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The discovery of the superfluid transition of liquid helium [1, 2] marked the first
achievement of Bose–Einstein condensation in the laboratory, more than a decade after
Einstein’s prediction for an ideal gas [3, 4]. Together with superconductivity, they o↵ered
the first examples of macroscopic quantum phenomena and as such constituted a milestone
in the history of Physics. The quest for the understanding of liquid helium superfluidity
was the source of major advances in quantum many-body physics, such as the development
of techniques inspired from quantum field theory and Landau’s phenomenological two-fluid
model. The latter was in particular very successful for describing the hydrodynamics of
this quantum liquid.

However, interactions between atoms in liquid helium are strong and make the com-
parison between experiments and ab initio theories a tremendous task. A striking ex-
ample is the calculation of the critical temperature for the superfluid transition, which
was determined only recently by Quantum Monte Carlo simulations [5]. By contrast,
gaseous Bose–Einstein condensates (BECs) discovered in 1995 after the development of
laser cooling and trapping techniques, constitute weakly interacting systems much closer
to Einstein’s original idea. The condensation temperature is usually close to the pre-
diction for the ideal gas and more generally, gaseous BECs o↵er the opportunity to test
quantitatively the theoretical ideas elaborated in the past fifty years.

Bose–Einstein condensation has been achieved in dilute gaseous systems either with
bosonic atoms [6, 7, 8], or with molecules made with pairs of fermionic atoms [9, 10,
11]. In these dilute systems, the weakness of interactions allows one to adopt a mean-
field description in which the many-body wave function  (r

1

, . . . , r
N

) is approximated
by a factorized state '(r

1

) . . .'(r
N

). The macroscopic matter wave '(r), which was
introduced phenomenologically for liquid helium, provides for atomic gases an accurate
description of the microscopic degrees of freedom [12, 13, 14]. As a consequence, ultra-cold
atoms allow for a large variety of spectacular phenomena, such as interference between
independent condensates [15] and long range phase coherence in an atom laser [16].

In this chapter, we present an overview of the specific experimental tools developed in
the field of ultra-cold gases to achieve and probe superfluidity in vapours of bosonic atoms.
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We first describe the main cooling techniques: the magneto-optical trap, which brings an
atomic vapour from room temperature down to the sub-mK range, and the evaporative
cooling scheme, which bridges the gap to the superfluid regime. We then proceed to the
study of interaction e↵ects. We show that they play a central role in the understanding
of both static and dynamic properties of trapped BECs, despite the dilute character of
these gases. As a consequence, gaseous BECs and superfluid helium obey the same laws
of hydrodynamics and exhibit similar dynamical properties, although their densities di↵er
by several orders of magnitude. The third section is devoted to the coherence properties
of gaseous BECs. We show that, by contrast with liquid helium, specific features of ultra-
cold gases make them suitable for a direct probing of the quantum coherence associated
with Bose–Einstein condensation. Finally, we discuss the possibility of tailoring trapping
potentials and realizing low dimensional systems where one or two directions of motion
are frozen.

1 Production of a gaseous atomic condensate

Every quantum gas experiment starts with the cooling of a vapour of atoms from room
temperature (or even higher) down to the milliKelvin range. The standard tool for this
spectacular freezing of atomic motion is laser cooling, which has been developed during
the 80’s [17, 18, 19]. In this section, we present its basic principle and we show how the
very same spontaneous emission processes responsible for cooling also set intrinsic limits
preventing one from reaching quantum degeneracy. We then discuss how evaporative
cooling strategies based on the selective elimination of the most energetic atoms of the
gas overcame this fundamental barrier and led to the observation of the first Bose–Einstein
condensates.

1.1 Laser cooling of atomic vapors

Most laser cooling schemes use the radiative forces exerted on atoms by continuous laser
beams, with a frequency that is quasi-resonant with an electronic transition of the species
of interest. The conceptually simplest scheme is Doppler cooling, whose basic principle
is recalled in Fig. 1a in the case of a one-dimensional system. Two counterpropagating
light beams of frequency !

L

are shined on atoms with a resonance frequency !

A

> !

L

.
For an atom at rest, the radiation pressure forces exerted by the two beams are balanced
and the overall force is zero. For a moving atom this balance is broken. Consider for
example an atom moving to the right as in Fig. 1a; the Doppler e↵ect shifts the apparent
frequency of the right beam upwards and that of the left beam downwards. Being closer
to resonance, the radiation pressure force from the right beam is stronger than that of
the left one. The atom thus feels a force opposite to its velocity that damps its motion
and that provides the cooling of its translational degree of freedom. Using three pairs
of laser beams propagating in independent directions, one can extend this scheme to all
three spatial directions, thus creating an optical molasses for the atoms. The volume of
the optical molasses delimited by the intersection of the laser beams is typically a few
centimeter-cubes.
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Figure 1: (a) Principle of Doppler cooling in a one-dimensional configuration. The sum
of the radiation pressures of two counterpropagating laser beams creates a damping force
on a moving atom. (b) Photography of a Lithium magneto-optical trap (photo from
Laboratoire Kastler Brossel, ENS Paris). The glowing ball corresponds to ⇠ 1010 atoms
trapped at 1 mK.

The equilibrium energy of atoms in an optical molasses results from the balance be-
tween the cooling e↵ect that we just described and the heating associated with the random
character of spontaneous emission processes. The Brownian motion of the atoms in the
molasses can be characterized by a temperature T whose minimal value is ~�/2k

B

for
Doppler cooling; here � is the natural width of the electronic transition excited by the
cooling lasers. This temperature is in the range of several hundred microkelvins for alkali
atoms, which are the most frequently used species in these experiments. More subtle
cooling processes, like Sisyphus cooling, also take place in optical molasses and they can
lower the temperature down to a few E

R

/k

B

. Here E

R

is the recoil energy of an atom
when it emits or absorbs a single photon: E

R

= ~2

k

2

L

/2m, where k

L

is the wave vector of
the laser beams and m the atomic mass. The temperature obtained with Sisyphus cooling
is usually in the range 10–100 microkelvins. Note that there also exist subrecoil cooling
mechanisms [18], but they are generally not used in quantum gases experiments because
of their relatively complex implementation.

1.2 The magneto-optical trap

An optical molasses only provides a damping force on the atoms, but it does not trap
them. Because of their Brownian motion in the light beams, the atoms eventually leave
the region of the optical molasses in a fraction of a second. This severely limits the number
of atoms in the cold gas and its spatial density. To solve this issue, one superimposes
to the laser beams a static quadrupolar magnetic field, with the zero of the field in the
center of the molasses, thus creating a magneto-optical trap (MOT). Due to the spatially
varying Zeeman shift of the atomic levels, the radiation pressure force now depends on
position. For a proper choice of the polarization of the molasses beams with respect to
the local direction of the magnetic field, the radiative pressure not only damps the atomic
motion, but also creates a restoring force towards the zero of the magnetic field [20]. The
number of atoms at equilibrium in a MOT is in the range 108–1010; it depends essentially
of the available laser power at the desired wavelength.

For an ideal gas of density n and temperature T , Einstein’s criterion for condensation
is n�

3 = ⇣(3/2) ⇡ 2.6, where � = (2⇡~2

/mk

B

T )1/2 is the thermal wavelength and ⇣ is the
Rieman’s function [21]. This requires “large” densities and/or low temperatures. A typical
target for the density of an ultracold atomic vapour is 1014 cm�3. Above this value, the
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rate of three-body recombination processes leading to the formation of molecules exceeds
1 s�1 and the sample decays before having reached thermal equilibrium. This density is
lower than that of liquid helium by 8 orders of magnitude, which brings the degeneracy
temperature from the Kelvin region for liquid helium down to 0.1–1 microkelvin for atomic
gases. Although the magneto-optical trap is a very powerful tool to bring an atomic vapour
in the sub-milliKelvin range, it is not suited for reaching directly quantum degeneracy.
The spatial density in a MOT is indeed limited to values much smaller than the target
density of 1014 cm�3 mentioned above, because of the permanent scattering of photons by
the trapped atoms. More precisely a fluorescence photon emitted by a given atom can be
reabsorbed by another nearby atom, leading to an e↵ective repulsive force between these
two atoms. This laser-induced repulsion limits the spatial density in a MOT to values in
the range 1010–1012 cm�3, corresponding to a phase space density 10�4– 10�6 for alkali1

vapours [24].

1.3 Pure magnetic and pure optical confinements

To circumvent the limit on spatial density imposed in a MOT by light-induced repulsion,
and also for lowering further the temperature of the gas, it is necessary to use a non-
dissipative confinement. Up to know two kinds of traps, magnetic and optical, have been
used successfully in the quest for Bose–Einstein condensation. These two families of traps
correspond to relatively shallow potential depths, which are insu�cient to trap atoms at
room temperature. Therefore a first stage of laser cooling is necessary in all quantum
gas experiments, in order to capture room temperature atoms and to reduce their energy
down to a level where they can be transferred e�ciently to a non dissipative potential.

Magnetic traps. The first class of non dissipative traps is based on a spatially varying
magnetic field B(r), and can be used for any atom possessing a non-zero magnetic moment
µ. In presence of the magnetic field, the atomic potential energy is V (r) = �µ · B(r).
If the motion of the atom is slow enough, the projection µk of the magnetic moment
along the direction of the magnetic field remains constant. The trapping potential is thus
simply V (r) = �µkB(r). Depending on the sign of µk, the atom is attracted towards the
minima of B (µk < 0) or towards its maxima (µk > 0). Due to the structure of Maxwell’s
equations, only local minima of the modulus of a static magnetic field can exist in a
region with no current, which means that only low field seeking spin states corresponding
to µk < 0 can be trapped by a static magnetic field.

Laser dipole traps. The second class of non dissipative traps uses a laser beam whose
frequency !

L

is chosen far from the atomic resonance line [25]. Dissipation processes
associated with spontaneous emission are then negligible and only virtual scattering of
photons is permitted. The electric-dipole interaction of the atom with the laser electric
field E(r) gives rise to the potential energy V (r) = �↵(!

L

)E2(r)/2, where ↵ is the
dynamical polarisability of the atom. Just like a classical driven oscillator, the sign

1Larger phase space densities -though not yet at quantum degeneracy- have been achieved in Ytterbium
and Strontium MOTs, thanks to the much narrower linewidth of the cooling transition [22, 23].
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of ↵ depends on the detuning of the laser with respect to the atomic resonance. For
red-detuned light (!

