
Basic Concepts and some current Directions in Ultracold Gases

Wilhelm Zwerger∗
Physik-Department, Technische Universität München, D-85748 Garching, Germany

These are notes on a series of lectures on many-body phenomena in ultracold gases at the Collège de France
in the Fall of 2021. Their main focus are Bose systems, for a review of strongly interacting Fermi gases see
the Varenna Lectures 2014, accesssible via arXiv:1608.00457. As an introductory comment, I quote from the
preface of the two volume book on ’Statistical Field Theory’ by C. Itzykson and J.-M. Drouffe who remark:

’ A book might give the illusion, especially to students, that some knowledge has become definitive and that
the authors understand every part of it. This is a completely false view. No one can really fully master even his
own subject, and this is luckily a source of progress.’
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FIG. 1: Schematic setup of out-coupling two atom beams from a trapped BEC via RF-transitions into an untrapped hyperfine state mF = 0.
The visibility of the resulting interference fringes as a function of separation is shown on the right. Below the BEC transition temperature
of Tc ' 400 nK, the visibility approaches a constant for separations exceeding about ten average interparticle distances, thus providing direct
evidence for the presence of off-diagonal long range order. The Figures are taken from Bloch et al. [2].

I. SUPERFLUIDITY IN GASES AND LIQUIDS

Off-diagonal long range order and Widom particle insertion A precise definition of Bose-Einstein condensation (BEC) in an
interacting system has been given by Penrose [1]. It is based on the concept of off-diagonal long range order (ODLRO) which
states that the off-diagonal elements

lim
|x−x′ |→∞

ρ1(x,x′) = lim
|x−x′ |→∞

〈ψ̂†(x)ψ̂(x′)〉 = n0 , 0 (1)

of the one-particle density operator ρ̂1 approach a finite constant at arbitrary large separation. The limit defines a condensate
density n0 which is the square of the order parameter for BEC in the interacting system. Physically, the condition (1) reflects
the presence of long range phase coherence: states in which one particle is removed either at x or at a distant position x′ have
a finite overlap for arbitrary large separation. Experimentally, this property has first been observed in the context of ultracold
gases by Bloch et al. [2]. As shown in Fig. 1, the visibility in the interference from two beams outcoupled at separate points of
a trapped BEC decreases to zero as a function of separation above the critical temperature while it stays finite below the transition.

In the following, we want to ask what are necessary and sufficient conditions in the ground state many-body wave function
for the existence of ODLRO. Specifically, we consider a generic non-relativistic Hamiltonian with pure two-body interactions.
The associated first quantized Hamiltonian

ĤN = −
~2

2m

N∑
i=1

∇2
i +

∑
1≤i< j≤N

V(xi − x j) (2)

gives rise to a proper thermodynamics with an extensive free energy and a positive compressibility provided the interaction obeys∑
1≤i< j≤N

V(xi − x j) > −B · N . (3)

Here, B is a positive constant independent of the specific state. As shown by Fisher [3], a sufficient condition for the validity
of Eq. (3) is that the two-body potential V(r) ≥ −ε has a finite lower bound, decays faster than 1/r3 at large distances and
increases more rapidly than 1/r3 for separations smaller than a short range scale σ. More specifically, we consider interactions
with an asymptotic van der Waals tail V(r→∞) = −C6/r6. Apart from σ, they are characterized by the van der Waals length
`vdW = (mC6/~

2)1/4/2 as a second length scale which is determined solely by the asymptotic part of the interaction. A standard
example is the Lennard-Jones potential V(r) = 4ε [(σ/r)12 − (σ/r)6] where the short distance scale σ and the depth ε are
connected with the strength of the van der Waals tail via C6 = 4ε σ6. Independent of the precise form of V(r), the equilibrium
free energy F(N) = f N + . . . for the class of potentials obeying (3) scales linearly with the particle number. At zero temperature,
the generic ground state even in the limit of vanishing pressure is a solid, where both the particle statistics and zero point
fluctuations play only a minor role. A measure for their strength is provided by the parameter

ΛdB =
~

σ
√

mε
−−−→
vdW

1
2

(
σ

`vdW

)2

(4)

introduced by De Boer [4], which is the square root of the ratio between the zero point energy on the scale σ and the depth ε of
the attractive part of the potential. From numerical studies, Nosanow et al. [5] found that for bosons the crystalline solid ground
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FIG. 2: The Figure on the left shows the phase diagram of 4He, whose ground state is a superfluid liquid below a critical pressure pc ' 25 bar.
On the right, a qualitative phase diagram is shown for a Bose system in the regime ΛdB > Λc

dB, where the ground state at low pressure is a
superfluid gas. The continuous transition from the superfluid to the normal gas asymptotically exhibits a cubic dependence p(T ) ' g/λ6

T ∼ g T 3.

state realized for small values of ΛdB melts into a liquid at a non-universal critical value ΛdB ' 0.37 via a first order quantum
phase transition. Both the solid and the liquid phase have a finite density n̄ at vanishing pressure and a negative ground state
energy u(n̄) per particle. Specifically, for 4He, where ΛdB ' 0.42, precise results for the dimensionless density n̄σ3 ' 0.364
or the energy per particle u(n̄) ' −0.7 ε ' −kB · 7 K are available by numerical methods [6, 7]. Upon further increasing the
strength of the zero point fluctuations, the liquid eventually unbinds into a gas through a continuous quantum phase transition
at Λc

dB ' 0.68. This transition was first studied numerically by Miller et al. [8] and will be discussed in more detail below.
The phase diagram at finite temperature beyond Λc

dB, which has neither a triple nor a critical point, is sketched in Fig. 2. As
a true equilibrium configuration it is realized only for spin polarized hydrogen, where ΛdB ' 0.74 [9]. A gaseous superfluid
near vanishing pressure and temperature is also present in ultracold Alkali gases, even though their de Boer parameter is much
less than one. This is a result of the fact that in the regime of very low densities n`3

vdW � 1, the short distance length σ can
effectively be taken to zero and the liquid or solid equilibrium phases are not reached because states with negative energy are
inaccessible kinematically with just two-body collisions. As a result, the Hamiltonian can be truncated to one involving only
states in the continuum. For positive two-body scattering length a, a gaseous state then forms a stable equilibrium configuration.
In the following, we will show that the ground state of a Bose system always exhibits BEC or the related phenomenon of
superfluidity provided it is a homogeneous fluid, i.e. either a liquid or a gas. For solids with broken translation invariance,
superfluidity may still be present, however generically this requires a finite defect density in their ground state.

It was observed by Feynman [10] that the many-body ground state wave function ψ(x1,x2 . . .xN) of a Bose system with
a permutation symmetric and real Hamiltonian of the form (2) has no nodes. In fact, this is a special case of a more general
theorem which states that the lowest energy in an unconstrained minimization of 〈ψ|Ĥ|ψ〉 is realized for a positive and symmetric
wave function (’minimizers are bosonic’) 1. The theorem relies on the observation that |ψ| gives the same energy as ψ itself and
that in a decomposition ψ = ψs + ψr into a permutation symmetric part ψs and a remainder, the cross terms in 〈ψ|Ĥ|ψ〉 vanish
(for a rigorous proof see Lieb and Seiringer [12], chapter 3.2.4). In order to deal with Bose fluids with strong interactions as in
4He, Feynman and later Penrose and Onsager [13] suggested to express the symmetric and positive many-body wave function

ψ(x1,x2 . . .xN) =
[
pcl(x1,x2 . . .xN)

]1/2
=

1
√

QN
exp {−ṼN(x1,x2 . . .xN)/2} (?) (5)

in terms of the square root of a N-body probability density of a classical fluid at some finite effective temperature. The normali-
zation is provided by the classical configuration integral QN =

∫
d1 . . . dN exp {−ṼN(1 . . .N)}. In principle, such a representation

is always possible by defining the dimensionless effective potential ṼN(1 . . .N) of the classical reference system such that the
square of (5) is obeyed as an identity. This is used e.g. in Laughlin’s plasma analogy for incompressible states in the lowest
Landau level, connecting the square of Ansatz wavefunctions to a 2d Coulomb gas with logarithmic interactions [14]. In the
present context, however, the idea is useful only if ṼN is similar to the underlying microscopic interaction in the quantum many-
body problem. As will be shown below, this is actually impossible for any compressible Bose fluid. An assumption which is
often made in addition is that the classical reference system can be described by a sum ṼN(1 . . .N) =

∑
i< j 3̃(ri j) involving a

1 The theorem also implies that the two-electron ground state of a spin-independent Hamiltonian is always a singlet, see problem 2 in Ref. [11] p. 689 .
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FIG. 3: Widom particle insertion: Two particles at x respectively x′ are added to a classical fluid of N − 1 particles at positions x2 . . .xN ,
represented by full discs. The strength of the interaction of the added particles with those of the fluid is half of that within the fluid itself.

translation and rotation invariant two-body interaction 3̃(r). In this case, the many-body wave function

ψJastrow(x1,x2 . . .xN) =
1
√

QN
exp

−∑
i< j

3̃(ri j)/2

 (6)

is a product of N(N − 1)/2 identical two-body wave functions, as introduced by Bijl [15] and Jastrow [16]. For the following
considerations, this form is not necessary, however. Indeed, quite generally, the representation (5) implies that the one-particle
density matrix of the quantum system

ρ1(x,x′) =
N

QN

∫
d2 . . . dN exp

{
−

[
ṼN(x, 2 . . .N) + ṼN(x′, 2 . . .N)

]
/2

}
(7)

can be expressed in terms of a Boltzmann weight of a classical N-particle system where one of the particles is either at a position
x or at x′. As indicated schematically in Fig. 3, the exponent 2

1
2

[
ṼN(x, 2 . . .N) + ṼN(x′, 2 . . .N)

]
= ṼN−1(2 . . .N) + ∆2W̃1/2(x,x′) (8)

may be separated into a contribution ṼN−1(2 . . .N) which accounts for the full interaction energy of an N − 1-particle system
plus an additional term ∆2W̃1/2(x,x′) which describes the change in energy associated with adding two particles at positions x
and x′ that do not interact among themselves. The subscript 1/2 indicates that they interact with the N − 1 particles at positions
x2, . . .xN with only half the strength of the potential in the N − 1-particle system. In a similar manner, the configuration integral
for N particles

QN = QN−1

∫
d1 〈exp {−∆1W̃(x1)}〉N−1 (9)

can be expressed in terms of an expectation value of the dimensionless interaction energy ∆1W̃(x1) associated with adding a
single particle at position x1. Here, the average 〈. . .〉N−1 is defined by an integration over the positions x2, . . .xN of an N − 1 -
particle system with Boltzmann weight exp {−ṼN−1(2 . . .N)} and a normalization through the associated configuration integral
QN−1. For a homogeneous system, 〈exp {−∆1W̃(x1)}〉N−1 does not depend on x1, which can be choosen as the reference point
for the remaining coordinates x2, . . .xN . The integral

