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Le contact à deux corps

Contact
C

Fonction de corrélation  
à deux corps  ∝ C/r2

Variable thermodynamique  

 C ∝
∂E
∂a

Théorème du viriel  

 PL3 −
2
3

E ∝ C

Distribution en  
impulsion  ∝ C/k4

Une notion qui relie microscopique (observables à un ou deux corps) et macroscopique

Valable pour tout système dilué, en interaction faible ou forte (au moins pour les fermions)

petits r

grands k
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Le cas du gaz de Fermi

1

3

5 7

2

4

6

8
Indices impairs : ↑ Indices pairs : ↓

Fermions:  antisymétrique par échange de 
deux indices pairs ou de deux indices impairs

Φ

Etat fondamental : Φ(r1, r2, r3, …, rN)

𝒢2,↑↓(r′￼,0; r,0) ≡ ⟨ Ψ̂†
↑(r′￼) Ψ̂†

↓(0) Ψ̂↓(0) Ψ̂↑(r) ⟩Fonction de corrélation à deux corps : 

≈
C

(4π)2 L3

1
r′￼

1
rb ≲ r, r′￼ ≪ d = n−1/3, a

portée du  
potentiel

distance  
entre atomes

longueur de  
diffusion
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Le but du cours d’aujourd’hui

Continuer à explorer les manifestations du contact “à deux corps”

• Spectroscopie radio-fréquence

• Pertes d’atomes sous l’effet de collisions inélastiques

Comprendre comment généraliser cette notion en présence d’autres paramètres

• L’exemple de collisions en onde p
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Plan du cours

1. Le point de vue du pseudo-potentiel

2. La spectroscopie radio-fréquence

3. Expériences récentes sur le gaz de Fermi

4. Le contact à deux corps pour le gaz de Bose
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Vers un potentiel de portée nulle ?

Distribution en impulsion trouvée au cours 5

n↑(k) = n↓(k) ≈
C
k4

1
a

,
1
d

≪ k ≲
1
b

pour

100 101

10�7

10�5

10�3

10�1

1
a < k < 1

bka < 1

1 < kb

ka

n"(k)

Si on prend la limite   , on étend la loi en      jusqu’à   b → 0 k−4 k = + ∞

Ecin = ∫
ℏ2k2

2m [n↑(k) + n↓(k)] d3k ∫
+∞ ℏ2k2

2m
2C
k4

4πk2 dk

diverge !

Pour analyser et traiter correctement cette divergence, utilisation du pseudo-potentiel
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Le pseudo-potentiel

̂Vpp [ψ(r)] = g δ(r)
∂
∂r [rψ(r)]

r=0

Rappel de la définition du pseudo-potentiel :

Opérateur de portée nulle qui efface les divergences en 1/r :

ψ(r) =
α
r

+ ψreg(r) ⇒ Vpp [ψ(r)] = g ψreg(0) δ(r)

g =
4πℏ2a

m

ψlie(r) =
e−r/a

r
E = −

ℏ2

2mra2ψk(r) = eik⋅r −
a

1 + ika
eikr

r
E =

ℏ2k2

2mr

Le problème à deux corps avec le pseudo-potentiel :        (ne porte que sur les ondes s)Ĥ = −
ℏ2

2mr
∇2 + ̂Vpp

Etats de diffusion Un unique état lié (pour )a > 0

Dans les deux cas, même comportement à l’origine : ψ(r) ∝
1
r

−
1
a

+ 𝒪(r)

L’utilisation de  revient à imposer ces conditions aux limites de Bethe-PeierlŝVpp
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Coupure en impulsion

Pour utiliser  , on tronque toutes les intégrales sur  à une valeur ̂Vpp k kmax

Ecin = ∫
ℏ2k2

2m [n↑(k) + n↓(k)] d3k ∫
kmax ℏ2k2

2m
2C
k4

4πk2 dk

Ecin =
ℏ2Ckmax

2π2m
+ …

Contribution finie : pas de termes sous-
dominants en  pour un gaz de fermionsk−5

Physiquement, kmax ∼
1
b
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Energie d’interaction pour ̂Vpp

ψ(r) =
α
r

+ ψreg(r) ⇒ Vpp [ψ(r)] = g ψreg(0) δ(r)

𝒢2,↑↓(r′￼1, r2; r1, r2) =
N2

4 ∫ Φ*(r′￼1, r2, r3, …, rN) Φ(r1, r2, r3, …, rN) d3r3…d3rN

≈
C

(4π)2L3 ( 1
r′￼12

−
1
a ) ( 1

r12
−

1
a )
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Bilan énergétique pour des interactions en ̂Vpp

Energie cinétique avec une composante divergente positive + une composante finie 

Ecin = ∫
ℏ2k2

2m [n↑(k) + n↓(k)] d3k =
ℏ2Ckmax

2π2m
+ …

Energie d’interaction avec une composante divergente négative + une composante finie 

Eint = ∫ Φ*(r1, …, rN) ̂Vpp [Φ(r1, …, rN)] d3r1…d3rN = −
ℏ2Ckmax

2π2m
+

ℏ2C
4πma

D’où l’écriture sans divergence pour l’énergie totale 

Fermions: E = ∑
σ=↑↓

1
(2π)3 ∫

ℏ2k2

2m [nσ(k) −
C
k4 ] d3k +

ℏ2C
4πma

Résultat similaire pour un gaz de bosons sans effet Efimov : E =
1

(2π)3 ∫
ℏ2k2

2m [n(k) −
C
k4 ] d3k +

ℏ2C
8πma
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Plan du cours

1. Le point de vue du pseudo-potentiel

2. La spectroscopie radio-fréquence

3. Expériences récentes sur le gaz de Fermi

4. Le contact à deux corps pour le gaz de Bose
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Position du problème 

↑

↓

e

ω0 ω

} Gaz en interaction 
faible ou forte  a↑↓

On peut ajuster l’interaction 
  et   entre    et  ,ae↑ ae↓ e ↑ ↓

Spectroscopie radiofréquence : sonde sans transfert d’impulsion (contrairement à la diffraction de Bragg)

Centre de gravité du spectre

⟨ω⟩ ≡
∫ ω Γ(ω) dω
∫ Γ(ω) dω

≈ ω0 + ( 1
a↑↓

−
1

ae↓ ) ℏ
4πm

C
N↑
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Le taux de transfert Γ(ω)

↑

↓

e

ω0 ω
Couplage induit par l’onde radio-fréquence

Ĥrf(t) =
ℏΩ
2

e−iωt ̂Y + H . c .

avec    ̂Y = ∫ Ψ̂†
e(r) Ψ̂↑(r) d3r

Approche fondée sur la règle d’or de Fermi : Γ(ω) =
πℏ
2

Ω2 ∑
Φf

|⟨Φf | ̂Y |Φi⟩ |2 δ[Ef − Ei − ℏω]

Etat initial   :   et  atomes, rien dans l’état |Φi⟩ N↑ N↓ e

Etat finaux possibles   :   et  atomes, et un atome dans l’état |Φf⟩ N↑ − 1 N↓ e
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Centre de gravité du spectre radio-fréquence

⟨ω⟩ ≡
∫ ω Γ(ω) dω
∫ Γ(ω) dω

Γ(ω) =
πℏ
2

Ω2 ∑
Φf

|⟨Φf | ̂Y |Φi⟩ |2 δ[Ef − Ei − ℏω]

Etat initial   :   et  atomes, rien dans l’état |Φi⟩ N↑ N↓ e

Etat finals possibles   :   et  atomes, et un atome dans l’état |Φf⟩ N↑ − 1 N↓ e

̂Y = ∫ Ψ̂†
e(r) Ψ̂↑(r) d3r
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Fréquence moyenne du spectre radiofréquence

⟨ω⟩ ≡
∫ ω Γ(ω) dω
∫ Γ(ω) dω

πΩ2

2
⟨Φi | ̂Y† ̂Y |Φi⟩ =

πΩ2

2
N↑

πΩ2

2
1
ℏ

⟨Φi | [ ̂Y†, Ĥ] Y |Φi⟩
Seules contribuent les interaction , e ↓ ↑ ↓

voir notes pour la fin du calcul

On arrive au résultat annoncé  : ⟨ω⟩ = ω0 + ( 1
a↑↓

−
1

ae↓ ) ℏ
4πm

C
N↑

Remarque : l’interaction  ne contribue pas car la radio-fréquence fait basculer 
collectivement les  atomes initialement polarisés en  dans un état du type :

ae↑
N↑ | ↑ ⟩

cos θ | ↑ ⟩ + sin θ |e⟩

Cela reste un état polarisé en spin, donc sans interaction en onde s

↑

↓

e

ω
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L’aile du spectre radio-fréquence

⟨ω⟩ = ω0 + ( 1
a↑↓

−
1

ae↓ ) ℏ
4πm

C
N↑

devient infini quand ae↓ = 0

↑

↓

e
ω

⟨ω⟩ ≡
∫ ω Γ(ω) dω
∫ Γ(ω) dω

Divergence de      car   ∫ ω Γ(ω) dω Γ(ω) ∝ (ω − ω0)−3/2

ω0

1

3

5 7

2

4

6

8 Aux grands désaccords   , un atome isolé 
est pratiquement insensible à la radio-fréquence  

ω − ω0

On sonde les paires d’atomes rapprochées, dans 
un état de diffusion ou formant un dimère  
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L’aile du spectre radio-fréquence (suite) 

1 2

photon r.f.

Energie initiale totale de la paire (libre ou liée) 
négligeable devant ω − ω0

+k
−k

Etat initial Etat final

δ[Ef − Ei − ℏω] ⟶ δ [ℏω0 + 2
ℏ2k2

2m
− ℏω]

Taux de transition  aux grands désaccords :Γ(ω) Γ(ω) ≈
πℏΩ2

2
1

(2π)3 ∫ n↑(k) δ [ℏω0 +
ℏ2k2

m
− ℏω] d3k

Il suffit d’injecter     pour arriver à : n↑(k) ≈
C
k4

Γ(ω) ≈
Ω2

8π
ℏ
m

C
(ω − ω0)3/2 accès “direct” au contact

ae↓ = 0
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Plan du cours

1. Le point de vue du pseudo-potentiel

2. La spectroscopie radio-fréquence

3. Expériences récentes sur le gaz de Fermi

4. Le contact à deux corps pour le gaz de Bose

Spectroscopie radio-fréquence               impuretés et pertes d’atomes                   contact en onde p
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Les premiers spectres radio-fréquence

Boulder 2010 : gaz de 2 105 atomes de potassium 40 (fermion), avec  pour le niveau fondamental F = 9/2

| ↓ ⟩ ≡ |F = 9/2,mF = − 9/2⟩ | ↑ ⟩ ≡ |F = 9/2,mF = − 7/2⟩

Confinement dans un piège optique et refroidissement par évaporation jusqu’à     ( )T ≈ 0.1 TF a = 40 nm

Rampe adiabatique de  jusqu’à une valeur proche de résonance  ( ), puis mesure du spectrea 1/kFa = − 0.08

Stewart et al., PRL 104 235301

|e⟩ ≡ |F = 9/2,mF = − 5/2⟩

light for the imaging propagates along the axial direction
of the trap, and thus we measure the radial momentum
distribution. Assuming the momentum distribution is
spherically symmetric, we obtain nðkÞ with an inverse
Abel transform.

Figure 1(a) shows an example nðkÞ for a strongly inter-
acting gas with a dimensionless interaction strength
ðkFaÞ#1 of #0:08$ 0:04. The measured nðkÞ exhibits a
1=k4 tail at large k, and we extractC from the average value
of k4nðkÞ for k > kC, where we use kC ¼ 1:85 for
ðkFaÞ#1 >#0:5 and kC ¼ 1:55 for ðkFaÞ#1 <#0:5.
These values for kC are chosen empirically such that for
k & kC, the momentum distributions are in the asymptotic
limit to within our statistical measurement uncertainties.
One issue for this measurement is whether or not the
interactions are switched off sufficiently quickly to accu-
rately measure nðkÞ. The data in Fig. 1(a) were taken using
a magnetic-field sweep rate of _B ¼ 1:2 G

!s to turn off the

interactions for the expansion. In the inset to Fig. 1a, we
show the dependence of the measured C on _B. Using an
empirical exponential fit [line in Fig. 1(a) inset], we esti-
mate that for our typical _B of 1.2 to 1:4 G

!s , C is system-

atically low by about 10%. We have therefore scaled C
measured with this method by 1:1.