L

< !

A

), ↵ is positive, while it is negative for blue-detuned light
(!

L

> !

A

), a result that can be recovered easily in Thomson’s classical model of the
atom. For red-detuned light, the potential energy is minimum at the point(s) where the
laser intensity is the highest: a focused laser beam acts as a potential well that keeps the
atoms trapped around the focal point. Dipole traps have a large variety of applications,
since one can produce laser beams with intensity profiles, hence potential landscapes, of
nearly arbitrary shapes. They can for instance be used to engineer periodic potentials,
the so-called optical lattices (see the Chapter by Tin-Lu Ho in this book), or strongly
confine atoms in one or two dimensions to a point where the atomic motion is frozen in
these directions, thus realizing a quasi two-dimensional or one-dimensional system (see
§ 4).

1.4 Evaporative cooling to the degenerate regime

Up to now, evaporative cooling is the only path to cool an atomic vapour down to the
quantum degenerate regime. Although several implementations exist, the principle of
evaporative cooling is always the same: one removes atoms carrying a large energy from
the trap, so as to decrease the mean energy - hence the temperature - of the remaining
particles. This is achieved by truncating the trapping potential at some energy U

0

. A key
ingredient in the process is the elastic collision rate that fixes the speed at which atoms
are removed from the trap, hence the cooling rate dT/dt [26, 27].

Basic evaporative cooling su↵ers from the fact that as the temperature decreases,
fewer particles reach an energy larger than U

0

and the evaporation process slows down. To
circumvent this problem, one turns to forced evaporative cooling, obtained by continuously
decreasing U

0

in order to keep the ratio ⌘ = U

0

/k

B

T constant. When the initial collision
rate is large enough, one reaches a runaway regime in which the collision rate increases
as the gas gets colder and denser. The quantum degenerate regime is reached after an
evaporation time corresponding to a few hundred elastic collisions per atom. During the
evaporation process the number of atoms is divided by a factor 100 to 1000. The number
of atoms at the condensation point ranges between 103 and 108, depending on the initial
loading of the magnetic trap, on the optimisation of the evaporation process and on the
subsequent goal of the experiment.

In a magnetic trap, evaporation is performed using a radio-frequency (rf) electromag-
netic field of frequency ⌫

rf

that flips the atom spin to a non-trapped state. Since the
trapping magnetic field B depends on position, the expulsion only takes place at posi-
tions r where the resonance condition h⌫

rf

= g

L

µkB(r) is satisfied, where g

L

is the Landé
factor of the relevant internal atomic state (Figure 2a). By sweeping ⌫

rf

one can thus
produce the desired change of U

0

without changing the characteristics of the trap itself.

In a laser dipole trap, all spin states feel the same potential and rf evaporation cannot
be used. In this case one takes advantage of the relation between the depth of the trapping
potential and the intensity of the laser light shined on the atoms: forced evaporation is
obtained simply by decreasing the laser power. One drawback of this scheme is that the
trapping strength also decreases during the evaporation, which diminishes the collision
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rate that is so crucial for the success of evaporation. The criterion on the initial collision
rate for a successful evaporation is therefore more stringent in a dipole trap than in a
magnetic trap2.

Evaporative cooling of atoms in a magnetic trap led in 1995 to the first observation
of a Bose–Einstein condensate of Rubidium atoms by the group of E. A. Cornell and
C. Wieman in Boulder [6, 28], soon followed by the groups of W. Ketterle at MIT with
Sodium atoms [7, 29], and of R. Hulet in Houston with Lithium atoms [8]. Evaporation
down to the degenerate regime in a pure optical trap was achieved in 2001 by the group
of M. S. Chapman [30]. In Fig. 2b we show images of the momentum distribution of the
first Bose–Einstein condensates obtained at JILA in 1995. The momentum distribution
was obtained by taking a picture after releasing the atoms from their trap. For low atom
numbers, interactions are negligible and the gas expands freely3. In this case, the density
profile after time of flight is proportional to the initial momentum distribution. The onset
of Bose–Einstein condensation is clearly observed by the appearance of a narrow peak in
the momentum distribution, corresponding to the macroscopic accumulation of atoms in
the single particle ground state of the trap.

In practice, the atoms are observed by absorption imaging, a process in which one
shines a resonant beam on the cloud and images the cast shadow on a CCD camera. The
drawback of this method is that it destroys the cloud and forbids real time imaging of its
dynamics. An alternative method uses a non resonant probe beam, which is practically
not absorbed by the cloud of atoms but simply dephased. By using a phase contrast
technique, also used in standard microscopy to image transparent objects, it is possible
to reconstruct the refractive index profile of the cloud, hence its density profile.

1.5 Bose–Einstein condensation in a trap

In order to calculate the critical temperature for a Bose gas confined by a potential V (r),
one often starts with the semi-classical approximation, which states that the phase space
density of an ideal gas of chemical potential µ and temperature T reads:

f(p, r) ⇡
1

(2⇡~)3

1

e

�(h(p,r)�µ)

� 1
. (1)

Here � = 1/k
B

T and h(p, r) = p

2

/2m+V (r) is the classical Hamiltonian for a particle of
mass m trapped in the potential V . The semi-classical approximation is valid as soon as
the size of the cloud is larger than other characteristic length scales, such as the spatial
extent of the ground state wave function in the trap or the thermal wavelength �.

For simplicity we restrict from now on to the case of a harmonic potential with fre-
quencies !

i

, i = x, y, z and V (0) = 0. As in free space, the chemical potential can take

2Note that it is also possible to recover a fully e�cient evaporation in a dipole trap by refocusing the
laser beam on the atoms as the evaporation proceeds, so as to maintain a constant trapping strength like
in a magnetic trap.

3Although this situation was indeed achieved for the first gaseous BECs, we will see below that in
most cases, interactions actually play a crucial role in the equilibrium shape and in the dynamics of the
condensate.
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Figure 2: (a) Evaporative cooling in a magnetic trap, using a radio-frequency that flips
the magnetic moment of atoms at a given position in the trap. (b) First observation of
a gaseous Bose–Einstein condensate (photos: courtesy of Eric Cornell, NIST Boulder).
For the left to the right, the three density profiles correspond to decreasing temperatures.
The first one is still in the classical regime, where the density distribution is given by the
classical Boltzmann law. The last one corresponds to a quasi-pure condensate.

only non positive values, and the phase space density is at any place smaller than its value
for µ = 0. For a given temperature, the number of atoms that can be accounted for with
the semi-classical result (1) is bounded from above by

N

max

=

Z
1

e

�h(p,r)

� 1

d

3

r d

3

p

(2⇡~)3

= ⇣(3)

✓
k

B

T

~!̄

◆
3

, (2)

where ⇣(3) ⇡ 1.2 and !̄

3 = !

x

!

y

!

z

. When the atom number is larger than N

max

, atoms
in excess accumulate in the ground state of the trap, following the general Bose–Einstein
condensation scenario. Conversely for a given atom number N , the condensation occurs
when the temperature passes below the critical value T

c

such that k

B

T

c

= ~!̄(N/⇣(3))1/3.

Within the semi-classical approximation, the threshold for condensation in a trap is
directly related to the critical point of a homogeneous system. To prove this point we first
note that the density at the center of the trap n(0) can be calculated from the expression
(1) for the phase space density. Suppose now that the number of atoms in the trap is equal
to the maximal value given in (2). One readily finds that n(0) = n

c

where n

c

= ⇣(3/2)��3

is the critical density for Bose–Einstein condensation in a homogenous system.

So far we considered only the case of an ideal gas. To go further, one needs a proper
modelling of the interaction potential U(r) between a pair of atoms separated by a dis-
tance r. This modelling can be written in a simple form, thanks to the fact that at low
temperature, the thermal wavelength is larger than the range of the interatomic potential.
One can therefore replace the (complicated) true potential by a contact interaction, with
a strength g proportional to the two-body scattering length a

s

:

U(r) = g �(r) with g =
4⇡~2

a

s

m

. (3)

In the rest of this paper we will use this simple modelling of atomic interactions, except
in § 2.5, where we will address the case of long range (dipolar) forces.
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Trapped atomic gases being very dilute at least for T > T

c

, the influence of interactions
on the critical point is relatively weak. The main e↵ect is that because of repulsive
(respectively attractive) interactions, the density at the center of the trap for a given
number of atoms is lower (resp. higher) than its value in absence of interactions. Therefore
one needs to place more (resp. less) atoms in the trap in order to reach the threshold
n(0)�3 = ⇣(3/2). This can be expressed as a shift of the critical temperature [31]

�T

c

T

c

⇡ �1.33 N

1/6

a

s

a

ho

, (4)

where a

ho

=
p

~/m!̄ is the extension of the ground state wave function in a harmonic po-
tential of frequency !̄. For typical situations, the scattering length a

s

is at the nanometer
scale, whereas a

ho

is at the micrometer scale. Therefore the relative shift of T

c

is usually
a few percents. Its measurement is described in [32], where corrections to T

c

due to atom
correlations are also reviewed and discussed.

2 Probing a condensate: the hydrodynamic approach

Typical densities in quantum degenerate vapors are typically in the range 1013–1014 atoms/cm3,
five to six orders of magnitudes more dilute than air. However, despite this extreme dilu-
tion, the dynamics of Bose–Einstein condensates follow the classical laws of hydrodynam-
ics for inviscid fluids. We investigate the low energy modes arising from this hydrodynamic
behaviour and show how they were confirmed with a remarkable accuracy by experiments.

2.1 Hartree approximation and Gross–Pitaevskii equation

Compared to liquid helium, ultra-cold gases have a very small density and they can
often be considered as systems as independent particles, with quasi-negligible correlations
between the atoms. In this respect, these gases are close to the situation discussed by
Einstein in his seminal work [3, 4]. The quasi-independence between the atoms in a cold
gas is illustrated by the fact that the condensed fraction – defined as the largest eigenvalue
of the one-body density matrix – can be close to 100% at very low temperature, whereas
it never exceeds 10% in superfluid liquid helium.