∫
d1 then just gives a factor V . Moreover, using standard thermodynamic

relations, the ratio QN/QN−1 = V · exp {−µ̃ex} can be expressed in terms the excess chemical potential µ̃ex = F̃N − F̃N−1 − µ̃id of
the fluid in units of the thermal energy. In the theory of classical fluids, these relations go back to Widom [17] and are called the
Widom particle insertion method. In fact, the extraction of µ̃ex in this manner is an example of an equality due to Jarzynski [18],
which relates the excess chemical potential in equilibrium to the exponential average of the work ∆1W̃(0) needed to add a single
particle at fixed total volume V . Using the decomposition in Eq. (8), the one-particle density matrix

ρ1(x,x′) = n
〈exp {−∆2W̃1/2(x,x′)}〉N−1

〈exp {−∆1W̃(0)}〉N−1
−−−−−−−−→
|x−x′ |→∞

n
〈exp {−∆1W̃1/2(0)}〉2

〈exp {−∆1W̃(0)}〉
= n0 , 0 (10)

of a homogeneous Bose fluid ground state can be expressed as the ratio of two expectation values in a N − 1-particle state. For
large separation |x − x′|, this approaches a finite constant quite generally because inserting two particles at widely separated

2 Note that both ∆2W̃1/2(x,x′) and ∆1W̃(x1) in Eq. (9) depend implicitely also on the coordinates x2, . . .xN but this dependence is suppressed.
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positions in a classical fluid with short range interactions is equivalent to two independent single particle additions. A particularly
simple situation arises by assuming that the classical reference system is a fluid of hard spheres with diameter σ. In this case,
∆1W̃1/2(x)|HS ≡ ∆1W̃(x) because half of the interaction strength is the same as the full interaction. For the hard sphere fluid, the
ratio which determines the condensate fraction in (10) is thus equal to exp {−µ̃ex}. An analytical expression for the associated
excess chemical potential, which only depends on the dimensionless filling fraction η, is obtained within the Carnahan-Starling
form of the equation of state of a classical hard sphere fluid which gives 3

µ̃ex|HS = η
8 − 9η + 3η2

(1 − η)3 with η = N3σ/V =
π

6
nσ3 . (11)

As shown by Penrose and Onsager [13], this approach can be used to provide an estimate for the condensate fraction in 4He.
Taking the known value σ ' 2.5Å of the short distance scale below which the 4He - 4He interaction becomes strongly repulsive
as an effective hard sphere diameter, the density of liquid 4He is about 0.28 times that of close packing, which corresponds to
an effective dimensionless filling fraction ηeff(4He) ' 0.2. Based on Eq. (11) for the associated excess chemical potential, this
leads to a condensate fraction n0/n = exp−µ̃ex = 0.078. The assumption that the many-body ground state wave function of
a Bose fluid has a representation in the form (5) of an effective classical reference system thus leads to two important conclusions:

(a) Any translation invariant ground state of an interacting Bose system is necessarily a superfluid exhibiting ODLRO, because
two-particle insertion at widely separated points in a classical fluid with short range interactions factorizes.

(b) Explicit results for the condensate fraction of strongly correlated Bose fluids may be obtained from a generalization of the
Widom particle insertion method in classical fluids via Eq. (10). In particular, using the known value µ̃ex for the excess chemical
potential of a gas of hard spheres, the prediction of a zero temperature condensate fraction n0/n ' 0.08 in liquid 4He by Penrose
and Onsager is close to the value obtained via path integral Monte Carlo methods [6].

Both conclusions are correct, however their derivation based on the mapping (5) is moot. A simple reason for this becomes
evident from the fact that path integral Monte Carlo calculations of the hard sphere Bose fluid by Grüter et al. [20] show that its
ground state is a non-superfluid crystal beyond η ' 0.12. The hard sphere system is thus no longer a fluid at 4He densities. A
more fundamental problem with Feynman’s Ansatz connecting the many-body wave function to the square root of the distribution
function of particle positions in a classical fluid is revealed by considering the limit of a dilute gas. The thermodynamic properties
of the classical reference fluid may then be obtained from a virial expansion. For the specific case of a hard sphere system, using
(11) to leading order in η � 1, this results in n0/n = 1 − 8η + . . .. The deviation of the condensate fraction from the ideal Bose
gas limit is thus found to be linear in the density n. This contradicts the classic Bogoliubov result [21]

n0 = n −
8n
3

(
na3/π

)1/2
+ . . . = n −

√
2

12π2 ξ3 + . . . (12)

where the correction to n0/n due to interactions scales with the square root of the density, a prediction that was verified ex-
perimentally by Lopes et al. [22]. In the limit of a dilute gas, the healing length ξ = (8πna)−1/2 only depends on the density
and the scattering length a > 0 as a single parameter characterizing the interaction. The physical origin of the discrepancy
between Bogoliubov theory and a naive virial expansion is hidden in the fact that the interactions in the classical reference fluid
underlying the representation (5) can not be of short range. Indeed, for any classical compressible fluid, the static structure
factor Scl(q → 0) = (∂n/∂µ̃)/n is finite in the limit of vanishing wave vector. By contrast, a compressible quantum fluid at zero
temperature has a static structure factor

S (q→ 0) = |q| ξ/
√

2 + . . . → g(2)(r→∞) = 1 −


ξ

π2
√

2 nr4 in d = 3
ξ

2π
√

2 n2r3 in d = 2
(13)

which vanishes in a non-analytic manner. For a fluid of bosons, the associated characteristic length ξ is fixed by the sound
velocity cs via ξ = ~/(

√
2 mcs), a relation which in fact holds for arbitrary strength of the interactions. This is a consequence

of the fact that the Feynman-Bijl single mode result Eq = εq/S (q) → ~csq for the excitation energy becomes exact in the limit
of small wave vectors [23], as will be discussed in more detail in Lecture III. Due to Scl(q = 0) , 0, the Ansatz (5) does not
describe correctly the long wavelength physics and therefore fails to reproduce the Bogoliubov result in the dilute limit. The

3 See chapter 3.9 in the book by Hansen and McDonald [19]. Note that the expression (11) is applicable only in the fluid phase for η < 0.49 beyond which the
equilibrium state of the classical hard sphere system is a crystal with an fcc-lattice structure, reaching close packing at ηcp = π

√
2/6 ' 0.74.



7

excellent agreement of the prediction n0/n ' 0.08 for the condensate fraction of 4He with precise ab initio results which is
obtained by using this mapping must therefore be considered as fortuitous. Formally, the behavior S (q → 0) → |q| ξ/

√
2 can

be enforced in a finite temperature classical fluid by adding long range repulsive two-body interactions 3̃(r) → 1/(
√

2π2nξ r2)
(or 3̃(r) → 1/(

√
2πn2ξ r) in two dimensions), as pointed out by Reatto and Chester [24]. Apart from the required knowledge

of the effective healing length ξ or the associated sound velocity cs, however, this interaction is not only density dependent
but decays to zero so slowly that the condition (3) for the existence of a proper thermodynamic limit is violated. Whether the
expression (10) for the condensate fraction in strongly interacting Bose fluids can be extended to cover a situation where the
short distance scale σ can be taken to zero while the two-body scattering length a is of the order of the mean interparticle
spacing or even infinite, is an open problem. It is of current interest in view of recent measurements of dimensionless ratios
which characterize the unitary Bose gas, whose condensate fraction is estimated to be n0/n ' 0.2 [25].

Bogoliubov theory as an internal Josephson effect in momentum space At this point, following in part Lectures by Nozières
[26], it is instructive to add a few remarks regarding the Bogoliubov approach which are not discussed in standard textbooks. The
approach relies on replacing the annihilation operator b̂0 → z for vanishing momentum by a complex number z (or z̄ for b̂†0) and
neglecting contributions to the interaction part of the second quantized form of the Hamiltonian (2) which contain only operators
with finite momentum (for a discussion of why a replacement of operators by a c-number still gives the correct thermodynamics
see Lieb et al. [27]) As a result, the Hamiltonian is reduced to a quadratic one

ĤBog = EH +
∑
q,0

(
εq + n0V(q)

)
b̂†qb̂q +

1
2V

∑
q,0

V(q)
(
z̄2 b̂qb̂−q + z2 b̂†−qb̂†q

)
→ EBog +

∑
q,0

Eqα̂
†
qα̂q (14)

which may be diagonalized by introducing a set of bosonic quasiparticles. Here, n0 = |z|2/V is the condensate density and
V(q) is the Fourier transform of the two-particle interaction, which is assumed to be positive. Its value g(0) = V(q = 0) > 0 at
vanishing momentum determines the Hartree energy EH = N · g(0)n/2. The Hamiltonian (14) is a bosonic version of the reduced
BCS-Hamiltonian for fermions. Provided that the phase of the complex number z can be choosen to vanish, the associated gap
function ∆q ≡ n0 V(q) is real and positive. As will be shown below, this is always possible, however a choice for the phase of z
also fixes the phase associated with pairs (q,−q) of particles in the depletion. Following the notation of standard textbooks [28],
the operators α̂†q which create the bosonic quasiparticles with momentum q are connected with the corresponding operators b̂†q
of the underlying bosons by

α̂†q = uqb̂†q + 3qb̂−q ↔ b̂†q = uqα̂
†
q − 3qα̂−q with u2

q − 3
2
q = 1 . (15)

The amplitudes uq = cosh θq and 3q = sinh θq are conveniently parametrized by a real rotation angle θq, depending only on the
magnitude q= |q| of the wavevector. The ground state of the Hamiltonian (14) is defined by the condition α̂q|ΨBog〉 ≡ 0 of being
the vacuum state for quasiparticles at all q , 0. It may be written in the form

|ΨBog〉 = |z, {λq}〉 = e−|z|
2/2

∏
q,0

(
1 − |λq|

2)1/2 exp
(
z b̂†0 +

∑
q,0

λqb̂†qb̂†−q
)
|0〉 (16)

of a product of a coherent state for the condensate with one involving pairs (q,−q) with vanishing total momentum for the
depletion. Indeed, choosing λq = −3q/uq, the state (16) has a vanishing number of quasiparticles because[

b̂q, exp (λqb̂†qb̂†−q)
]

= λqb̂†−q exp (λqb̂†qb̂†−q) → α̂q |ΨBog〉 = (uqλq + 3q) b̂†−q|ΨBog〉 ≡ 0 if uqλq + 3q = 0 .

Note that the condition α̂q|ΨBog〉 ≡ 0 only involves finite momenta q , 0. The precise form choosen for the condensate
wavefunction is thus left open. Taking this to be a simple coherent state |z〉 is just a convenient choice. For a given total
number N of bosons, which is fixed only on average 4, the associated parameter z → zλ is eliminated as an independent
variable through the constraint N0 = |z|2 = N −

∑
q,0〈b̂

†
qb̂q〉. The problem is thus reduced to determining the variables λq.

