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measured by single-atom detection with metastable He-atoms  

bunching of bosons

 disappears in a BEC 

Schellekens et al 2005

• Hanbury Brown and Twiss correlations in a BEC
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We expect the experimental normalized
correlation function for a thermal bosonic gas
to be described by
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We have assumed here that the gas is non-
interacting and that the velocity and density
distribution remain roughly Gaussian even

close to the BEC transition temperature. Nu-
merical simulations indicate that this is a good
approximation when the correlation function
is averaged over the entire cloud (22). As dis-
cussed above, the correlation lengths should
be inversely proportional to the sizes, si, of
the sample. In a harmonic trap with trapping
frequency wi along the i direction, one has

si 0
ffiffiffiffiffiffiffi

kBT
mw 2

i

q

, where kB is Boltzmann_s con-

stant and T is the temperature of the atoms.
Because T is derived directly from the time
of flight spectrum, we shall plot our data as a

function of T rather than of s. The parameter
h would be unity for a detector whose res-
olution width d is small compared with the
correlation length. Our d is smaller than ly
but larger than lx, and in this case the con-
volution by the detector resolution results in
an h given roughly by lx/2d È 5%. We use
Eq. 1 to fit the data by using h and the li as
fit parameters and compare the results to the
ideal gas model (21).

The results for lx, ly, and lz for our three
temperatures are plotted in Fig. 3A. The fitted
values of lx are È450 mm and are determined
by the detector resolution rather than the true
coherence length along x. The value of ly has
been corrected for the finite spatial resolution
of the detector. The fitted value of lz requires
no correction, because in the vertical direction
the resolution of the detector is much better. ly
and lz are consistent and agree with the pre-
diction using the known trap frequencies and
temperatures. Figure 3B shows the fitted value
of h versus temperature, along with the pre-
diction of the same ideal gas model as in Fig.
3A, using the measured detector resolution.
The data are in reasonable agreement with the
model, although we may be seeing too little
contrast at the lowest temperature. The run at
0.55 mK was above, but very close to, the BEC
transition temperature. (We know this because,
when taking data at 0.55 mK, about one-third
of the shots contained small BECs; these
runs were eliminated before plotting Fig. 2.)
Future work will include examining whether
the effect of the repulsive interactions between
atoms or finite atom number must be taken into
account.

The results reported here show the power
of single particle detection in the study of
quantum gases. The correlations we have ob-
served are among the simplest that should be
present. Two recent experiments have shown
correlations in a Mott insulator (11) as well as
in atoms produced from the breakup of mole-
cules near a Feshbach resonance (12). Im-
proved observations of these effects may be
possible with individual particle detection.
Other atom pair production mechanisms, such
as four-wave mixing (23, 24), can be inves-
tigated. A fermionic analog to this experiment
using 3He would also be (25) of great interest.
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Fig. 2. (A) Normalized
correlation functions
along the vertical (z)
axis for thermal gases
at three different tem-
peratures and for a BEC.
For the thermal clouds,
each plot corresponds
to the average of a
large number of clouds
at the same temper-
ature. Error bars cor-
respond to the square
root of the number of
pairs. a.u., arbitrary units.
(B) Normalized corre-
lation functions in the
Dx j Dy plane for the
three thermal gas runs.
The arrows at the bot-
tom show the 45- ro-
tation of our coordinate
system with respect to
the axes of the detec-
tor. The inverted ellip-
ticity of the correlation
function relative to the
trapped cloud is visible.

Fig. 3. Results of fits to the data in Fig. 2, A
and B. (A) Fitted correlation lengths lx,
ly, and lz along the three axes (triangles,
squares, and circles) as a function of
temperature. The upper axis shows the
corresponding source size sz. Vertical
error bars are from the fits. Horizontal
error bars correspond to the standard
deviation of the measured temperature.
Along the x axis, the measurement is
entirely limited by the detector resolu-
tion. The dotted horizontal line is the
result of an independent estimate of the
resolution. The result for the y axis has
been corrected for the finite detector resolution as characterized by the fitted value of lx. The z axis
suffers from no such resolution limit. The solid curve corresponds to It/msz. (B) Fitted contrast h of the
correlation function for the three temperatures used. The solid line corresponds to the same non-
interacting gas model as the line in (A) (21) and includes the finite detector resolution.
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uation for uncorrelated detection events. This
fact was used by HBT to measure the angular
size of a star (8), but another major conse-
quence of the observation was to draw attention
to the importance of two-photon amplitudes
and how their interference can lead to sur-
prising effects. These quantum amplitudes
must not be confused with classical electro-
magnetic field amplitudes (3). Two-photon
states subsequently led to many other striking
examples of Bquantum weirdness[ (9). In con-
trast to a chaotic source, all photons in a single
mode laser are in the same quantum state.
Hence, there is only one physical process and
no bunching effect. A similar effect is ex-
pected for atoms in a Bose-Einstein conden-
sate (BEC).

Two-particle correlations have been ob-
served both for cold neutral atoms (10–12)
and for electrons (13–15), and three-particle
correlations (16–18) at zero distance have also
been used to study atomic gases. But the full
three-dimensional effect and its dependence
on the size and degeneracy of a sample has
yet to be demonstrated for massive particles.
Here, we demonstrate the effect for a trapped
cloud of atoms close to the BEC transition
temperature released onto a detector capable
of individual particle detection. We extract,
for varying cloud sizes, a three-dimensional
picture of the correlations between identical
particles produced by quantum interference.
We also show that a BEC shows no such cor-
relations. The results are in agreement with
an ideal gas model and show the power of
single particle detection techniques applied
to the study of degenerate quantum gases.

The calculation of the phase difference of
the possible two-particle detection amplitudes
given in (7) can be adapted to the case of par-
ticles of mass m traveling to a detector in a
time t. One can show that the correlation
length observed at the detectors, that is, the
typical detector separation for which inter-
ference survives, is li 0 It

msi
, where si is the

source size along the direction i, I is the
reduced Planck_s constant, and we have as-
sumed that the size of the cloud at the de-
tector is much larger than the initial size. The
optical analog of this expression, for a source
of size s and wavelength l at a distance L
from the observation plane, is l 0 Ll/2ps.
This is the length scale of the associated
speckle pattern. The formula can be recov-
ered for the case of atoms traveling at con-
stant velocity v toward a detector at distance
L if one identifies h/mv with the deBroglie
wavelength corresponding to velocity v. The
formula we give is also valid for atoms ac-
celerated by gravity, and the interpretation of
l as the atomic speckle size remains valid. A
pioneering experiment on atom correlations
used a continuous beam of atoms (10). For a
continuous beam, the correlation time, or equiv-
alently, the longitudinal correlation length, de-

pends on the velocity width of the source and
not on the source size. Thus, the longitudinal
and transverse directions are qualitatively dif-
ferent. By contrast, our measurements are per-
formed on a cloud of atoms released suddenly
from a magnetic trap. In this case, the three
dimensions can all be treated equivalently, and
the relation above applies in all three. Because
the trap is anisotropic, the correlation func-
tion is as well, with an inverted ellipticity.
Our sample is a magnetically trapped cloud
of metastable helium atoms evaporatively
cooled close to the BEC transition tempera-
ture (19) (about 0.5 mK for our conditions).
Our source is thus very small, and together
with a long time of flight (308 ms) and
helium_s small mass, we achieve a large
speckle size or correlation volume (30 mm by
800 mm by 800 mm), which simplifies the
detection problem. For example, the observa-
tions are much less sensitive to the tilt of the
detector than in (10).

To detect the atoms, we use an 8-cm-
diameter microchannel plate detector (MCP).
It is placed 47 cm below the center of the
magnetic trap. A delay line anode permits
position-sensitive detection of individual par-
ticles in the plane of the detector (20) (Fig. 1).
Atoms are released from the trap by suddenly
turning off the magnetic field. About 10% of
these atoms are transferred to the magnetic
field–insensitive m 0 0 state by nonadiabatic
transitions (19) and fall freely to the detector.
The remaining atoms are removed by applying
additional magnetic field gradients during the
time of flight. For each detected atom, we
record the in-plane coordinates x and y and the
time of detection t. The atoms hit the detector
at 3 m/s with a velocity spread below 1%, and
so we convert t into a vertical position z. The
observed root mean square (rms) resolution is
d È 250 mm in x and y and 2 nm in z. These

data allow us to construct a three-dimensional
histogram of pair separations (Dx, Dy, and Dz)
for all particles detected in a single cloud. The
histograms are summed over the entire atom-
ic distribution and over many shots, typically
1000 (21).

Because of our good resolution along z,
we begin by concentrating on the correlation
function along this axis. Normalized corre-
lation functions for various experimental
conditions are shown in Fig. 2A. To compute
the normalized correlation function, we di-
vide the pair separation histogram by the
autoconvolution of the average single parti-
cle distribution along z. We also normalize
the correlation function to unity for large sep-
arations. This amounts to dividing, for each
elementary pixel of our detector, the joint de-
tection probability by the product of the indi-
vidual detection probabilities at the two pixels.
This gives us the usual normalized correlation
function g(2)(Dx 0 0, Dy 0 0, Dz). The HBT
bunching effect corresponds to the bump in
the top three graphs of Fig. 2A. The fourth
graph shows the result for a BEC. No correla-
tion is observed. EA detector saturation effect in
the BEC data required a modified analysis pro-
cedure (21).^ We have also recorded data for a
cloud with a 2-mm radius and 1-mK temper-
ature for which the correlation length is so
small that the bunching effect is washed out by
the in-plane detector resolution. Experimentally,
the normalized correlation function in this case
is indeed flat to within less than 1%.

We plot (Fig. 2B) the normalized corre-
lation functions in the Dx j Dy plane and for
Dz 0 0 for the same three data sets. The data
in Fig. 2B show the asymmetry in the cor-
relation function arising from the difference
in the two transverse dimensions of the trapped
cloud. The long axis of the correlation function
is orthogonal to that of the magnetic trap.

Fig. 1. Schematic of the apparatus. The trapped cloud has a cylindrical symmetry with oscillation
frequencies of wx/2p 0 47 Hz and wy/2p 0 wz/2p 0 1150 Hz. During its free fall toward the
detector, a thermal cloud acquires a spherical shape. A 1-mK temperature yields a cloud with an
rms radius of about 3 cm at the detector. Single particle detection of the neutral atoms is possible
because of each atom’s 20-eV internal energy that is released at contact with the MCP. Position
sensitivity is obtained through a delay-line anode at the rear side of the MCP.

R E P O R T S

www.sciencemag.org SCIENCE VOL 310 28 OCTOBER 2005 649

D
ow

nloaded from
 https://w

w
w

.science.org at Technical U
niversitat M

uenchen on Septem
ber 16, 2021

Öttl et al 2005

Kagan et al 1985



3

Lieb-Liniger parameter   

zero-range interactions in one dimension

Gangardt/Shlyapnikov 2003

• suppression of bunching by repulsive interactions
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• Exact relations for many-body systems with zero-
range interactions from the OPE


  

                 is ill-defined and must be replaced by      

the two-body contact density


• Bragg-scattering at large momentum: negative line-
shift and multi-particle excitations

• Outline
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two-body wave function Bethe/Peierls

many-body problem:  separate free motion at short distances 

OPE Oa(R� x/2)Ob(R+ x/2) =
X

`

W (a,b)
` (x)O`(R)

 0(r) =
1

r
� 1

a

• Zero-range interactions and the OPE

scattering length defined by short distance behavior of

 ̂(R� x/2)  ̂(R+ x/2) =
 0(r)

4⇡
�̂(R) + . . .
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BEC with repulsive interaction

bunching at r . a

Naraschewski/Glauber 1999

!!