To exploit this absence of correlation between the atoms of the gas, a simple and useful
approach is the Hartree approximation, which consists in describing the many-body wave-
function of a condensate containing N particles by the product

 (r
1

, r
2

, ...r
N

, t) =
NY

i=1

'(r
i

, t), (5)

where ' is the macroscopic wave-function describing the behavior of the system. For
particles of mass m interacting through a two-body potential U(r

1

, r
2

) and trapped in an
external potential V (r

1

), the evolution of ' can be obtained by the minimization of the
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action associated with the Lagrangian density

L = �i~ ⇤
@

t

 +
NX

i=1

✓
~2

2m
|r

i

 |2 + V (r
i

) | |2
◆

+
1

2

NX

i,j=1

U(r
i

, r
j

) | |2 . (6)

Writing the Euler-Lagrange equations with the Hartree anzatz (5) finally yields the Gross–
Pitaevskii equation [33, 34]

i~@
t

' = �
~2

2m
r

2

'+ V (r)'(r, t) + (N � 1)

Z
U(r, r0) |'(r0

, t)|2 '(r, t) d

3

r

0
. (7)

This equation has a clear physical interpretation: each particle in the state '(r, t) evolves
in a potential that is the sum of the external trapping potential V (r) and the mean-field
interaction energy due to the N � 1 remaining particles. In the following we will assume
N � 1, hence we will replace N � 1 by N .

In most experimental situations4, the range of the interatomic potential U is much
shorter that other relevant length scales, like the interatomic distance or the thermal wave-
length. Then, as explained in § 1.5, we can replace U by a contact potential g �(|r � r0

|),
and the Gross–Pitaevskii equation turns into the non-linear-Schrödinger equation

i~@
t

' = �
~2

2m
r

2

'+ V (r)'(r, t) + Ng |'(r, t)|2 '(r, t). (8)

In the case where the gas is kept in a flat (V = 0) cubic box of size L, one can look for
stationary solutions of the Gross–Pitaevskii equation with the form '

0

(t) = e

�iµt/~
/L

3/2,
where µ is the chemical potential of the system5. The resolution is straightforward and
yields

µ = gn

0

, (9)

where n

0

= N/L

3 is the particle density in the condensate.

2.2 The Bogoliubov spectrum of collective excitations

Due to the non-linear nature of the Gross–Pitaevskii equation, its resolution for arbitrary
initial conditions can be obtained only numerically. However, when the system is weakly
perturbed, a first order expansion can be performed. In this section we restrict to the case
of a gas confined in a cubic box of size L for which the linearization of the Gross–Pitaevskii
and the research of its eigenmodes is relatively simple.

We start by writing '(r, t) = e

�iµt/~[1+ �'(r, t)]/L3/2, so that we obtain at first order
in �' the linear system

i~@
t

✓
�'

�'

⇤

◆
= L

GP

✓
�'

�'

⇤

◆
(10)

4The most notable exception being dipolar gases discussed in Sec. 2.5.
5One can check that the value of µ obtained with this definition coincides with the energy required to

add a Nth particle to the gas containing already N � 1 atoms.
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with the linear operator L
GP

given by

L

GP

=

✓
�~2

r

2

/2m + gn

0

gn

0

�gn

0

~2

r

2

/2m� gn

0

◆
. (11)

Using translational invariance, solutions of Eq. (10) can be expanded on a set of plane
waves (u

k

, v

k

)ei(k·r�!t) diagonalizing the operator L
GP

(the so-called Bogoliubov modes).
A simple algebra then yields

✓
u

k

v

k

◆
/

✓
cosh ✓

k

sinh ✓
k

◆
, tanh 2✓

k

=
1

k

2

⇠

2 + 1
, (12)

with the Bogoliubov dispersion relation

!

k

=
p

gn

0

k

2

/m + (~k

2

/2m)2

. (13)

Here we introduced the healing length ⇠ = (8⇡n

0

a

s

)�1/2, which characterises the distance
over which the condensate recovers its homogeneous density when one applies a local
perturbation. Note that we implicitly assumed that the scattering length a

s

is positive,
corresponding to an e↵ective repulsive interaction between atoms. In this case, ! is real
for any value of k.

The Bogoliubov approximation is valid in the dilute limit n

0

a

3

s

⌧ 1, or equivalently
n

0

⇠

3

� 1. The Bogoliubov modes describe the low-energy excitations of a Bose-condensed
gas, and they can be used to study its low-temperature thermodynamic properties. For
instance, the quantum fluctuations of the Bogoliubov modes give access to the quantum
depletion of the condensate, i.e. the di↵erence at zero temperature between the total
density n and the condensed density n

0

. They also provide the first beyond mean-field
corrections of the zero temperature equation of state (9) [35].

The dispersion relation (13) displays two di↵erent asymptotic regimes. For k⇠ � 1,
one recovers the single particule dispersion ! ⇠ ~k

2

/2m, as for a non interacting gas.
For k⇠ ⌧ 1, the dispersion relation is linear, ! ⇠ k

p
gn

0

/m, and in this regime we can
identify the eigenmodes as acoustic waves with sound velocity c

s

=
p

gn

0

/m.

In gaseous BECs, the Bogoliubov spectrum can be studied by Raman scattering ex-
periments in which two laser beams (labelled 1 and 2) with di↵erent frequencies and
wave-vectors are shined on the atoms. Let us consider a process where one photon of the
beam 1 is transferred to the beam 2 in an “absorption- stimulated emission” cycle (Figure
3a). From energy-momentum conservation this process is associated with the creation of
a Bogoliubov excitation of momentum k = q

1

� q
2

and frequency !k = !

1

� !

2

. This
can only happen when the condition !q1�q2 = !

1

� !

2

is satisfied. Therefore, for a given
set of directions (q

1

, q
2

), the rate of Raman scattering varies resonantly with !

1

� !

2

,
providing one point on the dispersion curve !(k). The experiment is then repeated for
other directions (q

1

, q
2

), to map the complete dispersion curve. Strictly speaking, the
formalism developped above do not apply as such to the case of trapped gases, because
the presence of the confining potential breaks the translational symmetry that led to the
modes given in (12). However, the gas can be considered as quasi-homogeneous on length
scales much smaller than the cloud size R, and the Bogoliubov spectrum (13) is therefore
relevant if one restricts to short wavelength excitations satisfying kR � 1.
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right directions, which removes the effects of the Doppler
shift resulting from any sloshing of the condensate in the
trap during the Bragg pulse.

Figure 3a shows the measured excitation spectrum,
which agrees well with (2). A linear phonon regime is
seen for low k, and a parabolic single-particle regime for
high k. The excitations seen to have the smallest value of
v!k are the phonons. Therefore, by the Landau criterion,
the superfluid velocity yc is bounded by v!k for the
phonons.

The inset of Fig. 3a shows the low k region of v"k#.
To extract the initial slope from the data, (2) is fit to the
points with k less than 3 mm21, with m taken as a fit
parameter. The fit is not shown in the figure. The result
gives the speed of sound for the condensate to be ceff !
2.0 6 0.1 mm sec21, which is also the measured upper

FIG. 3. (a) The measured excitation spectrum v"k# of a
trapped Bose-Einstein condensate. The solid line is the Bogo-
liubov spectrum with no free parameters, in the LDA for
m ! 1.91 kHz. The dashed line is the parabolic free-particle
spectrum. For most points, the error bars are not visible on the
scale of the figure. The inset shows the linear phonon regime.
(b) The difference between the excitation spectrum and the
free-particle spectrum. Error bars represent 1s statistical un-
certainty. The theoretical curve is the Bogoliubov spectrum in
the LDA for m ! 1.91 kHz, minus the free-particle spectrum.

bound for yc. This value is in good agreement with the
theoretical LDA value of 2.01 6 0.05 mm sec21. The line
at 2pR21 indicates the excitation whose wavelength is
equal to the Thomas-Fermi radius of the condensate in the
axial direction. The measured v"k# agrees with the LDA,
even for k values approaching this lower limit of the region
of validity. As k goes to zero, v"k# is seen to approach
zero, rather than exciting the lowest order radial mode,
the breathing mode, which is twice the radial trapping
frequency, 440 Hz [12,13].

In Fig. 3a, the measured v"k# is clearly above the
parabolic free-particle spectrum h̄k2!"2m#, reflecting the
interaction energy of the condensate. To emphasize the in-
teraction energy, v"k# is shown again in Fig. 3b, after
subtraction of the free-particle spectrum. This curve ap-
proaches a constant for large k, given by the second term
in (4).

For a constant rate of production of excitations, the in-
tegral of P"k, v# over v, equal to the integral of S"k,v#,
is related to S"k# by [25,26],

S"k# ! 2"pV2
RtB#21

Z

P"k, v# dv , (5)

where VR ! "G2!4D#
p

IAIB!Isat is the two-photon Rabi
frequency, G is the linewidth of the 5P3!2, F ! 3 ex-
cited state, D is the detuning, and Isat is the saturation
intensity. The closed circles in Fig. 4 are the measured
static structure factor S"k#, by (5). The values shown have
been increased by a factor of 2.3, giving rough agreement
with S"k# from Bogoliubov theory in the LDA (3). Equa-
tion (3) is indicated by a solid line. The required factor
of 2.3 probably reflects inaccuracies in the various val-
ues needed to compute VR . The open circles are com-
puted from (1), using the measured values of v"k# shown

ξπ

µ
FIG. 4. The filled circles are the measured static structure
factor, multiplied by an overall constant of 2.3. Error bars rep-
resent 1s statistical uncertainty, as well as the estimated uncer-
tainty in the two-photon Rabi frequency. The solid line is the
Bogoliubov structure factor, in the LDA for m ! 1.91 kHz. The
open circles are computed from the measured excitation spec-
trum of Fig. 3, and Feynman’s relation (1). For the open circles,
the error bars are not visible on the scale of the figure.

120407-3 120407-3

�/2� [kHz]
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Figure 3: (a) Example of a Raman scattering process, in which a photon of wave vector
k

1

and frequency !

1

disappears, and a photon of wave vector k
2

and frequency !

2

is
created. (b) Dots: Experimental measurement of the Bogoliubov spectrum in a Rubidium
condensate using Raman spectroscopy. The solid and dashed line correspond to the
Bogoliubov and free particle spectra, respectively (data from [36]).

