fraction is
reduced due to nonadiabatic heating or losses.
In Fig. 2(b), we focus on τ ≈ π=Ω and show measure-

ments for three different experimental protocols: for a cloud
prepared at 700a0, after increasing a to 3000a0, and after
reducing it back to 700a0 (see the inset). We see that η is
indeed reduced when a is increased and also that this effect
is fully reversible (within experimental errors); we have
verified such reversibility for our whole experimental range
of a values.

In Fig. 3, we summarize our measurements of the
variation of η with the interaction parameter

ffiffiffiffiffiffiffiffi
na3

p
.

We observe the expected linear dependence, with ηð0Þ
close to unity. Fitting the data with ηð0Þð1 − γ

ffiffiffiffiffiffiffiffi
na3

p
Þ gives

γ ¼ 1.5ð2Þ, in agreement with Eq. (1).
Finally, we numerically assess the systematic effects on γ

due to noninfinite L=ξ and a small nonzero temperature T,
which are both ≲20% and partially cancel. The results of
this analysis are shown in the inset in Fig. 3; for details, see
[31]. The dashed line shows the simulated η for T ¼ 0 and
our values of n, L, and Ω. For any noninfinite Ω, the tails
of the BEC momentum distribution are not fully captured
by the Bragg pulse, which slightly reduces ηð0Þ. More
importantly, we diffract some of the quantum-depletion
atoms, which reduces the apparent γ. A linear fit (omitted
for clarity) gives that for T ¼ 0 we actually expect γ ≈ 1.2.
The small systematic differences between our data and this
simulation can be explained by a small nonzero temper-
ature. A nonzero temperature generally reduces η due to
thermal depletion, the momentum tails of which are not
diffracted by the Bragg pulse. Moreover, if the gas is
initially prepared (at 200a0) at a small T > 0, this does not
merely reduce η by a constant offset (independent of

ffiffiffiffiffiffiffiffi
na3

p
)

but slightly increases the apparent γ; even adiabatically
increasing a increases the thermal depletion, because it
modifies both the dispersion relation and the particle
content of the thermally populated low-k excitations
[28,31]. As indicated by the orange shaded region, our
data are consistent with an initial T between 3.5 and 5 nK;
this is compatible with the fact that we do not discern the

FIG. 3. Measurement of the quantum depletion. We plot the
maximal diffracted fraction η versus the interaction parameterffiffiffiffiffiffiffiffi
na3

p
. A linear fit (solid line) gives ηð0Þ ¼ 0.954ð5Þ and

γ ¼ 1.5ð2Þ. Vertical error bars show fitting errors, while hori-
zontal ones reflect the uncertainty in the position of the Feshbach
resonance and a 10% uncertainty in n. Inset: Analysis of
systematic effects. We show numerical simulations for T ¼ 0
(dashed line) and for initial temperatures (at a ¼ 200a0) between
3.5 and 5 nK (orange shading, from top to bottom); see the text
and [31] for more details.
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  fraction diffractée au maximum de l’oscillation de Rabiη :

Ajustement des données par η = η0 (1 − γ na3)
η0 = 0.954(5) γ = 1.5(2) 8

3 π
= 1.505

Effets systématiques :

• La longueur  n’est pas très grande devant  : séparation imparfaite entre nuages diffracté et non diffractéL ξ