The contact is also manifest in rf spectroscopy, where
one applies a pulsed rf field and counts the number of
atoms that are transferred from one of the two original
spin states into a third, previously unoccupied, spin state
[11]. We transfer atoms from the j9=2;#7=2i state to the
j9=2;#5=2i state. It is predicted that the number of atoms
transferred as a function of the rf frequency, ", scales as
"#3=2 for large ", and that the amplitude of this high
frequency tail is C

23=2#2 [12–14]. Here, " ¼ 0 is the single-

particle spin-flip resonance, and " is given in units of
EF=h. This prediction requires that atoms transferred to
the third spin-state have only weak interactions with the
other atoms so that ‘‘final-state effects’’ are small [14–21],
as is the case for 40K atoms. In Fig. 1(b), we plot a
measured rf spectrum, !ð"Þ, multiplied by 23=2#2"3=2.
The rf spectrum is normalized so that its integral equals
0:5. We observe the predicted 1="3=2 behavior for large ",
and obtain C by averaging 23=2#2"3=2!ð"Þ for "> "C,
where we use "C ¼ 5 for ðkFaÞ#1 >#0:5 and "C ¼ 3
for ðkFaÞ#1 <#0:5. These values for "C are chosen such
that for " & "C, !ð"Þ is in its asymptotic limit.
The connection between !ð"Þ and the high-k tail of nðkÞ

can be seen in the Fermi spectral function, which can be
probed using photoemission spectroscopy for ultra cold
atoms [8]. Recent photoemission spectroscopy results on
a strongly interacting Fermi gas [22] revealed a weak,
negatively dispersing feature at high k that persists to
temperatures well above TF. This feature was attributed
to the effect of interactions, or the contact, consistent with
a recent prediction [23]. Atom photoemission spectros-
copy, which is based upon momentum-resolved rf spec-
troscopy, also provides a method for measuring nðkÞ. By
integrating over the energy axis, or equivalently, summing
data taken for different rf frequencies, we obtain nðkÞ. This
alternative method for measuring nðkÞ yields results similar
to the ballistic expansion technique, but avoids the issue of
magnetic-field sweep rates.
In Fig. 2, we show the measured contact for different

values of 1=kFa. We restrict the data to values of 1=kFa
where our magnetic-field sweeps are adiabatic [24].
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FIG. 1. Extracting the contact from the momentum distribution
and rf line shape. (a) Measured momentum distribution for a
Fermi gas at 1

kFa
¼ #0:08$ 0:04. Here, the wave number k is

given in units of kF, and we plot the normalized nðkÞ multiplied
by k4. The dashed line corresponds to 2:2, which is the average
of k4nðkÞ for k > 1:85. (Inset) The measured value for C depends
on the rate of the magnetic-field sweep that turns off the
interactions before time-of-flight expansion. (b) rf line shape
measured for a Fermi gas at 1

kFa
¼ #0:03$ 0:04. Here, " is the

rf detuning from the single-particle Zeeman resonance, given in
units of EF=h. We plot the normalized rf line shape multiplied by
23=2#2"3=2, which is predicted to asymptote to C for large ".
Here, the dashed line corresponds to 2:1, from an average of the
data for "> 5.
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FIG. 2. The contact. We measure the contact, C, as a function
of ðkFaÞ#1 using three different methods. Filled circles corre-
spond to direct measurements of the fermion momentum distri-
bution nðkÞ using a ballistic expansion, in which a fast magnetic-
field sweep projects the many-body state onto a noninteracting
state. Open circles correspond to nðkÞ obtained using atom
photoemission spectroscopy measurements. Stars correspond to
the contact obtained from rf spectroscopy. The values obtained
with these different methods show good agreement. The contact
is nearly zero for a weakly interacting Fermi gas with attractive
interactions (left hand side of plot) and then increases as the
interaction strength increases to the unitarity regime where
ðkFaÞ#1 ¼ 0. The line is a theory curve obtained from Ref. [5].

PRL 104, 235301 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
11 JUNE 2010

235301-2

ν =
ℏ(ω − ω0)

EF

light for the imaging propagates along the axial direction
of the trap, and thus we measure the radial momentum
distribution. Assuming the momentum distribution is
spherically symmetric, we obtain nðkÞ with an inverse
Abel transform.

Figure 1(a) shows an example nðkÞ for a strongly inter-
acting gas with a dimensionless interaction strength
ðkFaÞ#1 of #0:08$ 0:04. The measured nðkÞ exhibits a
1=k4 tail at large k, and we extractC from the average value
of k4nðkÞ for k > kC, where we use kC ¼ 1:85 for
ðkFaÞ#1 >#0:5 and kC ¼ 1:55 for ðkFaÞ#1 <#0:5.
These values for kC are chosen empirically such that for
k & kC, the momentum distributions are in the asymptotic
limit to within our statistical measurement uncertainties.
One issue for this measurement is whether or not the
interactions are switched off sufficiently quickly to accu-
rately measure nðkÞ. The data in Fig. 1(a) were taken using
a magnetic-field sweep rate of _B ¼ 1:2 G

!s to turn off the

interactions for the expansion. In the inset to Fig. 1a, we
show the dependence of the measured C on _B. Using an
empirical exponential fit [line in Fig. 1(a) inset], we esti-
mate that for our typical _B of 1.2 to 1:4 G

!s , C is system-

atically low by about 10%. We have therefore scaled C
measured with this method by 1:1.

The contact is also manifest in rf spectroscopy, where
one applies a pulsed rf field and counts the number of
atoms that are transferred from one of the two original
spin states into a third, previously unoccupied, spin state
[11]. We transfer atoms from the j9=2;#7=2i state to the
j9=2;#5=2i state. It is predicted that the number of atoms
transferred as a function of the rf frequency, ", scales as
"#3=2 for large ", and that the amplitude of this high
frequency tail is C

23=2#2 [12–14]. Here, " ¼ 0 is the single-

particle spin-flip resonance, and " is given in units of
EF=h. This prediction requires that atoms transferred to
the third spin-state have only weak interactions with the
other atoms so that ‘‘final-state effects’’ are small [14–21],
as is the case for 40K atoms. In Fig. 1(b), we plot a
measured rf spectrum, !ð"Þ, multiplied by 23=2#2"3=2.
The rf spectrum is normalized so that its integral equals
0:5. We observe the predicted 1="3=2 behavior for large ",
and obtain C by averaging 23=2#2"3=2!ð"Þ for "> "C,
where we use "C ¼ 5 for ðkFaÞ#1 >#0:5 and "C ¼ 3
for ðkFaÞ#1 <#0:5. These values for "C are chosen such
that for " & "C, !ð"Þ is in its asymptotic limit.
The connection between !ð"Þ and the high-k tail of nðkÞ

can be seen in the Fermi spectral function, which can be
probed using photoemission spectroscopy for ultra cold
atoms [8]. Recent photoemission spectroscopy results on
a strongly interacting Fermi gas [22] revealed a weak,
negatively dispersing feature at high k that persists to
temperatures well above TF. This feature was attributed
to the effect of interactions, or the contact, consistent with
a recent prediction [23]. Atom photoemission spectros-
copy, which is based upon momentum-resolved rf spec-
troscopy, also provides a method for measuring nðkÞ. By
integrating over the energy axis, or equivalently, summing
data taken for different rf frequencies, we obtain nðkÞ. This
alternative method for measuring nðkÞ yields results similar
to the ballistic expansion technique, but avoids the issue of
magnetic-field sweep rates.
In Fig. 2, we show the measured contact for different

values of 1=kFa. We restrict the data to values of 1=kFa
where our magnetic-field sweeps are adiabatic [24].
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FIG. 1. Extracting the contact from the momentum distribution
and rf line shape. (a) Measured momentum distribution for a
Fermi gas at 1

kFa
¼ #0:08$ 0:04. Here, the wave number k is

given in units of kF, and we plot the normalized nðkÞ multiplied
by k4. The dashed line corresponds to 2:2, which is the average
of k4nðkÞ for k > 1:85. (Inset) The measured value for C depends
on the rate of the magnetic-field sweep that turns off the
interactions before time-of-flight expansion. (b) rf line shape
measured for a Fermi gas at 1

kFa
¼ #0:03$ 0:04. Here, " is the

rf detuning from the single-particle Zeeman resonance, given in
units of EF=h. We plot the normalized rf line shape multiplied by
23=2#2"3=2, which is predicted to asymptote to C for large ".
Here, the dashed line corresponds to 2:1, from an average of the
data for "> 5.
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FIG. 2. The contact. We measure the contact, C, as a function
of ðkFaÞ#1 using three different methods. Filled circles corre-
spond to direct measurements of the fermion momentum distri-
bution nðkÞ using a ballistic expansion, in which a fast magnetic-
field sweep projects the many-body state onto a noninteracting
state. Open circles correspond to nðkÞ obtained using atom
photoemission spectroscopy measurements. Stars correspond to
the contact obtained from rf spectroscopy. The values obtained
with these different methods show good agreement. The contact
is nearly zero for a weakly interacting Fermi gas with attractive
interactions (left hand side of plot) and then increases as the
interaction strength increases to the unitarity regime where
ðkFaÞ#1 ¼ 0. The line is a theory curve obtained from Ref. [5].

PRL 104, 235301 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
11 JUNE 2010

235301-2

PES : photo-emission  
spectroscopy



22

Expérience du MIT (2019) 

Gaz de 6Li à résonance , confiné dans un piège à fond plat (densité spatiale uniforme)|a↑↓ | = + ∞

Mukherjee et al., PRL 122, 203402

ν =
ℏ(ω − ω0)

EF

contact [48]. A recent advance has been the creation of
uniform box potentials [49–51]. These are ideal for rf
spectroscopy and precision measurements of the contact:
since the entire cloud is at a constant density, global probes
such as rf address all atoms, andbenefit froma stronger signal.
In this Letter, we report on rf spectroscopy of the

homogeneous unitary Fermi gas in a box potential. A
single peak is observed for all temperatures from the
superfluid regime into the high temperature Boltzmann
gas. The tails of the rf spectra reveal the contact, which
shows a rapid rise as the temperature is reduced below Tc.
We prepare 6Li atoms in two of the three lowest hyper-

fine states j↓i ¼ j1i and j↑i ¼ j3i at a magnetic field of
690 G, where interspin interactions are resonant. A uniform
optical box potential with cylindrical symmetry is loaded
with N ∼ 106 atoms per spin state (with Fermi energies
EF ∼ h × 10 kHz), creating spin-balanced homogeneous
gases at temperatures ranging from T=TF ¼ 0.10 to 3.0
[50]. A square rf pulse transfers atoms from state j↓i
into state jfi ¼ j2i. Final state interactions between
atoms in state jfi and atoms in states j↑i and j↓i are
small (kFaf ≲ 0.2, where af is the scattering length
characterizing collisions between atoms in the final and
initial states, and ℏkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
is the Fermi momentum)

[26]. After the rf pulse, we measure the atom numbers
N↓ and Nf in the initial and final states. Within linear
response, according to Fermi’s golden rule, Nf is propor-
tional to the pulse time TPulse, the square of the single-
particle Rabi frequencyΩR, and an energy density of states.
Thus, we define a normalized, dimensionless rf spectrum as
IðωÞ ¼ ½NfðωÞ=N↓%ðEF=ℏΩ2

RTPulseÞ [52,57]. Because of
the scale invariance of the balanced unitary Fermi gas,
this dimensionless function can only depend on T=TF
and ℏω=EF.
For thermometry, we release the cloud from the uniform

potential into a harmonic trap along one direction [57].
Since the cloud expands isoenergetically, the resulting
spatial profile after thermalization provides the energy
per particle, which can be related to the reduced temper-
ature, T=TF, using a virial relation and the measured
equation of state [14]. To clearly identify the superfluid
transition, we measure the pair momentum distribution by
a rapid ramp of the magnetic field to the molecular side of
the Feshbach resonance before releasing the gas into a
harmonic trap for a quarter period [50,52].
Initially, we focus on changes in the line shape for rf

frequencies within ∼EF=ℏ of the bare (single-particle)
resonance [see Fig. 1(a)], and follow the changes in

