Chaire Atomes et rayonnement

Cours 2021-22 Jean Dalibard

Prochains séminaires

Vendredi 8 avril : Atac Imamoglu, Institute for Quantum Electronics, ETH Zürich, Suisse Strongly correlated electrons in atomically thin semiconductors

Vendredi 15 avril : Leticia Tarruell, ICFO - The Institute of Photonic Sciences, Barcelone, Espagne Realizing a one-dimensional topological gauge theory in an optically dressed Bose-Einstein condensate

Vendredi 15 avril, 14h00-18h00 : atelier "New trends in quantum fluid physics: mixtures and spinor gases"

Intervenants : Bruno Laburthe-Tolra, Lauriane Chomaz, Goulven Quemener, Jérôme Beugnon, Thomas Bourdel, Alessandro Zenesini

https://www.college-de-france.fr/site/jean-dalibard/symposium-2021-2022.htm

Les interactions entre atomes dans les gaz quantiques

Le contact

Jean Dalibard Chaire *Atomes et rayonnement* Année 2021-22

- Cours 5
- Le contact à deux corps

Le lien "2 corps" — "N corps"

Pour un gaz faiblement dégénéré, développement du viriel

Pour le gaz de Bose à température proche de 0, approche de Bogoliubov si $na^3 \ll 1$

Que peut-on dire au-delà des domaines de validité de ces deux approches ?

$$z^{2} + b_{3}(T)z^{3} + \dots$$

Résultats exprimés en fonction de la longueur de diffusion a du problème à deux corps Déplétion quantique, énergie du fondamental, spectre d'excitation

Les échelles de longueur du problème

Pour le problème à deux corps

Portée du potentiel $b \sim R_{\rm vdW}$: quelques nanomètres

Longueur de diffusion *a* ajustable par une résonance de diffusion

$$a \sim b \longrightarrow |a| \sim 100 b$$

Pour le problème à *N* corps

Distance entre particules $d = n^{-1/3}$ (*n* : densité spatiale) Longueur d'onde thermique $\lambda = 1$ $mk_{\rm B}T$

Les échelles de longueur du problème (2)

Deux corps : a, b N corps : $d = n^{-1/3}, \lambda$

On considère toujours des systèmes dilués : $b \ll d \Leftrightarrow nb^3 \ll 1$

b : qqs nanomètres

d: qqs centaines de nanomètres (n: $10^{12} - 10^{15}$ at/cm³)

riel)	zone critique BEC	régime dégénéré $n\lambda^3 \gg 1$		
$d = n^{-1/3}$				
≪1	régime d'interaction forte $n a ^3 \gtrsim 1$			

But des deux prochains cours

- Etablir des relations entre différents paramètres du système, même sans description analytique • Valables aussi bien pour $na^3 \ll 1$ que pour $na^3 \gtrsim 1$
 - Distribution en impulsion (observable à un corps) : loi en $1/k^4$ aux grands k
 - Fonction de corrélation $g_2(r)$ (observable à deux corps) : loi en $1/r^2$ aux petits r
 - Potentiels thermodynamiques
 - Réponse linéaire du fluide, spectroscopie radiofréquence par exemple : loi en $(\omega \omega_0)^{-3/2}$

Tan (2005-08), Baym, Pethick et al. (2007), Punk & Zwerger (2007), Braaten & Platter (2008), Werner-Tarruell-Castin (2009) Zhang & Leggett (2009), Combescot, Alzetto et al (2009), Braaten, Kang et al (2010), Werner & Castin (2012)

Plan du cours

1. Champ d'application du concept de contact

2. Contact et corrélations à deux corps

3. Définition thermodynamique du contact

4. Premières mesures du contact

Plan du cours

1. Champ d'application du concept de contact

Rôle des états liés Fermions vs. bosons

2. Contact et corrélations à deux corps

3. Définition thermodynamique du contact

4. Premières mesures du contact

ons Résonances larges vs. étroites

Les états liés à deux corps (hors résonance)