• pair distribution function at short separation

S. Tan 2005
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• tail in the momentum distribution


• closed channel fraction near a Feshbach resonance


• derivative of the energy with respect to 1/a


• clock-shift and asymptotic decay of the RF-spectrum


• rates for two- or three-body losses


  

                 

• Tan relations:  a list of examples 

the two-body contact density determines the
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• Ramsey-type measurements of the contact

dilute BEC at 

wherem is the atom mass, n the density of the ↑
component, and a the ↑↑ scattering length. Away
from unitarity, C2º n2a2 and C3º n3a4 (19, 20),
and the ratio of the C3 and C2 contributions to
W is of the order of n|a|3 ≪ 1. At unitarity, both
contacts saturate at their maximal values; in a
thermal gas, C2º n2l2 and C3º n3l4, where l is
the thermal wavelength. The crucial advantage
of using the precession of the Bloch vector to
observe three-particle correlations is that the
C2 contribution toW vanishes at unitarity (where
|a| →1).

Our experimental setup is described in (32).We
worked with 39K atoms prepared in an optical
harmonic trap with frequencies (wx, wy, wz)/2p =
(48.5, 56.5, 785) Hz. Our two spin states, labeled
in the low-field basis, were j↑i ¼ jF ¼ 1;mF ¼ 1i
and j↓i ¼ jF ¼ 1;mF ¼ 0i. We tuned the ↑↑ scat-
tering length a by using a Feshbach resonance
centered on a magnetic field of B0 = 402.70(3) G
(30). In all our experiments, |a| > 300a0, whereas
the moduli of the ↑↓ and ↓↓ scattering lengths
are <10a0 (33), where a0 is the Bohr radius.
Near B0, the bare splitting of the ↑ and ↓ states is

≈99 MHz. We prepared clouds at the critical
point for Bose-Einstein condensation, with a
phase-space density ntotl

3 ≈ 2.6 at the trap
center, where ntot is the number density, and the
cloud temperature of 370 nK corresponds to l ≈
8600a0. The duration of each p/2 pulse was tp =
17 ms, and the evolution time between the pulses,
T, was varied between 40 and 130 ms. At the end
of the whole Ramsey sequence, we measured
the fractional ↑ population, n↑/ntot, by in situ
absorption imaging along the axial direction, ẑ
(Fig. 2A). In Bose gases, strong coherent in-
teractions are generally accompanied by sub-
stantial inelastic losses, but on the time scale of
our experiments, the atom loss at our highest
density was <10%.
Tomeasure the density-dependentW, we scan-

ned the detuning of the RF source from the non-
interacting resonance, observedRamsey oscillations
of the spin populations, and extracted the detun-
ing for which n↑/ntot is maximal, d0 (Fig. 2A). We
exploited the fact that the atoms are essentially
stationary during the Ramsey sequence to simul-
taneously extract d0 for a wide range of densities
from the local oscillations of n↑/ntot in different
regions of the cloud. Generally

d0 ¼ −
ϕþ Dϕp

T þ 4tp=p
ð2Þ

where Dϕp is any interaction-induced phase
accumulated during the RF pulses (30). For
constant W (so ϕ = WT ) and T ≫ tp, Eq. 2 re-
duces to the intuitive d0 = –W. Formeasurements
at low density and away from unitarity, this is
an excellent approximation. For more accurate
studies at high densities or close to unitarity,
we performed differential measurements, in
which we extracted d0 for various evolution times
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Fig. 3. Two-body contact. (A) Initial
slope a of WðnÞ, normalized to a0 =
8pℏl=m. The solid red line shows the
theoretical prediction (34), and the
dashed orange line shows its weakly
interacting limit, a/a0 = a/l. The
dashed black vertical line shows the
Feshbach resonance position. Inset,
measurements close to the resonance.
(B) C2 extracted from a. The red line
is the theoretical prediction of (35).
The thickness of the red lines reflects
the uncertainty inB0. In both plots, the
error bars are smaller than the
point size.

Fig. 2. Density-dependent phase winding. (A) Ramsey oscillations of the
spin-↑ density as a function of the RFdetuning d.Oscillations at different positions
in the trap reveal the density dependence ofϕ. Strong interactions both shift the
center of the Ramsey fringes, d0, and reduce their contrast. (B) For weak inter-
actions (top and bottom), W varies linearly with density, but close to unitarity
(middle), it shows nonlinear behavior that reveals the influence of three-body
physics. At all scattering lengths, the data are fitted well by a second-order poly-
nomial (solid blue lines); the red dashed lines show the linear parts of the fits.W
was obtained from themeasured d0 by settingW = –d0, and the error bars show
standard errors in the fitted center of the corresponding Ramsey fringes.
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Two- and three-body contacts in the
unitary Bose gas
Richard J. Fletcher,1* Raphael Lopes,1 Jay Man,1 Nir Navon,1 Robert P. Smith,1

Martin W. Zwierlein,2 Zoran Hadzibabic1

In many-body systems governed by pairwise contact interactions, a wide range of
observables is linked by a single parameter, the two-body contact, which quantifies
two-particle correlations. This profound insight has transformed our understanding of
strongly interacting Fermi gases. Using Ramsey interferometry, we studied coherent
evolution of the resonantly interacting Bose gas, and we show here that it cannot be
explained by only pairwise correlations. Our experiments reveal the crucial role of
three-body correlations arising from Efimov physics and provide a direct measurement
of the associated three-body contact.

A
fundamental challenge in many-body quan-
tum physics is to connect the macroscopic
behavior of a system to the microscopic
interactions between its constituents. In
ultracold atomic gases, the strength of in-

teractions is most commonly characterized by the
s-wave scattering length a, which can be tuned by
using Feshbach resonances (1). On resonance, a
diverges and the unitary regime is reached, in
which the interactions are as strong as allowed
by quantummechanics. This regime has been ex-
tensively studied in Fermi gases (2–4), whereas
the unitary Bose gas represents a new experimen-
tal and theoretical frontier (5–11).
In gases interacting via pairwise contact in-

teractions, universal properties of the short-range
particle correlations imply universal thermo-
dynamic relations betweenmacroscopic observ-
ables such as themomentum distribution, energy,
and spectroscopic response (12–20). In the case
of (mass-balanced) two-component Fermi gases, at
the heart of these relations is a single fundamental
thermodynamic parameter, the two-body contact
density C2, which measures the strength of two-
particle correlations. However, the case of the
Bose gas is more subtle because of the lack of the
Pauli exclusion principle, which governs the be-
havior of identical fermions. In this system,
Efimov physics gives rise to three-body bound
states (21–27) andmore generally introduces three-
particle correlations that cannot be deduced from
the knowledge of pairwise ones (18–20, 28). The
implication for many-body physics is that com-
plete understanding of themacroscopic coherent
phenomena requires knowledge of both C2 and
its three-body analog C3 (18–20).

The relative importance of three-particle cor-
relations generally grows with the strength of in-
teractions. At moderate interaction strengths,
C2 has been measured spectroscopically, but C3
has not been observed (25). However, the mo-
mentum distribution of the unitary Bose gas (7)
has suggested deviations from two-body physics
(20, 29).
We interferometrically measured both C2

and C3 in a resonantly interacting thermal Bose
gas. The idea of our experiment is illustrated in

Fig. 1. We performed radio-frequency (RF) Ramsey
interferometry on a gas of atoms with two in-
ternal (spin) states, ↑ and ↓, and used a magnetic
Feshbach resonance to enhance ↑↑ interactions;
both ↑↓ and ↓↓ interactions are negligible. For
a measurement at a given magnetic field, we
initially prepared a gas in the ↓ state and then
used a RF pulse to put each atom into an equal
superposition of ↑ and ↓. This corresponded to
an interaction quench that initiated many-body
dynamics. During the subsequent evolution, the
↑ component of an atom’s wave function accu-
mulated a phase ϕ because of interactions with
the other ↑ components in the surrounding cloud.
As we formally show (30), the rate at which ϕ
accumulates reflects many-body correlations that
would develop in a purely ↑ system with half the
total density. Meanwhile, the ↓ component serves
as a noninteracting phase reference, which allows
us to read out ϕ interferometrically. This was ac-
complished by a second RF pulse, which mapped
ϕ onto a spin-population imbalance that we
measured directly. Recently, similar methods
have been used to study impurities in a Fermi
sea (31).
In the bottom row of Fig. 1, the steps of our

protocol are shown on the Bloch sphere, in terms
of the collective spin

→
S. During the evolution of

the equal-superposition state,
→
S precesses with

time, t, in the equatorial plane at a rateW = @ϕ/@t.
We derive the following relationship between W
and the two- and three-body contacts (30)

W ¼ ℏ
4pm

1
na

C2 þ
5:0 p2

n
C3

! "

ð1Þ
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Fig. 1. Ramsey interferometry of a many-body system. The first p/2 pulse puts each atom in a
superposition of ↑ (red) and ↓ (blue) states. Strong interactions between the red components cause the
relative phase of the superposition to advance by ϕ, as indicated by the blue and red clocks. The
second p/2 pulse maps ϕ onto spin polarization, which is measured by absorption imaging.The duration
of each p/2 pulse is 17 ms, and the evolution time between the pulses is varied between 40 and 130 ms.
Below, the stages of our protocol are illustrated in terms of the collective spin on the Bloch sphere; the
purple arrow denotes the collective Bloch vector, and its motion is indicated by the gray arrows.
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increasing function of T. Conversely for a given temperature, the
shift is (in absolute value) an increasing function of density.

For the lowest temperatures investigated here, we reach the
fully condensed regime in spite of the 2D character of the sample,
as a result of finite size effects. In this case, the mean-field pre-
diction for the shift reads Δν ¼ !n _ Δa=ð

ffiffiffiffiffi

2π
p

mazÞ [i.e., C= C0
in Eq. (4)]. Our measurements confirm the linear variation of Δν
with !n, as shown in the inset of Fig. 2 summarizing the data for
T= 22 nK. A linear fit to these data gives Δa/a0=−5.7 (1.0)
where the error mostly originates from the uncertainty on the
density calibration. In the following, we use this value of Δa for
inferring the value of C/C0 from the measured shift at any tem-
perature, using Eq. (4). We note that this estimate for Δa is in
good agreement with the prediction Δa/a0=−6 quoted in ref. 40.
The first corrections to the linear mean-field prediction were
derived (in the 3D case) by Lee, Huang, and Yang in ref. 42. For
our densities, they have a relative contribution on the order of 5 %
of the main signal (Δν≲ 1 Hz) (Supplementary Note 3), and their
detection is borderline for our current precision.

We summarize all our data in Fig. 3, where we show the
normalized contact C/C0 defined in Eq. (4) as a function of the
phase-space density D. All data points collapse on a single curve
within the experimental error, which is a manifestation of the
approximate scale invariance of the Bose gas, valid for a relatively
weak interaction strength ~g ≲ 143,44.

Discussion
We now compare our results in Fig. 3 to three theoretical pre-
dictions. The first one is derived from the Bogoliubov approx-
imation applied to a 2D quasi-condensate45. This prediction is
expected to be valid only for D notably larger than the phase-
space density at the critical point Dc (see “Methods” section) and
it accounts well for our data in the superfluid region. Within this
approximation, one can also calculate the two-body correlation
function and write it as g2ðrÞ ¼ gT¼0

2 ðrÞ þ g thermal
2 ðrÞ. One can

then show the result (Supplementary Note 3)

C
C0

¼ 1þ gthermal
2 ð0Þ; ð5Þ

which provides a quantitative relation between the contact and
the pair correlation function, in spite of the already mentioned
singularity of gT¼0

2 ðrÞ in r= 0.
For low phase-space densities, one can perform a systematic

expansion of various thermodynamic functions in powers of the
(properly renormalized) interaction strength46, and obtain a
prediction for C (dashed blue line in the inset of Fig. 3). By
comparing the 0th, 1st, and 2nd orders of this virial-type
expansion, one can estimate that it is valid for D≲ 3 for our
parameters. When D ! 0, the result of ref. 46 gives C/C0→ 2,
which is the expected result for an ideal, non-degenerate Bose gas.
The prediction of ref. 46 for D % 3 compares favorably with our
results in the weakly degenerate case.