We show in Fig. 3b results obtained with this technique by the group of N. Davidson
at the Weizmann Institute [36]. The experiment was performed with Rubidium atoms
and led to results in excellent agreement with the Bogoliubov dispersion relation (13).
Interestingly the excitation spectrum of a gaseous Bose–Einstein is simpler than that of
liquid helium, which exhibits a roton branch associated with a local minimum of !

k

. This
is due to the fact that a cloud of ultra-cold atoms is a weakly interacting system, for which
the mean-field approximation adopted here is quite accurate. In recent experiments, the
group of E. Cornell at JILA started to explore the strongly interacting regime na

3

s

⇠ 1
[37] and could observe deviations from the Bogoliubov dispersion relation (13), indicating
the breakdown of the mean-field approximation.

The case of attractive interactions. The scattering length a

s

describing atomic in-
teraction at low energy is negative for some atomic species, like 7Li atoms in their lowest
energy state. When this occurs, the Bogoliubov dispersion relation (13) leads to imagi-
nary values for !

k

. This feature is the signature of an instability of the gas that collapses
under the e↵ect of attractive interactions. For a gas confined in a harmonic potential this
collapse was indeed observed, when the number of atoms exceeded a threshold value [38].
In a one-dimensional geometry, this instability is connected to the existence of solitonic
solutions of the stationary Gross–Pitaevskii equation6, which were also observed experi-
mentally with Bose–Einstein condensates of 7Li [40, 41]. These coherent atomic ‘packets’
propagate without deformation, due to a balance between the interaction-induced col-
lapse, and the broadening of their wave-function due to the dispersive nature of the single
particle dispersion relation ! = ~k

2

/2m. This phenomenon is also well known in other
domains of physics (in particular hydrodynamics and non-linear optics [42]).

6Note that solitonic solutions exist also for g > 0. In this case, they correspond to a dip in the density
profile, and are therefore called dark (or grey when the contrast is not 100%) solitons [39].

11



2.3 Equilibrium shape and eigenmodes of a trapped condensate

In the presence of a harmonic trapping potential V (r), the resolution of the Gross–
Pitaevskii equation is more involved than for a homogeneous system. We consider first the
equilibrium state of the condensate, setting '(r, t) = '

0

(r) e

�iµt/~ in (8). In the absence
of interactions (g = 0), the lowest energy solution '

0

(r) is the single-particle ground state
in the harmonic trap, i.e. a Gaussian function with an extension a

ho

= (~/m!)1/2 and a
chemical potential µ = 3~!/2 (for simplicity we assume here an isotropic confinement of
frequency !). In the case where the scattering length is positive, repulsive interactions
increase the size R of the cloud. In the limit of large atom numbers, the kinetic energy
⇠ ~2

/mR

2 can be neglected with respect to the trapping energy ⇠ m!

2

R

2. In this
so-called Thomas–Fermi regime, the stationary Gross–Pitaevskii equation leads to [43]

µ = gn

0

(r) + V (r) , (14)

where n

0

(r) = N |'

0

(r)|2 is the atom density. This relation yields readily the density
profile of the cloud in the presence of the external potential. It can be recovered from
(9) using the local density approximation, where one considers that the system is locally
homogeneous, with a space dependent chemical potential µ

loc

(r) = µ� V (r). For a con-
densate with N atoms in a harmonic potential, (14) entails that the density distribution
is an inverted parabola. The radius of the distribution is given by R = a

ho

⌘

1/5 and the
chemical potential is µ = ~!̄ ⌘2/5

/2, where we set ⌘ = 15Na

s

/a

ho

; the Thomas–Fermi
approximation is valid if R � a

ho

, i.e. ⌘ � 1.

A similar approach can be followed in the dynamical regime, in which one recovers
equations analogous to Euler’s equation in classical hydrodynamics. We start by writing
the condensate wave function as '(r, t) =

p
n(r, t)/N e

i✓(r,t) (Madelung transform). Ex-
pressing the Gross–Pitaevskii equation in terms of the real variables ✓ and n, we obtain
the set of equations

@

t

n = �r · (nv) (15)

m @

t

v = �r
✓

gn + V +
mv

2

2
�

~2

2m
p

n

r

2

p

n

◆
, (16)

where v(r, t) = ~r✓/m is the velocity field of the condensate. The physical interpretation
of these two equations is straightforward. The first one expresses the mass conservation,
the second one is the Euler equation for an inviscid fluid with an irrotational flow, with
✓ playing the role of the velocity potential. The term proportional to ~2 arises from
quantum fluctuations and is called quantum pressure. In the semi-classical limit ~ ! 0,
it can be neglected and the above set of equations becomes

@

t

n = �r · (nv) (17)

m @

t

v = �r
�
gn + V + mv

2

/2
�
, (18)

which can identified with the Euler equations for a gas of pressure P characterized by the
simple equation of state P = gn.

A quick inspection shows that the hydrodynamic regime described by the equations
(17-18) is valid in the Thomas-Fermi regime gn̄/~! � 1, where n̄ is the typical atomic
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density in the trap. Interestingly, this criterion is much less stringent than the condition
for reaching the hydrodynamic regime for a classical trapped gas: � = n̄�v̄/! � 1.
The latter condition compares the trap oscillation frequency ! to the collision rate n̄�v̄,
where � = 8⇡a

2

s

is the s-wave scattering cross-section and v̄ is the characteristic atomic
velocity. In a Bose–Einstein condensate, the velocity is small and is Fourier-limited with
v̄ ⇠ ~/mR, where R is the cloud size. We then find that

� ⇠

a

s

R

⇣
gn̄

~!

⌘
. (19)

In typical experimental conditions, gn̄/~! ⇠ 10 and the Thomas-Fermi condition is ful-
filled. On the contrary, although scattering lengths can be rather large compared to
typical atomic lengths (for rubidium it is ⇠ 5 nm, i.e. 100 times bigger than the Bohr
radius), their values are still much lower than the cloud radius R ⇠ 10 µm and the validity
condition � � 1 for reaching the classical hydrodynamic regime is not fullfilled . We thus
see that, contrary to classical fluids, hydrodynamicity in quantum gases is not driven by
collisions, but by quantum coherence entailing the existence of a one-body wave-function
that encapsulates the macroscopic properties of the system.

The resolution of this set of equations in the case of low lying excitation modes in an
harmonic trap has been the subject of a large amount of both theoretical and experimental
work [13, 14]. For instance, the quadrupolar mode associated with the oscillation of the
aspect ratio of the cloud could be related to the formation of vortices in a BEC stirred
by the rotation of an anisotropic harmonic potential [44]. The same quadrupolar mode
was used to probe the angular momentum of a rotating condensate [45].

One specific mode, called the scissor mode, is more specifically connected to the issue
of superfluidity. It is related to the reduction of the moment of inertia that is itself
characteristic of a non classical fluid behaviour. In cold gases, the scissors mode is excited
by the sudden tilting of one of the axes of an anisotropic trap (Fig. 4a). One can show that
the quenching of the moment of inertia of the superfluid is associated with the existence
of a single high frequency mode in the quadrupolar response of the cloud [46, 47]. By
contrast, the response of a non condensed (i.e. non superfluid) Bose gas is characterized
by two frequencies, one of them being proportional to the anisotropy of the trap, and
therefore vanishingly small for weakly anisotropic potentials.The experimental observation
of a single, high frequency scissor mode, hence proving superfluidity, was performed in
Oxford by the group of C. J. Foot (Fig. 4b) [48, 49].

2.4 Probing superfluidity with a moving impurity

Apart from the measurement of the moment of inertia, another historical characterization
of superfluidity in liquid helium is the absence of drag when an obstacle is moved along
the superfluid below a certain critical velocity. A simple explanation of this property
based on the structure of the excitation spectrum was proposed by Landau. He noted
that when the perturbation imparted by the obstacle is small, the energy transfer due to
the drag can be described by the formation of elementary excitations in the fluid. Using a
simple energy-momentum balance, one can readily show that a viscous drag only happens
when the relative velocity of the obstacle with respect to the superfluid is larger than the

13



�

VOLUME 84, NUMBER 10 P HY S I CA L R EV I EW LE T T ER S 6 MARCH 2000

FIG. 3. (a) The evolution of the scissors mode oscillation with
time for a thermal cloud. For a classical gas the scissors mode is
characterized by two frequencies of oscillation. The temperature
and density of our thermal cloud are such that there are few
collisions, so no damping of the oscillations is visible. (b) The
evolution of the scissors mode oscillation for the condensate on
the same time scales as the data in (a). For the BEC there is an
undamped oscillation at a single frequency vc. This frequency
is not the same as either of the thermal cloud frequencies.

frequency vc

u!t" ! 2f 1 u0 cos!vct" . (1)

Figure 3(b) shows some of the data obtained by excit-

ing the scissors mode in the condensate. Consistent data,

showing no damping, were recorded for times up to

100 ms. From an optimized fit to all the data for the

function in Eq. (1) we find a frequency of vc#2p !
265.6 6 0.8 Hz which agrees very well with the predicted
frequency of 265 6 2 Hz from vc !

p

v2
x 1 v2

z . The

aspect ratio of the time-of-flight distribution is constant

throughout the data run confirming that there are no shape

oscillations and that the initial velocity of a condensate

(proportional to "u) does not have a significant effect.
These observations of the scissors mode clearly demon-

strate the superfluidity of Bose-Einstein condensed ru-

bidium atoms in the way predicted by Guéry-Odelin and

Stringari [8]. Direct comparison of the thermal cloud and

BEC under the same trapping conditions shows a clear dif-

ference in behavior between the irrotational quantum fluid

and a classical gas. Another distinction is the lack of damp-

ing in the superfluid. In a thermal cloud there is damping

on the time scale of collisions between the atoms. To il-

lustrate this well-known property of a classical gas we cal-

culated the damping in a thermal cloud using the direct

simulation Monte Carlo method [16], for a mean density

and temperature that are roughly the same as those of the

BEC. (Since the condensate and the thermal cloud have

different spatial distributions the comparison is only ap-

proximate.) The results of such a numerical calculation

for a thermal cloud at a temperature of 90 nK and a peak

density of 2 3 1014 cm23 are shown in Fig. 4 and the plot

shows that the scissors mode of a classical gas is strongly

damped under these conditions. Note that even for such

high densities both frequency components still occur in

the thermal cloud, giving behavior that is clearly different

from the undamped, single frequency oscillation observed

for the BEC. The results of this numerical simulation show

that the amplitude of the lower frequency component is

much smaller than that of the higher frequency one. The

higher frequency tends towards vc, the same frequency

as the condensate, when the density increases so that the

hydrodynamic regime is reached (where there are many

collisions per oscillation period). However in this regime

the damping is so strong that only a few oscillation periods

would be observed as shown in [8]. We cannot reach the

hydrodynamic regime experimentally because the density

of the thermal cloud is 2 orders of magnitude lower than

that of the condensate (the increase in phase-space den-

sity during evaporation comes mainly from the decrease in

temperature).