•  Effets de température non nulle (zone orange  :  entre 3.5 et 5 nK)T

•  Certains atomes en dehors du condensat sont malgré tout diffractés

Bilan : erreurs statistiques (15%), erreurs systématiques (20%)
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Paires d’atomes dans le vide de Bogoliubov

|Ψ⟩ = ∏
{+k,−k}

|Ψk⟩ où chaque  est un état comprimé du vide à deux modes|Ψk⟩

|Ψk⟩ = ∑
n

ck(n) |n : + k , n : − k⟩

Recherche des corrélations  dans un condensat d’hélium métastable{+k, − k}

Expérience rendue possible grâce à

Tenart, Hercé, Bureik, Dareau, Clément, 2021

•  une détection atome par atome
• l’utilisation d’un réseau optique 3D de faible amplitude qui concentre 
les atomes et augmente la déplétion quantique : 0.2%  5.0%⟶
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Mesure de la fonction de corrélation à deux corps 
LETTERSNATURE PHYSICS

volume Ωk and compute atom–atom correlations over Ωk. We use 
this to exclude atoms from the BEC and only study the depletion 
(Fig. 1b). Finally, statistical averages are obtained from recording 
about 2,000 atom distributions (Methods). To identify pairs, we use 
the following integrated atom–atom correlations:

g

(2)
A

(δk) =

∫
Ω

k

〈a†(k)a†(δk− k)a(k)a(δk− k)〉dk
∫

Ω
k

ρ(k)ρ(δk− k)dk
, (1)

where 
ρ(k) = 〈a†(k)a(k)〉. With this definition, a peak located at 

δk = 0 signals pairs of atoms at opposite momenta.
In Fig. 1c, we present one-dimensional (1D) cuts of the pair 

correlations g(2)
A

 measured in the depletion of lattice BECs, and 
observe a peak located at δk = 0. For these data, we find, on average, 
about 100 atoms and 0.5 atom pairs per shot in Ωk (Supplementary 
Information). A crucial experimental parameter for obtaining this 
signal is the detection efficiency, which we have recently increased 
to 0.53(2) (Methods). The observation of atom pairs with opposite 
momenta in the depletion of equilibrium interacting BECs is a cen-
tral result of this work. Identifying their origin, however, requires 
accounting for the effect of temperature.

In our experiment, temperature T should increase the thermal 
population of depletion without contributing to the k/−k correla-
tions. This is because we probe large momenta corresponding to 
single-particle excitations of the Bogoliubov spectrum (see below). 
Therefore, when the temperature increases, the number of pairs 
becomes a negligible fraction of the total depletion, making their 
detection nearly impossible. This suggests that the k/−k peak 

rapidly vanishes with temperature, a sensitivity limiting its range 
of observation but also providing us with a means to confirm its 
origin. Indeed, an essential aspect of our experiment is the ability 
to produce BECs in the low-temperature regime, namely, kBT ≪ μ, 
where thermal depletion (~10%; Fig. 1) is not much greater than 
quantum depletion (~5%; Fig. 1). Here kB is the Boltzmann con-
stant and μ is the chemical potential. This low-temperature regime, 
namely, kBT/μ ≃ 0.3 (Fig. 1), is accessible in the lattice because it 
enhances interactions5,7.

To study temperature sensitivity of the k/−k peak, we slightly 
increase the gas temperature to maintain a large BEC (Methods), 
and repeat the correlation measurement. The two datasets 
(non-heated and heated) are shown in Fig. 2. The increase in tem-
perature translates into an increase in density ρ(k), visible in the 
log-scale plot shown in Fig. 2b. No k/−k peak is visible in the heated 
BEC, confirming that a finite temperature does not contribute to 
k/−k correlations (Fig. 2a). Our description is further validated by 
the observation of a k/−k peak of intermediate amplitude at inter-
mediate temperature (Supplementary Information).

It is also illuminating to contrast the temperature sensitivity of 
k/−k correlations with that of local correlations at k′ ! k. These 
local correlations reflect bosonic bunching7 and are quantified by

g

(2)
N

(δk) =

∫
Ω

k

〈a†(k)a†(δk+ k)a(k)a(δk+ k)〉dk
∫

Ω
k

ρ(k)ρ(δk+ k)dk
, (2)