Now, in order to understand the underlying physics and the generality of Bogoliubov’s approach, it is instructive to determine
the expectation value of the Bogoliubov Hamiltonian in the normalized state (16), using a parametrization of the - in general
complex - variables λq = tanh θq exp iϕq in terms of a real parameter θq and a phase ϕq, The necessary expectation values are
〈b̂†qb̂q〉 = sinh2 θq for the average occupation number of bosons with finite momentum and a nonzero ’anomalous’ expectation

4 For a strictly number conserving formulation of Bogoliubov theory see Girardeau [29] and the review by Leggett [30]. Note also that in a quantum optics
context, Eq. (16) describes a two-mode squeezed state, see e.g. Walls and Milburn [31]. This analogy is discussed by Haque and Ruckenstein [32].
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value 〈b̂qb̂−q〉 = sinh θq cosh θq exp iϕq which depends on the phase of λq. Defining a phase ϕc for pairs of particles in the
condensate by z2 = N0 exp iϕc, the expectation value of the Bogoliubov Hamiltonian in the state (16) has the form

〈zλ, {λq}|ĤBog|zλ, {λq}〉 = EH +
∑
q,0

[
ξq sinh2 θq + ∆q sinh θq cosh θq · cos (ϕc − ϕq)

]
. (17)

Here, ξq = εq + ∆q is the single-particle energy within a Hartree-Fock approximation. It approaches a constant ∆0 = n0g(0)

as q→ 0 and thus would lead to a finite excitation gap. This is at variance with the expected gapless nature of the excitations
associated with the breaking of the global continuous symmetry b̂q → b̂q exp (iϕ) which is still present in (14). To see how
the actual gapless excitations Eq → ~csq + . . . arise within the Bogoliubov approach, it is necessary to include the phase
dependent contribution to the energy (17). Apparently, this term is minimized by choosing a fixed relative and momentum
independent phase ∆ϕ = ϕc − ϕq = π. In an interacting BEC, therefore, there is an effective internal π-Josephson junction in
momentum space between pairs of particles in the condensate and those with opposite momentum in the depletion (note that
pairs are necessary because the ground state must have zero momentum). The associated phase dependent coupling energy
EJ cos ∆ϕ = −EJ = −

∑
q,0 ∆q sinh θq cosh θq is negative despite the fact that the underlying interaction is purely repulsive.

This is analogous to what happens in the effective π-Josephson junction at the interface between a d-wave and an s-wave
superconductor, where tunneling occurs between gaps which are positive on the s-wave and negative on the d-wave side, a setup,
which has been used to determine the non-trivial nature of pairing in high-temperature superconductors by Wollman et al. [33].
On a formal level, the relative phase ∆ϕ = π between the condensate and the depletion just accounts for the minus sign which
appears in λq = −3q/uq. The underlying physics, however, has a number of important and not widely appreciated consequences:

(a) The internal Josephson coupling between pairs of particles in the condensate and those in the depletion with opposite
momentum is both necessary and sufficient for the generic behavior (13) of the static structure factor of a compressible Bose
fluid and thus eventually for the gapless nature of the excitation spectrum. It explains, moreover, the fact that the ground state is
fully superfluid despite a condensate density which might be below ten percent as in 4He.

To see this, consider the static structure factor S (q) = 〈ρ̂†qρ̂q〉 which involves the normalized density fluctuation operator
ρ̂†q =

∑
k b̂†k+qb̂k/

√
N. Within the Bogoliubov approach, this can be calculated exactly to zeroth order in the small parameter

(na3)1/2 by restricting ρ̂†q ' b̂†q + b̂−q to those contributions which involve b̂0 → z, which is conveniently choosen to be real. As
a result, one obtains

SBog(q) = 〈ΨBog|ρ̂
†
qρ̂q|ΨBog〉 =

1 + 2 tanh θq cosϕq + tanh2 θq

1 − tanh2 θq

∣∣∣∣∣∣
ϕq=π

= exp−2θq −−−−−−→
∆q=const

(1 + 2/q2ξ2)−1/2 . (18)

Here, in the final form of the expression, we have used that fixing ∆ϕ = π at its optimum value, a minimization of the energy (17)
with respect to the remaining variables θq leads to tanh 2θq = ∆q/ξq. This determines the momentum dependence of the static
structure factor SBog(q) = exp−2θq = (1 + 2∆q/εq)−1/2. In particular, defining the sound velocity via ∆0 = n0g(0) → mc2

s and
an associated characteristic length ξ via ξ = ~/(

√
2 mcs), its behavior at small momentum is identical with the one given in

Eq. (13). The Bogoliubov approach thus provides a proper description of the pair distribution function at long distances of
any compressible Bose fluid. Evidently, it is precisely the minus sign cosϕq = −1 associated with the internal Josephson ef-
fect which guarantees that the leading contributions at small q in the numerator of the static structure factor (18) precisely cancel.

In order to understand why a BEC is fully superfluid at zero temperature despite the fact that the fraction f0 of particles
in the condensate may be much less than one, one needs to show that the superfluid fraction fs = Ns/N is equal to one
at T = 0. Here, as discussed further below, Ns is defined in such a way that Ns · ~

2Q2/2m is the increase in the total
energy of a state in which the Bose fluid is set into motion with a finite momentum Q. Now, as a result of the Josephson
coupling between the condensate and the depletion through an extensive energy EJ , this momentum is carried not only by the
particles in the condensate but the complete momentum distribution is translated by Q, giving rise to a mass current density
ns · ~Q with ns = n. The particles in the depletion are rigidly dragged along, with pairs now at q + Q,−q + Q. As a result,
the system is a perfect superfluid at zero temperature irrespective of the value of the condensate fraction f0 as long as this is finite.

(b) The well defined relative phase between the condensate and the depletion is the origin of anomalously large fluctuations in
the respective particle numbers N̂0 or N̂′ = Σq,0n̂q which are enhanced by a factor L/ξ or L/λT at finite temperature compared
to the situation in the absence of the coherent coupling (here L is the system size and λT = ~

√
2π/mkBT the thermal wavelength).

Focussing on the zero temperature limit, the fluctuations of the number of particles in the condensate within Bogoliubov

Var N̂0 = Var N̂′ = 2 Σq,0〈n̂q〉(1 + 〈n̂q〉) = 2 Σq,0u2
q3

2
q = V/(8π

√
2 ξ3) , (19)
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have been determined by Giorgini et al. [34]. Here, the prefactor two is a direct consequence of pairing in states (q,−q).
At first sight, the linear scaling with the volume is the expected behavior for the fluctuations of an extensive variable in
thermodynamics. This argument is misleading, however, because at zero temperature the fluctuations of the number of particles
enclosed in a volume V are basically a surface effect, obeying an area law Var N̂ ' (V/ξ3)2/3 ln (V/ξ3) which is modified by a
logarithmic factor [34]. A behavior of this type is generic for a compressible system in contact with a reservoir, where exchange
of particles occurs in an incoherent fashion. By contrast, in the presence of a coherent coupling between system and reservoir,
the number fluctuations are enhanced by a factor ∼ V1/3 and are thus of an extensive nature even at zero temperature. The large
enhancement of number fluctuations is therefore a consequence of the internal Josephson effect connecting the condensate and
the depletion. It also shows up at finite temperature, where Var N̂0(T ) ' (L/λT )4 ∼ V4/3 is again a factor L/λT ∼ V1/3 larger than
what is expected for a standard extensive variable in thermodynamics [34]. This result is in fact not confined to a Bogoliubov
approximation but is a generic feature of BEC’s with an arbitrary strength of the interaction [35]. More generally, anomalously
large fluctuations of the order parameter appear for all phases with a broken continuous symmetry [36].

(c) With a proper renormalization of the parameters, in particular the replacement ∆0 = n0g(0) → mc2
s of the bare gap parameter

by the square of the exact velocity of sound, Bogoliubov theory provides an asympotically exact description of the low-energy
physics of Bose fluids with an arbitrary strength of the interactions.

To appreciate this point, it should be noted first that even for dilute BEC’s the parameter g(0) =V(q=0) = 4π~2 a(0)/m contains
the scattering length associated with the two-body interaction V(x) only at the Born approximation level a(0). It is standard
practice to replace this by the exact value a, using e.g. a pseudopotential Hamiltonian as introduced by Huang and Yang [37]. A
more general approach which starts with a bare microscopic action and allows to properly account for the low energy constants
associated with the two- and three-body and in principle even higher order interactions is provided by the method of effective
potentials, as will be used in the context of the gas-liquid transition in Eq. (29) below. In this more modern formulation, the
well known LHY-correction EBog = N · gn/2 (1 + 128

√
na3/15π + . . .) [38] to the mean-field ground state energy appears

as the properly regularized one-loop contribution (1/2)
∑

q Eq to the Coleman-Weinberg potential which arises from the zero
point energy of the Bogoliubov excitations. Concerning the replacement ∆0 → mc2

s within the Bogoliubov formalism, it is
straightforward to see that it accounts properly for the correct linear behavior Eq = (ξ2

q − ∆2
q)1/2 → ~csq of the excitation

spectrum at low energy as well as the singular nature of the ground state momentum distribution nq = sinh2 θq → (mcs/2~q)
which - up to a renormalization factor n0/n - has been shown to be an exact result by Gavoret and Nozières [39].

As a final point in this context, we mention a fundamental issue associated with many-body wave functions in general. In fact,
their detailed form becomes meaningless in practice for particle numbers beyond N ' 103, a problem which has been called the
van Vleck catastrophy by Kohn [40]. To understand the origin of this problem, it is instructive to consider the overlap between
two many-body wave functions for different interaction strengths specified e.g. by adjacent values a and a′ of the scattering
length. Quite generally, the magnitude of this overlap appears only at second order in the deviation δa = a′ − a but decreases
exponentially with the number of particles. The sensitivity of a many-body wavefunction to a small change δa in some parameter
may thus be characterized by an intensive fidelity susceptibility χF which is defined by |〈Ψ(a)|Ψ(a′)〉| = exp

(
− 1

2 NχF(δa)2). By
dimensional analysis, the fidelity susceptibility χF = 1/`2

F defines a characteristic scale `F for the parameter a. As a result,
knowledge of the many-body wave function with an accuracy close to one requires to know the microscopic parameter a with an
accuracy |δa| � `F/

√
N which is obviously impossible for large particle numbers. This is one way of expressing the exponential

wall encountered in determining many-body wave functions, emphasized by Kohn [40]. The exactly known Bogoliubov wave
function (16) serves as a concrete illustration of these ideas. Up to second order in δa, the overlap of two such states is given by

|〈zλ, {λq}|z′λ, {λ
′
q}〉| = exp

(
−

1
2

NχF(δa)2
)

with χF =
(
∂a

√
f0
)2

+
1
n

∫
q

(∂aλq)2

(1 − |λq|
2)2 . (20)

The first term in the fidelity susceptibility arises from the overlap of the coherent states for the condensate. Using the leading
order Bogoliubov result (12) for the depletion, it is given by χ(0)

F = 1/(2π2ξ2) ' na. The characteristic scale which determines
how an uncertainty in the scattering length affects the accuracy of the many-body state thus appears to be the healing length ξ.
Surprisingly, this conclusion is changed fundamentally by including the second contribution to χF in Eq. (20) which arises from
the overlap of the product of two-mode squeezed states. Using that both in the regime qξ � 1, where λq → −1 +