In the near future we plan to measure the frequency of

the scissors mode at finite temperatures in the condensate,

i.e., where a trapped thermal cloud is present in addition

to the BEC. Under these conditions the scissors mode

should be damped [8] in a similar way to the quadrupole

oscillations at finite temperature [17]. There is still not

good agreement between the observed change in frequency

of the m ! 0 oscillation mode of a condensate at finite

FIG. 4. A numerical simulation of the scissors mode oscilla-
tion for a thermal cloud with a temperature and density compa-
rable to the condensate in our experiment. The two frequency
components are present and the damping time is about 15 ms.
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Figure 4: Scissors mode and superfluidity. (a) Schematic representation of the scissors
mode: the axes of an anistropic trap are suddenly rotated by a small amount and one
observes the subsequent dynamics of the cloud. (b) Oscillation of the condensate axis
(scissors mode). Only one frequency appears in the oscillatory motion, which is a conse-
quence of superfluidity (figure extracted from [48]).

critical velocity V

c

given by the Landau criterion

V

c

= min
k

⇣
!

k

k

⌘
. (20)

For the Bogoliubov spectrum (13), the critical velocity is simply the sound velocity. The
drag can then be interpreted as an acoustic version of the Cerenkov radiation, associated
in electromagnetism to the emission of an electromagnetic wake when a charged particle
moves faster than the light velocity of the surrounding medium.

The absence of drag for a slowly moving microscopic impurity was tested quantita-
tively at MIT with a Sodium Bose–Einstein condensate. The impurities were also Sodium
atoms that were transferred to an untrapped internal spin state using a stimulated Ra-
man transition. In accordance with Landau’s scenario, the scattering cross-section of
the impurity with the condensed atoms dramatically decreased when the velocity of the
impurity atom was smaller than the sound velocity in the BEC [50].

When the obstacle creating the perturbation has a larger size, the viscous drag is still
negligible below a certain critical velocity, but the mechanism for the energy transfer is
di↵erent. In this case, vortex shedding in the wake of the obstacle is the main source of
dissipation in the system [51]. The onset of macroscopic dissipation was also studied by
the group of W. Ketterle at MIT [52, 53]. They demonstrated that when a blue detuned
laser creating a hole inside the condensate was moved, heating was observed only above a
certain critical velocity (Fig.5). Using matter wave interferometric technics, superfluidity
breakdown mechanism was latter on attributed to the nucleation of a vortex wake, in
agreement with the large object scenario [54].

2.5 The case of long range forces: dipolar condensates

In some sense, the physics of dilute Bose–Einstein condensates with short range interac-
tions constitutes an extension of the phenomena observed in liquid helium to the weak
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frequencies were below the trap resonance. The density
was varied by adjusting the number of atoms for constant
trapping parameters. The power in the laser beam was ad-
justed so that the potential height was 8 times the chemical
potential (within 10%), thus preserving the effective size
of the laser beam.

In Fig. 4 we show measurements of the average asym-
metry for two maximum densities n0 of 9 3 1013 and
1.9 3 1014 cm23. In each data set there is a threshold
velocity yc below which the drag force is negligible, and
this threshold increases at higher density. Above this criti-
cal velocity, the drag force increases monotonically, with
a larger slope at low density. The data were fitted to a
piecewise linear function that reflects the two regimes of
dissipation, one with zero asymmetry below yc and an-
other, above yc, where the asymmetry is linear in y 2 yc.
The fits yield yc ! !0.11 6 0.02"cs for the higher density
and yc ! !0.07 6 0.02"cs for the lower density. This is
in agreement with the expectation that the critical veloc-
ity increases with the speed of sound and disagrees with
models that predict only a dependence upon the diameter
of the object [17,19].

One can compare measurements of the asymmetry (pro-
portional to the drag force "F) with the rate of energy
transferred to the condensate, "F ? "y, using an improved
implementation of the calorimetric technique introduced
in [14]. For this, we stirred the condensate for times be-
tween 100 ms and 8 s, in order to produce approximately
the same final temperature. After the stirring beam was
shut off, the cloud was allowed to equilibrate for 100 ms.
The thermal fraction was determined using ballistic expan-
sion and absorption imaging [9,14]. We inferred the tem-
perature and total energy using the specific heat evaluated

FIG. 4. Density dependence of the critical velocity. The onset
of the drag force is shown for two different condensate densities,
corresponding to maximum sound velocities of 4.8 mm#s (≤,
left axis) and 7.0 mm#s (3, right axis). The stirring amplitudes
are 29 and 58 mm, respectively. The two vertical axes are offset
for clarity. The bars represent statistical errors.

as in [22]. By comparing successive images with and with-
out stirring of the condensate we subtracted out the residual
background heating. As a result of the improved fitting and
background subtraction procedure, we were able to detect
changes of less than 10 nK in the energy of the gas, as
we will describe in more detail in [23]. A condensed frac-
tion higher than 90% ensured that the laser beam primarily
heated the condensate and not the thermal cloud.

Figure 5 shows the energy transfer rate to the condensate
versus the stirring velocity. Here, as in the phase contrast
measurements, the amplitude of the stirring was kept fixed
while scanning the frequency. We see the onset of dissipa-
tion near the value obtained using the drag force method,
yc $ 0.5 mm#s ! 0.1cs.

The calorimetric measurements can be compared with
the drag force inferred from the asymmetric density distri-
bution. Using Eq. (1), the energy transfer rate per atom is
written in terms of the asymmetry as

dE
dt

Ç
asym

%
"F ? "y

N
$

8
15

m0n0lzd
N

yA!y" , (2)

where d is the diameter of the laser beam and lz the
Thomas-Fermi diameter in the radial direction.

The comparison between the calorimetric and the drag
force measurements is also shown in Fig. 5. The heating
inferred from the force measurement is in remarkable
agreement with the calorimetric measurement over the
entire velocity range up to a single scale factor for yA!y",
demonstrating the consistency between the two methods.
For the parameters of our experiment (d $ 10 mm,
n0 ! 1.3 3 1014 cm23, lz ! 66 mm, N ! 1.8 3 107)
the overall heating rate predicted by Eq. (2) is 2.4 times
larger than that obtained directly from calorimetry.

FIG. 5. Calorimetry of a condensate. The energy transfer rate
during stirring (≤, left axis) was obtained from temperature mea-
surements. The error bars reflect shot-to-shot variations in the
temperature. The results are compared to the energy transfer
rate yA!y" obtained from the asymmetry data of Fig. 3 (3,
right axis).
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Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas

C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle

Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology,
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We have studied dissipation in a Bose-Einstein condensed gas by moving a blue detuned laser
beam through the condensate at different velocities. Strong heating was observed only above a critical
velocity.

PACS numbers: 03.75.Fi, 67.40.Vs, 67.57.De

Macroscopic quantum coherence and collective ex-
citations are key features in our understanding of the
phenomenon of superfluidity. The superfluid velocity is
proportional to the gradient of the phase of a macroscopic
wave function. Collective excitations determine a critical
velocity below which the flow is dissipationless. This ve-
locity is given by Landau’s criterion [1],

yc ! min

µ

´!p"
p

∂

, (1)

where ´ is the energy of an excitation with momentum p.
Critical velocities for the breaking of Cooper pairs in 3He
and the generation of rotons [2] and vortices [3] in 4He
have been extensively studied.
Bose-Einstein condensed gases (BEC) are novel quan-

tum fluids [4]. Previous work has explored some aspects
related to superfluidity such as the macroscopic phase [5]
and the phonon nature of low-lying collective excitations
[4,6]. In this Letter we report on the measurement of
a critical velocity for the excitation of a trapped Bose-
Einstein condensate. In analogy with the well known ar-
gument by Landau and the vibrating wire experiments in
superfluid helium [7], we study dissipation when an object
is moved through the fluid. Instead of a massive macro-
scopic object we used a blue detuned laser beam which
repels atoms from its focus to create a moving boundary
condition.
The experiment was conducted in a new apparatus for

the production of Bose-Einstein condensates of sodium
atoms. The cooling procedure is similar to previous work
[8]—the new features have been described elsewhere
[9]. Briefly, laser cooled atoms were transferred into
a magnetic trap in the Ioffe-Pritchard configuration and
further cooled by rf evaporative cooling for 20 sec,
resulting in condensates of between 3 3 106 and 12 3
106 atoms. After the condensate was formed, we reduced
the radial trapping frequency to obtain condensates which
were considerably wider than the laser beam used for
stirring. This decompression was not perfectly adiabatic,
and heated the cloud to a final condensate fraction of
about 60%. The final trapping frequencies were nr !
65 Hz in the radial and nz ! 18 Hz in the axial direction.
The resulting condensate was cigar-shaped with Thomas-

Fermi diameters of 45 and 150 mm in the radial and axial
directions, respectively. The final chemical potential,
transition temperature Tc, and peak density n0 of the
condensate were 110 nK, 510 nK, and 1.5 3 1014 cm23,
respectively.
The laser beam for stirring the condensate had a

wavelength of 514 nm and was focused to a Gaussian
1#e2 beam diameter of 2w ! 13 mm. The repulsive
optical dipole force expelled the atoms from the region
of highest laser intensity. A laser power of 400 mW
created a 700 nK barrier resulting in a cylindrical hole
$13 mm in diameter within the condensate. The laser
barrier created a soft boundary, since the Gaussian beam
waist was more than 10 times wider than the healing
length j ! !8pan0"21#2 ! 0.3 mm, a being the two-
body scattering length.
The laser was focused on the center of the cloud. Using

an acousto-optic deflector, it was scanned back and forth
along the axial dimension of the condensate (Fig. 1). We
ensured a constant beam velocity by applying a triangular
waveform to the deflector. The beam was scanned over
distances up to 60 mm, much less than the axial extent

FIG. 1. Stirring a condensate with a blue detuned laser beam.
(a) The laser beam diameter is 13 mm, while the radial width
of the condensate is 45 mm. The aspect ratio of the cloud
is 3.3. (b) In situ absorption image of a condensate with the
scanning hole. A 10 kHz scan rate was used for this image to
create the time-averaged outline of the laser trajectory through
the condensate.
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Figure 5: (a) Probing superfluidity: a blue detuned laser creating a repulsive potential
is moved at constant velocity along a Bose–Einstein condensate (figure from [52]). (b)
Drag force on the condensate, derived as an asymmetry in the density profile. The central
sound velocity is 4.8mm/s (data from ref. [53]).

interaction regime na

3

s

⌧ 1. By contrast, novel phenomena are expected when long range
forces, like dipole-dipole interactions, are dominant. This explains why in recent years,
much attention has been devoted to the realization of polar Bose–Einstein condensates
[55].