where a peak located at δk = 0 signals bunching. In Fig. 2c, we plot 
g

(2)
N

(δk) for both low-temperature and heated datasets. We find 
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Fig. 1 | Observation of k/−k pairs in the atom–atom correlations measured after a time of flight. a, Schematic of the experiment. A gas of weakly 
interacting 4He* atoms is released from a lattice trap, and the atoms undergo free fall towards the He* detector where they are individually detected  
(g indicates gravity). The inset depicts the many-body ground state that contains a BEC (uniform light blue colour) and quantum depletion comprising pairs 
of atoms with opposite momenta (coloured circles). When the trap is abruptly switched off, the many-body ground state is projected onto the momentum 
basis and atom pairs fall onto the He* detector with opposite momenta (atoms from the BEC are not shown on the detector). b, One-dimensional cut of 
ρ(k) through the experimental momentum density ρ(k). The peaks correspond to the (coherent) BEC component. The depletion of the BEC, corresponding 
to long tails in ρ(k), is visible in the log scale (inset; the x- and y-axis labels are the same as those of the main figure). Volume Ωk over which atom–
atom correlations are computed is indicated as the green shaded area. c, Atom–atom correlations revealing pairs of atoms with opposite momenta. 
One-dimensional cuts through 

g

(2)
A

(δk) along the axis of the 3D optical lattice. The transverse integration is Δk⊥!=!3.0!×!10−2kd and the longitudinal voxel 
size is Δk∥!=!1.2!×!10−2kd. The data are fitted by Gaussian functions (solid lines). The error bars are obtained from the inverse square root of the number of 
counts in the voxels.
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Détection des atomes après une chute libre lors 
de leur impact sur une galette de micro-canaux

Efficacité : 53 %

Pour chaque événement de détection : x, y, t
Permet de remonter aux trois composantes de la vitesse initiale :

vx, vy, vz

On calcule à partir de l’ensemble des impacts la fonction de corrélation

g(2)(δk) =
∫

Ω
⟨n(k)n(δk − k)⟩ d3k

∫
Ω

⟨n(k)⟩ ⟨n(δk − k)⟩ d3k

  zone sélectionnée  
en dehors du condensat
Ω :

La corrélation de paires    doit se manifester par un pic en  {+k, − k} δk = 0

LETTERSNATURE PHYSICS

volume Ωk and compute atom–atom correlations over Ωk. We use 
this to exclude atoms from the BEC and only study the depletion 
(Fig. 1b). Finally, statistical averages are obtained from recording 
about 2,000 atom distributions (Methods). To identify pairs, we use 
the following integrated atom–atom correlations:

g

(2)
A

(δk) =

∫
Ω

k

〈a†(k)a†(δk− k)a(k)a(δk− k)〉dk
∫

Ω
k

ρ(k)ρ(δk− k)dk
, (1)

where ρ(k) = 〈a†(k)a(k)〉. With this definition, a peak located at 
δk = 0 signals pairs of atoms at opposite momenta.

In Fig. 1c, we present one-dimensional (1D) cuts of the pair 
correlations g(2)

A

 measured in the depletion of lattice BECs, and 
observe a peak located at δk = 0. For these data, we find, on average, 
about 100 atoms and 0.5 atom pairs per shot in Ωk (Supplementary 
Information). A crucial experimental parameter for obtaining this 
signal is the detection efficiency, which we have recently increased 
to 0.53(2) (Methods). The observation of atom pairs with opposite 
momenta in the depletion of equilibrium interacting BECs is a cen-
tral result of this work. Identifying their origin, however, requires 
accounting for the effect of temperature.