Une fois formés, ces états liés sont "hors-jeu" pour la thermodynamique du gaz

Toute la physique des gaz quantiques repose sur le fait que le taux de formation de ces états liés est faible : on étudie des états métastables

Pour les atomes "usuels", le problème à deux corps admet de nombreux états liés

- Dernier état lié : $|E| \sim 10 E_{vdW} \sim 100 \mu K 1 m K$
- Etats liés profonds : $|E| \sim 100 1000 \text{K}$
- à comparer aux énergies du gaz : $10 \,\mathrm{nK} 1 \,\mu\mathrm{K}$

Les états liés proches d'une résonance de diffusion

Paire de bosons ou paire de fermions de spin 1/2 dans des états \uparrow et \downarrow

Au voisinage d'une résonance, la longueur de diffusion $a \to \pm \infty$ et un nouvel état lié apparaît du côté a > 0

Au voisinage de cette résonance, y a-t-il des états faiblement liés à trois, quatre corps ?

Fermions de spin 1/2 (et $m_{\uparrow} \approx m_{\downarrow}$) ? Non (Pauli)

L'énergie de liaison est comparable aux autres énergies caractéristiques du gaz : interactions, température

Cet état lié doit être pris en compte dans la dynamique et la thermodynamique

Fermions vs. bosons

Nous considérerons dans ce cours

 \rightarrow un gaz de fermions de spin 1/2, avec $m_{\uparrow} = m_{\downarrow}$

$$d = n^{-1/3}$$

Gaz supposé "équilibré" : $N_{\uparrow} = N_{\downarrow} = N/2$ Pas de restriction sur le signe de la longueur de diffusion a, ni sur la valeur de na^3 : $|a| \ge d$

• Au voisinage de T = 0, a > 0 (stabilité en champ moyen) et $na^3 \ll 1$ (cf. cours précédent) • Dans le régime non dégénéré, a < 0 possible mais $|a| \leq 10 R_{vdW}$ pour éviter les états d'Efimov

Etat fondamental ?

Jamais d'interaction en onde s pour $\uparrow - \uparrow$ ou $\downarrow - \downarrow$

$$N = \sum_{k}^{|k| < k_{\rm F}} 2 \longrightarrow \frac{L^3}{(2\pi)^3} \int_{|k| < k_{\rm F}} 2 \, \mathrm{d}^3 k$$
$$E = \sum_{k=0}^{|k| < k_{\rm F}} 2 \, \frac{\hbar^2 k^2}{2m} = \frac{3}{5} N E_{\rm F}$$

Si on suppose qu'il n'y a pas d'interaction $\uparrow - \downarrow$, remplissage régulier des états jusqu'à $|k| = k_F$

$$2 d^{3}k = \frac{L^{3}k_{\rm F}^{3}}{3\pi^{2}}$$

Etat fondamental?

Jamais d'interaction en onde s pour $\uparrow - \uparrow$ ou $\downarrow - \downarrow$

En présence d'interactions $\uparrow - \downarrow$, système très riche (fondamental toujours superfluide)

Au voisinage d'une résonance de diffusion, "crossover" entre régime BCS et condensat de Bose-Einstein

a petite : régime à la Bardeen-Cooper-Schrieffer

Régime d'interaction forte

 $a = \pm \infty$

1/a

a positive et petite : dimères bosoniques $E \approx -\hbar^2/ma^2$ qui forment un condensat

Résonances de Feshbach : larges vs. étroites ?