Finally, we also show in Fig. 3 the results of the classical field
simulation of ref. 47 (red dotted line), which are in principle valid
both below and above the critical point. Contrary to the quantum
case, this classical analysis does not lead to any singularity for 〈n2
(0)〉, so that we can directly plot this quantity as it is provided in
ref. 47 in terms of the quasi-condensate density. For our inter-
action strength, we obtain a non-monotonic variation of C. This
unexpected behavior, which does not match the experimental
observations, probably signals that the present interaction
strength ~g ¼ 0:16 (see “Methods” section and the Supplementary
Note 5) is too large for using these classical field predictions, as
already suggested in ref. 47.
Using the Ramsey interferometric scheme on a many-body

system, we have measured the two-body contact of a 2D Bose gas
over a wide range of phase-space densities. We could implement
this scheme on our fluid thanks to the similarities of the three
scattering lengths in play, a11, a22, a12, corresponding to an
approximate SU(2) symmetry for interactions. Our method can
be generalized to the strongly interacting case aij≳ az, as long as a
Fano-Feshbach resonance allows one to stay close to the SU(2)
point. One could then address the LHY-type corrections at zero
temperature48,49, the contributions of the weakly-bound dimer
state and of three-body contact13,14, or the breaking of scale
invariance expected at non-zero temperature.

Finally, we note that even for our moderate interaction
strength, classical field simulations seem to fail to reproduce our
results, although they could properly account for the measure-
ment of the equation of state itself43,44. The semi-classical treat-
ment of ref. 50 and the quantum Monte Carlo approach of ref. 51
(see also ref. 52) should provide a reliable path to the modeling of
this system. This would be particularly interesting in the vicinity
of the BKT transition point where the usual approach based on
the XY model53, which neglects any density fluctuation, does not
provide relevant information on Tan’s contact. It would allow one
to address the fundamental question raised for example in ref. 26,
regarding the behavior of the contact CðDÞ or its derivatives in
the vicinity of the phase transition, and the possibility to signal
the position of the critical point either by a singularity or at least a
fast variation of Tan’s contact around this point.

Methods
The preparation and the characterization of our sample have been detailed in54,55
and we briefly outline the main properties of the clouds explored in this work. In
the xy plane, the atoms are confined in a disk of radius 12 μm by a box-like
potential, created by a laser beam properly shaped with a digital micromirror
device. We use the intensity of this beam, which determines the height of the
potential barrier around the disk, as a control parameter for the temperature. The
confinement along the z direction is provided by a large-period optical lattice, with
a single node occupied and ωz/(2π)= 4.41 (1) kHz. We set a magnetic field B=
0.701 (1) G along the vertical direction z, which defines the quantization axis. We
use the expression Dc ¼ ln ð380=~gÞ for the phase-space density at the critical point
of the superfluid transition56. Here, ~g ¼

ffiffiffiffiffi

8π
p

a11=az ¼ 0:16 is the dimensionless
interaction strength in 2D, leading to Dc ¼ 7:7. We study Bose gases from the
normal regime (D ¼ 0:3Dc) to the strongly degenerate, superfluid regime
(D> 3Dc).

Fig. 3 Contact measurement. Variations of the normalized Tan ’s contact
C/C0 with the phase-space density D. The encoding of the experimental
points is the same as in Fig. 2. The colored zone indicates the non-
superfluid region, corresponding to D<Dc ! 7:7. The continuous black line
shows the prediction derived within the Bogoliubov approximation. Inset:
Zoom on the critical region. The dashed blue line is the prediction from
ref. 46, resulting from a virial expansion for the 2D Bose gas. The dotted red
line shows the results of the classical field simulation of ref. 47.
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• the Fierz relation for hard spheres

hard sphere fluids  Fierz 1957

breaks scale invariance  trace anomaly  
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by the QDMC code. The function p(r) is obtained as the
expectation value of the operator

1.2
4(r„.. . , r, +r, . . . , rz))~ ~ ~

~ ~

~ ~ ~

%(r), . . . , r~)
(27)

0.4

evaluated on the configuration space over a set of random
displacements of the particle i. The condensate fraction
no, i.e., the fraction of particles occupying the zero
momentum state, may be extracted from p(r) by means of
the asymptotic condition

no= lim p(r) .
p—+ 00

(28)

0.0
D.D 1.0 2.0

I

3.0
a(A ')

4.0 5.0 6.0

FIG. 6. Static structure function at the experimental equilib-
rium density. The solid line is the QDMC result, obtained by a
Fourier transform of the radial distribution function showed in
Fig. 5. The solid circles are the experimental determination
from Ref. 23.

and its Fourier transform, the momentum distribution

n (k) =(2m) pn&5(k)+p fdr e'"'[p(r)—p( ao )] (26)

can also be computed using the configurations generated

0.06

experimental determinations of S(k) (Ref. 24) point to
lower values of the intensity of the first peak, even below
our results. In fact, analysis of the in6uence of the tem-
perature T in S(k} (Refs. 24 and 25) indicate that the
largest variation of the structure function with T is
placed in the vicinity of the first peak.
The one-body density matrix p(r) defined as

O' K), . . . , r~ % I'), . . . , r~ @fry ' ' ' 6frN
p(r„}=N

J ~+(r, , . . . , r~)~ dr, drN

(25)

In Fig. 7 the momentum distribution obtained via Eq.
(26) is plotted, as kn (k), for three values of the density.
The correlations between the particles make the popula-
tion of states with high momenta increase with the densi-
ty. The shoulder observed at k=2 A ' for the three
curves, which has been observed in other theoretical cal-
culations of n(k}, ' has been attributed in the past to
the zero-point motion of the rotons. On the other
hand, it has been proved that if the condensate fraction is
nonzero, n (k) diverges as I/k when k ~0. s Again, the
finite value of the simulation cell precludes the possibility
of reproducing this behavior.
We have also determined the condensate fraction from

the extrapolated estimation of p(r) and the relation (28).
At the equilibrium density, we get no=0. 084+0.001,
which is a value slightly smaller than the one obtained in
a GFMC calculation (0.092+0.001) (Ref. 27} using the
Aziz potential. The discrepancy between the two results
are not due to the use of di8'erent potentials. In fact, we
have calculated p(r) for the two Aziz potentials and no
significant di6'erences appear. The same conclusion holds
for the radial distribution function g (r).
A final point of interest is the density dependence of

the condensate fraction. In Fig. 8, the change in the
value of no is shown for a wide range of densities. The
condensate fraction decreases with the density, following
a law nearly quadratic in p. In the figure, a quadratic fit
to the results is shown as a "guide to the eye."

0.05

0.04

0.03

0.02

0.01

0.000.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
k(A ')

FIG. 7. Dependence of the calculated momentum distribu-
tion on density. The long-dashed, solid, and short-dashed lines
stand for the results at densities of 0.328o. , 0.365o. , and
0.401m, respectively.

B. Three-body interactions

The importance of three-body interactions in helium
has been discussed for a long time. It has been argued
that these interactions would be present in He but its rel-
ative contribution to the total energy is still open to ques-
tion. The most widely known model for the three-body
potential is the triple-dipole interaction derived by Axil-
rod and Teller considering perturbative theory. The
Axilrod-Teller (AT} potential, which has been usually
considered as the major contribution to the energy corn-
ing from the three-body interactions, provides a positive
correction to the potentia1 energy. The amount of this
e6'ect was calculated for the first time by Murphy and
Barker ' by means of a variational Monte Carlo calcula-
tion. Afterwards, that contribution was estimated by
Kalos and co-workers ' in a Rayleigh-Schrodinger per-
turbative calculation starting on GFMC configurations.
From this analysis it was pointed out that, on the one

Boronat/Casulleras 1994
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2

the density response function � [21]:

S(!,q) =
1

⇡

⇥
1� e��~!⇤�1

Im�(! + i0,q). (1)

At low momentum transfer, S(!,q) is dominated by col-
lective excitations. As shown by Feynman [22], these are
phonons with a linear dispersion !q = csq, where cs is
the speed of sound. In fact, in a superfluid in the long-
wavelength limit q ! 0, phonons exhaust the f -sum rule

m1 = ~2
Z 1

�1
d! !S(!,q) = n"q (2)

(here, "q = ~2q2/2m is the free particle energy and m the
bare mass of an atom). As a result, the dynamic struc-
ture factor has a single pole at a position ~!q = "q/S(q),
which is fixed by the static structure factor S(q) via the
sum rule m0 = nS(q). This is the so-called single-mode
approximation, S(!,q) ! S1p(!,q) = Zq�(~! � ~!q),
which is exact at low momenta. In this limit, both
the excitation frequency !q and the quasiparticle weight
Zq = nS(q) depend only on the single parameter cs,
which is fixed by the compressibility. As a consequence,
the single-mode approximation does not provide any in-
formation about superfluid properties such as the super-
fluid or the condensate density. In fact, as shown by
Wagner [23], the presence of phonon-like excitations in
the long wavelength limit of S(!,q) is insensitive to the
existence of a broken gauge symmetry, which requires ad-
ditionally that the phonons also appear as sharp poles of
the single-particle Green’s function. It is therefore of con-
siderable interest to study which kind of information is
contained in the dynamic structure factor away from the
long-wavelength limit. Now, as argued by Feynman [22],
a simple extension of the single-mode approximation to
larger wave vectors leads, in the particular case of 4He,
to a roton minimum in the excitation energy ~!q which
is indeed observed. This is a consequence of the pro-
nounced peak in the static structure factor S(q) near the

wave vector q0 ' 2 Å
�1

associated with the short-range
order in the strongly correlated fluid. Quantitatively,
however, the single-mode approximation estimate for the
excitation energy ~!q0 near q0 is a factor of two larger
than the experimental result [14]. The physics behind
the breakdown of the single-mode approximation has
been discussed by Miller, Pines, and Nozières [24]: they
have shown that the backflow corrections to the Feyn-
man variational ansatz | qi = ⇢̂†q|0i for excited states
with wave vector q as well as the strong depletion of
the condensate become increasingly important at larger
wave vectors, giving rise to an incoherent background
Sinc(!,q). Its integrated weight minc

0
= nS(q)[1� f(q)]

defines a dimensionless function f(q) which approaches
unity as f(q) ! 1 � O(q4) in the long-wavelength limit
but vanishes quickly beyond wave vectors of the order
of the inverse interparticle spacing. In this regime, the
dynamic structure factor is dominated by an incoher-
ent background which depends on microscopic details.

