Chaire Atomes et rayonnement

Cours 2021-22 Jean Dalibard

Prochains séminaires

Vendredi 15 avril : Leticia Tarruell, ICFO - The Institute of Photonic Sciences, Barcelone, Espagne *Realizing a one-dimensional topological gauge theory in an optically dressed Bose-Einstein condensate*

Vendredi 15 avril, 14h00-18h00 : atelier "New trends in quantum fluid physics: mixtures and spinor gases"

Intervenants : Bruno Laburthe-Tolra, Lauriane Chomaz, Goulven Quemener, Jérôme Beugnon, Thomas Bourdel, Alessandro Zenesini

https://www.college-de-france.fr/site/jean-dalibard/symposium-2021-2022.htm

Les interactions entre atomes dans les gaz quantiques

Cours 6 Les différentes facettes du contact

Jean Dalibard Chaire Atomes et rayonnement Année 2021-22

Le contact à deux corps

Une notion qui relie microscopique (observables à un ou deux corps) et macroscopique

Valable pour tout système dilué, en interaction faible ou forte (au moins pour les fermions)

Le cas du gaz de Fermi

Fonction de corrélation à deux

$$b \leq r, r' \ll d = n^{-1/3}, a$$

portée du distance longueu
potentiel entre atomes diffusio

Etat fondamental : $\Phi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \dots, \mathbf{r}_N)$

Indices impairs : 1 Indices pairs : ↓

Fermions: Φ antisymétrique par échange de deux indices pairs ou de deux indices impairs

$$\text{x corps : } \mathscr{G}_{2,\uparrow\downarrow}(\mathbf{r}',0;\mathbf{r},0) \equiv \langle \hat{\Psi}^{\dagger}_{\uparrow}(\mathbf{r}') \; \hat{\Psi}^{\dagger}_{\downarrow}(\mathbf{0}) \; \hat{\Psi}_{\downarrow}(\mathbf{0}) \; \hat{\Psi}_{\uparrow}(\mathbf{r}) \rangle$$

$$\approx \frac{C}{(4\pi)^2 L^3} \; \frac{1}{r'} \; \frac{1}{r}$$

ir de on

Le but du cours d'aujourd'hui

Continuer à explorer les manifestations du contact "à deux corps"

- Spectroscopie radio-fréquence
- Pertes d'atomes sous l'effet de collisions inélastiques

Comprendre comment généraliser cette notion en présence d'autres paramètres

• L'exemple de collisions en onde p

Plan du cours

1. Le point de vue du pseudo-potentiel

2. La spectroscopie radio-fréquence

3. Expériences récentes sur le gaz de Fermi

4. Le contact à deux corps pour le gaz de Bose

Vers un potentiel de portée nulle ?

Distribution en impulsion trouvée au cours 5

$$n_{\uparrow}(k) = n_{\downarrow}(k) \approx \frac{C}{k^4}$$
 pour $\frac{1}{a}, \frac{1}{d} \ll k$

Si on prend la limite $b \to 0$, on étend la loi en k^{-4} jusqu'à $k = +\infty$

$$E_{\rm cin} = \int \frac{\hbar^2 k^2}{2m} \left[n_{\uparrow}(k) + n_{\downarrow}(k) \right] \, \mathrm{d}^3 k$$

Pour analyser et traiter correctement cette divergence, utilisation du pseudo-potentiel

 $\int_{-\infty}^{+\infty} \frac{\hbar^2 k^2}{2m} \frac{2C}{k^4} 4\pi k^2 dk$ diverge !