At present, Bose–Einstein condensation of Chromium is the only successful attempt
in this direction [56, 57]. Chromium is an atom with a rather large magnetic moment
(six times that of an alkali) for which the ratio between long range and short range
interactions can be modified using a Feshbach resonance. It is thus possible to achieve
a situation where interactions are dominated by dipolar e↵ects, in which case dramatic
phenomena can be observed [55]. In addition to their long range character, dipolar forces
are strongly anisotropic and their attractive or repulsive overall nature will depend on the
geometry of the trapping potential. For cigare-shaped potentials and a dipole aligned with
the trap axis, dipole forces are essentially attractive. In a pancake geometry and a dipole
orientation perpendicular to the plane of the condensate, dipole forces are repulsive. In
the first case, the cloud collapses due to an instability akin to the Rosensweig instability
in classical ferrofluids [58]. By contrast, the repulsive interactions in a pancake geometry
can overcome the instability of a Bose–Einstein with short range attractive interactions,
as observed in [59].

In parallel with attempts to manipulate atomic species with larger magnetic moments
(Erbium, Dysprosium [60]), other lines of research are currently exploring the possibility
to produce quantum gases with electric dipole interactions, which exceed magnetic inter-
action by several orders of magnitude. One possibility is to take advantage of the large
electric dipole moment that can exist for Rydberg atoms, i.e. atoms where one electron
is excited to a high energy level [61]. Another promising option aims at producing a cold
gas of heteronuclear molecules, using for example the photo-association of a mixture of
two atomic gases [62, 63, 64].
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3 Probing a condensate: the quantum approach

With the possibility to manipulate the confining potential in space and time, original
probing schemes have been developed for atomic gases. Using interference experiments
one can access the phase distribution of the fluid and its one-body distribution function.
One can also measure the spatial distribution of particles in the gas with a single-atom
resolution, and determine the density-density correlation function. In this section we
present these probing schemes and illustrate them with some spectacular examples, such
as the interference between independent condensates, the beat between two atom lasers,
and the atomic Hanbury Brown and Twiss e↵ect.

3.1 Interference of condensates

The prime feature of Bose–Einstein condensation is the accumulation of many particles in
a single quantum state. It is reminiscent of laser operation principle, where a macroscopic
number of photons accumulate in the same mode of an electomagnetic cavity. The first
probe that we describe here is a direct proof of this macroscopic population of a single
level.

We start with an experiment that W. Ketterle and his group performed in 1997 [15].
It constituted an experimental answer to a question raised by P.W. Anderson [65]:“Do
two superfluids that have never seen one another possess a definite relative phase?”. The
center of a magnetic trap was irradiated by a light sheet creating a large repulsive barrier
to produce a double well potential (figure 6a). Using evaporative cooling a condensate
was prepared around each potential minimum. Then the magnetic trap was switched o↵
as well as the light sheet. The two atom clouds expanded and overlapped, and an image
of the resulting spatial distribution was taken. The density profile exhibited interference
fringes with a large contrast (> 70%), which proved the coherence of each initial cloud
(figure 6b).

To give a quantitative account for the interference pattern, the simplest approach con-
sists in associating a classical field with a random phase '

j

(j = 1, 2) to each condensate
[66]. Here we assume that the condensates are centered on the points ±a/2 and we neglect
for simplicity the role of atomic interaction during the time-of-flight (TOF) expansion.
This approximation may be questionable for short expansion times t, but becomes even-
tually correct since the atomic density drops as t

�3 when t increases. The expansion of
each condensate wave function is thus obtained using the single-particle propagator asso-
ciated with the Schrödinger equation. Assuming that the initial distance a between the
condensates is much larger than their initial size, the density at a point r after a TOF
duration t is approximately proportional to

⇢(r, t) /

��exp
⇥
'

1

+ im(r + a/2)2

/2~t

⇤
+ exp

⇥
'

2

+ im(r � a/2)2

/2~t

⇤��2

/ cos2(�'+ mr · a/2~t) , (21)

where �' = '

1

�'

2

. The interference pattern consists of straight fringes perpendicular to
the line joining the condensate centers, with a fringe spacing equal to ht/ma. The contrast
of the interference reaches 100% in this simple model, as a result of the macroscopic
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Figure 6: (a) Double well potential obtained by shining the center of the magnetic trap
with a laser beam. After evaporation one obtains two independent condensates. (b) After
release from the magnetic+optical potential the two condensates expand and overlap. The
spatial distribution in the overlap region shows interference fringes with a large contrast
(photograph: courtesy of W. Ketterle, MIT).

occupation of a single quantum state. For a given experimental shot, the positions of
the bright fringes give access to the relative phase �' between the two condensates.
The relative phase fluctuates randomly from shot to shot, and the superposition of many
interference patterns recorded in the same experimental condition leads to a uniformly
grey image.

One can also explain the emergence of the interference pattern by assuming that the
initial state of the two condensates is of the form |N

1

, N

2

i, with a well defined number of
particles N

1

and N

2

in each subsystem. In this case the phases '
1

and '
2

are initially not
defined and the probability distribution for the relative phase '

1

�'

2

is a uniform function
between 0 and 2⇡. The phase distribution evolves towards a narrower distribution as the
number of detected atoms increases. In this point of view the emergence of a relative
phase is a consequence of the information acquired on the system via the atomic position
measurements [67, 68, 69]. Such interfering independent condensates can be used to
investigate possible violations of local realism, using generalized Bell-type inequalities
[70].

So far we restricted our discussion to the case of independent condensates, assuming
that the tunneling between the central barrier was negligible on the time scale of the
experiment. When the coupling between the two sides of the barrier is significant, the
situation is reminiscent of a Josephson junction and it can give rise to a wealth of quan-
tum phenomena such as quantum self trapping [71] and a.c./d.c. Josephson e↵ects [72].
Repulsive interactions between particles in this double well geometry can also lead to a
reduction of the fluctuations of N

1

� N

2

. This so-called number squeezing was demon-
strated in [73] and can lead to a significant improvement of atom interferometry methods
[74, 75].
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3.2 One-body correlation function

The most direct tool to investigate the formation of a Bose–Einstein condensate is the
one-body correlation function

G

1

(r, r0) = h ̂†(r) ̂(r0)i , (22)

where the operator  ̂†(r) creates a particle in r. For a uniform fluid, G

1

depends only on
the distance |r�r0

| and the Penrose–Onsager criterion relates Bose–Einstein condensation
with a non-zero limit of G

1

when |r�r0
| tends to infinity [76]. For a non-degenerate ideal

atomic gas, G

1

is a gaussian function that decays to zero over a distance of the order of
the thermal wavelength �.

Several strategies have been developed to access G

1

. One can take advantage of the
fact that the momentum distribution P(p), which can be measured using the Bragg
spectroscopy method presented in the previous section, is the Fourier transform with
respect to the variable u of

R
G

1

(R + u/2, R� u/2) dR. Here we rather concentrate on
a direct measurement of G

1

, which can be obtained by looking at the interference of one
part of the gas located around r with another part located around r0.

The NIST group developed a procedure that consists in measuring the interference
between two spatially displaced copies of an original condensate [77]. In the NIST ex-
periment each copy was produced using a light pulse with a laser standing wave along a
given direction z, which transferred a small fraction of the atoms of the BEC to a state
with momentum p

0

= 2~kẑ, where k is the wave vector of the photons and where ẑ is a
unit vector along the z axis. This momentum kick p

0

resulted from the absorption of a
photon in one of the beams creating the standing wave, and from the stimulated emission
of a photon in the other beam. The kick p

0

was much larger than the typical momentum
of an atom in the trapped BEC. The total number of atoms with momentum p

0

was
measured as a function of the time t between the two light pulses. For a pure condensate
one can show that this number is related to the overlap between the initial condensate
wave function and the same wave function displaced by a distance ⇢ = p

0

t/m. More
generally this method gives access to the integral over r of G

1

(r, r +⇢). It has been used
by several groups to study the emergence of coherence in atomic gases in particular in
low dimension systems.

A second procedure consists in generating two continuous atomic beams out of an
atom cloud, and in looking at the spatial interference between these beams. We show in
figure 7 a result obtained by the Munich group. The atoms were confined in a magnetic
trap and each beam was extracted using a radio-frequency (rf) electromagnetic field. As
for evaporative cooling (see § 1.4), the rf flipped the magnetic moments of the atoms at
some definite locations. After the flip these atoms were not trapped anymore and felt
under the influence of gravity. The choice of the rf value determined the precise location
in the trap from which the atoms were extracted [78]. When a single rf wave is applied,
the atomic beam produced in this way is often refered to as an atom laser [79]. By
applying simultaneously two di↵erent rf values, the Munich group obtained two atomic
beams emerging from two di↵erent points of the atom cloud (see fig. 7a) [16]. When the
temperature T was chosen well below the critical temperature T

c

for BEC, they observed
an interference with a large contrast in the region where the two atomic beams overlapped
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Figure 7: (a) Extraction of two atomic beams (“atom lasers”) from a cloud of rubidium

atoms. Two radio-frequency waves, rf1 and rf2, flip the magnetic moment of the atoms

at well defined positions in the trap. After the spin flip the atoms are in an internal state

that is not confined in the magnetic trap, and they fall under gravity. (b) The atom cloud

is a quasi-pure condensate and a strong interference contrast is observed between the two

beams, which reveals the phase coherence of the sample. (c) For a cloud above the critical

temperature, no phase coherence is measured if the distance between the extraction points

exceeds 200 nm (photographs: courtesy of Immanuel Bloch, Munich).