Surprisingly, however, in the regime of very large mo-
menta q � q0, a completely di↵erent kind of universality
emerges. Indeed, as anticipated by Miller, Pines, and
Nozières [24] and then shown in detail by Hohenberg and
Platzman [8], the dynamic structure factor at large wave
vectors provides a direct measure of the momentum dis-
tribution. It thus allows to infer the presence of a non-
vanishing condensate density n0 and the associated o↵-
diagonal long-range order in an interacting Bose fluid.
This prediction is based on the so-called impulse approx-
imation, which assumes that at large wave vectors q, the
response is given by a Fermi golden rule expression for
exciting a single atom with small momentum k to a large
momentum k + q. Neglecting interactions between the
final and initial state atoms, this yields the IA

SIA(!,q) =

Z
d3k

(2⇡)3
n(k) �(~! + "k � "k+q), (3)

in which the dynamic structure factor is completely de-
termined by the momentum distribution n(k) of the
strongly interacting quantum fluid. This may be viewed
as analogous to the naive parton model of high-energy
physics where the structure functions are proportional to
the density of di↵erent partons which carry a certain frac-
tion of the nucleon momentum [4, 6]. A crucial prediction
of the IA, which empirically allows to estimate its range
of validity, is a particular form of scaling: S(!,q) does
not depend on ~! and q separately but only on a sin-
gle dimensionless scaling variable. Specifically, assuming
a rotationally invariant system with a finite condensate
density n0, the general form

n(k) = (2⇡)3n0�(k) + ñ(k) (4)

of the momentum distribution of a Bose superfluid im-
plies

S(!,q) =
m

~2⇠̃2
1

q
JIA(Y ) with Y =

m⇠̃

~2
~! � "q

q
, (5)

where Y is sometimes referred to as the West scaling vari-
able [11, 25]. Here, in order to make the scaling variable
Y dimensionless [26], we have introduced a length scale
⇠̃ whose inverse is the characteristic scale over which the
momentum distribution varies. The precise value of this
length scale is immaterial: in fact it is straightforward to
see that the resulting dynamic structure factor in Eq. (5)
is una↵ected by the specific choice for ⇠̃. In practice,
for weakly interacting bosons, a convenient choice is the
standard healing length ⇠ which appears in Bogoliubov
theory. For both degenerate Fermi gases or for strongly
interacting bosons, in turn, the momentum distribution
has the inverse 1/⇠̃ ' n1/3 of the average interparticle
spacing as a characteristic momentum scale, while for
non-degenerate gases a convenient choice for ⇠̃ is the ther-
mal wavelength �T . Quite generally, taking into account
the possible presence of a nonvanishing condensate, the
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right directions, which removes the effects of the Doppler
shift resulting from any sloshing of the condensate in the
trap during the Bragg pulse.

Figure 3a shows the measured excitation spectrum,
which agrees well with (2). A linear phonon regime is
seen for low k, and a parabolic single-particle regime for
high k. The excitations seen to have the smallest value of
v!k are the phonons. Therefore, by the Landau criterion,
the superfluid velocity yc is bounded by v!k for the
phonons.

The inset of Fig. 3a shows the low k region of v"k#.
To extract the initial slope from the data, (2) is fit to the
points with k less than 3 mm21, with m taken as a fit
parameter. The fit is not shown in the figure. The result
gives the speed of sound for the condensate to be ceff !
2.0 6 0.1 mm sec21, which is also the measured upper

FIG. 3. (a) The measured excitation spectrum v"k# of a
trapped Bose-Einstein condensate. The solid line is the Bogo-
liubov spectrum with no free parameters, in the LDA for
m ! 1.91 kHz. The dashed line is the parabolic free-particle
spectrum. For most points, the error bars are not visible on the
scale of the figure. The inset shows the linear phonon regime.
(b) The difference between the excitation spectrum and the
free-particle spectrum. Error bars represent 1s statistical un-
certainty. The theoretical curve is the Bogoliubov spectrum in
the LDA for m ! 1.91 kHz, minus the free-particle spectrum.

bound for yc. This value is in good agreement with the
theoretical LDA value of 2.01 6 0.05 mm sec21. The line
at 2pR21 indicates the excitation whose wavelength is
equal to the Thomas-Fermi radius of the condensate in the
axial direction. The measured v"k# agrees with the LDA,
even for k values approaching this lower limit of the region
of validity. As k goes to zero, v"k# is seen to approach
zero, rather than exciting the lowest order radial mode,
the breathing mode, which is twice the radial trapping
frequency, 440 Hz [12,13].

In Fig. 3a, the measured v"k# is clearly above the
parabolic free-particle spectrum h̄k2!"2m#, reflecting the
interaction energy of the condensate. To emphasize the in-
teraction energy, v"k# is shown again in Fig. 3b, after
subtraction of the free-particle spectrum. This curve ap-
proaches a constant for large k, given by the second term
in (4).

For a constant rate of production of excitations, the in-
tegral of P"k, v# over v, equal to the integral of S"k, v#,
is related to S"k# by [25,26],

S"k# ! 2"pV2
RtB#21

Z

P"k, v# dv , (5)

where VR ! "G2!4D#
p

IAIB!Isat is the two-photon Rabi
frequency, G is the linewidth of the 5P3!2, F ! 3 ex-
cited state, D is the detuning, and Isat is the saturation
intensity. The closed circles in Fig. 4 are the measured
static structure factor S"k#, by (5). The values shown have
been increased by a factor of 2.3, giving rough agreement
with S"k# from Bogoliubov theory in the LDA (3). Equa-
tion (3) is indicated by a solid line. The required factor
of 2.3 probably reflects inaccuracies in the various val-
ues needed to compute VR . The open circles are com-
puted from (1), using the measured values of v"k# shown

ξπ

µ
FIG. 4. The filled circles are the measured static structure
factor, multiplied by an overall constant of 2.3. Error bars rep-
resent 1s statistical uncertainty, as well as the estimated uncer-
tainty in the two-photon Rabi frequency. The solid line is the
Bogoliubov structure factor, in the LDA for m ! 1.91 kHz. The
open circles are computed from the measured excitation spec-
trum of Fig. 3, and Feynman’s relation (1). For the open circles,
the error bars are not visible on the scale of the figure.

120407-3 120407-3

2

and n(r) is the three-dimensional atom density obtained by
an inverse Abel transform [44]. In the experiments presented
here n̄ is typically ∼ 0.95n0, where n0 is the peak density of
the cloud in the trap center. The mean density sets the relevant
momentum and energy scales via the Fermi wavevector, kF =
(3π2n̄)1/3, and Fermi energy EF = !2k2F /(2m) = kBTF ,
where kB is Boltzmann’s constant.

k,ω

k ,ωa a
k ,ωb b

(a) (b) (c)

z

x

100 μm

FIG. 1. (a) Experimental setup for focussed beam Bragg spec-
troscopy. Two laser beams with wavevectors ka and kb and frequen-
cies ωa and ωb, are focussed into the center of a trapped atom cloud.
The beams have a 1/e2 radius of 15 µm and intersect at an angle of
2θ = 71.6◦. (b) Image of a cloud after application of a Bragg pulse
for ω = (2π)× 50 kHz (≈ ωr/2), showing how the central part
of the cloud is deformed. (c) Difference between images of clouds
with ω/(2π) = +50 kHz and ω/(2π) = 0 kHz, used to identify the
regions containing scattered atoms for processing. The momentum
transferred to the cloud is proportional to the difference between the
center of mass of the scattered region (shaded light blue) and the
reference region (yellow).

The Bragg lasers are detuned approximately 1THz above
the frequency of the nearest atomic transition to probe the
density-density response [11] while avoiding spontaneous
emission. A 100µs Bragg pulse is applied to the trapped
cloud, then the trap is turned off and the cloud left to ex-
pand for 1 ms before taking an absorption image, Fig. 1(b).
From these images, the center of mass of the central part of
the cloud Xc can be determined, by integrating the light blue
shaded region over z and evaluating the first moment. The
centers of mass of the two wing regions (Xw, shaded light
yellow) are found in the same way, averaged and subtracted
from Xc to give the resultant centre of mass displacement,
∆X . To identify the regions to be used for evaluating Xc and
Xw we subtract images obtained using ω = 0 from those ob-
tained at non-zero ω as shown in Fig. 1(c). Performing the
measurement in this way eliminates sensitivity to shot-to-shot
fluctuations in the cloud position as both the signalXc and ref-
erence Xw are obtained from a single image. This sequence
is repeated as the Bragg frequency, ω = ωa − ωb, is varied
between ± 2π × (0 − 260) kHz to obtain a Bragg spectrum.
Both positive and negative Bragg frequencies are used and av-
eraged to improve signal-to-noise.

We have measured a series of Bragg spectra for clouds at
unitarity for temperatures between 0.07 ≤ T/TF ≤ 1.1.
Within linear response the rate at which momentum is im-

parted to the cloud is given by the imaginary part of the dy-
namic susceptibility

dP

dt
= −

!kΩ2
Br

2
χ′′(k,ω), (2)

where χ(k,ω) is the Fourier transform of the retarded density-
density correlation function χ(r − r′, t − t′) = −iθ(t −
t′)〈[n̂(r, t), n̂(r′, t′)]〉 [45, 46]. This is related to the dynamic
structure factor via the detailed balance relation,

χ′′(k,ω) = π[S(k,ω)− S(−k,−ω)]. (3)

At high momentum and temperatures satisfying kBT ' !ω
only the first term on the right of Eq. (3) contributes, since
high-k states (( kF ), relevant for the second term, will be un-
populated. Our measurements thus probe the dynamic struc-
ture factor directly.
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FIG. 2. (a) Bragg spectra showing the dynamic structure factor
S(k,ω) for a selection of temperatures above and below the super-
fluid transition temperature. Relative temperature (T/TF ) and Bragg
wavevector (k/kF ) for each spectrum are shown in the inset. (b) The

high-frequency tails of the spectra in (a) multiplied by |ω−ωr|
−7/2.

Solid lines are fits to the tails (filled data points) and dash-dotted lines
indicate the predicted tail, Eq. 4, according to the measured contact
(displayed in Fig. 3). Dotted lines show a modified fit to the tail,
Eq. (8), that enforces the expected ω → ∞ behavior, as described in
the text.

A selection of Bragg spectra are shown in Fig. 2(a) for tem-
peratures below and above the superfluid transition, Tc ≈
0.17TF [39]. As with measurements on trapped gases, the
coldest spectra are dominated by a peak at half the atomic re-
coil frequency corresponding to the scattering of pairs from
the condensate [17, 40]. Above Tc the sharp feature corre-
sponding to pair scattering disappears and the spectral weight
shifts to higher frequencies, approaching ωr.

In the limit k → ∞, a universal expression for dynamic
structure factor can be found using the operator product ex-
pansion (OPE) [12, 14, 16, 47]. At high frequencies S(k,ω)
scales with ω−7/2 according to,

S(k,ω)/(nεr) =
16

√
2

45π2

kF
k

(ωr

ω

)7/2
(

C
nkF

)

. (4)
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rate of momentum transfer dP

dt
= �~q⌦2

2
Im�(! + i0,q)
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scaling function

JIA(Y ) = n0⇠̃
3�(Y ) +

⇠̃2

4⇡2

Z 1

|Y |/⇠̃
dk k ñ(k) (6)

contains a singular contribution plus a smooth part
which reflects the momentum distribution ñ(k) of non-
condensed atoms. To be consistent with the f -sum
rule (2), the smooth part away from the single-particle
peak at ~! = "q — called the Compton profile or the
longitudinal momentum distribution in the 4He litera-
ture [12] — must take up the missing area n � n0. Due
to a strong condensate depletion, this is quite large in 4He
— close to 90 percent even at zero temperature. Neutron
scattering in the regime of large momentum transfer q
provides quantitative results for the smooth part of scal-
ing function JIA(Y ) [12]. Due to the finite instrumental
resolution and the unknown final state e↵ects which —
as will be shown below — limit the range of applicability
of the IA to |Y | ⌧ O(q1), the extracted values for the
condensate density of 4He have considerable error bars.
They are consistent, however, with the accepted theoreti-
cal result n0(T = 0) ' 0.1n which relies on path-integral
or Green’s function Monte Carlo simulations based on
ab-initio pair potentials [27, 28].