Le pseudo-potentiel

Rappel de la définition du pseudo-potentiel : \hat{V}_{pp} [ψ

Opérateur de portée nulle qui efface les divergences en 1/r : $\psi(\mathbf{r}) = \frac{\alpha}{r} + \psi_{\text{reg}}(\mathbf{r}) \implies V_{\text{pp}}[\psi(\mathbf{r})] = g \psi_{\text{reg}}(0) \,\delta(\mathbf{r})$

Le problème à deux corps avec le pseudo-poten

Etats de diffusion $\psi_k(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{a}{1+ika} \frac{e^{ikr}}{r} \qquad E = \frac{\hbar^2 k^2}{2m_r}$

Dans les deux cas, même comporteme L'utilisation de $\hat{V}_{\rm pp}$ revient à imposer ces conditions aux limites de Bethe-Peierls

$$w(\mathbf{r})] = g \,\delta(\mathbf{r}) \frac{\partial}{\partial r} \left[r \psi(\mathbf{r}) \right] \bigg|_{r=0} \qquad g = \frac{4\pi \hbar^2 a}{m}$$

ntiel :
$$\hat{H} = -\frac{\hbar^2}{2m_r} \nabla^2 + \hat{V}_{pp}$$
 (ne porte que sur les ondes

Un unique état lié (pour $a > 0$)			
$\psi_{\text{lie}}(\mathbf{r}) = \frac{\mathrm{e}^{-r/a}}{r}$	$E = -\frac{\hbar^2}{2m_{\rm r}a^2}$		

ent à l'origine :
$$\psi(\mathbf{r}) \propto \frac{1}{r} - \frac{1}{a} + \mathcal{O}(r)$$

Coupure en impulsion

Pour utiliser $\hat{V}_{\rm pp}$, on tronque toutes les intégrales sur $m{k}$ à une valeur $k_{
m max}$

$$E_{\rm cin} = \int \frac{\hbar^2 k^2}{2m} \left[n_{\uparrow}(k) + n_{\downarrow}(k) \right] \, \mathrm{d}^3 k$$

$$\longrightarrow \int^{k_{\text{max}}} \frac{\hbar^2 k^2}{2m} \frac{2C}{k^4} 4\pi k^2 \, \mathrm{d}k$$

Contribution finie : pas de termes sousdominants en k^{-5} pour un gaz de fermions

Energie d'interaction pour $\hat{V}_{\rm pp}$

$$\mathscr{G}_{2,\uparrow\downarrow}(\mathbf{r}_{1}',\mathbf{r}_{2};\mathbf{r}_{1},\mathbf{r}_{2}) = \frac{N^{2}}{4} \int \Phi^{*}(\mathbf{r}_{1}',\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{3})$$
$$\approx \frac{C}{(4\pi)^{2}L^{3}} \left(\frac{1}{r_{12}'} - \frac{1}{\alpha}\right)$$

$$\psi(\mathbf{r}) = \frac{\alpha}{r} + \psi_{\text{reg}}(\mathbf{r}) \implies V_{\text{pp}} \left[\mathbf{r} \right]$$

$(\frac{1}{a}, ..., r_N) \Phi(r_1, r_2, r_3, ..., r_N) d^3r_3...d^3r_N$ $(\frac{1}{a}) \left(\frac{1}{r_{12}} - \frac{1}{a}\right)$

 $\left[\psi(\mathbf{r})\right] = g \,\psi_{\text{reg}}(0) \,\delta(\mathbf{r})$

Bilan énergétique pour des interactions en \hat{V}_{pp}

Energie cinétique avec une composante divergente positive + une composante finie

$$E_{\rm cin} = \int \frac{\hbar^2 k^2}{2m} \left[n_{\uparrow}(k) + n_{\downarrow}(k) \right] \, \mathrm{d}^3 k = \frac{\hbar^2 C k_{\rm max}}{2\pi^2 m}$$

Energie d'interaction avec une composante divergente négative + une composante finie

$$E_{\text{int}} = \int \Phi^*(\mathbf{r}_1, \dots, \mathbf{r}_N) \ \hat{V}_{\text{pp}} \left[\Phi(\mathbf{r}_1, \dots, \mathbf{r}_N) \right] \ \mathrm{d}^3 r_1 \dots \mathrm{d}^3 r_N = -\frac{\hbar^2 C k_{\text{max}}}{2\pi^2 m} + \frac{\hbar^2 C}{4\pi m a}$$

D'où l'écriture sans divergence pour l'énergie totale

Fermions:
$$E = \sum_{\sigma=\uparrow\downarrow} \frac{1}{(2\pi)^3} \int \frac{\hbar^2 k^2}{2m} \left[n_\sigma(k) - \frac{C}{k^4} \right] \, \mathrm{d}^3 k + \frac{\hbar^2 C}{4\pi m a}$$

Résultat similaire pour un gaz de bosons sans effet Efimov : $E = \frac{1}{(2\pi)^3} \left[\frac{\hbar^2 k^2}{2m} \left| n(k) - \frac{C}{k^4} \right| d^3k + \frac{\hbar^2 C}{8\pi ma} \right]$

 $\frac{1ax}{-}$ + ...