√
2qξ and for

qξ � 1, where λq → −1/(2q2ξ2), the derivative ∂aλq with respect to the scattering length can be easily determined, it turns out
that in the relevant limit (na3)1/2 � 1, the fidelity susceptibility χF ' (n/a)1/2 is dominated by the second contribution, which
diverges for vanishing scattering length. This divergence is a signature of a quantum phase transition from a gaseous to a liquid
ground state of Bose fluids at a = 0 which will be discussed in more detail below. More generally, as shown by Wang et al. [41],
the fidelity susceptibility can be calculated efficiently via Quantum Monte Carlo methods in cases where no explicit results for
the many-body wave function are available. In particular, it serves as an indicator of putative quantum phase transitions without
an a priori knowledge of the order involved.
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the ground-state Wannier function with spin up or
down, and 0 ( ) is a superposition of such states. Evi-
dently the spatial wave function corresponding to 4 "'
will be large whenever

-2L -L I

2L r, ~R„&;&+m;L, (5.6)

FIG. 5. Wave function of well-localized particles on a ring.
where R„&,& is one of the lattice vectors which we may
restrict to the interval

strated: If 4 (0) is eigenfunction of H(0), with eigen-
value E, then it is well known that the function with

(5.7)

(k)—e—iszsig) (0) (5.1) P X„=O;
1

(5.8)
is an eigenfunction of H(k) with the same eigenvalue
E . On a "ring" this argument in general breaks down
because, e.g.,
4 (xr+L, yr, sr, , k)

=e 'sz4 (xr,yr, sr, , k) (5.2)
and therefore violates the ring boundary condition.
Nevertheless we say in Sec. 2 that for a particle local-
ized near the origin we could de6ne

4 (x,y,s; k) =' e '"&& &4 (x,y,s; 0), (5.3)

which is single valued and gives rise to an eigenvalue
E (k) which, apart from terms vanishing exponentially
with L,, is independent of k. The essential feature in the
demonstration, of this fact was that in going around
the ring the wave function became exponentially small.
The discontinuity in the phase factor occurred in the
region where the function was exponentially small and
thus introduced a negligible error in the energy. A plot
of 4,(x,y,s;0) as function of x has the following
general appearance (Fig. 5). Note the essential char-
acteristic that it consists of a sequence of practically
disconnected parts. "
We show that a similar disconnectedness exists also

for our many-particle system and is responsible for its
insulating properties.
The essential features may be seen from an examina-

tion of the zeroth-order wave function. Denote one of
the eigenfunctions of (O,jsIHIO, jr), e.g., (3.21), by
(O,jr I&r). Then the full eigenstate of H is given by

the set & (i) exhaust all &; m, is an integer; and L is a
vector of length I in the x direction.
We may write the periodic Wannier functions in the

form

w (r—R„)=' P w„(r R„—mL),— (5.&))

where w„ is the Wannier function for the infinite in-
terval. Then the wave function C (') can be broken up
correspondingly into an infinite sum

4„"&=' Q 4.&')(mr, ms, m»&), (5.10)

I= [ws(rr —R~——mrL) . . w&&(r~—R»r—m»&L)]'

where C & )(mr, ) is obtained from 4„"'(0,0, ) by
shifting the locations of the Wannier functions from
Rr, Rs, ~ ~ ~ to Rt+mrL, Rs+msL, etc. We now show
that each 4 &')(mr, ms, m~) is spatially localized in
the 3—S dimensional space and has negligible over-
lap with all other 4 "& (mr', ms', m)i'), for which
Pm, WPm .
The localization is evident. Thus%' "'(0,0, ~ 0) has

an electron localized near each lattice point in the
volume A)&L where A is the cross sectional area of our
ring, so that this function extends only slightly beyond
the boundaries of a hypervolume of dimension (AL)~.
To estimate the overlap, we consider the integral

where

(5.4)
&([w&&(rt—Rr'—mr'L) ws(r~ Rri' m—sr'L)]-

&(dr, . drN. (5.11)
(5.5)

etc. The states 0'0,; all have one electron on each site in

"At this point we make contact with an important recent paper
by C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). Yang considers
the behavior of density mutrices in going around the ring and notes
that for normal (i.e., nonsuperfluid) systems, they are similarly
localized. From this point of view there is no basic distinction
between a normal metal and an insulator. In the present work,
where we consider the behavior of the meme functions in going
around the ring, this distinction becomes apparent.

where
g —Q)r (5.12)

Q—= w&&4 (r)&&tr.

We have chosen an integral with nonnegative integrand,
so that accidental cancellations cannot occur.
The R„' are some permutation of the R„; they arise

from the antisymmetrization of the wave function. For
mr —— m~' ——0 and R =R; (maximum overlap) I has
the value

FIG. 4: A rotating Bose fluid in a ring geometry with non-perfect walls. The right Figure shows a schematic localized many-body wave
function Φα(x) on a ring with circumference L as a function of one of the coordinates. The Figure is taken from Ref. [42].

Topological nature of many-body wave functions of superfluids As a consequence of the van Vleck catastrophy, the criterion
for superfluidity cannot depend on the precise form of the many-body wave function but only on some long distance or topo-
logical properties. This point was first elucidated by Kohn [42] in the context of a quite general characterization of insulating
ground states of interacting Fermi systems. Kohn’s basic idea was to consider the many-body problem in a ring geometry and
in the presence of a finite magnetic flux. For electrons with charge −e, this is a standard Aharanov-Bohm type setup which had
been analyzed earlier by Byers and Yang [43] in their quite general proof of flux quantization in superconducting rings. In the
case of neutral particles, an effective flux arises in a situation where the many-body system is enclosed between two concentric
cylinders with nearly equal radii R, co-rotating with an angular frequency ω = ωez. As indicated in Fig. 4, the walls are assumed
to violate perfect cylindrical symmetry to allow for the transfer of angular momentum to the fluid. In the rotating frame, the
problem is stationary, however the non-inertial frame gives rise to an effective gauge potential A(x) = mω ∧ x which appears
in the kinetic energy part

∑
j(p̂ j −A(x j))2/2m of the Hamiltonian. Formally, the gauge potential can be eliminated by a gauge

transformation ψ(θ) (x1 . . .xN) = exp [−i(mRω/~)
∑

j x j]ψ (x1 . . .xN) to a new many-body wave function ψ(θ) which obeys the
Schrödinger equation in the absence of A. This function, however, is no longer single-valued. Instead, it changes by a phase
factor if any one of the particles is taken around the ring according to

ψ(θ) (x1,x2, . . .xi + L, . . .xN) = e−iθ ψ(θ) (x1,x2, . . .xi, . . .xN) ∀ i = 1 . . .N (21)

with θ = 2πmR2ω/~. Here, L = 2πR is the circumference and xi + L means that the i-th coordinate is taken around the ring once,
with transverse coordinates and possible other degrees of freedom like spin in the case of fermions held fixed. The twist (21)
in the boundary condition leads to a spectrum of eigenvalues Eα(θ) which will in general depend on θ, giving rise to a phase
dependent equilibrium free energy F(θ) in the stationary, rotating system. As realized by Byers and Yang [43], F(θ) is an even
and periodic function F(θ+ 2π) = F(θ), irrespective of the strength of the interactions provided these are time reversal invariant.
It can therefore be expanded in a Fourier series

∆F(θ) = F(θ) − F(θ = 0) =

∞∑
l=1

Fl [1 − cos (l θ)] → Lrot
z (θ) = −

∂F(θ)
∂ω

−−−→
ω→0

−

(LmR
~

)2 ∞∑
l=1

l2Fl · ω = −(ns/n) L(0)
z (22)

whose derivative with respect to ω determines the kinematic angular momentum Lrot
z in the rotating frame. The superfluid

fraction ns/n in this setup is now defined by expressing Lrot
z = −(ns/n) L(0)

z in terms of the characteristic angular momentum
L(0)

z = Icl ω in a situation where a fluid is fully carried along by the walls at angular frequency ω, with Icl = NmR2 the associated
moment of inertia. Physically, a finite and negative angular momentum Lrot

z = −(ns/n) L(0)
z in the rotating frame implies that a

fraction ns/n of the superfluid stays at rest in the lab frame for small angular frequencies ω � ~/mR2. As a result, the apparent
moment of inertia is smaller than that of classical rigid body rotation. The property of a non-classical rotational inertia (NCRI)
has been introduced as a definition of superfluidity in a paper by Leggett [44] where he discussed the possibility of a finite
ns even in a solid, an issue that will be investigated in more detail below. In the context of cold gases, the prediction that a
superfluid does not rotate with its walls for small rotation frequencies has been demonstrated in experiments at the ENS [45, 46]:
a trapped BEC in the presence of a small, non-symmetric perturbation remains at zero angular momentum below a finite critical
rotation frequency. A direct signature for the existence of NCRI is provided by the so-called scissors mode in BEC’s with
anisotropic confinement ωx , ωy in the plane perpendicular to the rotation. For superfluid flow, their effective moment of inertia
ISF = δ2 Icl is smaller than the classical rigid body value Icl = Nm 〈X2 + Y2〉 by a factor δ2 < 1 which depends on the deformation
parameter δ = 〈X2 − Y2〉/〈X2 + Y2〉. As predicted by Guéry-Odelin and Stringari [47], the fact that angular momentum in an
anisotropic trap is not conserved gives rise to an oscillation of the gas after a sudden rotation of the trap around the new equilib-
rium position with frequency ωscis = (ω2

x +ω2
y)1/2 which is absent in the normal phase, in perfect agreement with experiment [48].
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Eq. (22) shows that a finite superfluid fraction requires the existence of a rigidity parameter γ with dimension energy per length
such that the second moment

∑
l l2Fl ' γ · A⊥/L of the Fourier amplitudes scales linearly with the cross section area A⊥ and

has a slow power law decay ∼ 1/L with the circumference of the ring. In the limit A⊥, L → ∞, this gives rise to a superfluid
density ns = γm/~2 which is independent of the sample dimension. To define the underlying rigidity in a more general form
and, moreover, to describe states of a superfluid with finite currents, it is useful to introduce a slowly varying local phase ϕ(x) on
scales much larger than the interparticle spacing which is connected with the total phase difference between two arbitrary points
by θ =

∫
ds∇ϕ(x). The free energy increase due to a finite value of ∇ϕ(x) can then be expressed in a local form

∆F[ϕ(x)] =
γ

2

∫
x

(∇ϕ(x))2 with γ =
~2ns

m
=

L2

V
∂2∆F(θ)
∂θ2

∣∣∣∣∣∣
θ=0

−−−→
ring

L
A⊥

∞∑
l=1

l2Fl (23)

which, however, hides the periodic dependence on θ stated in Eq. (22) 5. Physically, a non-vanishing phase gradient corresponds
to a finite superfluid velocity vs = (~/m)∇ϕ(x). The rigidity energy is thus just the kinetic energy of superfluid flow which
may be present even in an equilibrium configuration (see the Appendix for a more detailed discussion). In the particular
case of a uniform twist ∇ϕ(x) = Q, Eq. (23) shows that the total number Ns of particles in the superfluid is defined by the
increase Ns · ~

2Q2/2m in free energy if the whole fluid acquires a finite momentum Q, as was used above in the context of
the internal Josephson effect in the Bogoliubov approach. It is important to note that the definition (23) for superfluidity is
based only on equilibrium properties and it also applies to finite systems. Obviously, however, it is quite different from the
definition of BEC via the concept of ODLRO, as stated in Eq. (1). Yet, it turns out, that the two phenomena are intimately
connected. In fact, superfluidity in the sense defined in Eq. (23) is the more general phenomenon. On a qualitative level,
the connection between a finite value of the superfluid stiffness γ and the presence of ODLRO may be understood by using
the representation ψ̂(x) '

√
ñ0 exp iϕ̂(x) of the Bose field operator in terms of a finite bare condensate density ñ0 and the

phase operator ϕ̂(x). The asymptotic decay of ρ(1)(x,x′) = ñ0 exp [−δϕ2(x,x′)/2] is then determined by the mean square
fluctuations δϕ2(x,x′) = 〈

(
ϕ̂(x) − ϕ̂(x′)

)2
〉 of the phase difference between points separated by |x − x′|. Using the effective

Hamiltonian (23) together with the assumption of a finite compressibility it is possible to show (see e.g. the Appendix in
Ref. [49]) that the phase fluctuations remain finite in the limit of infinite separation in three dimensions. As a result, γ , 0
implies ODLRO with a condensate density n0 = ñ0 exp [−δϕ2(∞)/2]. In two dimensions, this result only holds at T = 0, while
δϕ2(x,x′) → 2η ln |x − x′| diverges logarithmically at finite temperatures below the BKT-transition, where η(TBKT) = 1/4.
This leads to an algebraic decay ρ(1)(x,x′) ∼ |x − x′|−η, consistent with the Mermin-Wagner-Hohenberg theorem, which states
that no long range order is possible in two dimensions if T , 0 in the case of a continuous symmetry. A similar behavior, due to
quantum rather than thermal phase fluctuations, applies in one dimension at zero temperature.