In our experiment, temperature T should increase the thermal 
population of depletion without contributing to the k/−k correla-
tions. This is because we probe large momenta corresponding to 
single-particle excitations of the Bogoliubov spectrum (see below). 
Therefore, when the temperature increases, the number of pairs 
becomes a negligible fraction of the total depletion, making their 
detection nearly impossible. This suggests that the k/−k peak 

rapidly vanishes with temperature, a sensitivity limiting its range 
of observation but also providing us with a means to confirm its 
origin. Indeed, an essential aspect of our experiment is the ability 
to produce BECs in the low-temperature regime, namely, kBT ≪ μ, 
where thermal depletion (~10%; Fig. 1) is not much greater than 
quantum depletion (~5%; Fig. 1). Here kB is the Boltzmann con-
stant and μ is the chemical potential. This low-temperature regime, 
namely, kBT/μ ≃ 0.3 (Fig. 1), is accessible in the lattice because it 
enhances interactions5,7.

To study temperature sensitivity of the k/−k peak, we slightly 
increase the gas temperature to maintain a large BEC (Methods), 
and repeat the correlation measurement. The two datasets 
(non-heated and heated) are shown in Fig. 2. The increase in tem-
perature translates into an increase in density ρ(k), visible in the 
log-scale plot shown in Fig. 2b. No k/−k peak is visible in the heated 
BEC, confirming that a finite temperature does not contribute to 
k/−k correlations (Fig. 2a). Our description is further validated by 
the observation of a k/−k peak of intermediate amplitude at inter-
mediate temperature (Supplementary Information).

It is also illuminating to contrast the temperature sensitivity of 
k/−k correlations with that of local correlations at k′ ! k. These 
local correlations reflect bosonic bunching7 and are quantified by

g

(2)
N

(δk) =

∫
Ω

k

〈a†(k)a†(δk+ k)a(k)a(δk+ k)〉dk
∫

Ω
k

ρ(k)ρ(δk+ k)dk
, (2)

where a peak located at δk = 0 signals bunching. In Fig. 2c, we plot 
g

(2)
N

(δk) for both low-temperature and heated datasets. We find 
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Fig. 1 | Observation of k/−k pairs in the atom–atom correlations measured after a time of flight. a, Schematic of the experiment. A gas of weakly 
interacting 4He* atoms is released from a lattice trap, and the atoms undergo free fall towards the He* detector where they are individually detected  
(g indicates gravity). The inset depicts the many-body ground state that contains a BEC (uniform light blue colour) and quantum depletion comprising pairs 
of atoms with opposite momenta (coloured circles). When the trap is abruptly switched off, the many-body ground state is projected onto the momentum 
basis and atom pairs fall onto the He* detector with opposite momenta (atoms from the BEC are not shown on the detector). b, One-dimensional cut of 
ρ(k) through the experimental momentum density ρ(k). The peaks correspond to the (coherent) BEC component. The depletion of the BEC, corresponding 
to long tails in ρ(k), is visible in the log scale (inset; the x- and y-axis labels are the same as those of the main figure). Volume Ωk over which atom–
atom correlations are computed is indicated as the green shaded area. c, Atom–atom correlations revealing pairs of atoms with opposite momenta. 
One-dimensional cuts through 

g

(2)
A

(δk) along the axis of the 3D optical lattice. The transverse integration is Δk⊥!=!3.0!×!10−2kd and the longitudinal voxel 
size is Δk∥!=!1.2!×!10−2kd. The data are fitted by Gaussian functions (solid lines). The error bars are obtained from the inverse square root of the number of 
counts in the voxels.
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volume Ωk and compute atom–atom correlations over Ωk. We use 
this to exclude atoms from the BEC and only study the depletion 
(Fig. 1b). Finally, statistical averages are obtained from recording 
about 2,000 atom distributions (Methods). To identify pairs, we use 
the following integrated atom–atom correlations:

g

(2)
A

(δk) =

∫
Ω

k

〈a†(k)a†(δk− k)a(k)a(δk− k)〉dk
∫

Ω
k

ρ(k)ρ(δk− k)dk
, (1)

where ρ(k) = 〈a†(k)a(k)〉. With this definition, a peak located at 
δk = 0 signals pairs of atoms at opposite momenta.