Plan du cours

1. Le point de vue du pseudo-potentiel

2. La spectroscopie radio-fréquence

3. Expériences récentes sur le gaz de Fermi

4. Le contact à deux corps pour le gaz de Bose

Position du problème

Centre de gravité du spectre

$$\langle \omega \rangle \equiv \frac{\int \omega \Gamma(\omega) \, \mathrm{d}\omega}{\int \Gamma(\omega) \, \mathrm{d}\omega} \approx \omega_0 + \left(\frac{1}{a_{\uparrow\downarrow}} - \frac{1}{a_{e\downarrow}}\right) \frac{\hbar}{4\pi m} \frac{C}{N_{\uparrow}}$$

 $\boldsymbol{\omega}$

On peut ajuster l'interaction $a_{e\uparrow}$ et $a_{e\downarrow}$ entre e et \uparrow,\downarrow

Gaz en interaction faible ou forte $a_{\uparrow\downarrow}$

Spectroscopie radiofréquence : sonde sans transfert d'impulsion (contrairement à la diffraction de Bragg)

Le taux de transfert $\Gamma(\omega)$

Couplage induit par l'onde radio-fréquence

$$\hat{H}_{\rm rf}(t) = \frac{\hbar\Omega}{2} \,\mathrm{e}^{-\mathrm{i}\omega t} \,\hat{Y} + \,\mathrm{H.c.}$$

avec $\hat{Y} = \int \hat{\Psi}_e^{\dagger}(\mathbf{r}) \,\hat{\Psi}_{\uparrow}(\mathbf{r}) \,\mathrm{d}^3 r$

Approche fondée sur la règle d'or de Fermi : Γ

Etat initial $|\Phi_i\rangle$: N_{\uparrow} et N_{\downarrow} atomes, rien dans l'état e

Etat finaux possibles $|\Phi_f\rangle$: $N_{\uparrow} - 1$ et N_{\downarrow} atomes, et un atome dans l'état e

$$\Gamma(\omega) = \frac{\pi\hbar}{2} \Omega^2 \sum_{\Phi_f} |\langle \Phi_f | \hat{Y} | \Phi_i \rangle|^2 \delta[E_f - E_i - \hbar\omega]$$

Centre de gravité du spectre radio-fréquence

 $\langle \omega \rangle \equiv \frac{\int \omega \Gamma(\omega) \, \mathrm{d}\omega}{\int \Gamma(\omega) \, \mathrm{d}\omega}$

$$\Gamma(\omega) = \frac{\pi \hbar}{2} \Omega^2 \sum_{\Phi_f} |\langle \Phi_f | \hat{Y} | \Phi_i \rangle|^2$$

Etat initial $|\Phi_i\rangle$: N_{\uparrow} et N_{\downarrow} atomes, rien dans l'état e

 $\delta [E_f - E_i - \hbar \omega]$

$$\hat{Y} = \int \hat{\Psi}_e^{\dagger}(\boldsymbol{r}) \, \hat{\Psi}_{\uparrow}(\boldsymbol{r}) \, \mathrm{d}^3 \boldsymbol{r}$$

Etat finals possibles $|\Phi_f\rangle$: $N_{\uparrow} - 1$ et N_{\downarrow} atomes, et un atome dans l'état e

Fréquence moyenne du spectre radiofréquence

On arrive au résultat annoncé : $\langle \omega \rangle$

Remarque : l'interaction $a_{e\uparrow}$ ne contribue pas car la radio-fréquence fait basculer collectivement les N_{\uparrow} atomes initialement polarisés en $|\uparrow \rangle$ dans un état du type : $\cos\theta | \uparrow \rangle + \sin\theta | e \rangle$