Résonance large

$$f(k) \approx \frac{-a}{1 + \mathrm{i}ka}$$

a est la seule longueur pertinente dans le domaine d'énergie considéré

Résonance étroite

$$f(k) \approx \frac{-a}{1 + ika + k^2 R_* a}$$

 R_* constitue une nouvelle échelle de longueur à prendre en compte en plus de a

problème plus compliqué : exclu ici

où R_* est "anormalement" grand, en particulier $|R_*| \gg b$

Plan du cours

1. Champ d'application du concept de contact

2. Contact et corrélations à deux corps

Les états de diffusion à deux corps

3. Définition thermodynamique du contact

4. Premières mesures du contact

Fonction de corrélation $G_2(r)$

Distribution en impulsion

Les états de diffusion à deux corps

Collision en onde s : analyse du mouvement relatif en terme de la fonction d'onde radiale réduite

$$u(r) = r \ \psi(r)$$

Comportement pour $r \gtrsim b$ (portée du potentiel)

$$u_k(r) \propto \sin\left[kr + \delta_0(k)\right]$$
$$a = -\lim_{k \to 0} \left\{ \tan\left[\delta_0(k)\right]/k \right\}$$

Dans la région $kr \ll 1$:

$$u_k(r) \approx u_0(r) \approx a - r + \mathcal{O}(r^2)$$

Valable en dehors du puits de potentiel : $r \gtrsim b$ Exact pour le pseudo-potentiel (b = 0)

Les états de diffusion à deux corps (suite)

(en supposant $b \ll a$ pour que ce régime existe sur une plage appréciable)

Dans ce qui va suivre, c'est le terme dominant $\psi_0(r) \propto -pour r \gtrsim b$ qui va jouer le rôle principal

Passage à N corps : argument qualitatif

On fixe les positions $r_3, ..., r_N$:

Que se passe-t-il quand r_1 et r_2 se rapprochent l'un de l'autre, suffisamment loin des N-2 particules restantes?

$$r_1 = R + \frac{r}{2}, \quad r_2 = R - \frac{r}{2}$$

Etat fondamental : $\Phi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \dots, \mathbf{r}_N)$

Indices impairs : 1 Indices pairs : \downarrow

Fermions: Φ antisymétrique par échange de deux indices pairs ou de deux indices impairs

$$\Phi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \approx \psi_0(\mathbf{r}) \ \tilde{\Phi}(\mathbf{R}, \mathbf{r}_3, \dots, \mathbf{r}_N)$$
fonction d'onde à $E = 0$ du problème à deux corps

Fonctions de corrélation à deux corps

On définit :

$$\mathscr{G}_{2,\uparrow\downarrow}(\mathbf{r}',0;\mathbf{r},0) \equiv \langle \hat{\Psi}^{\dagger}_{\uparrow}(\mathbf{r}') \hat{\Psi}^{\dagger}_{\downarrow}(\mathbf{0}) \hat{\Psi}_{\downarrow}(\mathbf{0}) \hat{\Psi}_{\uparrow}(\mathbf{r}) \rangle = \frac{N^2}{4} \int d^3r_3 \dots d^3r_N \Phi^*(\mathbf{r}',0,\mathbf{r}_3,\dots,\mathbf{r}_N) \Phi(\mathbf{r},0,\mathbf{r}_3,\dots,\mathbf{r}_N)$$

Quel est le comportement de \mathscr{G}_2 quand $r, r' \rightarrow 0$?

 \mathscr{G}_2 : opérateur hermitien en représentation position. On peut le diagonaliser : $\mathscr{G}_{2,\uparrow\downarrow}(\mathbf{r}',0;\mathbf{r},0) = \sum \gamma_j \phi_j^*(\mathbf{r}') \phi_j(\mathbf{r})$

Hypothèse à la base de la théorie du contact :

Quand $r \ll d$: $\phi_i(r) \propto \psi_0(r)$

$$\mathscr{G}_{2,\uparrow\downarrow}(\mathbf{r}',0;\mathbf{r},0) \approx \frac{C}{(4\pi)^2 a^2} \psi_0^*(\mathbf{r}',0)$$

 $b \leq r, r' \ll d, a$: $\mathscr{G}_{2,\uparrow\downarrow}(r',0;r,0) \approx \frac{C}{(4\pi)^2 L^3} \frac{1}{r'} \frac{1}{r}$