The realization of a completely novel class of Bose-
Einstein condensates using ultracold alkali gases [29, 30]
has opened new opportunities to study both collective
and single-particle excitations of superfluids [14]. In the
ultracold limit, the interactions in these gaseous systems
are completely specified by the s-wave scattering length
a. For bosons in three dimensions, stability requires a
to be positive, whereas both signs of a are possible for
two-component Fermi gases [31]. In the absence of a
Feshbach resonance, the characteristic values of the scat-
tering length are of the order of the van der Waals length
`vdW, which is typically in the few nanometer range.
Both the average interparticle spacing n�1/3 and the
wavelengths 4⇡/q used in Bragg spectroscopy then obey
n�1/3

� |a| and 1/q � |a|. In this regime of weak cor-
relations, Bose gases are well described by the standard
Bogoliubov theory, which is based on the assumption of a
classical coherent state which represents the condensate.
The Gaussian fluctuations on top of the condensate then
give rise to a set of non-interacting quasiparticles. Their
spectrum Eq =

p
"q("q + 2gn0) is linear in momentum

Eq ! ~csq below the inverse healing length 1/⇠ and ap-
proaches the free particle limit as Eq = "q + gn + . . .
at large wave vectors q⇠ � 1. Here g = 4⇡~2a/m is
the low energy coupling constant, linear in the scattering
length a. Such a simple description, however, is no longer
applicable once the scattering length is increased up to
values of the order of or even larger than either n�1/3

or 1/q. This is possible via Feshbach resonances [32].
The use of Feshbach resonances to study strongly in-
teracting gases has been particularly successful for two-
component Fermi gases, which are stable with respect
to three-body losses even at the unitary limit of infinite
scattering length [31]. Bose gases, unfortunately, do not

FIG. 1. Sketch of the asymptotic structure of the dynamic
structure factor at large momentum q⇠̃ � 1 and q|a| � 1,
where ⇠̃ is the characteristic length scale of the gas (such as
k�1

n = (6⇡2n)�1/3 or �T = ~/
p
2⇡mT ). Note that this scaling

does not necessarily require kn|a| � 1. Small deviations in en-
ergy from the single-particle peak of order O(q) are described
by the impulse approximation (IA), whose range of applica-
bility shrinks with increasing momentum. Large-energy devi-
ations of order O(q2) are in turn described by the operator
product expansion (OPE), which predicts asymmetric tails on
the left- and right-hand side of the single-particle peak.

enjoy this stability since the decay rate due to three-body
losses increases like �3 ⇠ ~n2a4/m on average [33, 34].
More precisely, for large scattering lengths, Bose gases
are unstable due to the presence of the Efimov e↵ect,
i.e., the formation of three-body bound states at both
positive and negative scattering lengths. For open chan-
nel dominated Feshbach resonances, this happens in a
regime |a| & 10 `vdW [35].

Nevertheless, a number of experiments in recent years
have explored Bose gases with scattering lengths larger
than the average interparticle spacing or the inverse ther-
mal wavelength �T [36–38]. Regarding the dynamic
structure factor, the failure of Bogoliubov theory in the
regime q|a| = O(1) has been observed some time ago
in a Bragg scattering experiment on 85Rb by Papp et
al. [19]. The experiment measures the so-called line shift
�(~!) = ~!q � "q, which is the deviation of the peak
position at ~!q in the dynamic structure factor from the
single particle energy "q. Within Bogoliubov theory, the
line shift is given by the mean field energy �(~!) = gn of
the gas. It is linear in both the scattering length and the
total number density n since the depletion n�n0 ⇠

p
na3

of the condensate by interactions is of higher order in
the small parameter na3 ⌧ 1. The measurement [19]
is carried out at fixed large momentum as a function of
the scattering length, and, indeed, the linear-in-a Bogoli-
ubov behavior is found experimentally for qa ⌧ 1. With
increasing scattering length, however, the observed shift
reaches a maximum for values qa = O(1) and then starts
to decrease.

In our present work, we discuss the dynamic struc-

Eq =
q
"q("q + 2gn0)
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line-shift should be linear in a 

surement value and then pulse on the Bragg beams. During
the pulse, the cloud’s inward motion is checked and it
begins to breathe outward. We model the resulting time-
dependent condensate density using a variational solution
to the Gross-Pitaevskii equation [28], which predicts that
the density of the cloud changes by less than 30% during
the Bragg pulse. We can meet this goal only by using
progressively shorter Bragg pulses for higher values of
desired a. The time- and space-averaged density during
the pulse is approximately 7:6! 1013 cm"3, but this de-
pends weakly on the final value of a.

After the Bragg pulse, we ramp a to 917a0 in order to
ensure that the momentum of the excitations is spread via
collisions [29,30] to the entire condensate sample. We then
infer the total momentum, and thus excitation fraction,
from the amplitude of the resulting axial slosh, measured
via an absorption image taken of the cloud at a time near its
axial turning point.

Figure 2 shows measured Bragg spectra for three values
of a. We fit each Bragg spectrum to an antisymmetric
function assuming a Gaussian peak and extract a center
frequency and an rms width. The Bragg line shift is the
difference between the fitted center and the ideal gas result
1
2!

@k2
2m ¼ 15:423 kHz. In Fig. 3(a) we plot our measured

line shifts as a function of the scattering length a. For a &
300a0 (where the predicted LHY correction is already a
10% effect), the measured line shift [d in Fig. 3(a)] agrees
with the simple mean-field result [Eq. (1)]. However, as the
scattering length is increased further, the resonance line
shift deviates significantly from the mean-field prediction.
The measured line shift reaches a maximum near a ¼
500a0 and then decreases as the scattering length is in-
creased further.

At large awe find that our measured line shift exhibits a
systematic dependence on the temperature of the sample
[31]. Noncondensed 85Rb atoms also respond to the Bragg
pulse, and this causes an observable effect in the measured
line shift when the spectral width of the condensate re-
sponse becomes comparable to that of the noncondensed
atoms (for a > 500a0). We vary the temperature of the gas

FIG. 2 (color online). Typical Bragg spectra at a scattering
length of 100a0 (blue triangles), 585a0 (red circles), and 890a0
(black squares). The excitation fraction is determined from the
measured momentum transferred to the BEC and plotted as a
function of the frequency difference between the two Bragg
beams. Lines are fits of the data as described in the text.
Mean-field theory predicts a continuous increase in the line shift
with increasing a; however, by 890a0 our data display a decreas-
ing shift with stronger interactions.

FIG. 3 (color online). (a) Bragg line shift and (b) width as a
function of scattering length. In (a) the open circles are our
observations. The solid circles are data corrected for a fitting
systematic associated with the broad thermal atom background,
and the error bars represent fit uncertainties. The theory lines and
LHY correction are as in Fig. 1 except they are calculated for the
trapped gas using a local density approximation for each of the
corresponding data points. The mean BEC density ranges from
6:3! 1013 cm"3 to 7:6! 1013 cm"3. Error bars on the theory
lines reflect uncertainty in these densities. Some of the error bars
have been omitted for clarity. In (b) the solid black circles are the
rms width of a Gaussian fit to the Bragg spectra. Black triangles
are from a fit to a convolution of various contributions to the
width calculated under the conditions of our measurements. The
remaining symbols characterize constituent contributions to the
convolution including the Lorentzian FWHM width due to
collisions (blue squares), and the rms width of a Gaussian fitted
to the contributions due to the inhomogeneous density (red
diamonds) and the pulse duration (green circles). The largest
contribution to the width comes from the pulse duration; because
the jump to large a initiates rapid expansion of the BEC, ever
shorter pulses are used to obtain the spectra at larger a.
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surement value and then pulse on the Bragg beams. During
the pulse, the cloud’s inward motion is checked and it
begins to breathe outward. We model the resulting time-
dependent condensate density using a variational solution
to the Gross-Pitaevskii equation [28], which predicts that
the density of the cloud changes by less than 30% during
the Bragg pulse. We can meet this goal only by using
progressively shorter Bragg pulses for higher values of
desired a. The time- and space-averaged density during
the pulse is approximately 7:6! 1013 cm"3, but this de-
pends weakly on the final value of a.

After the Bragg pulse, we ramp a to 917a0 in order to
ensure that the momentum of the excitations is spread via
collisions [29,30] to the entire condensate sample. We then
infer the total momentum, and thus excitation fraction,
from the amplitude of the resulting axial slosh, measured
via an absorption image taken of the cloud at a time near its
axial turning point.

Figure 2 shows measured Bragg spectra for three values
of a. We fit each Bragg spectrum to an antisymmetric
function assuming a Gaussian peak and extract a center
frequency and an rms width. The Bragg line shift is the
difference between the fitted center and the ideal gas result
1
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@k2
2m ¼ 15:423 kHz. In Fig. 3(a) we plot our measured

line shifts as a function of the scattering length a. For a &
300a0 (where the predicted LHY correction is already a
10% effect), the measured line shift [d in Fig. 3(a)] agrees
with the simple mean-field result [Eq. (1)]. However, as the
scattering length is increased further, the resonance line
shift deviates significantly from the mean-field prediction.
The measured line shift reaches a maximum near a ¼
500a0 and then decreases as the scattering length is in-
creased further.

At large awe find that our measured line shift exhibits a
systematic dependence on the temperature of the sample
[31]. Noncondensed 85Rb atoms also respond to the Bragg
pulse, and this causes an observable effect in the measured
line shift when the spectral width of the condensate re-
sponse becomes comparable to that of the noncondensed
atoms (for a > 500a0). We vary the temperature of the gas

FIG. 2 (color online). Typical Bragg spectra at a scattering
length of 100a0 (blue triangles), 585a0 (red circles), and 890a0
(black squares). The excitation fraction is determined from the
measured momentum transferred to the BEC and plotted as a
function of the frequency difference between the two Bragg
beams. Lines are fits of the data as described in the text.
Mean-field theory predicts a continuous increase in the line shift
with increasing a; however, by 890a0 our data display a decreas-
ing shift with stronger interactions.

FIG. 3 (color online). (a) Bragg line shift and (b) width as a
function of scattering length. In (a) the open circles are our
observations. The solid circles are data corrected for a fitting
systematic associated with the broad thermal atom background,
and the error bars represent fit uncertainties. The theory lines and
LHY correction are as in Fig. 1 except they are calculated for the
trapped gas using a local density approximation for each of the
corresponding data points. The mean BEC density ranges from
6:3! 1013 cm"3 to 7:6! 1013 cm"3. Error bars on the theory
lines reflect uncertainty in these densities. Some of the error bars
have been omitted for clarity. In (b) the solid black circles are the
rms width of a Gaussian fit to the Bragg spectra. Black triangles
are from a fit to a convolution of various contributions to the
width calculated under the conditions of our measurements. The
remaining symbols characterize constituent contributions to the
convolution including the Lorentzian FWHM width due to
collisions (blue squares), and the rms width of a Gaussian fitted
to the contributions due to the inhomogeneous density (red
diamonds) and the pulse duration (green circles). The largest
contribution to the width comes from the pulse duration; because
the jump to large a initiates rapid expansion of the BEC, ever
shorter pulses are used to obtain the spectra at larger a.
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downturn of line-shift near qa = O(1)

85Rb
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Papp et al 2008

• Line shift in strongly interacting BEC’s

up to 

�(~!) = ~!̃q � "q ! gn
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Bragg scattering in 
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(qa)max = 0.8
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line-shift

implies 

Lopes et al 2017

• Bragg scattering on BEC’s in a box configuration 

in a box,
<latexit sha1_base64="uNVmndVouhukPw+gsOjLE7+WFnU=">AAAB83icbVDJSgNBEK2JW4xb1KOXxiB4CjMaXG5BL4KXCGaBzBh6Oj1Jk+6eobtHCMP8hhcPinj1Z7z5N3aWg0YfFDzeq6KqXphwpo3rfjmFpeWV1bXiemljc2t7p7y719JxqghtkpjHqhNiTTmTtGmY4bSTKIpFyGk7HF1P/PYjVZrF8t6MExoIPJAsYgQbK/kP2ellnvlKoNu8V664VXcK9Jd4c1KBORq98qffj0kqqDSEY627npuYIMPKMMJpXvJTTRNMRnhAu5ZKLKgOsunNOTqySh9FsbIlDZqqPycyLLQei9B2CmyGetGbiP953dREF0HGZJIaKslsUZRyZGI0CQD1maLE8LElmChmb0VkiBUmxsZUsiF4iy//Ja2TqndWrd3VKvWreRxFOIBDOAYPzqEON9CAJhBI4Ale4NVJnWfnzXmftRac+cw+/ILz8Q2Dl5Fb</latexit>

39K

Defining a dimensionless interaction frequency shift

α≡ mq
4πℏn

Δω; ð4Þ

the FT prediction of Eq. (3) is recast as

αFT ¼ qa
!