(a) (b)

(c)

FIG. 1. (a) Thermal evolution of rf spectra. The Rabi frequency is ΩR ¼ 2π × 0.5 kHz and the pulse duration is TPulse ¼ 1 ms. The
solid lines are guides to the eye. (b) Frequency of the peak (Ep ¼ −ℏω) of the rf spectra as a function of temperature shown as white dots
on an intensity plot of the rf response. The grey solid line is a solution to the Cooper problem at nonzero temperature [52]. (c) The full
width at half maximum Γ of the rf peak as a function of T=TF. The black dotted-dashed line Γ=EF ¼ 1.2

ffiffiffiffiffiffiffiffiffiffiffiffi
TF=T

p
shows the temperature

dependence of the width due to scattering in the high-temperature gas [32,60]. The grey triangles are the corresponding width
measurements of a highly spin-imbalanced gas [57]. The horizontal black dotted line represents the Fourier broadening of 0.1EF [52].
The vertical dashed red line in both (b) and (c) marks the superfluid transition [14].
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the peak position Ep [shown in Fig. 1(b)]. As the hot spin-
balanced Fermi gas is cooled below the Fermi temperature,
the peak shift decreases from roughly zero for temperatures
T ≳ TF, to Ep ≈ −0.8EF for temperatures below the super-
fluid transition temperature [see Fig. 1(b)]. At high temper-
atures, one might naïvely expect a shift on the order of
Ep ∼ ℏnλT=m due to unitarity-limited interactions in the
gas. However, there exists both an attractive and a repulsive
energy branch, which are symmetric about zero at unitarity
[58], and when T ≫ TF, their contributions to the shift
cancel [32,59,60]. As to the interpretation of the peak shift at
degenerate temperatures, a solution to the Cooper problem in
the presence of a T > 0 Fermi sea shows that it is
energetically favorable to form pairs when T ≲ 0.5TF
[52], and the resulting pair energy agrees qualitatively
with the observed shifts [grey line in Fig. 1(b)]. However,
it is known that fluctuations suppress the onset of pair
condensation and superfluidity to 0.167ð13ÞTF [5,11,14,61].
In a zero-temperature superfluid, BCS theory would
predict a peak shift given by the pair binding energy
EB ¼ Δ2=2EF, where Δ is the pairing gap [3]. Including
Hartree terms is found to result in an additional shift of the
peak [27,47].
Now, we turn to the widths, Γ, defined as the full width at

half maximum of the rf spectra [see Fig. 1(c)]. As the gas is
cooled from the Boltzmann regime, the width gradually
increases, and attains a maximum of Γ ¼ 1.35ð5ÞEF near
T ¼ 0.44ð4ÞTF. For temperatures much higher than TF,
the system is a Boltzmann gas of atoms scattering with a
unitarity limited cross section σ ∼ λ2T . Transport properties
and short-range pair correlations are governed by the scatter-
ing rate Γ ¼ n↓σhvreli ∼ ℏn↓λT=m and a mean-free path
l ¼ ðn↓σÞ−1 ∼ ðn↓λ2TÞ−1, where n↓ is the density of atoms in
j↓i, and hvreli ∼ ℏ=mλT is the thermally averaged relative
velocity. This leads to a width that scales as Γ ∝ 1=

ffiffiffiffi
T

p
,

shown as the dotted-dashed line in Fig. 1(c) [32].
As the cloud is cooled below T ≈ 0.5TF, the width

decreases linearly with temperature to Γ ∼ 0.52EF=ℏ in the
coldest gases measured [T ¼ 0.10ð1ÞTF]. For temperatures
below Tc, we expect the gas to consist of pairs of size ξ.
The rf spectrum will be broadened by the distribution of
momenta ∼ℏ=ξ inside each pair, leading to a spread of
possible final kinetic energies ℏ2k2=m ∼ ℏ2=mξ2 and a
corresponding spectral width ℏ=mξ2. At unitarity and at
T ¼ 0, the pair size is set by the interparticle spacing λF
[3,5,26]. Thus, the rf width at low temperatures
is Γ ∼ ℏnλF=m.
For temperatures above Tc, it has been suggested that

the normal fluid can be described as a Fermi liquid
[15,62]. This would imply a quadratic relation between
the peak width and the temperature [63], as observed in the
widths of the rf spectra of Fermi polarons at unitarity [57].
However, the measured width of the spin-balanced Fermi
gas changes linearly in temperature, implying non-Fermi

liquid behavior in the normal fluid. In addition, Γ > EF=ℏ
for 0.3≲ T=TF ≲ 1.2, indicating a breakdown of well-
defined quasiparticles over a large range of temperatures
near the quantum critical regime [10,12,13].
We now consider the rf spectrum at frequencies much

larger than EF=ℏ, where the rf-coupled high-momentum
tails reveal information about the short-range pair correla-
tions between atoms. In a gas with contact interactions,
the pair correlation function at short distances is
limr→0hn↑ðr0 þ r=2Þn↓ðr0 − r=2Þi ¼ C=ð4πrÞ2. The con-
tact C connects a number of fundamental relations, inde-
pendent of the details of the short-range interaction
potential [28]. In particular, the contact governs the
momentum distribution at large momenta: limk→∞nðkÞ ¼
C=k4. For rf spectroscopy, the density of final states scales
as

ffiffiffiffi
ω

p
, and the energy cost to flip a spin at high momenta is

limk→∞ℏω ¼ ℏ2k2=m. Thus, the number of atoms trans-
ferred by the rf pulse at high frequencies in linear response
is ∝ C=ω3=2 [5,27]. Including final state interactions, the
general expression for the rf transfer rate in a gas with
unitarity-limited initial state interactions is [64]

lim
ω→∞

IðωÞ ¼
"

C
NkF

#
1

2
ffiffiffi
2

p
πð1þ ℏω=EbÞ

"
EF

ℏω

#
3=2

; ð1Þ

FIG. 2. Rf spectrum at high frequencies. Here, the temperature
of the gas is T=TF ¼ 0.10ð1Þ, the pulse duration is TPulse ¼ 1 ms,
and the Rabi frequencies are 2π × 536 Hz (light blue circles),
2π × 1.20 kHz (medium blue triangles), and 2π × 3.04 kHz
(dark blue squares). The black solid line shows a fit of Eq. (1)
to the data, while the grey dashed line shows the fit neglecting
final state interactions. The contact can be directly obtained from
the transfer rate at a fixed detuning of 60 kHz (ℏω=EF ∼ 7.1)
(dotted-dashed vertical line). Inset: we vary the pulse time at this
fixed detuning, and extract the initial slope (dashed line) of the
exponential saturating fit (solid line). The rf transfer rate obtained
from the initial linear slope is shown as the red diamond in the
main plot. Here, ΩR ¼ 2π × 1.18 kHz.
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Variation du contact à résonance ( ) avec la température|a↑↓ | = + ∞where N ¼ N↑ þ N↓ is the total number of atoms, and the
final state molecular binding energy is Eb ¼ ℏ2=ma2f ≈
h × 433 kHz ≈ 40EF. Figure 2 shows a typical rf spectrum
at T=TF ¼ 0.10, with a fit of Eq. (1) to data with detunings
ℏω > 3EF, using the dimensionless contact C̃ ¼ C=NkF as
the only free parameter. At detunings larger than about
10 EF, the data deviate from a typical ω−3=2 tail, and are
better described by the full expression Eq. (1) including
final state interactions. Here, the Rabi frequency was varied
across the plot to ensure small transfers near the peak and a
high signal-to-noise ratio at detunings up to ℏω=EF ¼ 31.
The fit of Eq. (1) to the data gives a low-temperature
contact of C̃ ¼ 3.07ð6Þ, consistent with a quantum
Monte Carlo result C̃ ¼ 2.95ð10Þ [65], the Luttinger-
Ward (LW) calculation C̃ ¼ 3.02 [27], as well as previous
measurements using losses C̃ ¼ 3.1ð3Þ [66] and Bragg
spectroscopy C̃ ¼ 3.06ð8Þ [46].
For a more efficient measurement of the contact

across a range of temperatures, we vary the pulse time
at a fixed detuning of 60 kHz (ℏω=EF ≳ 6) that is large
compared to the Fermi energy and temperature. [52].
Deviations from linear response are observed for transfers
as small as 5% (see inset of Fig. 2). We fit the transfers to an
exponentially saturating function A½1 − expð−TPulse=τÞ&,
and find the initial linear slope A=τ in order to extract
the contact for each temperature using Eq. (1). This ensures
that every measurement is taken in the linear response
regime.
In Fig. 3(a), we show the temperature dependence of the

contact. As the gas is cooled, the contact shows a gradual
increase down to the superfluid transition Tc. Entering the
superfluid transition, the contact rapidly rises by approx-
imately 15%. The changes in the contact reveal the
temperature dependence of short-range pair correlations
in the spin-balanced Fermi gas. At temperatures far above
TF, the contact reflects the inverse mean free path in the gas
1=l ∼ 1=T. At lower temperatures, the behavior of the
contact is better described by a third-order virial expansion
[see inset of 3(a)] [36]. Near Tc, predictions of the contact
vary considerably. In the quantum critical regime, a
leading-order 1=N calculation (equivalent to a Gaussian
pair fluctuation or Nozières–Schmitt-Rink method) results
in a prediction C̃ðμ ¼ 0; T ≈ 0.68TFÞ ¼ 2.34 [10], which
is consistent with our measurement of C̃½T¼0.65ð4ÞTF&¼
2.29ð13Þ. For temperatures above the superfluid transition,
our data agree well with both a bold diagrammatic
Monte Carlo calculation [38], and, especially near Tc,
the LW calculation [32]. The contact rises as the temper-
ature is decreased below Tc, a feature captured by the LW
formalism, in which the contact is directly sensitive to
pairing: C̃ ∼ ðΔ=EFÞ2 [27,33]. While short-range pair
correlations do not necessarily signify pairing [35], the
rapid rise of the contact below Tc is strongly indicative of
an additional contribution from fermion pairs, as predicted

by LW. At temperatures T ≪ Tc, below the reach of our
experiment, phonons are likely the only remaining excita-
tions in the unitary Fermi gas, and are expected to contribute
to the contact by an amount that scales as T4 [67].
In conclusion, rf spectroscopy of the homogeneous

unitary Fermi gas reveals strong attractive interactions,
the non-Fermi-liquid nature of excitations in the gas across
the quantum critical regime, and a rapid increase in short-
range pair correlations upon entering the superfluid regime.
The strong variation with temperature of the position
of the spectral peak may serve as a local thermometer in
future studies of heat transport in ultracold Fermi gases.
Furthermore, these measurements of the contact provide
a benchmark for many-body theories of the unitary
Fermi gas. The uniform trap enables direct access to
homogeneous measurements of thermodynamic quantities,

(a)

(b)