Cela reste un état polarisé en spin, donc sans interaction en onde s

voir notes pour la fin du calcul Seules contribuent les interaction $e \downarrow$, $\uparrow \downarrow$

L'aile du spectre radio-fréquence

$$\langle \omega \rangle = \omega_0 + \left(\frac{1}{a_{\uparrow\downarrow}} - \frac{1}{a_{e\downarrow}}\right) \frac{\hbar}{4\pi m} \frac{C}{N_{\uparrow}}$$
 devient
Divergence de $\int \omega \Gamma(\omega) \, d\omega \, \text{car} \, \Gamma(\omega) \propto$

$$\langle \omega \rangle \equiv \frac{\int \omega \Gamma(\omega)}{\int \Gamma(\omega)}$$

- Aux grands désaccords $\omega \omega_0$, un atome isolé est pratiquement insensible à la radio-fréquence
- On sonde les paires d'atomes rapprochées, dans un état de diffusion ou formant un dimère

L'aile du spectre radio-fréquence (suite)

Taux de transition $\Gamma(\omega)$ aux grands désaccords :

Il suffit d'injecter $n_{\uparrow}(k) \approx \frac{C}{k^4}$ pour arriver à :

$$\Gamma(\omega) \approx \frac{\Omega^2}{8\pi} \sqrt{\frac{\hbar}{m}} \frac{C}{(\omega - \omega_0)^{3/2}}$$

Energie initiale totale de la paire (libre ou liée) négligeable devant $\omega - \omega_0$

$$\delta[E_f - E_i - \hbar\omega] \longrightarrow \delta\left[\hbar\omega_0 + 2\frac{\hbar^2 k^2}{2m} - \hbar\omega\right]$$

$$\Gamma(\omega) \approx \frac{\pi \hbar \Omega^2}{2} \frac{1}{(2\pi)^3} \int n_{\uparrow}(\mathbf{k}) \, \delta \left[\hbar \omega_0 + \frac{\hbar^2 k^2}{m} - \hbar \omega \right] \, \mathrm{d}^3 k$$

	_	\mathbf{O}
e↓		U

Plan du cours

1. Le point de vue du pseudo-potentiel

2. La spectroscopie radio-fréquence

3. Expériences récentes sur le gaz de Fermi Spectroscopie radio-fréquence impuretés et pertes d'atomes

4. Le contact à deux corps pour le gaz de Bose

contact en onde *p*

Les premiers spectres radio-fréquence

$$|\downarrow\rangle \equiv |F = 9/2, m_F = -9/2\rangle \qquad |\uparrow\rangle \equiv |F = 9/2, m_F = -7/2\rangle \qquad |e\rangle \equiv |F = 9/2, m_F = -5/2\rangle$$

Boulder 2010 : gaz de 2 10⁵ atomes de potassium 40 (fermion), avec F = 9/2 pour le niveau fondamental

Confinement dans un piège optique et refroidissement par évaporation jusqu'à $T \approx 0.1 T_{\rm F}$ ($a = 40 \, {\rm nm}$)

Expérience du MIT (2019)

Gaz de ⁶Li à résonance $|a_{\uparrow\downarrow}| = + \infty$, confiné dans un piège à fond plat (densité spatiale uniforme)

Expériences du MIT + Swinburne (2019)

Variation du contact à résonance ($|a_{\uparrow\downarrow}| = +\infty$) avec la température

BDMC (bold-diagrammatic Monte Carlo) : Rossi et al., Phys. Rev. Lett. **121**, 130405 (2018)

Mukherjee *et al.*, PRL **122**, 203402 Carcy et al., PRL **122**, 203401

Impuretés et pertes d'atomes

Paris, 2017 : gaz de ⁶Li à résonance + une faible fraction de ⁷Li

Un atome de ⁷Li peut favoriser la formation d'un dimère ⁶Li₂ : il emporte l'énergie libérée lors de cette formation

- Après la formation du dimère, l'impureté a une grande vitesse : elle s'échappe du piège