Distribution de paires

Fonction de distribution de paires pour deux fermions $\uparrow \downarrow$ (ou deux bosons)

$$G_{2,\uparrow\downarrow}(\mathbf{r}) = \int \mathscr{G}_{2,\uparrow\downarrow}(\mathbf{r}_a + \mathbf{r}, \mathbf{r}_a; \mathbf{r}_a + \mathbf{r}, \mathbf{r}_a) \, \mathrm{d}^3 r_a$$
$$\approx \frac{C}{(4\pi)^2} \frac{1}{r^2} \quad \text{pour } b \lesssim r \ll a, d$$

Tendance au groupement des particules (fermions $\uparrow \downarrow$ ou bosons)

 $\delta P(r) \propto r$ au lieu de $\delta P(r) \propto r^3$ pour des particules non corrélées

$$\mathcal{G}_{2,\uparrow\downarrow}(\boldsymbol{r}',0;\boldsymbol{r},0) \equiv \langle \hat{\Psi}^{\dagger}_{\uparrow}(\boldsymbol{r}') \; \hat{\Psi}^{\dagger}_{\downarrow}(\boldsymbol{0}) \; \hat{\Psi}_{\downarrow}(\boldsymbol{0}) \\ \approx \frac{C}{(4\pi)^2 L^3} \; \frac{1}{r'} \; \frac{1}{r}$$

 $\int G_{2,\uparrow\downarrow}(\mathbf{r}) \, \mathrm{d}^3 r = \left(\frac{N}{2}\right)^2$ $= L^3 \mathscr{G}_{2,\uparrow\downarrow}(\boldsymbol{r},0;\boldsymbol{r},0)$

Contact C : variable extensive, dimension : (longueur)⁻¹

Pour un atome donné, probabilité $\delta P(r)$ de trouver un voisin (de spin opposé) dans le cas des fermions) à une distance inférieure à r ($\ll d, a$) ?

Distribution en impulsion ?

$$\mathscr{G}_{2,\uparrow\downarrow}(\mathbf{r}',0;\mathbf{r},0) \equiv \langle \hat{\Psi}^{\dagger}_{\uparrow}(\mathbf{r}') \hat{\Psi}^{\dagger}_{\downarrow}(\mathbf{0}) \hat{\Psi}_{\downarrow} = \frac{N^2}{4} \int d^3 r_3 \dots d^3 r_N \Phi^*$$

 $b \leq r, r' \ll d, a$: $\mathscr{G}_{2,\uparrow\downarrow}(r',0;r,0)$

$\Psi_{\downarrow}(\mathbf{0}) \; \hat{\Psi}_{\uparrow}(\mathbf{r}) \; \rangle$

* $(\mathbf{r}', 0, \mathbf{r}_3, ..., \mathbf{r}_N) \Phi(\mathbf{r}, 0, \mathbf{r}_3, ..., \mathbf{r}_N)$

$$) \approx \frac{C}{(4\pi)^2 L^3} \frac{1}{r'} \frac{1}{r}$$

$$\Rightarrow \quad n_{\uparrow}(k) = n_{\downarrow}(k) \approx \frac{C}{k^4} \qquad \text{pour} \qquad \frac{1}{a}, \frac{1}{d} \ll k \leq k$$

Plan du cours

1. Champ d'application du concept de contact

2. Contact et corrélations à deux corps

3. Définition thermodynamique du contact

4. Premières mesures du contact

Potentiels thermodynamiques

L'état d'équilibre d'un fluide est caractérisé par une fonction thermodynamique, par exemple l'énergie E, elle-même fonction de variables thermodynamiques :

$$E(S, L^3, N) \qquad \qquad \mathrm{d}E = T\mathrm{d}S - P\mathrm{d}A$$

avec les variables conjuguées

$$T = \left(\frac{\partial E}{\partial S}\right)_{L^3,N} \quad P = -\left(\frac{\partial E}{\partial L^3}\right)_{S,N} \quad \mu = \left(\frac{\partial E}{\partial N}\right)_{S,L^3}$$

On devrait en principe inclure le potentiel d'interaction V(r) dans les variables thermodynamiques, mais ça ferait une infinité de paramètres !