FIG. 3. The dimensionless contact C=NkF (a) and condensate
fraction N0=N (b) of the unitary Fermi gas as a function of the
reduced temperature T=TF. Our measurements of the contact
(red points) are compared with a number of theoretical estimates:
bold-diagrammatic Monte Carlo (BDMC) [38], quantum
Monte Carlo (QMC) [37], Luttinger-Ward (LW) [32], large N
[10], and Gaussian pair fluctuations (GPF) [36]. Also shown is
the homogeneous contact obtained from the equation of state at
the École normale supérieure (ENS-EOS) [62], from loss rate
measurements (ENS-L) [66], and from rf spectroscopy by the
JILA group [18] across a range of temperatures. The vertical
blue dotted lines and light blue shaded vertical regions mark
Tc=TF ¼ 0.167ð13Þ [14]. The inset of (a) shows the contact over
a wider range of temperatures and marks the high-temperature
agreement with the third order virial expansion. The error bars
account for the statistical uncertainties in the data.
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where N ¼ N↑ þ N↓ is the total number of atoms, and the
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at T=TF ¼ 0.10, with a fit of Eq. (1) to data with detunings
ℏω > 3EF, using the dimensionless contact C̃ ¼ C=NkF as
the only free parameter. At detunings larger than about
10 EF, the data deviate from a typical ω−3=2 tail, and are
better described by the full expression Eq. (1) including
final state interactions. Here, the Rabi frequency was varied
across the plot to ensure small transfers near the peak and a
high signal-to-noise ratio at detunings up to ℏω=EF ¼ 31.
The fit of Eq. (1) to the data gives a low-temperature
contact of C̃ ¼ 3.07ð6Þ, consistent with a quantum
Monte Carlo result C̃ ¼ 2.95ð10Þ [65], the Luttinger-
Ward (LW) calculation C̃ ¼ 3.02 [27], as well as previous
measurements using losses C̃ ¼ 3.1ð3Þ [66] and Bragg
spectroscopy C̃ ¼ 3.06ð8Þ [46].
For a more efficient measurement of the contact

across a range of temperatures, we vary the pulse time
at a fixed detuning of 60 kHz (ℏω=EF ≳ 6) that is large
compared to the Fermi energy and temperature. [52].
Deviations from linear response are observed for transfers
as small as 5% (see inset of Fig. 2). We fit the transfers to an
exponentially saturating function A½1 − expð−TPulse=τÞ&,
and find the initial linear slope A=τ in order to extract
the contact for each temperature using Eq. (1). This ensures
that every measurement is taken in the linear response
regime.
In Fig. 3(a), we show the temperature dependence of the

contact. As the gas is cooled, the contact shows a gradual
increase down to the superfluid transition Tc. Entering the
superfluid transition, the contact rapidly rises by approx-
imately 15%. The changes in the contact reveal the
temperature dependence of short-range pair correlations
in the spin-balanced Fermi gas. At temperatures far above
TF, the contact reflects the inverse mean free path in the gas
1=l ∼ 1=T. At lower temperatures, the behavior of the
contact is better described by a third-order virial expansion
[see inset of 3(a)] [36]. Near Tc, predictions of the contact
vary considerably. In the quantum critical regime, a
leading-order 1=N calculation (equivalent to a Gaussian
pair fluctuation or Nozières–Schmitt-Rink method) results
in a prediction C̃ðμ ¼ 0; T ≈ 0.68TFÞ ¼ 2.34 [10], which
is consistent with our measurement of C̃½T¼0.65ð4ÞTF&¼
2.29ð13Þ. For temperatures above the superfluid transition,
our data agree well with both a bold diagrammatic
Monte Carlo calculation [38], and, especially near Tc,
the LW calculation [32]. The contact rises as the temper-
ature is decreased below Tc, a feature captured by the LW
formalism, in which the contact is directly sensitive to
pairing: C̃ ∼ ðΔ=EFÞ2 [27,33]. While short-range pair
correlations do not necessarily signify pairing [35], the
rapid rise of the contact below Tc is strongly indicative of
an additional contribution from fermion pairs, as predicted

by LW. At temperatures T ≪ Tc, below the reach of our
experiment, phonons are likely the only remaining excita-
tions in the unitary Fermi gas, and are expected to contribute
to the contact by an amount that scales as T4 [67].
In conclusion, rf spectroscopy of the homogeneous

unitary Fermi gas reveals strong attractive interactions,
the non-Fermi-liquid nature of excitations in the gas across
the quantum critical regime, and a rapid increase in short-
range pair correlations upon entering the superfluid regime.
The strong variation with temperature of the position
of the spectral peak may serve as a local thermometer in
future studies of heat transport in ultracold Fermi gases.
Furthermore, these measurements of the contact provide
a benchmark for many-body theories of the unitary
Fermi gas. The uniform trap enables direct access to
homogeneous measurements of thermodynamic quantities,
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FIG. 3. The dimensionless contact C=NkF (a) and condensate
fraction N0=N (b) of the unitary Fermi gas as a function of the
reduced temperature T=TF. Our measurements of the contact
(red points) are compared with a number of theoretical estimates:
bold-diagrammatic Monte Carlo (BDMC) [38], quantum
Monte Carlo (QMC) [37], Luttinger-Ward (LW) [32], large N
[10], and Gaussian pair fluctuations (GPF) [36]. Also shown is
the homogeneous contact obtained from the equation of state at
the École normale supérieure (ENS-EOS) [62], from loss rate
measurements (ENS-L) [66], and from rf spectroscopy by the
JILA group [18] across a range of temperatures. The vertical
blue dotted lines and light blue shaded vertical regions mark
Tc=TF ¼ 0.167ð13Þ [14]. The inset of (a) shows the contact over
a wider range of temperatures and marks the high-temperature
agreement with the third order virial expansion. The error bars
account for the statistical uncertainties in the data.
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temperatures, the fitted amplitudes, aðexÞ, generally lie
below the values derived from the measured contact (see
below), Eq. (4), aðCÞ ≡ ð16

ffiffiffi
2

p
=45π2ÞðC=nkÞ, dashed-

dotted lines in Fig. 2(b). Nonetheless, this approximate
Z−7=2 dependence suggests universal short-range correla-
tions begin to appear in this energy range.
Energy-weighted moments of the dynamic structure

factor

mi ¼ ℏiþ1

Z
∞

−∞
ωiSðk;ωÞdω; ð5Þ

provide additional constraints on the bulk properties of
the gas through sum rules [46]. We utilize the zeroth, first,
and second moments, that define the static structure factor,
f-sum rule, and kinetic sum rule, respectively. For frequen-
cies higher than 2.5ωr the Bragg response falls below
our measurement sensitivity; however, for higher order
moments (i ≥ 1) the tail can carry significant weight.
To include this, we assume Sðk;ωÞ ¼ aðexÞ=Z7=2 for
2ωr < ω < ∞ in Eq. (5).
The f-sum rule, m1 ¼ nϵr, valid for all k [46,50], allows

a convenient normalization of the Bragg spectra yielding
the dynamic structure factor in units of nϵr, as in Fig. 2(a)
[18]. In the large-k limit, the static structure factor can be
used to determine the contact [13,16]

m0

m1

¼ SðkÞ
ϵr

¼ 1

ϵr

"
1þ C

4nk

#
1 −

4

πka

$%
: ð6Þ

Using the ratio of the moments, we obtain the dimension-
less contact, C=ðnkFÞ ¼ 4ðk=kFÞ½ϵrðm0=m1Þ − 1&, for all of
our Bragg spectra, as shown in Fig. 3 (blue circles). Also
plotted are various theoretical calculations using a t-matrix
approach [21], self-consistent Luttinger-Ward (LW) theory
[22], Gaussian pair-fluctuation theory (GPF) [23], quantum
Monte Carlo (QMC) [24,25], and bold-diagrammatic
Monte Carlo (BDMC) simulations [26]. Also shown are
previous experimental measurements [32–34] of the homo-
geneous contact. Our data show a clear trend; in the
superfluid phase, the dimensionless contact density
C=ðnkFÞ starts off near 3 at low T and then drops abruptly
to around 2.5 near the critical temperature. Above Tc, the
contact appears to be relatively stable, decreasing slowly up
to T=TF ≈ 1. The error bars on our data are dominated by
systematic uncertainties in the determination of the density
(based on the inverse Abel transform [45]). As such, we
expect the qualitative shape of this curve to be robust and
relatively insensitive to these systematics. Our results are in
reasonable agreement with previous measurements [32–34]
and have a similar shape to the Luttinger-Ward calculation
[22]. At high temperature, our data approach the virial
expansion result (solid dark blue line) [23], albeit with a
relatively large error bar.
At unitarity, a high-k result for the kinetic sum rule was

recently derived in terms of the energy density, E ≡ E=V,
where E is the internal energy and V is the volume [16]
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FIG. 2. (a) Bragg spectra showing the dynamic structure factor
Sðk;ωÞ for a selection of temperatures above and below the
superfluid transition temperature. Relative temperature (T=TF)
and Bragg wave vector (k=kF) for each spectrum are shown in the
inset. (b) The high-frequency tails of the spectra in (a) multiplied
by jω − ωrj−7=2. Solid lines are fits to the tails (filled data points)
and dashed-dotted lines indicate the predicted tail, Eq. (4),
according to the measured contact (displayed in Fig. 3). Dotted
lines show a modified fit to the tail, Eq. (8), that enforces the
expected ω → ∞ behavior, as described in the text.
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FIG. 3. Temperature dependence of the contact parameter
C=ðnkFÞ in a Fermi gas at unitarity. Blue filled circles are our
experimental data, the orange square is obtained from the pressure
equation of state (EOS) [32], grey stars are previous rf spectros-
copy measurements [33], and the light green circle is obtained
from the inelastic loss rate due to impurity scattering (Imp) [34].
Also shown are various theoretical calculations [21–26] (see text
for details).
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Impuretés et pertes d’atomes
Laurent et al., PRL 113, 220601

Paris, 2017 : gaz de 6Li à résonance + une faible fraction de 7Li 

Un atome de 7Li peut favoriser la formation d’un dimère 6Li2 : il emporte l’énergie libérée lors de cette formation

1
2
7Li

Energie de liaison du dimère     avec comme toujours ∼ −
ℏ2

mb2
b ≈ RvdW

• L’étude de ce processus renseigne sur la probabilité d’avoir   et   à une distance de l’ordre de ↑ ↓ b

• Après la formation du dimère, l’impureté a une grande vitesse : elle s’échappe du piège 
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Impuretés et pertes d’atomes (2)

Le taux de pertes est donné par la moyenne de l’opérateur 

∫ g(ri, r↑, r↓) ψ̂†
d ( r↑ + r↓

2 ) ψ̂†
i (ri) ψ̂i(ri) ψ̂↑(r↑) ψ̂↓(r↓) d3ri d3r↑ d3r↓

1
2
7Li

valeur significative si , ,   
sont dans un volume 

ri r↑ r↓
∼ b3

}
densité d’impuretés

·Ni = − γ
C
L3

NiDécroissance du nombre d’impuretés selon la loi 

Le coefficient  dépend de la fonction , mais pas de  : on le calibre dans un régime où  est bien connuγ g a↑↓ C
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Impuretés et pertes d’atomes (3) ·Ni = − γ
C
L3

Ni

Une fois  calibré, on se place à résonance ( ) γ |a↑↓ | = + ∞

On attend           avec     Γ = γ
C
L3

C ∝ NkF ∝ L3n4/3 Γ ∝ n4/3

Laurent et al., PRL 113, 220601 (2019)

repeating the loss measurements for different magnetic
fields in the interval 690–800 G, see Fig. 3(b). From a linear
fit to the data where interaction effects are negligible
(nfa3ff ≤ 0.025), we extract the slope γ ¼ 1.17ð11Þ ×
10−27 m4 · s−1 entering in Eq. (3).
Since γ doesn’t depend on the magnetic field, we can

now predict the loss rate anywhere in the BEC-BCS
crossover using Eq. (3). The strongly interacting unitary
regime (1=aff ¼ 0) is particularly interesting and we
measure the boson decay rate at 832 G in the low
temperature dual superfluid regime [37]. The mixture is
initially composed of about 40 × 103 fully condensed 7Li
bosons and 150 × 103 6Li spin-balanced fermions at a
temperature T≃ 100 nKwhich corresponds to T=TF ≃ 0.1
where TF is the Fermi temperature. At this magnetic field
value, the atoms are now closer to the boson Feshbach
resonance located at 845.5 G and bosonic three-body losses
are no longer negligible. The time dependence of the boson
number is then given by