In the following, it will be shown that the definition of superfluidity based on Eqs. (22) and (23) allows to characterize
superfluids in terms of a topological property of the many-body wave function which implies, in particular, that ground states
of bosons are always superfluid provided they have a uniform density. The argument relies on the geometry introduced above,
where the many-particle configuration space is an N-torus TN = S 1 ⊗ · · · ⊗ S 1 with respect to motion around the ring. The
dependence of the energy levels Eα(θ) and the associated free energy F(θ) of the many-body system in the rotating frame or of
the charged system in the presence of a finite magnetic flux is determined by the change in energy induced by the twist in Eq. (21)
associated with closed paths in configuration space. To single out the dependence on the variable θ, it is useful to consider the
representation of the partition function of the many-body system in terms of a Feynman propagator over closed paths {x j}→ {x j}

in imaginary time β~. Since the configuration space is multiply connected, this propagator is a sum over the different elements
of the first homotopy group π1(TN) = ZN of the N-torus which are labelled by the set of N integer winding numbers m j ∈ Z.
Physically they correspond to taking any of the j = 1 . . .N particles around the ring m j times. As shown by Pollock and Ceperley
[50], the change in free energy due to the twist in the boundary condition is determined by the characteristic function

exp (−β∆F(θ)) =
∑
{m j∈Z}

e−iMθ p(m1 . . .mN ; β) with M =
∑

j

m j (24)

of the winding number probability distribution p(m1 . . .mN ; β) in the absence of the twist. Considering in particular the
limit where the temperature approaches zero, the question of whether the ground state energy in the rotating frame exhibits a
non-trivial dependence on the twist θ is determined by the connectedness properties of the ground state wave function. In the
ground breaking papers on this subject by Kohn [42] and Leggett [44, 51], two limiting cases were considered:

5 The periodicity in the variable θ is important e.g. for understanding the exactness of flux-quantization in superconducting rings with a thickness much larger
than the London penetration depth. Using θ = 2πφ/φ0, this relies on the fact that the large energy associated with the Fourier coefficient Fl=2 ' γ A⊥/L forces
cos (2 · 2πφ/φ0) = 1 with negligible fluctuations. The magnetic flux φ is thus pinned at an integer number times the flux quantum φ0/2 in superconductivity.
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a) The wave function of the ground state is disconnected in the sense that on all closed paths with M , 0, there is at least
one region where the wave function is exponentially small. In the presence of rotation, the modified boundary condition (21)
can then be accomodated by adding the phase shift in precisely these regions. The resulting change in energy ∼ exp (−L/ξloc)
vanishes exponentially and thus the free energy F(θ) ' F(0) in the rotating frame becomes independent of the twist as L � ξloc.
This is the characterisation given by Kohn for insulators. Specifically, Kohn discussed electrons in a regular lattice with a set Rν

of sites whose number is commensurate with those of the electrons. As indicated schematically in Fig. 4, they were described
by exponentially localized Wannier functions 4(x −R) at the single-particle level, leading to a disconnected many-body state.

b) The wave function ψ0 (x1 . . .xN) of the ground state is connected in the sense that there exist closed paths with
non-vanishing total winding number M , 0 on which the magnitude |ψ0| is everywhere bounded below by a finite constant
independent of both N and L. In this case, the system is a superfluid with a reduced moment of inertia because the twist leads
to an energy increase ∼

∫
|ψ0|

2
min(∇ϕ)2 of order A⊥/L. For fluid ground states, the existence of closed paths of this type may

be viewed as a consequence of the positivity of the many-body ground state wave function. As pointed out by Leggett [51],
ground states of bosons with a uniform density are therefore always superfluid 6. For non-uniform ground states like in a crystal,
the positivity requirement, however, is not sufficient to infer the existence of a finite superfluid density because the minimum
magnitude |ψ0|min ∼ exp (−L/ξloc) could be exponentially small as in insulators. In this situation, there is only an upper bound
on the superfluid fraction which will be discussed in detail in Lecture II.

An important point to note in this context is that the magnitude |M| of the relevant total winding numbers are of order one or
two and not of order N because the relevant Fourier components Fl in Eq. (22) are l = 1 or l = 2 for standard Bose superfluids or
superfluids of Fermion pairs, respectively. In physical terms, this requires that there are paths in the configuration space where
the many-body wave function stays finite upon taking one or maybe two particles around the ring while the coordinates of the
remaining N − 1 particles are held fixed. Obviously, this is the case in the presence of ODLRO as defined in Eq. (1), which thus
turns out to be a sufficient criterion for superfluidity. It is not a necessary one, however, and indeed as stated above, superfluidity
is the more general phenomenon rather than BEC and the equivalent existence of ODLRO.

In the case of charged systems, the dependence of the eigenvalues in the presence of a non-trivial boundary condition (21)
leads to a characterization of insulators or superconductors in terms of the so-called Drude weight [42]

Ds = π lim
ω→0

ω Imσ(ω) = π
nse2

m
=

e2

~2

πL2

V
∂2∆F(θ)
∂θ2

∣∣∣∣∣∣
θ=0
−−−−→
L→∞

{
∼ exp (−L/ξloc) insulator

Ds , 0 superconductor (25)

For superconductors, this implies a 1/ω-singularity of strength Ds/π in the imaginary part of the frequency dependent
conductivity which is precisely the content of the phenomenological first London equation. In the case of insulators, such a
contribution is absent and the odd function Imσ(ω) therefore vanishes linearly at low frequencies. However, this is also true
in metals with a finite amount of disorder. The relevant distinction between metals and insulators shows up in the behavior of
Reσ(ω) as ω→ 0: for any non-perfect metal, the real part of the conductivity has a finite value while Reσ(ω) ∼ ω2 lnd+1(ω̄/ω)
vanishes essentially quadratically in insulators. A discussion of how the empirical description of the different ground states in
terms of the complex conductivity σ(ω) is reflected at the level of the Drude weight has been given by Scalapino et al. [52].
According to Eq. (23), the Drude weight at T = 0 is obtained from the curvature of the many-body ground state. This requires
to follow the ground state adiabatically as a function of the twist θ. Now, it turns out that the characteristic magnitude θc of the
twist at which another many-body level crosses or drops below the ground state varies like θc ∼ 1/Ld−1. In dimension d > 1,
therefore, the order of limits θ → 0 and L → ∞ matters: taking the second derivative of E0(θ) with respect to θ first, and then
sending L → ∞ gives a Drude weight D. It differs from the Ds defined above, which involves the curvature of the envelope
of the Eα(θ) curves of individual many–body states ψα. Both D and Ds approach zero for an insulator and they are both finite
in a superconductor. In the case of a metal with no disorder, however, D is finite while Ds = 0 [52]. A different way to see
that there is no topological characterization of metallic or normal fluid states is revealed by the fact that the second moment∑

l l2Fl|normal ' (~2/mL) nξ2
t of the Fourier amplitudes in Eq.(22) still scales with 1/L. The linear increase with the transverse

area A⊥ in the superfluid phase, however, is replaced by the square of a characteristic length ξt which appears in the momentum
dependence χt(q) = ρ[1 − (qξt)2 . . .] of the transverse current response, associated with diamagnetism in the charged case. The
periodic dependence of Lrot

z on θ is still present and it describes the persistent currents in a normal metal ring predicted by
Büttiker, Imry and Landauer [53]. The observed magnitude of the associated Fourier coefficients Fl agrees well with a model of
non-interacting electrons [54], however the role of interactions in this context has remained controversial.

6 This conclusion no longer holds in the presence of a magnetic field, as shown for example by the incompressible Quantum Hall state of a half filled Landau
level in two dimensions described by the Laughlin wave function ΨL(z1, . . . zN ) =

∏
i< j(zi − z j)2 · exp−

∑
i |zi |

2/4, which has a uniform density n(z) = 1/4π.
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FIG. 6. Phase diagram of the LJ system in terms of the reduced units.

although it reduces with p, the lattice becomes unstable be-
fore it would take over as an equilibrium state. Although the
A15 (and also the bcc crystal) are favored by entropy, they are
stabilized by energy. The properties of the A15 as the mini-
mal area crystal unit cell may favor it for other potentials.27

Other lattices (see Table I) were also tested, but become sad-
dles of the free energy and are not stable. Thus, the IPL solid
phases consist of fcc, and (for p ≤ 7) there is a phase transi-
tion towards bcc.8 Numerical results,28 place the triple point,
where fcc, bcc, and liquid coexist at ≈6.25. Within DLT, it is
found, see Table V, that the triple point is p > 7, which is in
agreement with Ref. 10.

For large p, the IPL approaches the hard sphere limit. The
free energy obtained within DLT in this limit, the “phonon
hard sphere”16 model is not the same as the one for real hard
sphere crystals, since the specific heat, for example, differs by
3/2. Still, the entropy difference between the fcc and the hcp
crystal of the phonon hard sphere model has been computed
as

sf cc − shcp = 0.0014754 kB, (57)

which is quite close to the hard sphere result 0.001164.15

More importantly, this number is identical to the phonon en-
tropy 0.001475 obtained by Elser.16 Although the phonon
contribution should be expected to be model dependent. The
IPL system and the one considered by Elser16 should give the
same result, as the one by Elser16 only applies to the close-
packing limit. These results show that even in the most unfa-

TABLE V. Properties of the phase transition from solid(bcc) to solid(fcc).
The energy and free energy are per particle and in units of kBT. The entropy
is per particle and in units of kB.

bcc to fcc transition

p γ a
2 γ b

2 λ2 #s2 #u 2 #f2

6 2.78088 2.78519 167.28 0.13970 0.04657 −0.09313
6.25 2.56630 2.57087 141.76 0.14543 0.04717 −0.09821
7 2.11952 2.12494 95.20 0.16391 0.04917 −0.11474

TABLE VI. Molar volume at which the difference in energy between the
hcp and the fcc crystal is zero.

vcoex for (p,q) LJ

q/p 6 7 8 9 10

14 0.416 0.388 0.366 0.347 0.331
13 0.436 0.406 0.381 0.361 0.343
12 0.460 0.427 0.400 0.377 0.358
11 0.488 0.451 0.421 0.396 0.375
10 0.522 0.480 0.446 0.419
9 0.561 0.514 0.476
8 0.610 0.555
7 0.671

vorable situation (hard spheres), DLT can still deliver reliable
semi-quantitative results.