1 −
π
4
qa
"

; ð5Þ

which is a universal function of qa only; with the same
normalization the Bogoliubov theory gives αB ¼ qa. Note
that the normalization in Eq. (4) also allows us to correct for
the small ($10%) density variations between measure-
ments taken with different values of a and the same
nominal n. In Fig. 3(b) we show measurements of α with
three different combinations of n and q, which all fall onto
the same universal curve, in good agreement with the FT
theory.

In Fig. 3(b), for our most strongly interacting samples
qa ≈ 2.5 and

ffiffiffiffiffiffiffiffi

na3
p

≈ 0.05. In the final part of the paper we
explore even stronger interactions and observe that the FT
theory also breaks down. In Fig. 4(a) we show measure-
ments of Δω with n ≈ 0.2 × 1012 cm−3 and q ¼ 2krec, for
which we explore scattering lengths up to ≈ 8 × 103a0,
corresponding to qa ≈ 7 and

ffiffiffiffiffiffiffiffi

na3
p

≈ 0.1. Here we observe
a clear deviation from the FT prediction.
Tuning a at fixed n and q simultaneously changes qa and
ffiffiffiffiffiffiffiffi

na3
p

, making it nonobvious which of the two dimension-
less interaction parameters is (primarily) responsible for the
breakdown of the FT theory. In an attempt to disentangle
the two effects, we collect data with many fn; q; ag
combinations, and group them into sets with (approxi-
mately) equal

ffiffiffiffiffiffiffiffi

na3
p

, but varying qa values. In Fig. 4(b) we
plot α − αFT versus qa, with different symbols correspond-
ing to different

ffiffiffiffiffiffiffiffi

na3
p

. These measurements suggest that, at
least for our range of parameters, the breakdown of the FT
theory occurs for qa≳ 3, independently of the value
of

ffiffiffiffiffiffiffiffi

na3
p

.

(a)

(b)

FIG. 3. Breakdown of the Bogoliubov approximation and
observation of negative frequency shifts. (a) Δω as a function
of a for n ≈ 2.0 × 1012 cm−3 and q ¼ 1.1krec (blue circles), and
for n ≈ 0.8 × 1012 cm−3 and q ¼ 2krec (orange diamonds). (b) Di-
mensionless frequency shift α versus qa for three different
combinations of n and q. Solid lines in (a) and (b) show the
FT predictions from Eqs. (3) and (5), respectively, with no
adjustable parameters. The dashed lines show the corresponding
Bogoliubov predictions. Vertical error bars show statistical fitting
errors and horizontal error bars reflect the uncertainty in the
position of the Feshbach resonance.

(a)

(b)

FIG. 4. Deviation from the Feynman-Tan prediction. (a) Fre-
quency shift versus a for n ≈ 0.2 × 1012 cm−3 and q ¼ 2krec. The
solid line shows the FT prediction. (b) Deviation of the
dimensionless frequency shift α from the FT theory as a function
of qa, for various values of

ffiffiffiffiffiffiffiffi

na3
p

(see the legend). The dashed
line is the OPE prediction with C ¼ ð4πnaÞ2 and no adjustable
parameters. The dot-dashed line is the OPE prediction that also
includes the LHY correction with

ffiffiffiffiffiffiffiffi

na3
p

¼ 0.093, corresponding
to the open-circles data. Inset: comparison of the FT (solid) and
OPE (dashed) calculations with the data at low qa.
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Feshbach reson. at 
<latexit sha1_base64="LC/HdK+bAfOEW48ljfp4f9GBXPQ=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFcSEhKsW6EUhe6rGAf0IQwmU7aoTNJmJmIJeRX3LhQxK0/4s6/cdpmoa0HLhzOuZd77wkSRqWy7W9jbX1jc2u7tFPe3ds/ODSPKl0ZpwKTDo5ZLPoBkoTRiHQUVYz0E0EQDxjpBZObmd97JELSOHpQ04R4HI0iGlKMlJZ8s9Ly7eu6XbMa7kXmCg5vc9+s2pY9B1wlTkGqoEDbN7/cYYxTTiKFGZJy4NiJ8jIkFMWM5GU3lSRBeIJGZKBphDiRXja/PYdnWhnCMBa6IgXn6u+JDHEppzzQnRypsVz2ZuJ/3iBV4ZWX0ShJFYnwYlGYMqhiOAsCDqkgWLGpJggLqm+FeIwEwkrHVdYhOMsvr5JuzXIurfp9vdpsFXGUwAk4BefAAQ3QBHegDToAgyfwDF7Bm5EbL8a78bFoXTOKmWPwB8bnDxzzkpM=</latexit>

B0 = 402.7G

lim
r!0

n2g(2)(r) =
C2

16⇡2

✓
1

r2
� 2

ar
+ . . .

◆
S(q)! 1 +

C2
8nq

�
1� 4

⇡qa

�
+ . . .

single mode approximation predicts non-monotonic line shift 

Feynman/Tan

<latexit sha1_base64="iQnMmpqs/uT4kay+KLEjAGMVaDs="></latexit>

� (~!q)SMA = "q [S
�1(q)� 1] ! gn(1� ⇡qa/4 + . . .)

<latexit sha1_base64="wY+hX2stAbvvYnuTOl5N1+SmWYU=">AAAB+3icbVDLSsNAFJ3UV62vWJduRotQNyWRYt0IRTcuK9gHNCFMppN26EwSZybSEvIrblwo4tYfceffOG2z0NYDFw7n3Mu99/gxo1JZ1rdRWFvf2Nwqbpd2dvf2D8zDckdGicCkjSMWiZ6PJGE0JG1FFSO9WBDEfUa6/vh25nefiJA0Ch/UNCYuR8OQBhQjpSXPLFcf0bmXOoJDjiaZc3Ld8MyKVbPmgKvEzkkF5Gh55pcziHDCSagwQ1L2bStWboqEopiRrOQkksQIj9GQ9DUNESfSTee3Z/BMKwMYREJXqOBc/T2RIi7llPu6kyM1ksveTPzP6ycquHJTGsaJIiFeLAoSBlUEZ0HAARUEKzbVBGFB9a0Qj5BAWOm4SjoEe/nlVdK5qNmXtfp9vdK8yeMogmNwCqrABg3QBHegBdoAgwl4Bq/gzciMF+Pd+Fi0Fox85gj8gfH5A38Kk3Q=</latexit>

(qa)max= 7
<latexit sha1_base64="ZtMna+zFhVqbXhBzI3/dkQvC9F0=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GS1C3ZSk1MdGKLpxWcE+oAlhMp20Q2eSODMRayj+ihsXirj1P9z5N07bLLT1wIXDOfdy7z1+zKhUlvVt5BYWl5ZX8quFtfWNzS1ze6cpo0Rg0sARi0TbR5IwGpKGooqRdiwI4j4jLX9wNfZb90RIGoW3ahgTl6NeSAOKkdKSZ+6V7tCxlzqCQ44eRs7BRaV84plFq2xNAOeJnZEiyFD3zC+nG+GEk1BhhqTs2Fas3BQJRTEjo4KTSBIjPEA90tE0RJxIN51cP4JHWunCIBK6QgUn6u+JFHEph9zXnRypvpz1xuJ/XidRwbmb0jBOFAnxdFGQMKgiOI4CdqkgWLGhJggLqm+FuI8EwkoHVtAh2LMvz5NmpWyflqs31WLtMosjD/bBISgBG5yBGrgGddAAGDyCZ/AK3own48V4Nz6mrTkjm9kFf2B8/gBkGZPm</latexit>

(qa)max= 2.5



14

Hohenberg/Platzman 1966 SIA(!,q) =

Z

k
n(k) �(~! + "k � "k+q)

gives rise to scaling

2

the density response function � [21]:

S(!,q) =
1

⇡

⇥
1� e��~!⇤�1

Im�(! + i0,q). (1)

At low momentum transfer, S(!,q) is dominated by col-
lective excitations. As shown by Feynman [22], these are
phonons with a linear dispersion !q = csq, where cs is
the speed of sound. In fact, in a superfluid in the long-
wavelength limit q ! 0, phonons exhaust the f -sum rule

m1 = ~2
Z 1

�1
d! !S(!,q) = n"q (2)

(here, "q = ~2q2/2m is the free particle energy and m the
bare mass of an atom). As a result, the dynamic struc-
ture factor has a single pole at a position ~!q = "q/S(q),
which is fixed by the static structure factor S(q) via the
sum rule m0 = nS(q). This is the so-called single-mode
approximation, S(!,q) ! S1p(!,q) = Zq�(~! � ~!q),
which is exact at low momenta. In this limit, both
the excitation frequency !q and the quasiparticle weight
Zq = nS(q) depend only on the single parameter cs,
which is fixed by the compressibility. As a consequence,
the single-mode approximation does not provide any in-
formation about superfluid properties such as the super-
fluid or the condensate density. In fact, as shown by
Wagner [23], the presence of phonon-like excitations in
the long wavelength limit of S(!,q) is insensitive to the
existence of a broken gauge symmetry, which requires ad-
ditionally that the phonons also appear as sharp poles of
the single-particle Green’s function. It is therefore of con-
siderable interest to study which kind of information is
contained in the dynamic structure factor away from the
long-wavelength limit. Now, as argued by Feynman [22],
a simple extension of the single-mode approximation to
larger wave vectors leads, in the particular case of 4He,
to a roton minimum in the excitation energy ~!q which
is indeed observed. This is a consequence of the pro-
nounced peak in the static structure factor S(q) near the

wave vector q0 ' 2 Å
�1

associated with the short-range
order in the strongly correlated fluid. Quantitatively,
however, the single-mode approximation estimate for the
excitation energy ~!q0 near q0 is a factor of two larger
than the experimental result [14]. The physics behind
the breakdown of the single-mode approximation has
been discussed by Miller, Pines, and Nozières [24]: they
have shown that the backflow corrections to the Feyn-
man variational ansatz | qi = ⇢̂†q|0i for excited states
with wave vector q as well as the strong depletion of
the condensate become increasingly important at larger
wave vectors, giving rise to an incoherent background
Sinc(!,q). Its integrated weight minc

0
= nS(q)[1� f(q)]

defines a dimensionless function f(q) which approaches
unity as f(q) ! 1 � O(q4) in the long-wavelength limit
but vanishes quickly beyond wave vectors of the order
of the inverse interparticle spacing. In this regime, the
dynamic structure factor is dominated by an incoher-
ent background which depends on microscopic details.