In Fig. 1c, we present one-dimensional (1D) cuts of the pair 
correlations g(2)

A

 measured in the depletion of lattice BECs, and 
observe a peak located at δk = 0. For these data, we find, on average, 
about 100 atoms and 0.5 atom pairs per shot in Ωk (Supplementary 
Information). A crucial experimental parameter for obtaining this 
signal is the detection efficiency, which we have recently increased 
to 0.53(2) (Methods). The observation of atom pairs with opposite 
momenta in the depletion of equilibrium interacting BECs is a cen-
tral result of this work. Identifying their origin, however, requires 
accounting for the effect of temperature.

In our experiment, temperature T should increase the thermal 
population of depletion without contributing to the k/−k correla-
tions. This is because we probe large momenta corresponding to 
single-particle excitations of the Bogoliubov spectrum (see below). 
Therefore, when the temperature increases, the number of pairs 
becomes a negligible fraction of the total depletion, making their 
detection nearly impossible. This suggests that the k/−k peak 

rapidly vanishes with temperature, a sensitivity limiting its range 
of observation but also providing us with a means to confirm its 
origin. Indeed, an essential aspect of our experiment is the ability 
to produce BECs in the low-temperature regime, namely, kBT ≪ μ, 
where thermal depletion (~10%; Fig. 1) is not much greater than 
quantum depletion (~5%; Fig. 1). Here kB is the Boltzmann con-
stant and μ is the chemical potential. This low-temperature regime, 
namely, kBT/μ ≃ 0.3 (Fig. 1), is accessible in the lattice because it 
enhances interactions5,7.

To study temperature sensitivity of the k/−k peak, we slightly 
increase the gas temperature to maintain a large BEC (Methods), 
and repeat the correlation measurement. The two datasets 
(non-heated and heated) are shown in Fig. 2. The increase in tem-
perature translates into an increase in density ρ(k), visible in the 
log-scale plot shown in Fig. 2b. No k/−k peak is visible in the heated 
BEC, confirming that a finite temperature does not contribute to 
k/−k correlations (Fig. 2a). Our description is further validated by 
the observation of a k/−k peak of intermediate amplitude at inter-
mediate temperature (Supplementary Information).

It is also illuminating to contrast the temperature sensitivity of 
k/−k correlations with that of local correlations at k′ ! k. These 
local correlations reflect bosonic bunching7 and are quantified by

g

(2)
N

(δk) =

∫
Ω

k

〈a†(k)a†(δk+ k)a(k)a(δk+ k)〉dk
∫

Ω
k

ρ(k)ρ(δk+ k)dk
, (2)

where a peak located at δk = 0 signals bunching. In Fig. 2c, we plot 
g

(2)
N

(δk) for both low-temperature and heated datasets. We find 
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Fig. 1 | Observation of k/−k pairs in the atom–atom correlations measured after a time of flight. a, Schematic of the experiment. A gas of weakly 
interacting 4He* atoms is released from a lattice trap, and the atoms undergo free fall towards the He* detector where they are individually detected  
(g indicates gravity). The inset depicts the many-body ground state that contains a BEC (uniform light blue colour) and quantum depletion comprising pairs 
of atoms with opposite momenta (coloured circles). When the trap is abruptly switched off, the many-body ground state is projected onto the momentum 
basis and atom pairs fall onto the He* detector with opposite momenta (atoms from the BEC are not shown on the detector). b, One-dimensional cut of 
ρ(k) through the experimental momentum density ρ(k). The peaks correspond to the (coherent) BEC component. The depletion of the BEC, corresponding 
to long tails in ρ(k), is visible in the log scale (inset; the x- and y-axis labels are the same as those of the main figure). Volume Ωk over which atom–
atom correlations are computed is indicated as the green shaded area. c, Atom–atom correlations revealing pairs of atoms with opposite momenta. 
One-dimensional cuts through 
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(2)
A