B. Role of anharmonic terms

Systems of IPL potentials provide excellent test-systems
for the study of anharmonicities as the potential is continuous
and smoothly converges to the hard sphere case, which is the
ultimate anharmonic theory. The LDT approximation is exact
in the limit of large γ p , but it should be expected that, for
a given accuracy, there is a γ r

p such that the thermodynamic
functions are accurate for all γp > γ r

p . As p increases and the
hard sphere limit is approached, γ r

p → ∞.
For 8 > p ≥ 6, the excess free energy calculated by DLT

is very accurate (4 digits at least) and extends to the solid to
liquid transition, as it is clear from the numerical results of
Ref. 9, see Table III. The liquid to bcc transition is found at
the same point using either simulations or DLT. There is a
minor discrepancy with the value of the fcc-bcc solid coexis-
tence line, but given that the excess free energies for fcc agree
within 5 decimal places, I believe that this issue cannot be re-
solved unless more precise numerical calculations, performed
without a cut-off (using Ewald sums or the like) can assess
the numerical uncertainties associated with the finite size or
the cut-off. Cut-off effects are quite significant, as clear from
this paper and, as demonstrated, for example, in studies of
Lennard-Jones system.29

Comparing with the coexistence tables for the solid-
liquid phase in Ref. 28, the values of γ and λ are in fairly
good agreement for p ≤ 8 and remain in semi-quantitative
agreement up to p = 13. Applying DLT to predict the fluid-
solid line is definitely beyond the expected range of applica-
bility, but it is reassuring that it still provides rather meaning-
ful results. Furthermore, approximate methods on how to cor-
rect for anharmonic contributions have been known for a long
time4, 21 and maybe worth being reconsidered again. Also,
thermodynamical integration methods as discussed below,
can exactly quantity the magnitude of anharmonic effects.

C. Outlook

I have shown that DLT is powerful approach with a wider
range of applicability than previously assumed, which, com-
bined with existing numerical techniques to compute crystal
free energies, may enable elucidation of phase diagrams that

 

FIG. 5: The Figure on the left shows the phase diagram of particles with a Lennard-Jones interaction in the classical limit of a vanishing
de Boer parameter ΛdB = 0 as determined by Travesset [55]. The dimensionless pressure and temperature are defined by P̂ = pσ3/ε and
T̂ = kBT/ε. The Figure on the right shows the dependence of the dimensionless temperature T̂ → t∗ of the critical and the triple point as a
function of the square η = Λ2

dB of the de Boer parameter. It is taken from Lectures given by P. Nozières at the Collège de France in 1983.

Quantum-unbinding at a zero temperature liquid-gas transition Following recent work [56, 57], we will discuss the liquid-
to-gas quantum unbinding transition in Bose fluids induced by an increasing strength of the zero point fluctuations. The existence
of such a transition is indicated in Fig. 5, where the dimensionless temperature of both the triple and the critical point are shown
as a function of the square of the de Boer parameter. The transition from a solid to a liquid ground state occurs when the triple
point vanishes. It is first order and the associated critical de Boer parameter Λ

c,solid
dB ' 0.37 for bosons can only be determined

numerically by a genuine many-body calculation [5] 7. Remarkably, the transition from a liquid to a gaseous ground state at
Λc

dB ' 0.68 [8], where also the critical point for a system of bosons disappears, is continuous. Moreover, its location is fixed by a
vanishing scattering length, i.e. by two-body physics. Indeed, as noted by Lieb [58], a necessary condition for a gaseous ground
state is that the two-body interaction V(x) in Eq. (2) has no bound state and a positive scattering length. In the following, we will
argue that for interactions considered here in connection with Eq. (3), this condition is also sufficient. Moreover, the liquid and
gaseous ground states are separated by a quantum tricritical point. Specifically, we follow an approach due to Sachdev [59] and
consider the transition out of the vacuum state into one with a finite particle density n as a function of the chemical potential µ.
In the case where the ground state is a gas, the associated effective field theory is the well known ψ4-theory for a complex scalar
field. In a formal manner, this can be derived by starting from the microscopic action of a Bose system with pure two-body
interactions as described by Eq. (2). The associated generating functional Z[J] =

∫
Dψ exp (−S [ψ]/~ +

∫
Jψ) for the correlation

functions of the complex scalar field ψ(τ,x) can be written as a functional integral with action

S [ψ] =

∫
τ

∫
x

{
ψ∗(τ,x)

(
~∂τ −

~2

2m
∇2 − µ

)
ψ(τ,x) +

1
2
|ψ(τ,x)|2

∫
x′

V(x − x′) |ψ(τ,x′)|2
}
. (26)

At the mean-field level, the effective potential for field configurations with no dependence on the time and spatial variables τ and
x, where |ψ|2 = n can be identified with the particle density, has the form V (0)

eff
= −µn + (g/2)n2. The coefficient g=4π~2 a/m > 0

is fixed by the two-body scattering length in vacuum. More precisely, as mentioned above in the context of point c) on the
exactness of the Bogoliubov approach at low energies, in the naive mean-field approach g → g(0) contains the scattering length
only in the Born approximation, which is ill-defined for potentials which increase more strongly than 1/r3 at short distances.
This problem is eliminated in the formulation based on an effective potential in Eq. (29) below. Provided that g > 0, the onset
transition from the vacuum to a superfluid gas to lowest order in the density is properly accounted for in terms of a mean-field
description. In particular, the density of bosons n(µ) = µ/g + . . . rises linearly for µ → 0+ while n(µ) ≡ 0 vanishes for negative
values of the chemical potential. Thus, µ = 0, g > 0 is a line of quantum critical points which separates the vacuum state from
a superfluid gas at finite density [59]. Despite the finite jump in the compressibility from κ̃ = ∂n/∂µ = 0 to κ̃ = 1/g > 0, the
vacuum to superfluid transition is a continuous one. Indeed, approaching the line µ = 0 from above, the correlation length is the
well known healing length ξ = ~/

√
2mµ = (8πna)−1/2 of a weakly interacting BEC which diverges as µ→ 0+. Moreover, using

the zero temperature Gibbs-Duhem relation µ = u + p/n which connects the chemical potential and the pressure to the energy u
per particle, both u(n)→gn/2 =

√
gp/2 and the density n(p)→

√
2p/g vanish in the zero pressure limit, as required for a gas.

7 In the case of fermions Λ
c,solid
dB |F ' 0.42 is substantially larger because fermions prefer to stay localized near a discrete set of lattice sites even for larger values

of the zero point motion. The ground state of 3He at zero pressure is a liquid since its de Boer parameter ΛdB ' 0.45 lies above this critical value.
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FIG. 6: Qualitative dependence of the scattering length in units of the van der Waals length `vdW as a function of the de Boer parameter
defined in Eq. (4). The last two-body bound state disappears beyond the pole of the scattering length at Λ∗dB(N = 2) indicated by the dashed
vertical line. The scattering length reaches zero at a critical value Λc

dB ' 0.68, beyond which it stays positive. The value Λ∗dB(N = 3) for the
disappearance of three-body bound states is also indicated.

The range of de Boer parameters where a given microscopic interaction gives rise to a positive scattering length and thus a
gaseous ground state is determined by the solution of the two-body problem. In the regime ΛdB � 1, there is a large number
Nb ' 1/(πΛdB) � 1 of s-wave bound states. Upon reduction of the strength of the attractive interaction, their number decreases
and eventually reaches zero at a critical value of the de Boer parameter. In physical terms, this happens when the van der
Waals length `vdW = (mC6/~

2)1/4/2 has decreased to a value of the order of the short distance scale σ. For the specific case
of a Lennard-Jones potential, the limit beyond which the two-body Hamiltonian Ĥ2 no longer has a bound state is reached at
Λ∗dB(N = 2) = 0.423 . . . or `vdW = 1.09σ. At this point, the scattering length jumps form +∞ to −∞, as sketched in Fig. 6.
In fact, this is close to the situation present in 4He, where ΛdB ' 0.42 and the attractive part of the two-body interaction is just
barely sufficient to give rise to a bound state with a binding energy B2 ' kB · 1.7 mK. Upon further increasing the de Boer
parameter, the scattering length increases monotonically from −∞ towards zero, which is reached at some critical value Λc

dB.
Specifically, one finds Λc

dB = 0.679 . . . for a Lennard-Jones potential, corresponding to a van der Waals length `vdW|c ' 0.86σ.
Increasing ΛdB beyond its critical value, the scattering length stays positive. In particular, near Λc

dB, the scattering length

a(ΛdB) = aΛ `vdW

(
ΛdB − Λc

dB

)
+ . . . (27)

vanishes linearly with a positive numerical constant aΛ of order one. The regime g > 0 of a gaseous ground state is realized for
ΛdB > Λc

dB. As mentioned above, the same situation applies for ultracold gases despite ΛdB � 1 provided the scattering length
is positive and the many two-body bound states are inaccessible on relevant time scales.

For negative scattering lengths, the ground state of a uniform Bose fluid is obviously not a gas. As will be shown below, there
is a finite range of the Boer parameters below Λc

dB, where the ground state is a liquid which is stabilized by repulsive three-body
interactions. Its properties near the first-order transition to the vacuum state are determined by a solution of the three-body
problem. Now, as predicted by Efimov [60] in a nuclear physics context, identical bosons support three-body bound states in
a regime where the scattering length is negative and no two-body bound state exists. As indicated in Fig. 6, where the critical
value Λ∗dB(N = 3) ' 0.45 for the disappearance of the last three-body bound state is shown, this requires a minimum value of the
magnitude |a−(3)| of the associated two-body scattering length which is a−(3) = −9.6 `vdW for a Lennard-Jones interaction [61].
The three-body bound states predicted by Efimov were first observed in an ultracold gas of 133Cs by Kraemer et al. [62].
Surprisingly, the ratio |a−(3)|/`vdW ' 8 − 10 turned out to vary in an only narrow range for many different atoms [63]. An
explanation for this so called van der Waals universality has been given independently by Wang et al. [64] and by Schmidt et al.
[65]. Wang et al. consider direct two-body interactions with different single channel potentials at short distance but identical
van der Waals tails. The solution of the associated three-body problem then shows that the ratio (a−(3)/`vdW)|Nb�1 = −9.45
approaches a universal value in the limit of a large number Nb � 1 of bound states [64]. In practice, a change in the scattering
length relies on the use of Feshbach resonances. As shown by Schmidt et al. [65] within a standard two-channel model, a nearly
universal value of the ratio a−(3)/`vdW ' −9 then appears only in the open-channel dominated limit sres � 1 [66]. Moreover,
considerable deviations towards more negative numbers were predicted for Feshbach resonances with intermediate strength
sres ' 1. They have recently been observed in 39K by the JILA group, see Chapurin et al. [67] and Xie et al. [68].
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For the many-body problem at finite density, the endpoint at g = 0 of the line µ ≡ 0 turns out to be a quantum tricritical point
(see Fig. 7). It separates the continuous onset transition from the vacuum to a gaseous state in the regime g > 0 from a first-order
transition at µc < 0 between the vacuum and a finite density liquid for negative values of the scattering length. In order to
properly deal with the regime g < 0, it is necessary to include the quantum fluctuations of the field ψ(τ,x) to all orders. On a
formal level, this can be expressed in terms of an effective potential

Γ[ψ] =

∞∑
N=1

1
N!

∫
p1...qN

ΓN(p1 . . . pN q1 . . . qN)ψ∗(p1) . . . ψ∗(pN)ψ(q1) . . . ψ(qN) =

∫
τ,x

{
Veff[ψ] + ψ∗D̃ψ + . . .