_Nb ¼ −Lbhn2biNb − ΓbfNb − ΓvNb: ð5Þ

To extract Γbf we measure independently Lb with a BEC
without fermions in the same trap and inject it in Eq. (5),
see Ref. [31]. We typically have Lbhn2bi ¼ 0.1–0.4 s−1, and
Lb ¼ 0.11ð1Þ × 1026 cm6 · s−1 consistent with the model
of Ref. [35]. Repeating such measurements for different
fermion numbers and trap confinement, we now test the
expected n4=3f dependence of the Bose-Fermi loss rate at
unitarity (central column in Table I). In this dual superfluid
regime, the size of the BEC is much smaller than that of the
fermionic superfluid and the BEC will mainly probe the
central density region nfðr ¼ 0Þ. However, it is not truly a
pointlike probe, and introducing the ratio ρ of the Thomas-
Fermi radii for bosons and fermions, we obtain the finite
size correction for Eq. (3) [31]:

Γbf ¼ γC2ð0Þ
!
1 −

6

7
ρ2
"
; ð6Þ

where C2ð0Þ ¼ ð2ζ=5πÞ(3π2nfð0Þ)4=3, and the last factor
in parenthesis amounts to 0.9. The prediction of Eq. (6) is
plotted as a red line in Fig. 4 and is in excellent agreement
with our measurements without any adjustable parameter.
Alternatively, a power-law fit Anp to the data yields an
exponent p ¼ 1.36ð15Þ which confirms the n4=3f predicted
scaling at unitarity. Finally, fixing p to 4=3 provides the
coefficient A and a value of the homogeneous contact
ζ ¼ 0.82ð9Þ in excellent agreement with previous mea-
surements, ζ ¼ 0.87ð3Þ [17,25]. This demonstrates that
impurity losses act as a microscopic probe of quantum
correlations in a many-body system.
The bosonic or fermionic nature of the probe is of no

importance. Provided the coupling between the impurity
and the resonant gas is weak, our method can also be

applied to other mixtures. It gives a framework to interpret
the experimental data on 6Li=40K [22] and, in particular, to
test our prediction on the BCS side of the Feshbach
resonance. It can also be applied to the recently observed
6Li=174Yb [39], 6Li=41K [40], and 6Li=7Li [41] dual-
superfluid Bose-Fermi mixtures and even to the case where
one of the collision partners is a photon as in photo-
association experiments [42,43]. Our observation of a loss
rate scaling ∝ n4=3f at unitarity is in stark contrast with the
generic case np, where the integer p is the number of
particles involved in the recombination process. A frac-
tional exponent is also predicted to occur for the resonant
Bose gas [5,6] and Fermi gas [27,44].
A first extension of this work is to investigate regimes

where abf ≃ aff ≫ n−1=3 and the Born approximation
breaks down. In this case Efimovian features are expected
to occur [45,46]. Second, our method provides a unique
microscopic way to measure the contact quasilocally in a
harmonic trap. An important perspective is to determine the
homogeneous contact of the unitary Fermi gas at finite
temperature, whose behavior is largely debated near the
normal-superfluid transition [18].
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FIG. 4. Boson loss rate versus fermion central density at
unitarity, nf ¼ nfð0Þ. Circles: Experimental data. The red line

is the n4=3f prediction of Eq. (6) without any adjustable parameter.
The red shaded area represents the 1σ uncertainty resulting from
the error on γ.
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Le contact en onde p

Développement en ondes partielles de l’amplitude de diffusion à deux corps
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Onde  vs. onde s p ψki
(r) ∼ eiki⋅r + f(k, θ)
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Onde s

On s’intéresse au comportement à basse énergie (i.e. petit ) de l’amplitude de diffusionk
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Etudes des contacts en onde p

Luciuk et al., Nature Physics 12, 599 (2016)
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+ …

Mesures faites sur un gaz de 40K avec des fermions polarisés
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Figure 3 | The p-wave contacts near two Feshbach resonances. CvkF/N (a) and CR/kFN (b) versus magnetic field �Bm (lower axes) or dimer energy Ed,m/EF
(upper axes). Data are shown from both the m=xy (blue) and m=z (red) resonances, from rf spectra (filled) and momentum distributions (open).
Momentum spectroscopy is shown for a smaller range of �Bm, owing to limited signal-to-noise. Most data is taken at t= 160 µs; however, long-time
asymptotes from fits to dynamical data (see Fig. 4) are also shown as smaller filled points. c, Numerical integration of the measured Cv gives the shift of
free energy 1F=F�Fbg due to near-resonant interactions (see Methods for the details of the numerical integration). Data is referenced to Fbg =F(Bmax)
for �Bm>0 and to Fbg =F(Bmin) for �Bm<0. Illustrations depict the dimer energy, compared to the range of collision energies available in the Fermi sea.
Error bars are statistical; see text for a discussion of systematic uncertainty.

The correlation between the two observables is 0.96(7), as
determined by the slope of a best-fit line with no o�set. This
agreement, in addition to the observation of the predicted
asymptotic scaling of equations (3) and (4), is strong evidence that
the p-wave contact relations are valid.

Field dependence of the p-wave contacts
Figure 3a,b shows the p-wave contacts versus �Bm near both
the m=xy and the m= z resonances. The data include contacts
determined at t = 160µs from e� , at t = 160µs from en, and
asymptotic values from e� versus t . The variable-t data (discussed
in more detail below) also identifies a loss-dominated regime
for 0.00(2)G�Bm 0.04(2)G, outside of which contacts reach a
steady-state value despite atom loss of up to 20%. We observe a
pronounced asymmetry about each Feshbach resonance: significant
contacts are only observed for �Bm > 0. Cv is largest close to
resonance, decreases with �Bm, and vanishes beyond �Bm ⇡ 0.3G,
where Ed,m/EF ⇡2. CR instead peaks at �Bm ⇡0.3G, before abruptly
falling to zero for larger fields.

Some of these salient features can be explained by a simple
model, in which Nd =

P
m Nd,m non-interacting closed-channel

dimers are in equilibrium with Nf free fermions. Each dimer
has Cv,m =2Rm and CR,m = �2R2

m/vm, but free fermions make
no contribution to the contacts. Because the m = xy and
m=z resonances are well separated, CvkF/N ⇡ 2kFRm(Nd/N )
and CR/(kFN )⇡2kFRm(Ed,m/EF)(Nd/N ). The assumption of
equilibrium gives Nd = (N/2)(1� (Ed,m/2EF)

3) in a harmonic trap
at zero temperature45. This model would predict that both Cv and
CR are the same near the xy and the z resonances, that Cv ! 0
and CR ! 0 as Ed,m ! 2EF, and that a fully dimerized gas would
have CvkF/N ⇡0.04, because kFRm ⇡0.04 in typical conditions. The

additional factor of (Ed,m/EF) in CR gives CR =0 at resonance and a
peak value CR/(kFN )⇡0.06 at Ed,m/EF ⇡1.6.

Although this model does explain the peak value of Cv and the
range of �Bm at which significant contacts are seen, it does not
explain the peak value or location of CR. A more realistic model
would include finite temperature, and interactions between dimers,
between atoms, and/or between atoms and dimers. For instance,
resonant enhancement of atom–dimer interactions have been seen
in a three-body calculation21,30.

Independent of any particular microscopic model, but assuming
adiabaticity, we can understand the thermodynamic implications of
the observed contacts using equation (1). The change in free energy
F versus �Bm is given by the integral of Cv over v�1

m , assuming all
other variables are constant. The contribution ofCR is not significant
(Methods). The inferred 1F is shown in Fig. 3c. The values shown
have several possible systematic errors. First, some of the other
variables that determine F are varied by �Bm: N decreases owing
to loss, and T increases by ⇠0.05EF/kB near resonance. A second
and more significant error may lie in the calibration of number and
rf power, which combine to give a 30% systematic uncertainty in
1F ⌘ F � Fbg. Finally, equilibration is likely to be only local, and
not trap-wide. Despite these uncertainties, the integrated data is
su�cient to demonstrate several qualitative regimes:

In regime (i), below resonance (Ed < 0), the gas is weakly re-
pulsive, with 01F ⌧EF. Here, resonant scattering is inaccessible
to free particles, and the gas remains on the ‘upper branch’47,48.
Few or no dimers are formed, because energy-conserving two-body
collisions cannot produce a dimer with a finite binding energy.
Instead, the gas has weakly repulsive p-wave interactions.

In regime (ii), at resonance, we do not extract a value for F ,
because a steady-state in CvkF/N is not achieved, as discussed in the
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free energy 1F=F�Fbg due to near-resonant interactions (see Methods for the details of the numerical integration). Data is referenced to Fbg =F(Bmax)
for �Bm>0 and to Fbg =F(Bmin) for �Bm<0. Illustrations depict the dimer energy, compared to the range of collision energies available in the Fermi sea.
Error bars are statistical; see text for a discussion of systematic uncertainty.

The correlation between the two observables is 0.96(7), as
determined by the slope of a best-fit line with no o�set. This
agreement, in addition to the observation of the predicted
asymptotic scaling of equations (3) and (4), is strong evidence that
the p-wave contact relations are valid.

Field dependence of the p-wave contacts
Figure 3a,b shows the p-wave contacts versus �Bm near both
the m=xy and the m= z resonances. The data include contacts
determined at t = 160µs from e� , at t = 160µs from en, and
asymptotic values from e� versus t . The variable-t data (discussed
in more detail below) also identifies a loss-dominated regime
for 0.00(2)G�Bm 0.04(2)G, outside of which contacts reach a
steady-state value despite atom loss of up to 20%. We observe a
pronounced asymmetry about each Feshbach resonance: significant
contacts are only observed for �Bm > 0. Cv is largest close to
resonance, decreases with �Bm, and vanishes beyond �Bm ⇡ 0.3G,
where Ed,m/EF ⇡2. CR instead peaks at �Bm ⇡0.3G, before abruptly
falling to zero for larger fields.

Some of these salient features can be explained by a simple
model, in which Nd =

P
m Nd,m non-interacting closed-channel

dimers are in equilibrium with Nf free fermions. Each dimer
has Cv,m =2Rm and CR,m = �2R2

m/vm, but free fermions make
no contribution to the contacts. Because the m = xy and
m=z resonances are well separated, CvkF/N ⇡ 2kFRm(Nd/N )
and CR/(kFN )⇡2kFRm(Ed,m/EF)(Nd/N ). The assumption of
equilibrium gives Nd = (N/2)(1� (Ed,m/2EF)

3) in a harmonic trap
at zero temperature45. This model would predict that both Cv and
CR are the same near the xy and the z resonances, that Cv ! 0
and CR ! 0 as Ed,m ! 2EF, and that a fully dimerized gas would
have CvkF/N ⇡0.04, because kFRm ⇡0.04 in typical conditions. The

additional factor of (Ed,m/EF) in CR gives CR =0 at resonance and a
peak value CR/(kFN )⇡0.06 at Ed,m/EF ⇡1.6.

Although this model does explain the peak value of Cv and the
range of �Bm at which significant contacts are seen, it does not
explain the peak value or location of CR. A more realistic model
would include finite temperature, and interactions between dimers,
between atoms, and/or between atoms and dimers. For instance,
resonant enhancement of atom–dimer interactions have been seen
in a three-body calculation21,30.

Independent of any particular microscopic model, but assuming
adiabaticity, we can understand the thermodynamic implications of
the observed contacts using equation (1). The change in free energy
F versus �Bm is given by the integral of Cv over v�1

m , assuming all
other variables are constant. The contribution ofCR is not significant
(Methods). The inferred 1F is shown in Fig. 3c. The values shown
have several possible systematic errors. First, some of the other
variables that determine F are varied by �Bm: N decreases owing
to loss, and T increases by ⇠0.05EF/kB near resonance. A second
and more significant error may lie in the calibration of number and
rf power, which combine to give a 30% systematic uncertainty in
1F ⌘ F � Fbg. Finally, equilibration is likely to be only local, and
not trap-wide. Despite these uncertainties, the integrated data is
su�cient to demonstrate several qualitative regimes:

In regime (i), below resonance (Ed < 0), the gas is weakly re-
pulsive, with 01F ⌧EF. Here, resonant scattering is inaccessible
to free particles, and the gas remains on the ‘upper branch’47,48.
Few or no dimers are formed, because energy-conserving two-body
collisions cannot produce a dimer with a finite binding energy.
Instead, the gas has weakly repulsive p-wave interactions.