Surprisingly, however, in the regime of very large mo-
menta q � q0, a completely di↵erent kind of universality
emerges. Indeed, as anticipated by Miller, Pines, and
Nozières [24] and then shown in detail by Hohenberg and
Platzman [8], the dynamic structure factor at large wave
vectors provides a direct measure of the momentum dis-
tribution. It thus allows to infer the presence of a non-
vanishing condensate density n0 and the associated o↵-
diagonal long-range order in an interacting Bose fluid.
This prediction is based on the so-called impulse approx-
imation, which assumes that at large wave vectors q, the
response is given by a Fermi golden rule expression for
exciting a single atom with small momentum k to a large
momentum k + q. Neglecting interactions between the
final and initial state atoms, this yields the IA

SIA(!,q) =

Z
d3k

(2⇡)3
n(k) �(~! + "k � "k+q), (3)

in which the dynamic structure factor is completely de-
termined by the momentum distribution n(k) of the
strongly interacting quantum fluid. This may be viewed
as analogous to the naive parton model of high-energy
physics where the structure functions are proportional to
the density of di↵erent partons which carry a certain frac-
tion of the nucleon momentum [4, 6]. A crucial prediction
of the IA, which empirically allows to estimate its range
of validity, is a particular form of scaling: S(!,q) does
not depend on ~! and q separately but only on a sin-
gle dimensionless scaling variable. Specifically, assuming
a rotationally invariant system with a finite condensate
density n0, the general form

n(k) = (2⇡)3n0�(k) + ñ(k) (4)

of the momentum distribution of a Bose superfluid im-
plies

S(!,q) =
m

~2⇠̃2
1

q
JIA(Y ) with Y =

m⇠̃

~2
~! � "q

q
, (5)

where Y is sometimes referred to as the West scaling vari-
able [11, 25]. Here, in order to make the scaling variable
Y dimensionless [26], we have introduced a length scale
⇠̃ whose inverse is the characteristic scale over which the
momentum distribution varies. The precise value of this
length scale is immaterial: in fact it is straightforward to
see that the resulting dynamic structure factor in Eq. (5)
is una↵ected by the specific choice for ⇠̃. In practice,
for weakly interacting bosons, a convenient choice is the
standard healing length ⇠ which appears in Bogoliubov
theory. For both degenerate Fermi gases or for strongly
interacting bosons, in turn, the momentum distribution
has the inverse 1/⇠̃ ' n1/3 of the average interparticle
spacing as a characteristic momentum scale, while for
non-degenerate gases a convenient choice for ⇠̃ is the ther-
mal wavelength �T . Quite generally, taking into account
the possible presence of a nonvanishing condensate, the

• One-particle versus two-particle excitations

symm. peak around 

transfer momentum  to two atoms q = q1 + q2
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continuum of energies 

gives rise to line shifts  

"q/2  ~!(2)(↵) =
"q

2 cos2 ↵/2
< 1
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6

= n0⇠̃
3�(Y )�

m⇠̃2n0

4⇡2~

(
cs
2n

|Y |
⇠̃

T = 0
mT

~⇢s
ln |Y | T 6= 0

+ const,

(10)

i.e., a cusp at zero temperature and a logarithmic di-
vergence ⇠ n0T ln(1/|Y |) at finite temperature. In the
opposite limit |Y | � 1, the scaling function JIA(Y ) de-
pends on the behavior of the momentum distribution at
large momenta, which is generically not universal. In
the particular case of ultracold gases, however, the mo-
mentum distribution exhibits a universal power-law de-
cay n(k) = C2/k4 determined by the two-body contact
density C2. For ultracold atoms, therefore, the scaling
function JIA(Y ) for large values |Y | � 1 acquires a uni-
versal form

lim
|Y |!1

JIA(Y ) =
⇠̃4C2
8⇡2Y 2

. (11)

As was shown by Tan and by Braaten and Platter [40,
42, 56], the high-momentum tail of the momentum distri-
bution in fact applies for arbitrary states of either Bose
or Fermi gases with zero-range interactions, both at zero
temperature and in the non-degenerate limit, where it
holds for wave vectors large compared to the inverse ther-
mal length �T . Hence, while the small-|Y | form (10) is
specific to Bose-condensed systems, the large-|Y | tail (11)
is completely universal.

The IA does not take into account interactions between
the scattered state and the initial state. As a result,
it carries information about the time-dependent density
correlations only through the equal-time momentum dis-
tribution. Corrections to the IA scaling form are sup-
pressed as O(1/qa). Following the ground-breaking work
of Hohenberg and Platzman, a number of attempts have
been made to include interactions beyond the IA in a sys-
tematic expansion in inverse powers of momentum [57–
59]. The terms in this expansion, however, involve the
complete two-body and higher density matrices, which
are not known in general. As discussed above, the IA
fails to account for processes where the probe scatters
o↵ pairs of high-momentum states or processes where in-
teractions distribute the imparted large momentum be-
tween two or more atoms (cf. Fig. 2). By energy and
momentum conservation, such processes become relevant
if ~! � "q = O(q2), i.e., if Y = O(q). In the follow-
ing we will show that, at least for ultracold gases, this
multi-particle regime can be described accurately by the
OPE, i.e., the same method which is used in high-energy
physics to account for the QCD interaction corrections
to the parton model. The associated leading term in
an expansion in inverse powers of momentum is given by
Eq. (7) which only involves the two-body contact density.

Formally, the OPE expresses the product of two oper-
ators (which in the case of interest are the density oper-
ators) at di↵erent points in space and time as a sum of
local operators [42, 60]:

n̂(t, r)n̂(0,0) =
X

`

W`(t, r, a)Ô`(0,0). (12)

The dependence on the di↵erence of the operator ar-
guments is carried by the coe�cients of this expansion
W`(t, r, a) — called the Wilson coe�cients — which are
pure functions and not operators. This non-relativistic
OPE is in fact — at least for special cases — a conver-
gent expansion [61]. Importantly, Eq. (12) is an operator
relation, i.e., it holds if we take its expectation value be-
tween arbitrary states. Using the OPE in Eq. (8) and
performing the Fourier transformation gives

�(!,q) =
X

`

m

~2q�`�1
J`
⇣
Z,

1

qa

⌘
hÔ`(0,0)i, (13)

where we separate the q-dependence from the Wilson co-
e�cient and write its remainder in terms of a dimen-
sionless scaling function J` that depends on (qa)�1 and
Z = ~!

"q
� 1. The exponent of �` � 1 in front depends

on the scaling dimension of the operators Ô`, which are
formally defined through

hÔ†
`
(t, r)Ô`(0,0)i ⇠

1

t�`
exp

h
�iN`

mr2

2~t

i
, (14)

where N` denotes the number of particle creation or an-
nihilation operators in Ô`. Since the scaling dimension in
nonrelativistic theories is bounded from below [62], the
leading order asymptotic form of the density response
is determined by the operators with the lowest scaling
dimension. These are the boson creation operator with
scaling dimension �� = 3/2, the density operator with
�n = 3, the current operator with �j = 5/2, and the

two-body contact operator Ôc, which has scaling dimen-
sion�C2 = 4. Since the Wilson coe�cients do not depend
on the state, they are determined by computing the op-
erator expectation values in Eq. (12) between one- and
two-particle states and matching the result. Note that
while for the IA, final state corrections of order O(1/qa)
are hard to compute, they are readily included in the
OPE, essentially because the scattering between bosons
with large momentum is the same as for free particles.

The OPE of the density response was computed in
Refs. [43–46]. The leading-order term is given by the
the density operator On(0,0), which contributes a Wil-
son coe�cient

Jn(!,q) = �
2

Z
+

2

Z + 2
. (15)

Note that at this leading level, the Wilson coe�cient
is independent of qa. For positive frequency, Z > �1,
Eq. (15) gives rise to a delta-peak at ~! = "q in the dy-
namic structure factor with weight �n. It is important
to note that this delta peak has nothing to do with the
presence of a delta-peak due to a non-vanishing conden-
sate density n0, as predicted by the IA. It merely reflects
the fact that the OPE only presents a “coarse-grained”
picture (as discussed below) of the dynamic structure fac-
tor near the single-particle peak. The asymptotic form of
the incoherent part away from ~! = "q is determined by

short-distance expansion

asymptotic series for 

6

= n0⇠̃
3�(Y )�

m⇠̃2n0

4⇡2~

(
cs
2n

|Y |
⇠̃

T = 0
mT

~⇢s
ln |Y | T 6= 0

+ const,

(10)

i.e., a cusp at zero temperature and a logarithmic di-
vergence ⇠ n0T ln(1/|Y |) at finite temperature. In the
opposite limit |Y | � 1, the scaling function JIA(Y ) de-
pends on the behavior of the momentum distribution at
large momenta, which is generically not universal. In
the particular case of ultracold gases, however, the mo-
mentum distribution exhibits a universal power-law de-
cay n(k) = C2/k4 determined by the two-body contact
density C2. For ultracold atoms, therefore, the scaling
function JIA(Y ) for large values |Y | � 1 acquires a uni-
versal form

lim
|Y |!1

JIA(Y ) =
⇠̃4C2
8⇡2Y 2

. (11)

As was shown by Tan and by Braaten and Platter [40,
42, 56], the high-momentum tail of the momentum distri-
bution in fact applies for arbitrary states of either Bose
or Fermi gases with zero-range interactions, both at zero
temperature and in the non-degenerate limit, where it
holds for wave vectors large compared to the inverse ther-
mal length �T . Hence, while the small-|Y | form (10) is
specific to Bose-condensed systems, the large-|Y | tail (11)
is completely universal.
The IA does not take into account interactions between

the scattered state and the initial state. As a result,
it carries information about the time-dependent density
correlations only through the equal-time momentum dis-
tribution. Corrections to the IA scaling form are sup-
pressed as O(1/qa). Following the ground-breaking work
of Hohenberg and Platzman, a number of attempts have
been made to include interactions beyond the IA in a sys-
tematic expansion in inverse powers of momentum [57–
59]. The terms in this expansion, however, involve the
complete two-body and higher density matrices, which
are not known in general. As discussed above, the IA
fails to account for processes where the probe scatters
o↵ pairs of high-momentum states or processes where in-
teractions distribute the imparted large momentum be-
tween two or more atoms (cf. Fig. 2). By energy and
momentum conservation, such processes become relevant
if ~! � "q = O(q2), i.e., if Y = O(q). In the follow-
ing we will show that, at least for ultracold gases, this
multi-particle regime can be described accurately by the
OPE, i.e., the same method which is used in high-energy
physics to account for the QCD interaction corrections
to the parton model. The associated leading term in
an expansion in inverse powers of momentum is given by
Eq. (7) which only involves the two-body contact density.
Formally, the OPE expresses the product of two oper-

ators (which in the case of interest are the density oper-
ators) at di↵erent points in space and time as a sum of
local operators [42, 60]:

n̂(t, r)n̂(0,0) =
X

`

W`(t, r, a)Ô`(0,0). (12)

The dependence on the di↵erence of the operator ar-
guments is carried by the coe�cients of this expansion
W`(t, r, a) — called the Wilson coe�cients — which are
pure functions and not operators. This non-relativistic
OPE is in fact — at least for special cases — a conver-
gent expansion [61]. Importantly, Eq. (12) is an operator
relation, i.e., it holds if we take its expectation value be-
tween arbitrary states. Using the OPE in Eq. (8) and
performing the Fourier transformation gives

�(!,q) =
X

`

m

~2q�`�1
J`
⇣
Z,

1

qa

⌘
hÔ`(0,0)i, (13)

where we separate the q-dependence from the Wilson co-
e�cient and write its remainder in terms of a dimen-
sionless scaling function J` that depends on (qa)�1 and
Z = ~!