}
(28)

which is defined via a Legendre transform Γ[ψ] = ln {Z[J]/Z[0]} −
∫

Jψ of the generating functional Z[J] associated with the
action (26) 8. In practice, the Legendre transform can only be performed if one is able to determine the expectation value of
the field for an arbitrary form of external source J(τ,x) and then invert this relation to determine J(τ,x) as a functional of the
associated configuration ψ(τ,x). The resulting exact vertex functions ΓN are essentially the amplitudes for scattering processes
with N incoming and N outgoing particles. Knowledge of the ΓN , including their dependence on the 2N momentum variables
p1 . . . qN which are constrained only by translation invariance in space and time p1 + . . .+ pN = q1 + · · ·+ qN , therefore requires
a complete solution of the N-body problem. This is clearly impossible. Fortunately, however, for the discussion of the behavior
near the quantum tricritical point, which is a zero density fixed point, we need only the leading non-vanishing terms in the
expansion of the effective potential

Veff[ψ] = −µ|ψ|2 +
g
2
|ψ|4 +

λ3

3
|ψ|6 + . . . (29)

associated with a time and space independent ’classical’ field ψ. Here, as mentioned above, the prefactor g = Γ2(0) = 4π~2a/m
of the quartic term is fixed by the exact value a of the two-body scattering length which may be defined through the asymptotic
behavior ψE=0(x1,x2) = 1 − a/r12 of the two-body wave function at zero energy. If g is positive, the transition out of the
vacuum state is completely fixed by the first two terms in Eq. (29), recovering the scenario for a gaseous ground state discussed
above. For negative g, in turn, one needs the next-to-leading contribution ∼ |ψ|6. Its prefactor λ3 = ~2D/2m arises from the
zero momentum limit Γ3(0) = ~2D/m of the vertex function which is associated with effective three-body interactions. The
corresponding parameter D has been called the three-body scattering hypervolume by Tan [70]. It has dimension (length)4 and
may be defined by the asymptotic behavior

ψE=0(x1,x2,x3)|a=0 = 1 −

√
3 D

2π3(r2
12 + r2

13 + r2
23)2

+ . . . (30)

of the three-body wave function at zero energy and vanishing scattering length [70]. Similar to the standard connection between
two-body bound states and poles of the scattering length, the occurence of three particle bound states is determined by poles of
the hypervolume D. Now, as indicated in Fig. 6, the last three-body bound state disappears at a finite negative scattering length
a−(3) ' −9 `vdW. Near Λc

dB, therefore, the vertex function Γ3 has no poles. Moreover, the associated hypervolume D(a=0) > 0 is
positive near the zero of the scattering length at Λc

dB according to a numerical solution of the three-body problem with a Lennard-
Jones interaction [71]. This implies a repulsive effective three-body force and an energy per particle u(n)|a=0 = (~2D/6m) · n2

which scales quadratically with density n [70]. At vanishing scattering length, therefore, the many-body Bose fluid is stabilized
by repulsive three-body interactions, a behavior quite different from that of the naively expected ideal Bose gas. In particular,
the finite density fluid at a = 0 is characterized by a non-trivial relation between pressure and chemical potential of the form

p(µ)|a=0 =

(
8m

9~2D

)1/2

· µ3/2 → µ(n)|a=0 =
~2D
2m
· n2 . (31)

As a result, the density n(µ) = ∂p/∂µ scales with the square root of the chemical potential rather than the linear behavior
found for positive scattering lengths. This is a consequence of the non-standard critical exponent β = 1/4 associated with the
appearance of a finite order parameter |ψ|(µ) ∼ µ β right at the quantum tricritical point which separates the gaseous from the
liquid ground state in the zero density limit.

8 For an introduction to the formalism see e.g. the book by Zee [69]. Due to Galilei invariance, derivatives only appear in the covariant form D̃ = ~∂τ−~
2∇2/2m.
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FIG. 7: Zero temperature phase diagram as a function of the chemical potential µ and the deviation g ∼ ΛdB − Λc
dB of the de Boer parameter

from its critical value. The gaseous ground state in the regime g > 0 arises from the vacuum at µ < 0 via a continuous transition. For g < 0, the
ground state is a liquid. It is separated from the vacuum by a first-order transition at µc < 0. The point µ = g = 0 is a quantum tricritical point.
The finite temperature phase diagram for ΛdB < Λc

dB on the right is adapted from Son et al. [57]. Beyond a tricritical point at T ∗ ' ~2n̄2/3/m,
the transition from a superfluid liquid to a non-superfluid gas changes from first order to a continuous one.

In the regime g < 0, the symmetry broken phase with a finite density n(µ) = |ψ̄|2 , 0 appears already beyond a negative value

µc = −3g2/(16λ3) = −6π2 ~2a2/(mD) (32)

of the chemical potential, which vanishes with the square of the distance from the quantum tricritical point as indicated in Fig. 7.
By the Gibbs-Duhem relation, the critical chemical potential µc = u(p = 0) coincides with the energy per particle since the
pressure vanishes along the line separating the vacuum from the finite density liquid. Right on the line µ = µc, the density jumps
from zero in the vacuum state µ < µc to a finite value

n̄ = n(µc) = 3|g|/(4λ3) = 6π |a|/D → n̄σ3 = 6π |a|σ3/D −−→
LJ

1.32 (Λc
dB − ΛdB) + . . . . (33)

The dimensionless product n̄σ3 therefore approaches zero linearly with the deviation from the quantum tricritical point. The
numerical prefactor in the final expression is specific for a Lennard-Jones interaction, where the factor aΛ = 3.828 in Eq (27)
and the three-body hypervolume D(a=0)= (86±2) `4

vdW near the last zero crossing of the scattering length have been determined
by Mestrom et al. [71]. Despite the considerable deviation Λc

dB − ΛdB ' 0.26 of the de Boer parameter of 4He from the critical
value for a liquid-gas transition, a naive application of Eq (33) predicts a dimensionless density n̄σ3 ' 0.34 for 4He at zero
pressure which is close to the observed value. This agreement is again a fortuitous coincidence, however, because two 4He
atoms form a weakly bound dimer and thus the relation (27) does not apply. A system rather close to the quantum tricritical
point, still on the liquid side, would be 2He. Its de Boer parameter is expected to be ΛdB '

√
2 · 0.42 = 0.59 due to the factor

two in mass. Unfortunately, this extremely dilute superfluid liquid does not exist in nature because the di-proton is not bound 9.
The evolution of the finite temperature phase diagram in the regime of de Boer parameters between Λdb ' 0.37 and Λc

dB,
where the ground state at vanishing pressure is a liquid, has been discussed by Son et al [57]. Surprisingly, this diagram is
of the familiar form observed in 4He (see Fig. 2) only in a finite range of ΛdB above 0.37. For values that correspond to the
hypothetical 2He fluid and up to Λc

dB, in turn, the critical endpoint of the λ -line on the liquid-gas boundary has disappeared.
Instead, as shown in Fig. 7, there is a tricritical point along the coexistence line between a superfluid liquid and the normal
gas above which the transition changes from being first order to a continuous one. Its temperature T ∗ ' ~2n̄2/3/m is set by
the finite density n̄ of the liquid ground state at zero pressure given in Eq (33) which also determines the jump in density
below T ∗ by the simple relation ∆n = [1 − (T/T ∗)3/2] n̄ [57]. Since n̄ → 0 in the limit of vanishing scattering length, the tri-
critical point shifts to zero temperature and then coincides with the quantum tricritical point µ = g = 0 shown in Fig. 7 on the left.

Regarding a possible realization of a liquid state in ultracold Bose gases near vanishing scattering length which is stabilized by
repulsive three-body interactions, it is necessary to account for the finite imginary part of the three-body scattering hypervolume
that is present at generic zero crossings of a in the standard regime where the de Boer parameter ΛdB is much less than one. As
will be discussed in Lecture III, this leads to a corresponding loss rate Γ3 = −~ Im(D) n2/m [72]. Experimentally, these losses

9 For a discussion of the thermodynamics and life time of stars if a di-proton bound state would exist, see L. A. Barnes, arXiv:1512.06090 [astro-ph.SR].
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have been studied by Shotan et al. [73], who measured the recombination length Lm defined by Im D ' L4
m near a zero crossing

of the scattering length at B ' 850 G in 7Li. Remarkably, the observed value Lm ' 4 `vdW is close to that quoted above for
the fourth root D1/4 ' 3.1 `vdW of the purely real three-body scattering hypervolume near the zero crossing of the scattering
length at Λc

dB, where no two-body bound state exists. Now, according to Eq. (33), the density of a liquid state stabilized by
three-body repulsion is of order n̄`3

vdW ' |a|/`vdW for typical values Re D ' (`vdW)4. In practice, such high densities are not
accessible with ultracold gases. However, as suggested by Petrov [74], a dilute liquid phase of bosons at negative scattering
length which is stabilized by repulsive three-body interactions might be realized in a situation where two internal states | ↑〉
and | ↓〉 are coupled by an rf-field. By varying the effective Rabi coupling, the scattering length in the symmetric configuration
(| ↑〉 + | ↓〉)/

√
2 can be tuned to zero. The associated three-body scattering hypervolume D(a = 0) ' a4

↑↑
/ξ is large and positive

provided ξ = (a↑↓ + a↑↑)/(a↑↓ − a↑↑) � 1. In particular, it is a factor 1/ξ � 1 larger than the characteristic magnitude Im D ' a4
↑↑

of its imaginary part, as determined by the standard scaling of the three-body loss rate. Neglecting losses, the resulting effective
potential (29) gives rise to a dilute Bose liquid in the regime where a < 0. Its dimensionless density n̄a3

↑↑
' ξ |a|/a↑↑ vanishes

linearly with the scattering length as in Eq. (33) and - moreover - is small enough to be accessible with dilute ultracold gases. The
state is a three-body interaction analog of self-bound droplets in two - component Bose gases which are stabilized by the Lee-
Huang-Yang contribution to the interaction energy. They were predicted by Petrov [75] and have been realized experimentally
by Cabrera et al. [76]. In fact, liquid-like droplets of bosons have been observed earlier by Ferrier-Barbut et al. [77] in dipolar
gases, where the mean-field instability due to the attractive part of the dipolar interaction is eliminated by the repulsive LHY -
correction e(n)|LHY ∼ gn2 (na3)1/2 to the ground state energy density. This stabilizes droplets at densities of order 1014 cm−3 [77].