In regime (ii), at resonance, we do not extract a value for F ,
because a steady-state in CvkF/N is not achieved, as discussed in the
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The correlation between the two observables is 0.96(7), as
determined by the slope of a best-fit line with no o�set. This
agreement, in addition to the observation of the predicted
asymptotic scaling of equations (3) and (4), is strong evidence that
the p-wave contact relations are valid.

Field dependence of the p-wave contacts
Figure 3a,b shows the p-wave contacts versus �Bm near both
the m=xy and the m= z resonances. The data include contacts
determined at t = 160µs from e� , at t = 160µs from en, and
asymptotic values from e� versus t . The variable-t data (discussed
in more detail below) also identifies a loss-dominated regime
for 0.00(2)G�Bm 0.04(2)G, outside of which contacts reach a
steady-state value despite atom loss of up to 20%. We observe a
pronounced asymmetry about each Feshbach resonance: significant
contacts are only observed for �Bm > 0. Cv is largest close to
resonance, decreases with �Bm, and vanishes beyond �Bm ⇡ 0.3G,
where Ed,m/EF ⇡2. CR instead peaks at �Bm ⇡0.3G, before abruptly
falling to zero for larger fields.

Some of these salient features can be explained by a simple
model, in which Nd =

P
m Nd,m non-interacting closed-channel

dimers are in equilibrium with Nf free fermions. Each dimer
has Cv,m =2Rm and CR,m = �2R2

m/vm, but free fermions make
no contribution to the contacts. Because the m = xy and
m=z resonances are well separated, CvkF/N ⇡ 2kFRm(Nd/N )
and CR/(kFN )⇡2kFRm(Ed,m/EF)(Nd/N ). The assumption of
equilibrium gives Nd = (N/2)(1� (Ed,m/2EF)

3) in a harmonic trap
at zero temperature45. This model would predict that both Cv and
CR are the same near the xy and the z resonances, that Cv ! 0
and CR ! 0 as Ed,m ! 2EF, and that a fully dimerized gas would
have CvkF/N ⇡0.04, because kFRm ⇡0.04 in typical conditions. The

additional factor of (Ed,m/EF) in CR gives CR =0 at resonance and a
peak value CR/(kFN )⇡0.06 at Ed,m/EF ⇡1.6.

Although this model does explain the peak value of Cv and the
range of �Bm at which significant contacts are seen, it does not
explain the peak value or location of CR. A more realistic model
would include finite temperature, and interactions between dimers,
between atoms, and/or between atoms and dimers. For instance,
resonant enhancement of atom–dimer interactions have been seen
in a three-body calculation21,30.

Independent of any particular microscopic model, but assuming
adiabaticity, we can understand the thermodynamic implications of
the observed contacts using equation (1). The change in free energy
F versus �Bm is given by the integral of Cv over v�1

m , assuming all
other variables are constant. The contribution ofCR is not significant
(Methods). The inferred 1F is shown in Fig. 3c. The values shown
have several possible systematic errors. First, some of the other
variables that determine F are varied by �Bm: N decreases owing
to loss, and T increases by ⇠0.05EF/kB near resonance. A second
and more significant error may lie in the calibration of number and
rf power, which combine to give a 30% systematic uncertainty in
1F ⌘ F � Fbg. Finally, equilibration is likely to be only local, and
not trap-wide. Despite these uncertainties, the integrated data is
su�cient to demonstrate several qualitative regimes:

In regime (i), below resonance (Ed < 0), the gas is weakly re-
pulsive, with 01F ⌧EF. Here, resonant scattering is inaccessible
to free particles, and the gas remains on the ‘upper branch’47,48.
Few or no dimers are formed, because energy-conserving two-body
collisions cannot produce a dimer with a finite binding energy.
Instead, the gas has weakly repulsive p-wave interactions.

In regime (ii), at resonance, we do not extract a value for F ,
because a steady-state in CvkF/N is not achieved, as discussed in the

602

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE PHYSICS | VOL 12 | JUNE 2016 | www.nature.com/naturephysics

Ed /EF



30

Plan du cours

1. Le point de vue du pseudo-potentiel

2. La spectroscopie radio-fréquence

3. Expériences récentes sur le gaz de Fermi

4. Le contact à deux corps pour le gaz de Bose
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Interaction faible vs. interaction forte

Pour des interactions faibles  :na3 ≪ 1

• Pour , la stabilité en champ moyen est assuréea > 0

Pertes à 3 corps négligeables sur le temps d’attente de l’équilibre thermodynamique

Pas d’effet Efimov si on reste suffisamment loin d’une résonance de Fano-Feshbach 

Le contact permet de relier les deux régimes extrêmes : condensat quasi-pur et gaz non dégénéré

• Pour , instabilité en champ moyen dans le régime dégénéré : Bose novaa < 0
Equilibre thermodynamique possible seulement dans le cas non dégénéré 

Pour des interactions fortes  :n |a |3 ≳ 1

Equilibre thermodynamique possible seulement dans le cas non dégénéré (recombinaison à 3 corps)

Nécessité d’introduire un “contact à trois corps” pour prendre en compte l’effet Efimov 
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Contact à deux corps pour le gaz de Bose

Non dégénéré : λ ≪ dT = 0, a > 0

hors résonance

à résonance

Energie de champ moyen d’un condensat :     avec   E =
1
2

gnN g =
4πℏ2a

m

C =
8πma2

ℏ2

∂E
∂a

= (4πa)2 nN

(4πa)2 nN 2 (4πa)2 nN

32π λ2 nN∼ n1/3N
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Le contact dans le cas dégénéré 
Wild et al., Phys. Rev. Lett. 108, 145305 (2012)

Mesures sur un condensat de 85Rb confiné dans un piège magnétique (résonance de Fano-Feshbach à 155 G)
Longueur de diffusion   variée de 3 à 12 fois la portée  a b = RvdW

present a measurement of the three-body parameter for
85Rb using trap loss rates for a noncondensed gas, and
look for many-body effects manifested in a three-body
contact for a BEC, C3 [18,28].

The two-body contact, C2, is an extensive thermody-
namic variable that is connected to the derivative of the
total energy of the system, E, with respect to a [8,20,21].

dE

da
¼ @2

8!ma2
C2: (1)

Combining this with the energy density of a BEC in the
perturbative beyond-mean-field regime, the predicted con-
tact for a condensate is

C2 ¼ 16!2na2
!
1þ 5

2

128

15
ffiffiffiffi
!

p
ffiffiffiffiffiffiffiffi
na3

p
þ . . .

#
N0; (2)

where n is the atom number density, m is the atomic mass,
and N0 is the number of atoms in the BEC. Equation (2)
gives the mean-field contribution followed by the first
order correction derived by Lee, Huang, and Yang
(LHY) [29].

To measure C2 using rf spectroscopy [17,30,31], an rf
pulse drives a Zeeman transition and transfers a small
fraction of spin-polarized bosonic atoms into another
spin state. Interactions give rise to an asymmetric tail in
the rf spectrum, which can be thought as rf ‘‘dissociation’’
of pairs of atoms that happen to be very close to each other.
Ignoring C3, and assuming that the measurement is done in
the linear regime, the rate for transferring atoms to the final
spin state in this tail is given by [32]

lim
!!1

!ð!Þ ¼ "2

4!

ffiffiffiffi@
m

s
"ðaÞ
#ð!Þ

C2

!3=2
; (3)

where
R1
%1 !ð!Þd! ¼ !"2N, " is the Rabi frequency,

and N is the total number of atoms. In Eq. (3), "ðaÞ=#ð!Þ
describe final-state effects; the a-dependent part is "ðaÞ ¼
ða0=a% 1Þ2, where a0 is the scattering length for inter-
actions between atoms in the final spin state and atoms in
the initial spin state, while the frequency-dependent part is
#ð!Þ ¼ 1þ @j!j=E0, where E0 ¼ @2=ma02.

Our experiments probe 4–8& 104 Bose-condensed 85Rb
atoms in a gas with a 60% condensate fraction. The atoms
are in the jF ¼ 2; mF ¼ %2i state, where F is the total
atomic spin and mF is the spin projection. They are con-
fined magnetically in a 10 Hz spherical harmonic trap with
a variable magnetic bias field. We work at magnetic-field
values near a Feshbach resonance at 155.04 G [33], and
during the final stages of evaporation, the field is set to give
a' 100 a0. After evaporation, we ramp the bias field in
order to change a on a time scale that is fast compared to
the trap period, but adiabatic with respect to two-body time
scales, with _a=a never reaching more than 0:01@=ðma2Þ
( _a being the time derivative of a) [34].

An example of rf contact spectroscopy at a ¼ 497( 5
a0, where a0 is the Bohr radius, is shown in Fig. 1(a).

Roughly 1 ms after the magnetic-field ramps, we probe the
BEC using a Gaussian envelope rf pulse to drive the
j2;%2i to j2;%1i transition. We determine !ð!Þ from
the number of atoms transferred to the j2;%1i spin state
divided by the rf pulse duration. We then define our signal,
Sð!Þ, as !ð!Þ normalized by the integrated line shape. We
fit Sð!Þ to a Gaussian line shape [dashed black line in
Fig. 1(a)] and take the center to be the single-particle
transition frequency !0. The center of the rf line shape
will be shifted due to mean-field interactions by an amount
typically less than 2!& 0:5 kHz. For the main line shape,
we use short rf pulses with a Gaussian rms width for the
field amplitude, $, of 5 %s; this sets the observed width of
the line shape. At larger detunings, we use longer pulses,
with an rms width of 25 to 200 %s, and an increased rf
power, "2, such that we outcouple 1%–2% of the gas. We
normalize the signal for the different $ and "2, making
small (5%) corrections for measured nonlinearity in "2$.
For our experiment, the rf drives a transition to a lower

energy spin state and one expects the 1=j!j3=2 interaction-
induced tail on the low frequency side of the line shape.
Consistent with this expectation, we observe a tail for large
negative detunings, while for similar detunings on the
positive side, we find that the signal is consistent with
zero. The solid line in Fig. 1(a) shows a fit to the expected
frequency dependence from Eq. (3), while the dotted line
shows a fit to 1=j!j3=2. For our system, the final-state
effects are characterized by a0 ¼ %565 a0 [35] and
E0=h ¼ 133 kHz.

FIG. 1. Example of rf contact spectroscopy. (a) rf line shape,
Sð!Þ, normalized so that

R1
%1 Sð!Þd! ¼ 1 s%1. The data at

large detunings (circles) are multiplied by a factor of 300 to
make the tail visible. Here the mean BEC density is hni ¼ 4:9&
1012 cm%3. (b) Additional release energy of the outcoupled atom
cloud. We calculate the energy from the width of the expanded

cloud, &, using E ¼ 3
2m

&2%&2
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#t2
, where #t is the time between the

middle of the rf pulse and the absorption image (4.5 ms) and &0

is the size of the expanded cloud measured at ! ¼ 0. The solid
line is 1
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present a measurement of the three-body parameter for
85Rb using trap loss rates for a noncondensed gas, and
look for many-body effects manifested in a three-body
contact for a BEC, C3 [18,28].

The two-body contact, C2, is an extensive thermody-
namic variable that is connected to the derivative of the
total energy of the system, E, with respect to a [8,20,21].

dE

da
¼ @2

8!ma2
C2: (1)

Combining this with the energy density of a BEC in the
perturbative beyond-mean-field regime, the predicted con-
tact for a condensate is
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1þ 5

2
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p
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p
þ . . .

#
N0; (2)

where n is the atom number density, m is the atomic mass,
and N0 is the number of atoms in the BEC. Equation (2)
gives the mean-field contribution followed by the first
order correction derived by Lee, Huang, and Yang
(LHY) [29].

To measure C2 using rf spectroscopy [17,30,31], an rf
pulse drives a Zeeman transition and transfers a small
fraction of spin-polarized bosonic atoms into another
spin state. Interactions give rise to an asymmetric tail in
the rf spectrum, which can be thought as rf ‘‘dissociation’’
of pairs of atoms that happen to be very close to each other.
Ignoring C3, and assuming that the measurement is done in
the linear regime, the rate for transferring atoms to the final
spin state in this tail is given by [32]
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describe final-state effects; the a-dependent part is "ðaÞ ¼
ða0=a% 1Þ2, where a0 is the scattering length for inter-
actions between atoms in the final spin state and atoms in
the initial spin state, while the frequency-dependent part is
#ð!Þ ¼ 1þ @j!j=E0, where E0 ¼ @2=ma02.