(δk) along the axis of the 3D optical lattice. The transverse integration is Δk⊥!=!3.0!×!10−2kd and the longitudinal voxel 
size is Δk∥!=!1.2!×!10−2kd. The data are fitted by Gaussian functions (solid lines). The error bars are obtained from the inverse square root of the number of 
counts in the voxels.
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volume Ωk and compute atom–atom correlations over Ωk. We use 
this to exclude atoms from the BEC and only study the depletion 
(Fig. 1b). Finally, statistical averages are obtained from recording 
about 2,000 atom distributions (Methods). To identify pairs, we use 
the following integrated atom–atom correlations:

g

(2)
A

(δk) =

∫
Ω

k

〈a†(k)a†(δk− k)a(k)a(δk− k)〉dk
∫

Ω
k

ρ(k)ρ(δk− k)dk
, (1)

where ρ(k) = 〈a†(k)a(k)〉. With this definition, a peak located at 
δk = 0 signals pairs of atoms at opposite momenta.

In Fig. 1c, we present one-dimensional (1D) cuts of the pair 
correlations g(2)

A

 measured in the depletion of lattice BECs, and 
observe a peak located at δk = 0. For these data, we find, on average, 
about 100 atoms and 0.5 atom pairs per shot in Ωk (Supplementary 
Information). A crucial experimental parameter for obtaining this 
signal is the detection efficiency, which we have recently increased 
to 0.53(2) (Methods). The observation of atom pairs with opposite 
momenta in the depletion of equilibrium interacting BECs is a cen-
tral result of this work. Identifying their origin, however, requires 
accounting for the effect of temperature.

In our experiment, temperature T should increase the thermal 
population of depletion without contributing to the k/−k correla-
tions. This is because we probe large momenta corresponding to 
single-particle excitations of the Bogoliubov spectrum (see below). 
Therefore, when the temperature increases, the number of pairs 
becomes a negligible fraction of the total depletion, making their 
detection nearly impossible. This suggests that the k/−k peak 

rapidly vanishes with temperature, a sensitivity limiting its range 
of observation but also providing us with a means to confirm its 
origin. Indeed, an essential aspect of our experiment is the ability 
to produce BECs in the low-temperature regime, namely, kBT ≪ μ, 
where thermal depletion (~10%; Fig. 1) is not much greater than 
quantum depletion (~5%; Fig. 1). Here kB is the Boltzmann con-
stant and μ is the chemical potential. This low-temperature regime, 
namely, kBT/μ ≃ 0.3 (Fig. 1), is accessible in the lattice because it 
enhances interactions5,7.

To study temperature sensitivity of the k/−k peak, we slightly 
increase the gas temperature to maintain a large BEC (Methods), 
and repeat the correlation measurement. The two datasets 
(non-heated and heated) are shown in Fig. 2. The increase in tem-
perature translates into an increase in density ρ(k), visible in the 
log-scale plot shown in Fig. 2b. No k/−k peak is visible in the heated 
BEC, confirming that a finite temperature does not contribute to 
k/−k correlations (Fig. 2a). Our description is further validated by 
the observation of a k/−k peak of intermediate amplitude at inter-
mediate temperature (Supplementary Information).

It is also illuminating to contrast the temperature sensitivity of 
k/−k correlations with that of local correlations at k′ ! k. These 
local correlations reflect bosonic bunching7 and are quantified by

g

(2)
N

(δk) =

∫
Ω

k

〈a†(k)a†(δk+ k)a(k)a(δk+ k)〉dk
∫

Ω
k

ρ(k)ρ(δk+ k)dk
, (2)

where a peak located at δk = 0 signals bunching. In Fig. 2c, we plot 
g

(2)
N

(δk) for both low-temperature and heated datasets. We find 

Trapped cloud

43 cm

g

He* detector

BEC

x

y

a

b

1.0

0.5
Ωk

0

D
en

si
ty

, ρ
(k

) 
(a

.u
.)