• L'étude de ce processus renseigne sur la probabilité d'avoir \uparrow et \downarrow à une distance de l'ordre de b

Impuretés et pertes d'atomes (2)

Le taux de pertes est donné par la moyenne de l'opérateur

$$\int g(\mathbf{r}_{i}, \mathbf{r}_{\uparrow}, \mathbf{r}_{\downarrow}) \, \hat{\psi}_{d}^{\dagger} \left(\frac{\mathbf{r}_{\uparrow} + \mathbf{r}_{\downarrow}}{2} \right) \, \hat{\psi}_{i}^{\dagger}(\mathbf{r}_{i}) \, \hat{\psi}_{i}(\mathbf{r}_{i}) \, \hat{\psi}_{\downarrow}(\mathbf{r}_{\downarrow}) \, \mathrm{d}^{3}\mathbf{r}_{i} \, \mathrm{d}^{3}\mathbf{r}_{\downarrow} \, \mathrm{d}^{3}\mathbf{r}_{\downarrow} \\ \text{valeur significative si } \mathbf{r}_{i}, \mathbf{r}_{\uparrow}, \mathbf{r}_{\downarrow} \\ \text{sont dans un volume} \sim b^{3} \quad \text{densité d'impuretés}$$

Décroissance du nombre d'impure

Le coefficient γ dépend de la fonction g, mais pas de $a_{\uparrow\downarrow}$: on le calibre dans un régime où C est bien connu

etés selon la loi
$$\dot{N}_{\rm i} = -\gamma \frac{C}{L^3} N_{\rm i}$$

Impuretés et pertes d'atomes (3)

Une fois γ calibré, on se place à résonance ($|a_{\uparrow\downarrow}| = +\infty$)

On attend
$$\Gamma = \gamma \frac{C}{L^3}$$
 avec $C \propto Nk_F \propto L^3 n^{4/3}$ \longrightarrow $\Gamma \propto n^{4/3}$

$$\dot{N}_{\rm i} = -\gamma \frac{C}{L^3}$$

$$\frac{C}{Nk_{\rm F}} = 3.1\,(3)$$

Laurent et al., PRL 113, 220601 (2019)

Le contact en onde *p*

Développement en ondes partielles de l'amplitude de diffusion à deux corps

onde *s*, $\ell = 0$, isotrope, interdite pour des fermions polarisés

Pour les ondes partielles avec $\ell \neq 0$, présence de la barrière centrifuge

$$\frac{\hbar^2 \ell(\ell+1)}{2m_{\rm r}r^2}$$

Diffusion significative uniquement en présence d'une résonance

 $\psi_{k_i}(\mathbf{r}) \sim e^{ik_i \cdot \mathbf{r}} + f(k,\theta) \stackrel{e^{ikr}}{--}$

$$f(k,\theta) = \sum_{\ell} (2\ell + 1) P_{\ell}(\cos\theta) f_{\ell}(k)$$

onde $p, \ell = 1$

Onde *s* vs. onde *p*

On s'intéresse au comportement à basse énergie (i.e. petit k) de l'amplitude de diffusion

un seul paramètre pour décrire la collision : *a*

longueur de diffusion

 $E(S, L^3, N, a) \longrightarrow$ un contact C

$$\psi_{k_i}(\mathbf{r}) \sim \mathrm{e}^{\mathrm{i}k_i \cdot \mathbf{r}} + f(k,\theta) -$$

volume de diffusion et moment effectif

 $E(S, L^3, N, v, k_{\rho}) \longrightarrow \text{deux contacts}$

Etudes des contacts en onde p

Mesures faites sur un gaz de ⁴⁰K avec des fermions polarisés

Distribution e

en impulsion avec une composante en
$$\frac{1}{k^2}$$
 (liée à C_v) et une autre en $\frac{1}{k^4}$ (liée à C_{k_e})
 $\psi(r, \theta, \varphi) = \chi(r) Y_{\ell,m}(\theta, \varphi) \qquad b \leq r \ll 1/k: \qquad \chi(r) \propto \frac{1}{r^2} + \dots$