Our experiments probe 4–8& 104 Bose-condensed 85Rb
atoms in a gas with a 60% condensate fraction. The atoms
are in the jF ¼ 2; mF ¼ %2i state, where F is the total
atomic spin and mF is the spin projection. They are con-
fined magnetically in a 10 Hz spherical harmonic trap with
a variable magnetic bias field. We work at magnetic-field
values near a Feshbach resonance at 155.04 G [33], and
during the final stages of evaporation, the field is set to give
a' 100 a0. After evaporation, we ramp the bias field in
order to change a on a time scale that is fast compared to
the trap period, but adiabatic with respect to two-body time
scales, with _a=a never reaching more than 0:01@=ðma2Þ
( _a being the time derivative of a) [34].

An example of rf contact spectroscopy at a ¼ 497( 5
a0, where a0 is the Bohr radius, is shown in Fig. 1(a).

Roughly 1 ms after the magnetic-field ramps, we probe the
BEC using a Gaussian envelope rf pulse to drive the
j2;%2i to j2;%1i transition. We determine !ð!Þ from
the number of atoms transferred to the j2;%1i spin state
divided by the rf pulse duration. We then define our signal,
Sð!Þ, as !ð!Þ normalized by the integrated line shape. We
fit Sð!Þ to a Gaussian line shape [dashed black line in
Fig. 1(a)] and take the center to be the single-particle
transition frequency !0. The center of the rf line shape
will be shifted due to mean-field interactions by an amount
typically less than 2!& 0:5 kHz. For the main line shape,
we use short rf pulses with a Gaussian rms width for the
field amplitude, $, of 5 %s; this sets the observed width of
the line shape. At larger detunings, we use longer pulses,
with an rms width of 25 to 200 %s, and an increased rf
power, "2, such that we outcouple 1%–2% of the gas. We
normalize the signal for the different $ and "2, making
small (5%) corrections for measured nonlinearity in "2$.
For our experiment, the rf drives a transition to a lower

energy spin state and one expects the 1=j!j3=2 interaction-
induced tail on the low frequency side of the line shape.
Consistent with this expectation, we observe a tail for large
negative detunings, while for similar detunings on the
positive side, we find that the signal is consistent with
zero. The solid line in Fig. 1(a) shows a fit to the expected
frequency dependence from Eq. (3), while the dotted line
shows a fit to 1=j!j3=2. For our system, the final-state
effects are characterized by a0 ¼ %565 a0 [35] and
E0=h ¼ 133 kHz.

FIG. 1. Example of rf contact spectroscopy. (a) rf line shape,
Sð!Þ, normalized so that

R1
%1 Sð!Þd! ¼ 1 s%1. The data at

large detunings (circles) are multiplied by a factor of 300 to
make the tail visible. Here the mean BEC density is hni ¼ 4:9&
1012 cm%3. (b) Additional release energy of the outcoupled atom
cloud. We calculate the energy from the width of the expanded

cloud, &, using E ¼ 3
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The 1=j!j3=2 tail, due to the contact, corresponds to an
expected 1=k4 tail in the momentum distribution nðkÞ
[17,32]. In Fig. 1(b), we show the expansion energy of
the outcoupled atoms, measured by releasing the gas from
the trap and imaging the cloud after 3 ms of expansion.
In the region of the observed tail our data show good
agreement with the prediction [line in Fig. 1(b)] that the
additional release energy should be 1

2 @j!j, where the factor
of 1

2 comes from the assumption that the excess energy of
the rf photon is shared between two pairwise interacting
atoms [36].

The strength of the rf tail is shown as a function of a in
Fig. 2. As expected, we see the strength of the rf tail
increase as a increases. In comparison with theory, our
contact measurements are larger than the mean-field pre-
diction (solid line in Fig. 2), but not as large as the
prediction including the next-order LHY term given in
Eq. (2) (dashed line in Fig. 2). While beyond-mean-field
physics is evident in the contact data shown here, we see
evidence that the measured strength of the rf tail depends
on the speed of the magnetic-field ramp to increase a, with
C2 increasing for slower ramps. We plan to carefully
explore this intriguing dependence on ramp speed in order
to probe experimentally local microscopic dynamics in the
beyond mean-field regime.

We now turn our attention to C3, which is connected to
the derivative of E with respect to a three-body interaction
parameter !# [18,28]

dE

d!#
¼ % 2@2

m!#
C3: (4)

Three-body short-range correlations contribute a predicted
additional term to the rf tail at large detunings that should
be added to the right-hand side of Eq. (3) [18]:@!2

2m

GRFð!Þ
!2 C3: (5)

Here, GRFð!Þ is a log-periodic function rooted in Efimov
physics:

GRFð!Þ ¼ 9:23% 13:6 sin½s0 lnðmj!j=@!2
#Þ þ 2:66(: (6)

Efimov physics predicts an infinite series of successively
more weakly bound trimers whose binding energies at

unitarity (a ! 1) are given by @2!2
#

m ðe%2"=s0Þl, where l is
an integer and s0 is 1.006 24 for identical bosons [37]. We
note that there is as yet no prediction for final-state effects
on the C3 contribution to the rf tail.
In order to determine !# for

85Rb atoms, we performed
measurements of loss rates as a function of a. With these
measurements, we locate an Efimov resonance, which is
shown in Fig. 3. For these measurements, we make non-
condensed clouds of 1:5) 105 atoms at a temperature T ¼
80 nK. After ramping the magnetic field to realize the
desired a on the a < 0 side of the Feshbach resonance,
we use absorption imaging to measure the number of atoms
and cloud size as a function of hold time. We then extract
the three-body event rate constant K3, which is defined by
d
dt N ¼ %3K3hn2iN when all three atoms are lost per event.
In extracting K3, we assume that all of the measured loss is
due to three-body processes and we account for the
observed heating of the gas, which causes an additional
decrease in n in time. We fit the measured K3 vs a to the
expected form for an Efimov resonance for noncondensed
atoms [37],

K3 ¼
4590 sinhð2#Þ

sin2½s0 lnða=a%Þ( þ sinh2#

@a4
m

; (7)

where # parametrizes the decay rate into deeply bound
molecules and the resonance location, a%, is related to !#

FIG. 2. The contact vs a, measured at j!j ¼ 2") 40 kHz.
(a) The contact per BEC atom C2

N0
. (b) The raw signal before

final-state corrections. The solid lines in (a) and (b) show the
mean-field predictions. The dashed line includes the next-order
LHY correction. For this data, hni is typically 5:8) 1012 cm%3,
with ðna3Þ1=2 reaching a maximum of 0.043. We linearly scale
the points to account for *10% variation in density. The final-
state effects shift the solid line from a parabola centered about
a ¼ 0 in (a) to one centered about a0 ¼ %565 a0 in (b), which
enhances the raw signal at small a.

FIG. 3. A three-body loss resonance for 85Rb. We plot the
three-body event constant K3 vs a. From fitting Eq. (7) to the
solid points, for which a < 1=kthermal, we extract a% ¼
%759ð6Þa0 and # ¼ 0:057ð2Þ.
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expected 1=k4 tail in the momentum distribution nðkÞ
[17,32]. In Fig. 1(b), we show the expansion energy of
the outcoupled atoms, measured by releasing the gas from
the trap and imaging the cloud after 3 ms of expansion.
In the region of the observed tail our data show good
agreement with the prediction [line in Fig. 1(b)] that the
additional release energy should be 1
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the rf photon is shared between two pairwise interacting
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The strength of the rf tail is shown as a function of a in
Fig. 2. As expected, we see the strength of the rf tail
increase as a increases. In comparison with theory, our
contact measurements are larger than the mean-field pre-
diction (solid line in Fig. 2), but not as large as the
prediction including the next-order LHY term given in
Eq. (2) (dashed line in Fig. 2). While beyond-mean-field
physics is evident in the contact data shown here, we see
evidence that the measured strength of the rf tail depends
on the speed of the magnetic-field ramp to increase a, with
C2 increasing for slower ramps. We plan to carefully
explore this intriguing dependence on ramp speed in order
to probe experimentally local microscopic dynamics in the
beyond mean-field regime.

We now turn our attention to C3, which is connected to
the derivative of E with respect to a three-body interaction
parameter !# [18,28]
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an integer and s0 is 1.006 24 for identical bosons [37]. We
note that there is as yet no prediction for final-state effects
on the C3 contribution to the rf tail.
In order to determine !# for

85Rb atoms, we performed
measurements of loss rates as a function of a. With these
measurements, we locate an Efimov resonance, which is
shown in Fig. 3. For these measurements, we make non-
condensed clouds of 1:5) 105 atoms at a temperature T ¼
80 nK. After ramping the magnetic field to realize the
desired a on the a < 0 side of the Feshbach resonance,
we use absorption imaging to measure the number of atoms
and cloud size as a function of hold time. We then extract
the three-body event rate constant K3, which is defined by
d
dt N ¼ %3K3hn2iN when all three atoms are lost per event.
In extracting K3, we assume that all of the measured loss is
due to three-body processes and we account for the
observed heating of the gas, which causes an additional
decrease in n in time. We fit the measured K3 vs a to the
expected form for an Efimov resonance for noncondensed
atoms [37],

K3 ¼
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the points to account for *10% variation in density. The final-
state effects shift the solid line from a parabola centered about
a ¼ 0 in (a) to one centered about a0 ¼ %565 a0 in (b), which
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three-body event constant K3 vs a. From fitting Eq. (7) to the
solid points, for which a < 1=kthermal, we extract a% ¼
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C = (4πa)2nN0 (1 +
64

3 π
na3)

Contact déduit de l’énergie Lee-Huang-Yang :

champ moyen  
uniquement

Pas de signature claire d’effets à trois corps sur le contact 
Il a fallu attendre Fletcher, Lopes, et al., Science 355, 377 (2017) …
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Transition entre régime non dégénéré et condensat

Gaz de Bose uniforme de 87Rb dans un géométrie quasi-2D

ℓz

   collisions 3Dℓz ≫ a :

   thermodynamique 2Dℓz ≪ λ, ξ :

On implémente la définition thermodynamique C =
8πma2

ℏ2

∂E
∂a

=
8πma2

ℏ2

δE
δa

Mesure de l’énergie  à fournir pour changer  
la longueur de diffusion de la quantité 

δE
δa

|F = 1,m = 0⟩

|F = 2,m = 0⟩

a1 = 5.34 nm a2 = 5.02 nm

Zou, Bakkali-Hassani, Maury et al.,  
Nature Commun.12,760 (2021)



Transition entre régime non dégénéré et condensat

Transfert effectué par deux impulsions 
micro-onde, séparées par un temps 
d’attente (méthode de Ramsey)

to the state 2j i. The displacement of this frequency with respect to
ν0 provides the shift Δν due to the small modification of scat-
tering length Δa= a22− a11.

The Ramsey scheme consists of two identical microwave pul-
ses, separated by a duration τ1= 10 ms. Their duration τ2 ~ 100
μs is adjusted to have π/2 pulses, i.e., each pulse brings an atom
initially in 1j i or 2j i into a coherent superposition of these two
states with equal weights. Just after the second Ramsey pulse, we
measure the 2D spatial density !n in state 2j i in a disk-shaped
region of radius 9 μm, using the absorption of a probe beam
nearly resonant with the optical transition connecting 2j i to the
excited state 5P3=2; F0 ¼ 3. We infer from this measurement the
fraction of atoms transferred into 2j i by the Ramsey sequence,
and we look for the microwave frequency νm that maximizes this
fraction.