–1.0 –0.5 0

k/kd

0.5 1.0

0.50–0.5

10–4

10–2

100

1.0

–0.2 –0.1

δk/kd = (k + k′)/kd

0 0.1 0.2

1.3

1.3

1.3

c
x

1.0g A
  (δ

k)
(2

)

1.0

y

z

Fig. 1 | Observation of k/−k pairs in the atom–atom correlations measured after a time of flight. a, Schematic of the experiment. A gas of weakly 
interacting 4He* atoms is released from a lattice trap, and the atoms undergo free fall towards the He* detector where they are individually detected  
(g indicates gravity). The inset depicts the many-body ground state that contains a BEC (uniform light blue colour) and quantum depletion comprising pairs 
of atoms with opposite momenta (coloured circles). When the trap is abruptly switched off, the many-body ground state is projected onto the momentum 
basis and atom pairs fall onto the He* detector with opposite momenta (atoms from the BEC are not shown on the detector). b, One-dimensional cut of 
ρ(k) through the experimental momentum density ρ(k). The peaks correspond to the (coherent) BEC component. The depletion of the BEC, corresponding 
to long tails in ρ(k), is visible in the log scale (inset; the x- and y-axis labels are the same as those of the main figure). Volume Ωk over which atom–
atom correlations are computed is indicated as the green shaded area. c, Atom–atom correlations revealing pairs of atoms with opposite momenta. 
One-dimensional cuts through 

g

(2)
A

(δk) along the axis of the 3D optical lattice. The transverse integration is Δk⊥!=!3.0!×!10−2kd and the longitudinal voxel 
size is Δk∥!=!1.2!×!10−2kd. The data are fitted by Gaussian functions (solid lines). The error bars are obtained from the inverse square root of the number of 
counts in the voxels.
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Pour chaque réalisation,  atomes dans la région ∼ 100 Ω

  paires corrélées∼ 0.5

Le pic de corrélation observé à basse température devient 
indétectable quand on s’approche de  Tc

Tenart et al., 2021
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En résumé

Modélisation quantitative de l’état fondamental d’un gaz de Bose dans la limite de faible déplétion

Vérification expérimentale de la loi n′ 

n
≈

8

3 π
na3

A venir :  

Etudes expérimentales de l’énergie de LHY et du spectre d’excitation du condensat

Comment augmenter le rôle des fluctuations quantiques ?

which features a Feshbach resonance centred at 402.70(3) G
[32]. We prepare the BEC at a ¼ 200a0, where a0 is the
Bohr radius, so

ffiffiffiffiffiffiffiffi
na3

p
< 10−3, and in the time-of-flight

expansion we do not discern any thermal fraction. We then
(in 150–250 ms) increase a to a value in the range
700–3000a0 and measure the condensed fraction. To prepare
the initial quasipure BEC, we lower the trap depth U0 to
≈kB × 20 nK, but before increasing a we adiabatically raise
U0 by a factor of 5, to ensure that U0 ≫ ℏ2=ð2mξ2Þ. The
largest a that we explore here is limited by imposing
requirements that (i) during the whole experiment the atom
loss due to three-body recombination is < 10%, and (ii) if
we reduce a back to 200a0, we do not observe any signs
of heating; for a discussion of additional measurements at
even larger a (with larger particle loss), see [31].
Just before turning off the trap and applying the Bragg

pulse, we rapidly (in 60 μs) turn off the interactions, using a
radio-frequency pulse to transfer the atoms to the
jF ¼ 1; mF ¼ 0i state, in which a ≈ 0 [32]. This freezes
the momentum distribution before we probe it and allows
the diffracted and nondiffracted components of the gas to
separate in space without collisions.
After the Bragg pulse, we wait for 10 ms and then take

an absorption image along a direction perpendicular to z
[see Fig. 2(a)]. In 10 ms, the diffracted and nondiffracted
portions of the gas separate by ≈220 μm, while neither
expands significantly beyond the original size of the box-
trapped cloud.
In Fig. 2(a), we show a typical variation of the diffracted