(fig. 7b). The interference pattern remained visible even for a large di↵erence between the
two radio-frequencies, corresponding to a distance between the two point sources of the
order of the size of the cloud. On the opposite when T > T

c

, no detectable interference
was visible in the zone where the two beams overlap (fig. 7c), unless the distance between
the two sources was below 200 nm, i.e. the coherence length of the gas ` ⇡ � in these
experimental conditions. The measurement of the visibility of the interference pattern
between two matter-waves also provides a mean to investigate the critical behaviour of
the gas at the Bose–Einstein condensation point [80].

3.3 Two-body correlation function and Hanbury Brown and
Twiss e↵ect

In general the one-body correlation function does not capture all the physics of a many-
body system and one needs correlation functions involving an arbitrary number of particles
to characterise fully the state of a quantum fluid. The measurement of the two-body
correlation function

G

2

(r, r0) = h ̂†(r)  ̂†(r0)  ̂(r0) ̂(r)i (23)

is a particularly important step. Indeed G

2

corresponds to the probability to detect one
atom in r and another atom in r0, and it gives access to the density fluctuations in the
superfluid, by contrast to G

1

that characterizes its phase fluctuations.

An e�cient tool to measure G

2

is a position-resolved single atom counter. Here we
briefly describe results obtained in a collaboration between the Amsterdam and Orsay
groups, using a microchannel plate to detect metastable Helium atoms [81, 82]. The plate
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was placed below the atom cloud; when released from the trap, the atoms felt on the plate
and the position of each detected atom in the horizontal plane was recorded, as well as
its arrival time. Assuming ballistic expansion one could then reconstruct the in situ G

2

function. This experiment provided a nice illustration of the Hanbury Brown and Twiss
(HBT) e↵ect, i.e. the bunching of bosonic particles in a thermal source, corresponding
to a maximum of G

2

for r = r0. The HBT e↵ect can be interpreted in simple terms,
by considering the detection in r and r0 of two atoms that were in di↵erent initial states
a and b. There are two quantum paths {a ! r, b ! r0

} and {a ! r0
, b ! r} that

correspond to this process and that can interfere. For bosonic particles, thanks to the
symmetry of the global wave function by exchange of the two particles, the interference
is constructive in r = r0 and provides the HBT bunching. For thermal Bose gases the
observation of this bunching was reported in [83, 81]. The bunching is not present for
a pure condensate, because all particles then occupy the same initial state [81]. If the
experiment is performed with a Fermi gas instead of a Bose gas (3He instead of 4He for
example), one expects from Pauli principle an antibunching of particles at r = r0. This
was indeed observed in [82].

A technique that is also directly inspired from the HBT e↵ect is quantum noise inter-
ferometry [84]. This method, which does not require a detection at the single atom level,
is based on the autocorrelation function of individual images of a quantum gas. Many
images are taken in the same experimental conditions (temperature, chemical potential),
and each image di↵ers from the others only in its atomic shot noise. The average of
the auto-correlation function over these many images provides the desired density-density
correlation function. Spectacular illustrations of this technique are the evidence for the
spatial order of the Mott-insulator state of a gas in an optical lattice [85], and the de-
tection of correlations between pairs of atoms produced in the dissociation of a weakly
bound molecule [86].

Finally let us mention that one can access higher order correlation functions (at least
their values at short distances) by looking at the loss rate from the gas. As mentioned
above, the main loss process in cold atomic gases is usually three-body recombination.
This process occurs when three atoms are close to each other; two of them can form a
dimer bound state, and the third atom carries away the released energy. The correspond-
ing rate is approximately proportional to hn3(r)i, and its measurement as a function of
temperature and density allows one to follow the entrance of the gas in the quantum
degenerate regime [87]. In particular for a constant density hni, one can observe the re-
duction of hn3

i by a factor 3! = 6 between a thermal state and a pure condensate [88].
The strong decrease of the three-body recombination rate in a quasi-one dimensional gas
was also used as a signature of the entrance in the strongly correlated Tonks-Girardeau
regime [89].

4 Low dimensional aspects: BEC vs. superfluidity

Dimensionality has a strong influence on the type of phase transitions that can take place
in a physical system [90]. Indeed, phase transitions result from a competition between
cooperativity e↵ects and quantum or thermal fluctuations. Because a particle in a 1d
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or 2d geometry has less neighbours than in 3d, the role of interactions is weakened and
disordered states are favored. More precisely, the Mermin-Wagner theorem states that
long range order cannot occur at non-zero temperature in a 1d or 2d system with short-
ranged interactions and a continuous symmetry [91]. An illustration of this result is the
absence of Bose–Einstein condensation in an infinite, homogeneous Bose gas in one or two
dimensions [92], which holds both for the ideal and interacting cases.

The absence of true Bose–Einstein condensation in a low-dimensional gas is still com-
patible with the presence of a superfluid component. The proper definition of superfluidity
is based on the sensitivity of the N -body wave function  (r

1

, . . . , r
N

) with respect to a
boost modeled by a change in the boundary conditions. Instead of choosing the usual
periodic boundary conditions in a box of size L, one can consider twisted boundary con-
ditions such that  is multiplied by e

i✓ when the coordinates r
i

are increased by Le,
where e is a unit vector along one of the directions of space. If the system is normal (non
superfluid) its free energy is una↵ected by the phase twist. On the contrary a superfluid
system possesses some phase rigidity, and its free energy increases by an amount �F

proportional to ✓2 for small ✓. The rigourous definition of the superfluid density is then
based on the non-zero value of the ratio �F/✓

2. From a practical point of view the twist
in the boundary conditions is provided by a slow rotation of the system, and the angle ✓
is the Sagnac phase appearing in the frame rotating with the gas. The non-zero value of
�F corresponds to a reduction of the moment of inertia of the gas, with respect to the
value expected for a classical fluid. Twisted boundary conditions can also be imposed by
taking advantage of the geometric Berry’s phase [93].

In the following we discuss the case of the superfluid transition in a two-dimensional
Bose gas. We first recall why no Bose–Einstein condensation occurs in an infinite, ideal
gas, and we briefly describe the Berezinski–Kosterlitz–Thouless mechanism that is at the
origin of the superfluid transition in this system. We then turn to trapped two-dimensional
atomic gases, for which the finite-size of the system makes possible the emergence of a
significant condensed fraction at a non-zero temperature. To keep this section within a
reasonable length, we do not address here the case of the superfluidity of one-dimensional
systems and we refer the reader to [94] and refs. in for a discussion of this problem.

4.1 The superfluid transition in a uniform 2d gas

For an ideal 2d gas, the absence of Bose–Einstein condensation at any non-zero temper-
ature is a direct consequence of the equation of state

n

2

�

2 = � ln(1� Z) , (24)

where n

2

is the surface density of the gas and Z the fugacity defined as Z = exp(µ/k

B

T ).
From this result it is clear that one can associate a value of the chemical potential to
an arbitrary large phase space density n

2

�

2. This is very di↵erent from the 3d situation
where, as mentioned in the first section, the equation of state for the ideal gas no longer
possess any solution for n

3

�

3

> ⇣(3/2).

The two-dimensional situation is marginal in the sense that although thermal fluctu-
ations prevent the apparition of a true Bose–Einstein condensate, a superfluid transition
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at a non-zero temperature is still possible. This transition has been investigated with a
great precision in helium films [95]. Its key feature, first described by Berezinskii [96] and
by Kosterlitz and Thouless [97] (BKT), is well captured by the decay at large distances
|r � r0

| of the one-body correlation function G

1

(r � r0) defined in (22). For a Bose gas
with repulsive interactions, three regimes can be identified when the temperature is de-
creased while maintaining a fixed spatial density n

2

. At high temperature, the interaction
energy is negligible compared to k

B

T ; in this case G

1

is a gaussian function that tends
to zero over a distance given by the thermal wavelength �. When T is lowered, the in-
teraction energy becomes significant and density fluctuations are gradually suppressed.
The decay of G

1

then becomes exponential with a characteristic length ` that increases
when the temperature decreases. At a critical temperature T

c

, the length ` diverges and
a fraction of the gas becomes superfluid. For T < T

c

, the one-body correlation function
still decays at infinity (otherwise a true BEC would be present) but the decay is only
algebraic: G

1

/ |r � r0
|

�↵. Remarkably the 2d superfluid density n

2,s

is related to the
exponent ↵ by the simple law ↵ = 1/n

2,s

�

2. Just below T

c

, the exponent ↵ takes the

universal value 1/4 irrespective of the strength of the interactions, so that n

(c)

2,s

= 4/�2

[98]. Note that the universal relation n

(c)

2,s

�

2 = 4 giving the critical point is implicit, since
n

2,s

is itself a function of temperature. The relation between the total density n

2

and the
temperature at the critical point has been determined numerically in [99] in the regime
of weak interactions. It can be written

n

(c)

2

�

2 = ln(C/g) , (25)

where g ⌧ 1 is the dimensionless parameter characterising the interactions in the 2d fluid
and C ⇡ 380 is a constant.

The microscopic mechanism at the origin of the 2d superfluid transition is the breaking
of vortex pairs. In this context a vortex is a point in space where the superfluid density
vanishes, and around which the phase rotates by ±2⇡ (vortices corresponding to multiples
of ±2⇡ play a negligible role in practice). In the domain of temperature of interest, the
relevant excitations of the fluid are either vortices or phonons, both corresponding to phase
fluctuations. Density fluctuations play a minor role at least at the qualitative level. In
the low temperature superfluid phase, vortices can only exist in the form of bound pairs,
formed by the association of two vortices with opposite circulation. Indeed the free-
energy cost of a single isolated vortex is large and even diverges in the thermodynamic
limit. When the temperature increases and n

2,s

�

2 reaches the value 4, the free energy for
a single vortex decreases and finally vanishes. Isolated vortices can then appear, which
further reduces the value of n

2,s

and makes the emergence of other free vortices even more
likely. This avalanche e↵ect entails that the properly renormalized superfluid density
vanishes [97, 98].