An example of a spectroscopic signal is shown in Fig. 1. In
order to determine the bare transition frequency ν0, we also
perform a similar measurement on a cloud in ballistic expansion,
for which the 3D spatial density has been divided by more than
100 and interactions play a negligible role. The uncertainty on the
measured interaction-induced shift Δν= νm− ν0 is on the order
of 1 Hz. In principle, the precision of our measurements could be
increased further by using a larger τ1. In practice, however, we
have to restrict τ1 to a value such that the spatial dynamics of the
cloud, originating from the non-miscibility of the 1− 2 mixture
(a212 > a11a22), plays a negligible role (Supplementary Note 2). We
also checked that no detectable spin-changing collisions appear
on this time scale: more than 99 % of the atoms stay in the clock
state basis. Another limitation to τ1 comes from atom losses,
mostly due to 2-body inelastic processes involving atoms in 2j i.

For τ1= 10 ms, these losses affect <5% of the total population and
can be safely neglected.

We see in the inset of Fig. 1 that there indeed exists a frequency
νm for which nearly all atoms are transferred from 1j i to 2j i, so
that E(N, a22)− E(N, a11)=N h(νm− ν0) (see the Supplementary
Note 1 for details). We note that for an interacting system, the
existence of such a frequency is by no means to be taken for
granted. Here, it is made possible by the fact that the inter-species
scattering length a12 is close to a11 and a22. We are thus close to
the SU(2) symmetry point where all three scattering lengths
coincide. The modeling of the Ramsey process detailed in Sup-
plementary Note 1 shows that this quasi-coincidence allows one
to perform a Taylor expansion of the energy E(N1,N2) (with N1
+N2=N) of the mixed system between the two Ramsey pulses,
and to expect a quasi-complete rephasing of the contributions of
all possible couples (N1,N2) for the second Ramsey pulse. The
present situation is thus quite different from the one exploited in
ref. 31, for example, where a11 and a12 were vanishingly small. It
also differs from the generic situation prevailing in the spectro-
scopic measurements of Tan’s contact in two-component Fermi
gases, where a microwave pulse transfers the atoms to a third,
non-interacting16 or weakly-interacting state19.

We show in Fig. 2 our measurements of the shift Δν for den-
sities ranging from 10 to 40 atoms/μm2, and temperatures from
10 to 170 nK. Since ℏωz/kB= 210 nK, all data shown here are in
the thermodynamic 2D regime kBT < ℏωz. More precisely, the
population of the ground state of the motion along z, estimated
from the ideal Bose gas model41, is always≳90 %. All shifts are
negative as a consequence of a22 < a11: the interaction energy of
the gas in state 2j i is slightly lower than in state 1j i. For a given
density, the measured shift increases in absolute value with
temperature. This is in line with the naive prediction of
C / g2ð0Þ since density fluctuations are expected to be an

Fig. 1 Ramsey signal. Example of an interferometric Ramsey signal showing
the optical density of the fraction of the gas in state 2j i after the second
Ramsey pulse, as a function of the microwave frequency ν. These data were
recorded for !n ! 40 atoms/μm2 and T ~ 22 nK, τ1= 10 ms. Here, τ2 has
been increased to 1 ms to limit the number of fringes for better visibility.
Inset. Filled black disks (resp. open red circles): central fringe for atoms in
2j i (resp. 1j i) in our standard configuration τ2= 0.1 ms. The density in 1j i is
obtained by applying a microwave π-pulse just before the absorption
imaging phase. When atoms are maximally transferred in state 2j i, we
observe no significant population in state 1j i, compatible with a full transfer
induced by the Ramsey pulses. Blue squares: single-atom response
measured during the ballistic expansion of the cloud by imaging atoms in
2j i. The lines in the inset are sinusoidal fits to the data. The vertical error
bars of the inset correspond to the standard deviation of the three
repetitions made for this measurement.

Fig. 2 Frequency shift of the resonance. Variations of the shift Δν with
temperature for various 2D spatial densities. The horizontal error bars
represent the statistical uncertainty on the temperature calibration, except
for the points at very low temperature (10–22 nK). These ultra-cold points
are deeply in the Thomas–Fermi regime, where thermometry based on the
known equation of state of the gas is not sensitive enough. The
temperature is thus inferred from an extrapolation with an evaporation
barrier height of the higher temperature points. The error on the frequency
measurement is below 1 Hz and is not shown in this graph. Inset: Variations
of the shift Δν with density at low temperature T ~ 22 nK, i.e., a strongly
degenerate gas. The straight line is the mean-field prediction corresponding
to Δa=−5.7 a0.
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increasing function of T. Conversely for a given temperature, the
shift is (in absolute value) an increasing function of density.

For the lowest temperatures investigated here, we reach the
fully condensed regime in spite of the 2D character of the sample,
as a result of finite size effects. In this case, the mean-field pre-
diction for the shift reads Δν ¼ !n _ Δa=ð

ffiffiffiffiffi
2π

p
mazÞ [i.e., C= C0

in Eq. (4)]. Our measurements confirm the linear variation of Δν
with !n, as shown in the inset of Fig. 2 summarizing the data for
T= 22 nK. A linear fit to these data gives Δa/a0=−5.7 (1.0)
where the error mostly originates from the uncertainty on the
density calibration. In the following, we use this value of Δa for
inferring the value of C/C0 from the measured shift at any tem-
perature, using Eq. (4). We note that this estimate for Δa is in
good agreement with the prediction Δa/a0=−6 quoted in ref. 40.
The first corrections to the linear mean-field prediction were
derived (in the 3D case) by Lee, Huang, and Yang in ref. 42. For
our densities, they have a relative contribution on the order of 5 %
of the main signal (Δν≲ 1 Hz) (Supplementary Note 3), and their
detection is borderline for our current precision.

We summarize all our data in Fig. 3, where we show the
normalized contact C/C0 defined in Eq. (4) as a function of the
phase-space density D. All data points collapse on a single curve
within the experimental error, which is a manifestation of the
approximate scale invariance of the Bose gas, valid for a relatively
weak interaction strength ~g ≲ 143,44.

Discussion
We now compare our results in Fig. 3 to three theoretical pre-
dictions. The first one is derived from the Bogoliubov approx-
imation applied to a 2D quasi-condensate45. This prediction is
expected to be valid only for D notably larger than the phase-
space density at the critical point Dc (see “Methods” section) and
it accounts well for our data in the superfluid region. Within this
approximation, one can also calculate the two-body correlation
function and write it as g2ðrÞ ¼ gT¼0

2 ðrÞ þ gthermal
2 ðrÞ. One can

then show the result (Supplementary Note 3)

C
C0

¼ 1þ gthermal
2 ð0Þ; ð5Þ

which provides a quantitative relation between the contact and
the pair correlation function, in spite of the already mentioned
singularity of gT¼0

2 ðrÞ in r= 0.
For low phase-space densities, one can perform a systematic

expansion of various thermodynamic functions in powers of the
(properly renormalized) interaction strength46, and obtain a
prediction for C (dashed blue line in the inset of Fig. 3). By
comparing the 0th, 1st, and 2nd orders of this virial-type
expansion, one can estimate that it is valid for D≲ 3 for our
parameters. When D ! 0, the result of ref. 46 gives C/C0→ 2,
which is the expected result for an ideal, non-degenerate Bose gas.
The prediction of ref. 46 for D % 3 compares favorably with our
results in the weakly degenerate case.

Finally, we also show in Fig. 3 the results of the classical field
simulation of ref. 47 (red dotted line), which are in principle valid
both below and above the critical point. Contrary to the quantum
case, this classical analysis does not lead to any singularity for 〈n2
(0)〉, so that we can directly plot this quantity as it is provided in
ref. 47 in terms of the quasi-condensate density. For our inter-
action strength, we obtain a non-monotonic variation of C. This
unexpected behavior, which does not match the experimental
observations, probably signals that the present interaction
strength ~g ¼ 0:16 (see “Methods” section and the Supplementary
Note 5) is too large for using these classical field predictions, as
already suggested in ref. 47.

Using the Ramsey interferometric scheme on a many-body
system, we have measured the two-body contact of a 2D Bose gas
over a wide range of phase-space densities. We could implement
this scheme on our fluid thanks to the similarities of the three
scattering lengths in play, a11, a22, a12, corresponding to an
approximate SU(2) symmetry for interactions. Our method can
be generalized to the strongly interacting case aij≳ az, as long as a
Fano-Feshbach resonance allows one to stay close to the SU(2)
point. One could then address the LHY-type corrections at zero
temperature48,49, the contributions of the weakly-bound dimer
state and of three-body contact13,14, or the breaking of scale
invariance expected at non-zero temperature.

Finally, we note that even for our moderate interaction
strength, classical field simulations seem to fail to reproduce our
results, although they could properly account for the measure-
ment of the equation of state itself43,44. The semi-classical treat-
ment of ref. 50 and the quantum Monte Carlo approach of ref. 51
(see also ref. 52) should provide a reliable path to the modeling of
this system. This would be particularly interesting in the vicinity
of the BKT transition point where the usual approach based on
the XY model53, which neglects any density fluctuation, does not
provide relevant information on Tan’s contact. It would allow one
to address the fundamental question raised for example in ref. 26,
regarding the behavior of the contact CðDÞ or its derivatives in
the vicinity of the phase transition, and the possibility to signal
the position of the critical point either by a singularity or at least a
fast variation of Tan’s contact around this point.

Methods
The preparation and the characterization of our sample have been detailed in54,55
and we briefly outline the main properties of the clouds explored in this work. In
the xy plane, the atoms are confined in a disk of radius 12 μm by a box-like
potential, created by a laser beam properly shaped with a digital micromirror
device. We use the intensity of this beam, which determines the height of the
potential barrier around the disk, as a control parameter for the temperature. The
confinement along the z direction is provided by a large-period optical lattice, with
a single node occupied and ωz/(2π)= 4.41 (1) kHz. We set a magnetic field B=
0.701 (1) G along the vertical direction z, which defines the quantization axis. We
use the expression Dc ¼ ln ð380=~gÞ for the phase-space density at the critical point
of the superfluid transition56. Here, ~g ¼

ffiffiffiffiffi
8π

p
a11=az ¼ 0:16 is the dimensionless

interaction strength in 2D, leading to Dc ¼ 7:7. We study Bose gases from the
normal regime (D ¼ 0:3Dc) to the strongly degenerate, superfluid regime
(D> 3Dc).

Fig. 3 Contact measurement. Variations of the normalized Tan ’s contact
C/C0 with the phase-space density D. The encoding of the experimental
points is the same as in Fig. 2. The colored zone indicates the non-
superfluid region, corresponding to D<Dc ! 7:7. The continuous black line
shows the prediction derived within the Bogoliubov approximation. Inset:
Zoom on the critical region. The dashed blue line is the prediction from
ref. 46, resulting from a virial expansion for the 2D Bose gas. The dotted red
line shows the results of the classical field simulation of ref. 47.
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increasing function of T. Conversely for a given temperature, the
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ffiffiffiffiffi
2π

p
mazÞ [i.e., C= C0
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2 ðrÞ þ gthermal
2 ðrÞ. One can

then show the result (Supplementary Note 3)

C
C0

¼ 1þ gthermal
2 ð0Þ; ð5Þ
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singularity of gT¼0

2 ðrÞ in r= 0.
For low phase-space densities, one can perform a systematic
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En résumé

Procédure à la base de la théorie du contact pour un gaz dilué ( ) :nb3 ≪ 1

•   Identifier les paramètres pertinents  pour décrire la physique à 2 corpsX1, X2, …

  : longueur de diffusion en onde , volume de diffusion en onde , portée effective X1, X2, … s p

•   Ecrire formellement l’énergie (ou un autre potentiel thermodynamique) sous la forme

E(S, L3, N, X1, X2, …) variable conjuguée de Xi : Ci ≡
∂E
∂Xi

Les contacts    interviennent dans la partie asymptotique de nombreuses grandeurs physiques  Ci

Distribution en impulsion, corrélation à deux corps, ailes de spectres d’excitation, taux de pertes, ….



Interaction longue portée (dipolaire )1/r3
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Prolongements

2 corps N corps 
Interaction courte portée (van der Waals )−1/r6

Viriel, Bogoliubov, théorie du contact

4 corps 

3 corps 

Interaction longue  
portée émergente 1/r2