Self-bound droplets and N-body bound states near vanishing scattering length In the regime ΛdB < Λc
dB of negative scatter-

ing lengths, the ground state at vanishing pressure is a superfluid liquid. By the Gibbs-Duhem relation, the energy per particle
u(p = 0) = µc < 0 is negative. A given number N of particles thus has an extensive binding energy BN = |u(p = 0)|N. Moreover,
since the liquid has a finite density n̄ at zero pressure, the radius of an N-cluster scales like RN ' (N/n̄)1/3. In the limit where
the scattering length approaches zero, both u(p = 0) and n̄ vanish. The zero pressure liquid thus evaporates into a gas precisely
at the quantum tricritical point µ = g = 0. This is true, however, only in the thermodynamic limit. For finite particle numbers,
the binding energy BN is reduced because particles on the surface are less bound than those in the bulk. For the specific case
of a Lennard-Jones interaction, this has been studied numerically for small clusters by Meierovich et al. [78] and by Sevryuk
et al. [79]. In particular, it has been found that, at finite N, quantum unbinding appears at values Λ∗dB(N) < Λc

dB = 0.679... of
the de Boer parameter which are considerably lower than what is expected in the thermodynamic limit. This observation can be
understood by including a finite, positive surface energy fs per particle in the liquid phase, which also accounts for the essentially
flat radial density distributions found numerically near Λc

dB [79]. The surface energy is defined by the subleading term in the
expansion

E0(N) = u N + fs N2/3 + . . . (34)

of the N-body ground state energy for N � 1. Taking into account the surface contribution, the condition E0(N + 1) = E0(N) for
the unbinding of an N-cluster, which is equivalent to a vanishing single particle addition energy µ(N) = E0(N + 1) − E0(N) = 0,
can be written in the form

−3 u
2 fs

[
Λ∗dB(N)

]
= N−1/3 . (35)

The finite size scaling of the deviation Λc
dB − Λ∗dB(N) for N � 1 is thus determined by the dependence of the bulk energy u and

the surface energy fs per particle on the de Boer parameter. Now, Eq. (32) shows that the energy per particle u(p = 0) = µc
on the zero pressure line separating the vacuum from the finite density liquid vanishes quadratically with the distance from
the quantum tricritical point. To determine how the surface energy fs per particle vanishes near Λc

dB, we use the result for the
underlying surface tension 10

σ̄ =
λ3n̄3

6 κ0
'
~2 a2

m D3/2 ∼ (Λc
dB − ΛdB)2 (36)

derived by Bulgac [81] on the basis of the exact domain wall solution n(z) = n̄/
(
1 + exp(2κ0z)

)
for the liquid-to-vacuum bound-

ary with an effective potential of the form (29) right at the critical value (32) of the chemical potential. The associated healing

10 We use a bar in the surface tension σ̄ to distinguish it from the short distance length scale σ. Note also that the exponent νu = νt/φt = 1 for the divergence
of the correlation length 1/κ0 along the first-order transition line µ = µc is a subsidiary tricritical exponent in the notation of Griffiths [80]. The relevant
crossover exponent φt = 1/2 is determined by the quadratic behavior (32) of the chemical potential near the quantum tricritical point.
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length 1/κ0 = ~/
√

2m|µc| '
√

D/|a| diverges linearly with the distance from the quantum tricritical point, implying that the
surface tension vanishes quadratically. This is consistent with a scaling relation due to Widom [82] which connects the exponent
of the surface tension σ̄ ∼ 1/ξd−1 with that of the correlation length. More precisely, the scaling argument by Widom states
that σ̄ ' kBTc/ξ

d−1 vanishes like the characteristic energy kBTc at a finite temperature phase transition divided by the surface
area ξd−1 of a domain with size ξ. For the phase transition at the quantum tricritical point studied here, the role of kBTc is
apparently played by ~2/(m

√
D). Combining the results (33) for the average interparticle spacing n̄−1/3 and Eq. (36) for the

surface tension shows that the surface energy fs ' 4π n̄−2/3 · σ̄ ∼ |ΛdB −Λc
dB|

4/3 vanishes with a non-trivial exponent 4/3 near the
quantum tricritical point. Based on Eq. (35), the threshold values Λ∗dB(N) of the de Boer parameter beyond which N-body bound
states disappear therefore approach the critical value Λc

dB of the bulk liquid-gas transition according to Λc
dB − Λ∗dB(N) ∼ N−1/2.

Moreover, in view of Eq. (27), this leads immediately to a power law behavior

− a−(N � 1) '
(√

D/N
)1/2

or N∗(a) '
√

D/a2 (37)

of the associated scattering lengths a−(N) or the critical number N∗(a) where self-bound droplets of N∗(a) bosons unbind at
a given negative scattering length a. It has the remarkable feature that the three-body scattering hypervolume D(a = 0) at
vanishing scattering length sets the scale for the unbinding of N-body bound states in the asymptotic limit N � 1. This is a con-
sequence of the fact that D appears in the leading term ∼ D |ψ|6 in Eq. (29) which stabilizes the superfluid at both vanishing and
small negative scattering lengths, while higher order contributions are negligible near the quantum tricritical point, where n̄→ 0.

The result (37) provides a solution to a long standing problem on how to connect well known results in few-body physics
to the many-body limit N � 1. As mentioned above, the existence of three-body bound states for identical bosons had been
predicted in the early seventies by Efimov [60]. Many-body bound states exist also for larger particle numbers. This has
been studied in detail for N = 4, where theory predicts an infinite sequence of two tetramer states per Efimov trimer [83–86].
Experimentally, the lowest tetramer state has been observed by Ferlaino et al. [87] at a−(4) ' 0.47 a−(3) and even signatures of
a five-body bound state have been inferred from a characteristic feature in the recombination rate of Cesium near a scattering
length a−(5) ' 0.64 a−(4) [88]. More generally, the energetically lowest N-body bound states, which are the true ground
states of the N-particle system in the regime Λ∗dB(N = 2) ≤ ΛdB < Λc

dB, detach from the continuum at a sequence a−(N) < 0
of scattering lengths which apparently approaches zero in a monotonic manner. This has been investigated by von Stecher
via numerical solutions of the Schrödinger equation up to N = 13 [89]. In particular, it turns out that the consecutive ratios
a−(4)/a−(3) ' 0.44 , a−(5)/a−(4) ' 0.64 and a−(6)/a−(5) ' 0.73 are not very sensitive to the detailed form of the two-body
interactions [90]. An obvious question is then whether the sequence of N-body bound states continues up to N =∞ and - if so
- what is the asymptotic scaling of the scattering lengths a−(N) where they first appear, starting from a = 0−. The finite size
scaling theory for self-bound liquid droplets near the quantum tricritical point developed above provides an explicit answer to
this in the limit N � 1. In particular, it shows that the effective binding energy of N-clusters of identical bosons vanishes at
a sequence of negative scattering lengths a−(N) which approach zero in an algebraic fashion as described by Eq. (37). The
existence of an infinite sequence of N-body bound states with an accumulation point at a = 0 is consistent with a theorem
due to Seiringer [91], which states that some N-body bound state must exist for arbitrary small negative scattering lengths.
It is also consistent with an earlier theorem by Amado and Greenwood [92] which shows that the number of N-body bound
states is finite for any N ≥ 4 precisely at the position a−(N − 1) where a zero-energy N − 1-body bound state appears. An
experimental verification of the prediction (37) is an open challenge and requires to determine the size dependence in the
unbinding of self-bound droplets near the limit a → 0− of their stability. Remarkably, a related problem appears in nuclear
physics where the binding energy of nuclei with an equal and even number of protons and neutrons depends on the strength
of the effective interaction between two alpha particles. Similar to a change of the de Boer parameter discussed above, this
interaction may be tuned to a quantum tricritical point which separates a nuclear liquid and an unbound gas of alpha particles [93].
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[63] M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C. Nägerl, F. Ferlaino, R. Grimm, P. S. Julienne, and J. M. Hutson, Phys. Rev. Lett.
107, 120401 (2011).

[64] J. Wang, J. P. D’Incao, B. D. Esry, and C. H. Greene, Phys. Rev. Lett. 108, 263001 (2012).
[65] R. Schmidt, S. P. Rath, and W. Zwerger, The European Physical Journal B 85, 386 (2012).
[66] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[67] R. Chapurin, X. Xie, M. J. Van de Graaff, J. S. Popowski, J. P. D’Incao, P. S. Julienne, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 123,

233402 (2019).
[68] X. Xie, M. J. Van de Graaff, R. Chapurin, M. D. Frye, J. M. Hutson, J. P. D’Incao, P. S. Julienne, J. Ye, and E. A. Cornell, Phys. Rev.

Lett. 125, 243401 (2020).
[69] A. Zee, Quantum Field Theory in a Nutshell, Second Edition (Princeton University Press, Princeton, NJ, 2010).
[70] S. Tan, Phys. Rev. A 78, 013636 (2008).
[71] P. M. A. Mestrom, V. E. Colussi, T. Secker, G. P. Groeneveld, and S. J. J. M. F. Kokkelmans, Phys. Rev. Lett. 124, 143401 (2020).
[72] S. Zhu and S. Tan, Three-body scattering hypervolumes of particles with short-range interactions (2017), arXiv:1710.04147.
[73] Z. Shotan, O. Machtey, S. Kokkelmans, and L. Khaykovich, Phys. Rev. Lett. 113, 053202 (2014).
[74] D. S. Petrov, Phys. Rev. Lett. 112, 103201 (2014).
[75] D. S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).
[76] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Science 359, 301 (2018).
[77] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Phys. Rev. Lett. 116, 215301 (2016).
[78] M. Meierovich, A. Mushinski, and M. Nightingale, J. Chem. Phys. 105, 6498 (1996).
[79] M. Sevryuk, J. Toennies, and D. Ceperley, J. Chem. Phys. 133, 064505 (2010).
[80] R. B. Griffiths, Phys. Rev. B 7, 545 (1973).
[81] A. Bulgac, Phys. Rev. Lett. 89, 050402 (2002).
[82] B. Widom, J. Chem. Phys. 43, 3892 (1965).
[83] H.-W. Hammer and L. Platter, Eur. Phys. Journal A 32, 113 (2007).
[84] v. Stecher. J, J. P. D’Incao, and C. H. Greene, Nat. Phys. 5, 417 (2009).
[85] R. Schmidt and S. Moroz, Phys. Rev. A 81, 052709 (2010).
[86] A. Deltuva, Phys. Rev. A 85, 012708 (2012).
[87] F. Ferlaino, S. Knoop, M. Berninger, W. Harm, J. P. D’Incao, H.-C. Nägerl, and R. Grimm, Phys. Rev. Lett. 102, 140401 (2009).
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