Spectre radio-fréquence avec une composante e \rightarrow

$$\frac{1}{f(k)} \approx -\frac{1}{k^2\nu} + \frac{k_e}{2} - ik + \frac{k_e}{2}$$

Luciuk et al., Nature Physics **12**, 599 (2016)

$$\frac{1}{(\omega - \omega_0)^{1/2}} \text{ et une autre en } \frac{1}{(\omega - \omega_0)^{3/2}}$$

E_d

|V|

Plan du cours

1. Le point de vue du pseudo-potentiel

2. La spectroscopie radio-fréquence

3. Expériences récentes sur le gaz de Fermi

4. Le contact à deux corps pour le gaz de Bose

Interaction faible vs. interaction forte

Pour des interactions faibles $na^3 \ll 1$:

• Pour a > 0, la stabilité en champ moyen est assurée

Pertes à 3 corps négligeables sur le temps d'attente de l'équilibre thermodynamique Pas d'effet Efimov si on reste suffisamment loin d'une résonance de Fano-Feshbach Le contact permet de relier les deux régimes extrêmes : condensat quasi-pur et gaz non dégénéré

• Pour a < 0, instabilité en champ moyen dans le régime dégénéré : Bose nova Equilibre thermodynamique possible seulement dans le cas non dégénéré

Pour des interactions fortes $n |a|^3 \gtrsim 1$:

Equilibre thermodynamique possible seulement dans le cas non dégénéré (recombinaison à 3 corps)

Nécessité d'introduire un "contact à trois corps" pour prendre en compte l'effet Efimov

Contact à deux corps pour le gaz de Bose

	T = 0, a > 0
hors résonance	$(4\pi a)^2 nN$
à résonance	$\sim n^{1/3}N$

Energie de champ moyen d'un condena

$$C = \frac{8\pi ma^2}{\hbar^2} \frac{\partial E}{\partial a} = (4\pi a)^2 nN$$

sat:
$$E = \frac{1}{2}gnN$$
 avec $g = \frac{4\pi\hbar^2 a}{m}$

Pas de signature claire d'effets à trois corps sur le contact

Il a fallu attendre Fletcher, Lopes, et al., Science **355**, 377 (2017) ...

Mesures sur un condensat de ⁸⁵Rb confiné dans un piège magnétique (résonance de Fano-Feshbach à 155 G)

1	5	1	5
	۲.		<
5	ו	5	ר

Transition entre régime non dégénéré et condensat

Gaz de Bose uniforme de ⁸⁷Rb dans un géométrie quasi-2D

On implémente la définition thermodynam

Mesure de l'énergie δE à fournir pour changer la longueur de diffusion de la quantité δa

Zou, Bakkali-Hassani, Maury et al., Nature Commun. 12,760 (2021)

- $\ell_z \gg a$: collisions 3D
- $\ell_z \ll \lambda, \xi$: thermodynamique 2D

nique
$$C = \frac{8\pi ma^2}{\hbar^2} \frac{\partial E}{\partial a} = \frac{8\pi ma^2}{\hbar^2} \frac{\delta E}{\delta a}$$

$$|F = 2, m = 0\rangle$$

$$|F = 1, m = 0\rangle$$

$$a_1 = 5.34 \text{ nm}$$

$$a_2 = 5.02 \text{ nm}$$

Transition entre régime non dégénéré et condensat

En résumé

Procédure à la base de la théorie du contact pour un gaz dilué ($nb^3 \ll 1$) :

- Identifier les paramètres pertinents X_1, X_2, \dots pour décrire la physique à 2 corps X_1, X_2, \ldots : longueur de diffusion en onde s, volume de diffusion en onde p, portée effective
- Ecrire formellement l'énergie (ou un autre potentiel thermodynamique) sous la forme $E(S, L^3, N, X_1, X_2, ...) \longrightarrow \text{variable conjuguée de } X_i: \quad C_i \equiv \frac{\partial E}{\partial X_i}$

Les contacts C_i interviennent dans la partie asymptotique de nombreuses grandeurs physiques Distribution en impulsion, corrélation à deux corps, ailes de spectres d'excitation, taux de pertes,

Prolongements