fraction of the gas with the duration of the Bragg pulse, τ,
for our chosen Ω ¼ 2π × 1.8 kHz (see [31]). In the back-
ground, we show representative absorption images of the
stationary (bottom) and diffracted (top) clouds.
Assuming that we perfectly filter out the condensate

from the high-k components of the gas, the condensed
fraction of the cloud is given by the maximal diffracted
fraction, η, observed for τ ¼ π=Ω ≈ 0.28 ms. We see that η
is slightly below unity, which is expected due to quantum
depletion but can in practice also be observed for other
reasons, including experimental imperfections and the
inevitably nonzero temperature of the cloud. It is therefore
important that our measurements are differential—we study
the variation of η with a while keeping other experimental
parameters the same. It is also crucial to verify that the
tuning of η with a is adiabatically reversible, which
excludes the possibility that the condensed fraction is
reduced due to nonadiabatic heating or losses.
In Fig. 2(b), we focus on τ ≈ π=Ω and show measure-

ments for three different experimental protocols: for a cloud
prepared at 700a0, after increasing a to 3000a0, and after
reducing it back to 700a0 (see the inset). We see that η is
indeed reduced when a is increased and also that this effect
is fully reversible (within experimental errors); we have
verified such reversibility for our whole experimental range
of a values.

In Fig. 3, we summarize our measurements of the
variation of η with the interaction parameter

ffiffiffiffiffiffiffiffi
na3

p
.

We observe the expected linear dependence, with ηð0Þ
close to unity. Fitting the data with ηð0Þð1 − γ

ffiffiffiffiffiffiffiffi
na3

p
Þ gives

γ ¼ 1.5ð2Þ, in agreement with Eq. (1).
Finally, we numerically assess the systematic effects on γ

due to noninfinite L=ξ and a small nonzero temperature T,
which are both ≲20% and partially cancel. The results of
this analysis are shown in the inset in Fig. 3; for details, see
[31]. The dashed line shows the simulated η for T ¼ 0 and
our values of n, L, and Ω. For any noninfinite Ω, the tails
of the BEC momentum distribution are not fully captured
by the Bragg pulse, which slightly reduces ηð0Þ. More
importantly, we diffract some of the quantum-depletion
atoms, which reduces the apparent γ. A linear fit (omitted
for clarity) gives that for T ¼ 0 we actually expect γ ≈ 1.2.
The small systematic differences between our data and this
simulation can be explained by a small nonzero temper-
ature. A nonzero temperature generally reduces η due to
thermal depletion, the momentum tails of which are not
diffracted by the Bragg pulse. Moreover, if the gas is
initially prepared (at 200a0) at a small T > 0, this does not
merely reduce η by a constant offset (independent of

ffiffiffiffiffiffiffiffi
na3

p
)

but slightly increases the apparent γ; even adiabatically
increasing a increases the thermal depletion, because it
modifies both the dispersion relation and the particle
content of the thermally populated low-k excitations
[28,31]. As indicated by the orange shaded region, our
data are consistent with an initial T between 3.5 and 5 nK;
this is compatible with the fact that we do not discern the

FIG. 3. Measurement of the quantum depletion. We plot the
maximal diffracted fraction η versus the interaction parameterffiffiffiffiffiffiffiffi
na3

p
. A linear fit (solid line) gives ηð0Þ ¼ 0.954ð5Þ and

γ ¼ 1.5ð2Þ. Vertical error bars show fitting errors, while hori-
zontal ones reflect the uncertainty in the position of the Feshbach
resonance and a 10% uncertainty in n. Inset: Analysis of
systematic effects. We show numerical simulations for T ¼ 0
(dashed line) and for initial temperatures (at a ¼ 200a0) between
3.5 and 5 nK (orange shading, from top to bottom); see the text
and [31] for more details.
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