 $L^3 + \mu dN$

Pour les gaz quantiques dilués ($nb^3 \ll 1$), on suppose ici que seule la longueur de diffusion a du problème à deux corps est importante

On vala traiter comme une variable thermodynamique à part entière : $E(S, L^3, N, a)$

La définition thermodynamique du contact

On se place à température nulle pour commencer (donc entropie S = 0)

Pour la fonction thermodynamique $E(L^3, N, a)$, quelle est la quantité conjuguée de a?

Bosons polarisés :

$$\frac{\hbar^2 C}{8\pi ma^2} = \left(\frac{\partial E}{\partial a}\right)_L^2$$

Fermions de spin 1/2 : $\frac{\hbar^2 C}{4\pi m a^2} = \left(\frac{\partial E}{\partial a}\right)_{L^3 N}$

Cette définition coïncide-t-elle avec celle basée sur la fonction de corrélation à deux corps ?

Un lemme utile

On considère un potentiel d'interaction V(r) conduisant à la longueur de diffusion a

On fait un léger changement de potentiel :

De combien change la longueur de diffusion ?

 $\psi_0(r)$ fonction radiale réduite d'énergie nulle

$$V(r) \longrightarrow V(r) + \delta V(r)$$

Lien entre les deux définitions du contact

$$\mathscr{G}_{2,\uparrow\downarrow}(\mathbf{r}',0;\mathbf{r},0) \equiv \langle \hat{\Psi}^{\dagger}_{\uparrow}(\mathbf{r}') \hat{\Psi}^{\dagger}_{\downarrow}(\mathbf{0}) \hat{\Psi}$$
$$= \frac{N^2}{4} \int d^3 r_3 \dots d^3 r_N$$

$$\mathscr{G}_{2}(\mathbf{r}',0;\mathbf{r},0) \approx \frac{C}{(4\pi)^{2} a^{2}} \psi_{0}^{*}(\mathbf{r}') \psi_{0}$$

 $r, r' \ll d$:

$$\frac{\hbar^2 C^{\text{thermo}}}{4\pi m a^2} = \left(\frac{\partial E}{\partial a}\right)$$

Lemme :
$$L^3 \int \delta V(r) \psi_0^2(r) \, \mathrm{d}^3 r = \frac{4\pi\hbar^2}{m} \delta a$$

 $\hat{\Psi}_{\downarrow}(0) | \hat{\Psi}_{\uparrow}(r) \rangle$

 $\Phi^*(r', 0, r_3, ..., r_N) \Phi(r, 0, r_3, ..., r_N)$

(r)

 $C = C^{\text{thermo}} ???$

 L^3, N

Le cas de la température non nulle

Pour chaque état $|\Phi_i\rangle$, on peut refaire la même démarche :

$$C_{j} = -\frac{[4/8]\pi m}{\hbar^{2}} \left(\frac{\partial E_{j}}{\partial (1/a)}\right)_{N,L^{3}}$$

à condition que les échelles d'énergie restent compatibles avec les hypothèses (onde s)

Contact à température T:

Définition prise à populations constantes : correspond à la définition d'un processus adiabatique

$$C = -\frac{[4/8]\pi m}{\hbar^2} \left(\frac{\partial E}{\partial (1/a)}\right)_{S,N,L^3}$$

- Description du système par un opérateur densité à *N* corps à température T: $\hat{\rho} = \sum P_j |\Phi_j\rangle\langle\Phi_j|$

$$C = \sum_{j} P_{j}C_{j}$$

Contact et théorème du viriel

Utilisation de l'analyse dimensionnelle pour établir des relations entre quantités thermodynamiques