"q
� 1. The exponent of �` � 1 in front depends

on the scaling dimension of the operators Ô`, which are
formally defined through

hÔ†
`
(t, r)Ô`(0,0)i ⇠

1

t�`
exp

h
�iN`

mr2

2~t

i
, (14)

where N` denotes the number of particle creation or an-
nihilation operators in Ô`. Since the scaling dimension in
nonrelativistic theories is bounded from below [62], the
leading order asymptotic form of the density response
is determined by the operators with the lowest scaling
dimension. These are the boson creation operator with
scaling dimension �� = 3/2, the density operator with
�n = 3, the current operator with �j = 5/2, and the

two-body contact operator Ôc, which has scaling dimen-
sion�C2 = 4. Since the Wilson coe�cients do not depend
on the state, they are determined by computing the op-
erator expectation values in Eq. (12) between one- and
two-particle states and matching the result. Note that
while for the IA, final state corrections of order O(1/qa)
are hard to compute, they are readily included in the
OPE, essentially because the scattering between bosons
with large momentum is the same as for free particles.
The OPE of the density response was computed in

Refs. [43–46]. The leading-order term is given by the
the density operator On(0,0), which contributes a Wil-
son coe�cient

Jn(!,q) = �
2

Z
+

2

Z + 2
. (15)

Note that at this leading level, the Wilson coe�cient
is independent of qa. For positive frequency, Z > �1,
Eq. (15) gives rise to a delta-peak at ~! = "q in the dy-
namic structure factor with weight �n. It is important
to note that this delta peak has nothing to do with the
presence of a delta-peak due to a non-vanishing conden-
sate density n0, as predicted by the IA. It merely reflects
the fact that the OPE only presents a “coarse-grained”
picture (as discussed below) of the dynamic structure fac-
tor near the single-particle peak. The asymptotic form of
the incoherent part away from ~! = "q is determined by

spectrum is asymmetric !  

collinear singularity at  ~! = "q/2

tail S(!,q) ⇠ C2q4/!7/2

S(!,q) =
mC2
~2q3 J2 (Z = (~! � "q)/"q)

• Dynamical structure factor at large momentum

Son/Thompson 2010

a=1
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two-particle contribution 



16

single particle excitations 

smooth crossover from single to

• Crossover impulse-approximation to OPE

lim
|Z|⌧1

SOPE(!,q) =
mC2
~2q3

1

2⇡2Z2
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lim
|Y |�1

SIA(!,q) =
mC2
~2q3

q2⇠̃2

8⇡2Y 2
<latexit sha1_base64="FnZF1xG3Y0WQ6RaTWpri90rFidE="></latexit>

due to n(k⇠̃ � 1) = C2/k4
<latexit sha1_base64="ZjOjhwtZIXCufVWt+J8TZisbSTE=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpm5rUgm6EYjcuK9gHNDFMptN2yGQSZiZiCfkDN/6KGxeKuHXrzr9x+lho64ELh3Pu5d57/JhRqSzr28gtLa+sruXXCxubW9s75u5eS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtp+UB/77XsiJI34rRrFxA3RgNM+xUhpyTOPeSlwFGU9kjoPNHMGA2ifXDohUkOMWFrPvMppcFf1zKJVtiaAi8SekSKYoeGZX04vwklIuMIMSdm1rVi5KRKKYkaygpNIEiMcoAHpaspRSKSbTv7J4JFWerAfCV1cwYn6eyJFoZSj0Ned40PlvDcW//O6iepfuCnlcaIIx9NF/YRBFcFxOLBHBcGKjTRBWFB9K8RDJBBWOsKCDsGef3mRtCpl+6xs3VSLtatZHHlwAA5BCdjgHNTANWiAJsDgETyDV/BmPBkvxrvxMW3NGbOZffAHxucP0Dmb3A==</latexit>

many - particle excitations near |Y | ' 1
<latexit sha1_base64="RlvsHJ20Xfuw7hNAKSfpFawx2YI=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyqoMeiF48V7Idsl5JNs21oslmTWaFs+zO8eFDEq7/Gm//GtN2Dtj4YeLw3w8y8MBHcgOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4DFrAAfB2olmRIaCtcLhzdRvPTFtuIrvYZSwQJJ+zCNOCVjJHz+MO4ZL9oi9brniVt0Z8DLxclJBOerd8lenp2gqWQxUEGN8z00gyIgGTgWblDqpYQmhQ9JnvqUxkcwE2ezkCT6xSg9HStuKAc/U3xMZkcaMZGg7JYGBWfSm4n+en0J0FWQ8TlJgMZ0vilKBQeHp/7jHNaMgRpYQqrm9FdMB0YSCTalkQ/AWX14mzbOqd1517y4qtes8jiI6QsfoFHnoEtXQLaqjBqJIoWf0it4ccF6cd+dj3lpw8plD9AfO5w/1o5EH</latexit>

Y =
m⇠̃

~2
~! � "q

q
= O(1)

<latexit sha1_base64="ialbl3IpdO3YHhaBaUL6woo636k="></latexit>

~! = "k+q � "k !
<latexit sha1_base64="5HNQu2Km4898IDx8kNdD491BFps=">AAACNnicdVDLSsNAFJ3UV62vqks3wSIIYkmqoCCC6MaNUMFqoSnlZnrTDp1k4sxEKCFf5cbvcNeNC0Xc+glOH4LPAwOHc85l7j1+zJnSjjOwclPTM7Nz+fnCwuLS8kpxde1aiURSrFHBhaz7oJCzCGuaaY71WCKEPscbv3c29G/uUComoivdj7EZQidiAaOgjdQqXnhdH6QnQuzAsXcHEmPFuHFSLwTd9YO0l+180tss2/0nk3lHnhatYskpOyPYv4k7ISUyQbVVfPTagiYhRppyUKrhOrFupiA1oxyzgpcojIH2oIMNQyMIUTXT0dmZvWWUth0IaV6k7ZH6dSKFUKl+6JvkcE/10xuKf3mNRAeHzZRFcaIxouOPgoTbWtjDDu02k0g17xsCVDKzq027IIFq03TBlOD+PPk3ua6U3b1y5XK/dHI6qSNPNsgm2SYuOSAn5JxUSY1Qck8G5Jm8WA/Wk/VqvY2jOWsys06+wXr/AM2mrv8=</latexit>

coincides with  since  Z = 2Y/(q⇠̃)
<latexit sha1_base64="8KzuBVrfWabv/qMipGEpinJsY0Q=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiZV0I1QdOOygn1oE8pkMmmHTiZxZiKGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3Hi9mVCrL+jYWFpeWV1YLa8X1jc2tbXNntyWjRGDSxBGLRMdDkjDKSVNRxUgnFgSFHiNtb3g59tsPREga8RuVxsQNUZ/TgGKktNQzS3fntdujyr2jKPNJ5jzS0WHPLFtVawI4T+yclEGORs/8cvwIJyHhCjMkZde2YuVmSCiKGRkVnUSSGOEh6pOuphyFRLrZ5PgRPNCKD4NI6OIKTtTfExkKpUxDT3eGSA3krDcW//O6iQrO3IzyOFGE4+miIGFQRXCcBPSpIFixVBOEBdW3QjxAAmGl8yrqEOzZl+dJq1a1j6u165Ny/SKPowD2wD6oABucgjq4Ag3QBBik4Bm8gjfjyXgx3o2PaeuCkc+UwB8Ynz+ngJQj</latexit>

Hofmann/Zw. 2017



17
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interested in the broad structure of the peak for all qa,
i.e., its position and width. For these quantities, we can
apply the OPE to obtain universal results for line shift
and width that depend on the Tan two-body contact pa-
rameter C2.
We begin by considering the structure of the density

response near the single-particle peak, which takes the
general form:

�(!,q) =
Zq

~! � "q �⇧(!,q)
+ �inc(!,q), (45)

where �inc denotes the incoherent part. Zq is a quasi-
mode residue and ⇧(!,q) is the polarization. The posi-
tion of the one-particle peak is defined by the zeros of

~! � "q � Re⇧(!,q) = 0. (46)

The imaginary part at the resonance frequency !q deter-
mines the width � of the peak as � = �Im⇧(!q,q). At
large momentum, the many-body correction induced by
⇧ is subleading, and we can determine the new pole in
the on-shell approximation

�(~!) = Re⇧("q,q) +O

⇣ 1

"q

⌘
. (47)

Expanding the density response to leading order in ⇧,

�(!,q) =
Zq

~! � "q
+

Zq⇧("q,q)

(~! � "q)2
+ . . . , (48)

we infer the high-momentum structure of Zq and ⇧ by
comparing with the results of the operator product ex-
pansion [44, 46]. This gives to leading order Zq = �n
and

⇧("q,q) =


1

2⇡a2
1

a�1 + iq/2
�

iq

8⇡
�

1

4⇡a

�
~2C2
mn

. (49)

The real part of ⇧ gives the line shift at large momentum
transfer:

�(~!) q!1
!

~2C2
4⇡man


2

1 + (qa/2)2
� 1

�
. (50)

This is one of the central result of this paper. In addition,
the imaginary part of Eq. (49) sets the width of the peak:

�
q!1
!

~2C2q
8⇡mn


2

1 + (qa/2)2
+ 1

�
. (51)

For small scattering lengths a/⇠ ⌧ qa ⌧ 1, we can use
the expansion of C2 in powers of

p
na3

C2 =
�
4⇡an

�2
✓
1 +

64
p
na3

3
p
⇡

+
8

3

⇣
4⇡ � 3

p
3
⌘

⇥

h
1 + 4 log

�
nal2

vdW

�i
na3

◆
+ . . . , (52)

FIG. 5. (color online) Line shift of a repulsive Bose gas as a
function of scattering length a. The line shift (50) predicted
by the operator product expansion is indicated by a red con-
tinuous line. For comparison, we include the line shift (54) as
predicted from the single-mode ansatz (blue dashed line). In-
set: OPE prediction (51) for the width of the Bragg peak. The
black points are the experimental results by Papp et al. [19].

which may be obtained from the known result for the
energy density E of an interacting Bose gas obtained
by Braaten [73, 74] by using the Tan adiabatic theo-
rem C2 = �(8⇡m/~2) @E/@a�1. The first term is the
standard Bogoliubov result and the second term is the
Lee-Huang-Yang (LHY) correction. The third term is
sensitive to three-body interactions. We show the weak-
coupling behavior of the contact (52) in Fig. 4 for the case
of 85Rb. While the LHY correction increases the value
of the contact compared to the mean field result, the
beyond-LHY correction reduces this correction. Indeed,
at larger scattering length, the contact is smaller than the
Bogoliubov mean field result and shows a downturn, in-
dicating that higher-order corrections become important.
This behavior of the two-body contact density as a func-
tion of scattering length is also supported by a nonper-
turbative theoretical calculation based on a variational
ansatz for the many-body ground state in terms of a sym-
metrized product of two-particle wave-functions [75].
Using the leading-order result C2 = (4⇡na)2 in

Eq. (50), we reproduce the Bogoliubov result (44) at
small a. As a is increased, the prediction (50) deviates
from Bogoliubov theory: it approaches a maximum at
qa ⇠ 1, then bends backwards, and even changes its sign
at large scattering length. Note that if the system is
probed at wavelengths that are small compared to the
interparticle distance q � n1/3, the maximum may oc-
cur well in the perturbative region (because n1/3a ⌧ qa).
At very large scattering length qa ! 1, the line shift
vanishes from below zero as

lim
a!1

�(~!) q!1
! �

~2C2
4⇡man

. (53)

Figure 5 shows the comparison of the OPE predic-

self-energy from OPE

� � � �

-���

-���

���

� (��� ��)

Δ
ω
/�

π
(�
�
�)

• Shift of the single-particle peak from the OPE

line-shift =

(
gn

�
1� (qa)2/2 + . . .

�

�~2C2(a)
4⇡mna ! 0 if qa � 1
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missing: effects of three-body 

or higher order correlations 
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the spectrum is not described by a single-mode approximation

incoherent background extends  from

• Full spectrum within a T-matrix approximation
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"q/n with n = 2, 3 . . . to 1
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• Quantum fluids with zero range interactions obey a set of  
exact relations due to S. Tan. They connect short distance 
or time correlations with thermodynamic properties and 
they hold for arbitrary states of the many-body problem. 


• Bragg scattering at large momentum involves multi-
particle excitations. It can be described in a systematic 
expansion in inverse powers of q. This explains 
qualitatively the negative line shift observed at JILA in 
2008 and in Cambridge 2017. The extension to three-body 
correlations and an observation of the detailed form of the 
spectrum remains open.

• Conclusion