4.2 The 2d trapped Bose gas

Cold atom experiments are usually performed in a harmonic potential and the confinement
modifies significantly the results obtained for the infinite homogeneous case. We consider
first an ideal gas in an isotropic potential of frequency !. The single particle density of
states is proportional to the energy, like for a particle moving freely in a 3d space. One
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recovers therefore a genuine Bose–Einstein condensation when the number of particles
exceeds the critical number [100]

N

c

=
⇡

2

6

✓
k

B

T

~!

◆
2

. (26)

This transition survives in the thermodynamic limit, which corresponds for a two-dimen-
sional harmonic trap to letting the number of particles N go to infinity, the trap frequency
! go to 0, while keeping the product N!

2 constant.

The next question is whether this result still holds in presence of interactions. The
answer is quite subtle (see [101] for a review) and we outline here only the main results.
The simplest approach is based on the mean-field Hartree-Fock approximation, in which
repulsive interactions are accounted for by adding a term proportional to the density n

2

(r)
to the trapping potential. The mean-field energy reduces the strength of the confinement
at the bottom of the trap, where the density is the largest, and makes the situation very
similar to the case of a 2d gas in a flat potential. A quantitative analysis shows that this
flattening of the confinement has a dramatic e↵ect: within the mean-field description, the
singularity for N > N

c

that was signalling the condensation for an ideal gas disappears
[102].

The Hartree-Fock approach is however not the end of the story. Indeed it does not
predict the superfluid BKT transition when it is applied to the uniform infinite system.
To go further it is convenient to turn to the local density approximation, and make use
of the known results for the infinite uniform 2d gas [103]. Within this approximation one
predicts that the superfluid transition takes place in the trapped system when the phase
space density at the center of the trap reaches the critical value (25). This approximation
has been accurately checked by a Quantum Monte Carlo calculation [104] as well as with
semi-classical field simulations [105].

Let us now focus on the case where a superfluid with a size L has formed at the bottom
of the trap. Is there also a significant condensed fraction in this case? We recall that the
answer would be negative in an infinite uniform system, because the one-body correlation
function G

1

decays algebraically with distance in a low temperature two-dimensional gas.
However for a system of finite size L this argument does not apply. The condensed
fraction f , which is defined as the largest eigenvalue of the one-body density operator,
is approximately given in this case by G

1

(L) ⇠ (⇠/L)↵, where ⇠ is the healing length.
We mentioned above that the exponent ↵ is smaller than 1/4; taking as a typical value
L ⇠ 100 ⇠ we find f � 0.3, which is confirmed by Monte Carlo calculations [104, 106]. We
reach here a conclusion that is well known in the domain of two-dimensional magnetism
[107]: Because of finite size e↵ects, the two phenomena of superfluidity and condensation
cannot be dissociated for any practical case.

4.3 Making a 2d atomic fluid in practice

In order to realise experimentally a 2d atomic gas in the xy plane, one usually freezes the
third degree of freedom with a laser beam that provides a strong confinement m!

2

z

z

2

/2
along the z direction. If the temperature and the chemical potential are both smaller
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than ~!
z

, the gas can be considered as a 2d system from the thermodynamic point of
view, with a thickness given by the size of the ground state of the harmonic oscillator
along z, a

z

=
p

~/m!

z

. The 3d scattering length a

s

is usually much smaller than a

z

so that atom interactions can still be described by the usual 3d scattering formalism
[108]. The interaction energy of the gas E

int

can then be written in good approximation
E

int

= (~2

g/2m)
R

n

2

2

(r) d

2

r, with g =
p

8⇡a

s

/a

z

.

The simplest laser scheme that produces the required confinement along z is a single
gaussian beam. It must be red-detuned with respect to the atomic resonance, so that
the atoms are attracted by the dipole force towards the high intensity region [109]. The
beam is focused with a cylindrical lens in order to produce a horizontal light sheet with a
thickness of a few microns. More elaborate schemes involve evanescent waves at the surface
of a dielectric medium, optical lattices and holographic wave plates (see [94] for a review).
The first diagnosis of a 2d gas consists in measuring its density profile in the xy plane,
either in situ or after a time-of-flight. Experiments with rubidium atoms, corresponding
to g = 0.15, have shown the existence of a sharp transition [110, 111]. For a small phase
space density at center, the density profile is smooth and relatively well described by a
single gaussian function. Above a critical value (which is in good agreement with the BKT
prediction (25)), a narrow feature appears at the center of the trap on the top of a broader
distribution, in good agreement with a two-fluid model. For experiments performed with
sodium, a good description of the data around the critical point is obtained only if one
introduces a third intermediate component, which is interpreted as a “non-superfluid”
quasi-condensate [112]. A possible hint to explain the di↵erences between the sodium
and rubidium cases is the notably smaller interaction parameter for the Na experiment
(g = 0.02), making it closer to the ideal gas case.

Further insight on 2d gases is provided by the measurement of the function G

1

, which
characterises the phase distribution in the fluid. In order to access it, one can interfere
two independent planes of atoms prepared in the same conditions (fig. 8a) and study the
distribution of contrasts of the interference patterns [113, 114]. Such a measurement was
performed with rubidium atoms and gave evidence for the rapid increase of coherence of
the gas below the critical point (figs. 8b-d) [115]. In addition some interference patterns
revealed the presence of isolated vortices, which appear as dislocations of the fringe system
(fig. 8d). The number of dislocations increased with temperature, until the critical
point was reached and the interference disappeared. The link between fringe dislocations
and vortices was confirmed by numerical simulations based on a classical field stochastic
evolution [116]. Another way for measuring G

1

is a homodyning method, in which one
interferes the 2d gas with its own copy, after it has been displaced by an adjustable
distance [112]. This method is reminiscent of the one presented in § 3.2 for 3d samples,
and it gives access to the coherence length ` of the gas as a function of temperature above
and below the critical point. The authors of [112] could observe in this way the transition
between the ‘hot’ regime where ` ⇠ � and the colder one where `� �.

The research on 2d atomic superfluids is still a very open field of research and many
issues remain to be investigated. We will mention here only two of them. The first series
of problems deals with ‘out of equilibrium’ questions: how do two independent planes
dephase with respect to each other, if their phases were locked at initial time? This
question has already been experimentally answered for 1d gases [117] and it would be
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Figure 8: (a) Interference between two independent planar gases, observed after time-of-
flight. (b-d): Examples of interference patterns measured with the experimental setup
described in [115]. The imaging beam is propagating along the y axis. The pattern (b)
is obtained with very cold gases, whereas (c) corresponds to a larger temperature. The
dislocation in (d) is the signature for the presence of a vortex in one of the two gases.

interesting to revisit it for 2d fluids, where the loss of coherence is predicted to behave
as a power-law function of the evolution time [118]. A second crucial aspect is the direct
determination of the superfluid component, by measuring for example the moment of
inertia of the gas. Up to now, investigations on 2d fluids have mostly focused on phase
coherence. Looking directly at superfluid properties would allow one to draw a bridge
with the physics of helium films, where transport measurement is a natural diagnostic
[95].

5 Summary and Outlook

We presented in this Chapter the methods that allow one to prepare and probe a quantum
atomic gas. These gases provide a practical realisation of a paradigm of many-body theory:
the weakly interacting Bose gas. This model was developed in the period 1950-70 but
could not be applied in a quantitative manner to the only Bose superfluid (liquid 4He)
that existed at that time. Indeed in superfluid 4He the interactions are strong and lead
to a severe depletion of the condensate even at zero temperature. On the contrary the
interparticle distance in atomic gases is usually much larger than the scattering length
characterising the interactions, and the microscopic description of the fluid in terms of
the Gross–Pitaevskii equation (GPE) is an excellent approximation. The Bogoliubov
linearisation of the GPE provides an excitation spectrum that is in very good agreement
with experimental observations, and the GPE can even be used to study the turbulent
dynamics of theses gases ([119] and the Chapter by M. Tsubota, K. Kasamatsu, and M.
Kobayashi in the present book).

By contrast to ‘conventional’ superfluids like liquid 4He or superconductors, transport
measurements are not well suited for atomic vapours. The required ‘circuitry’ would be in
most cases di�cult to implement with the standard tools of atomic physics: magnetic fields
and laser beams. Therefore the investigation of atomic gases required the development
of novel probing techniques: time-of-flight expansion, Bragg spectroscopy, interference
between independent samples, etc.. These tools give access in particular to the momentum
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distribution of the particles or to its Fourier transform, the one-body correlation function
G

1

. Recently the achievement of detection methods at the single atom level (see e.g.
[120]) open the opportunity to take a direct ‘snapshot’ of a many-body wave function.

The possibilities opened by the achievement of degenerate atomic gases go well beyond
the mean-field physics described by the GPE. A celebrated example is the transition from
superfluid to Mott-insulator states, which can be observed with a gas confined in an
optical lattice (see [121] and the Chapter by Tin-Lun Ho in this book). Another class of
strongly correlated states that are actively looked for, are the analogues of those appearing
in fractional Quantum Hall e↵ect. Such states are expected to emerge in an atomic gas
submitted to a strong gauge field [122]. This gauge field can originate from a fast rotation
of the system, or from the geometrical phase accumulated by an atom when it follows
adiabatically one of its internal states [94]. The study of the BEC-BCS cross-over also
belongs to ‘beyond mean-field’ physics, using fermionic species instead of bosonic ones
(see the Chapter by M. Zwierlein).

To keep this Chapter within reasonable length we had to omit several important
developments of many-body physics with cold atomic gases. We restricted in particular
to single components superfluids, but we should mention that the research on multi-
component gases is also very active. One can take advantage of the spin degeneracy and
prepare a spinor gas with 3 (5) components for a F = 1 (2) atomic state, which leads
for example to a spectacular texture dynamics [123]. One can also mix two di↵erent
atomic species (or even three species like in [124]) with di↵erent masses and possibly
di↵erent statistical nature (Bose-Bose, Bose-Fermi and Fermi-Fermi). Finally we mention
a promising emerging subject, devoted to the e↵ect of disorder on superfluidity. Recent
experiments studied the localisation of atoms in a disordered potential created by laser
light in a one-dimensional geometry [125, 126]. The transition to two and three dimensions
is now underway [127], and these studies could help clarifying the subtle interplay between
single-particle Anderson localization phenomenon and superfluidity of an interacting gas.
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[70] W. J. Mullin and F. Laloë. Interference of Bose–Einstein condensates: Quantum
nonlocal e↵ects. Phy. Rev. A, 78(6):061605, 2008.
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