Exemple de l'entropie : $dS = \frac{1}{T}dE + \frac{P}{T}dL^3$

- On utilise l'extensivité de l'entropie
- On choisit une échelle naturelle d'énergie

$$S = Nk_{\rm B} f\left(\frac{E/N}{\hbar^2/ma^2}, \frac{L^3}{a}\right)$$

On en déduit :

$$PL^3 = \frac{2}{3}E + \frac{\hbar^2 C}{[12/24]\pi n}$$

Si $|a| \rightarrow +\infty$, le contact est ré

$$- \frac{\mu}{T} dN + \frac{\hbar^2 C}{[4/8]\pi m T} d(1/a)$$

$$(\hbar^2/ma^2)$$
 et de volume (a^3)

Tan (généralisé par Werner)

na

égulier :
$$PL^3 = \frac{2}{3}E$$

Plan du cours

- 1. Champ d'application du concept de contact
- 2. Contact et corrélations à deux corps
- 3. Définition thermodynamique du contact
- 4. Premières mesures du contact
 - Expériences sur un gaz de Fermi
 - Simulations numériques
 - Fraction de dimères au voisinage d'une résonance de Feshbach

Expérience de Boulder (2010)

Gaz de 2 10⁵ atomes de potassium 40 (fermion), avec F = 9/2 pour le niveau fondamental

$$|\uparrow\rangle \equiv |F=9/2, m_F=-7/2\rangle$$

$$|\downarrow\rangle \equiv |F = 9/2, m_F = -9/2\rangle$$

Confinement dans un piège optique et refroidissement par évaporation jusqu'à $T \approx 0.1 T_{\rm F}$ ($a = 40 \, {\rm nm}$) Rampe adiabatique de *a* jusqu'à une valeur proche de résonance $(1/k_F a = -0.08)$, puis mesure de n(k)

Pour obtenir n(k) :

- Coupure soudaine du piège optique
- On amène a à ≈ 0 en changeant B
- Temps de vol de 6 ms

Lois d'échelle attendues pour un gaz de Fermi

Etudes numériques

N = 4 à 10 fermions confinés dans un piège harmonique, avec un potentiel d'interaction gaussien

Diagonalisation de l'hamiltonien à N corps

- Energie totale
- Fonction de corrélation spatiale à deux corps
- **Distribution en impulsion**

-	2	-	5
	≺		≺
5	י	5	י

Contact et résonance de Fano-Feshbach

 ∂B Эł

Lien direct entre contact *C* et population de dimères $\langle N_{\phi_0} \rangle$ grâce à $\frac{\partial E}{\partial B} = \frac{\partial E}{\partial a} \frac{\mathrm{d}a}{\mathrm{d}B}$

Les particules peuvent exister sous forme d'atomes libres ou de dimères

$$\hat{H} = \hat{H}_{at} + \sum_{K} \left(\frac{\hbar^2 K^2}{4m} + E_{dim}(B) \right) b_{K}^{\dagger} b_{K} + \hat{V}_{at,dim}$$

Variation de l'énergie du fondamental avec le champ magnétique :

$$\frac{E}{B} = \langle \frac{\partial \hat{H}}{\partial B} \rangle = \mu \langle N_{\phi_0} \rangle$$
 μ : moment magnétique du d

$$\left(\frac{a}{b}\right)_{L^{3},N} \text{ et que } a(B) = a_{bg}\left(1 - \frac{B_{1}}{B - B_{0}}\right)$$

Contact et résonance de Fano-Feshbach

Données expérimentales de Partridge et al., 2005 sur un gaz de ⁶Li

Werner, Tarruell, Castin

Les dimères $|\phi_0\rangle$ sont excités optiquement par un laser auxiliaire et on détecte les pertes correspondantes

En résumé, pour un gaz dilué $nb^3 \ll 1$:

