Probing ultracold gases at short distances

Collège de France, October 20th, 2021

- Hanbury Brown and Twiss correlations in a BEC

$$
\langle\hat{n}(\mathbf{x}) \hat{n}(0)\rangle=n \delta(\mathbf{x})+n^{2} g^{(2)}(\mathbf{x})
$$

bunching of bosons $\quad g_{\text {id }}^{(2)}(0)=2$
disappears in a BEC Kagan et al 1985

measured by single-atom detection with metastable He-atoms

Schellekens et al 2005

Öttl et al 2005

- suppression of bunching by repulsive interactions
zero-range interactions in one dimension $V(x)=-\frac{2 \hbar^{2}}{m a_{1}} \delta(x)$
Lieb-Liniger parameter $\quad \gamma=-\frac{2}{n_{1} a_{1}}>0 \quad$ for repulsion
$g^{(2)}(0)=d e(\gamma) / d \gamma \quad$ from ground state energy / particle

Gangardt/Shlyapnikov 2003

measured from photo-association
Lee / Huang / Yang 1957 hard spheres

$g^{(2)}\left(r \rightarrow \sigma^{+}\right)=(1-\sigma / r)^{2}+\ldots$ if $n \sigma^{3} \ll 1$ Kinoshita et al 2005

- Exact relations for many-body systems with zerorange interactions from the OPE

$$
\begin{aligned}
& g^{(2)}(0) \text { is ill-defined and must be replaced by } \\
& \text { the two-body contact density }
\end{aligned}
$$

- Bragg-scattering at large momentum: negative lineshift and multi-particle excitations
scattering length defined by short distance behavior of
two-body wave function $\quad \psi_{0}(r)=\frac{1}{r}-\frac{1}{a} \quad$ Bethe/Peierls
many-body problem: separate free motion at short distances

$$
\hat{\psi}(\mathbf{R}-\mathbf{x} / 2) \hat{\psi}(\mathbf{R}+\mathbf{x} / 2)=\frac{\psi_{0}(r)}{4 \pi} \hat{\phi}(\mathbf{R})+\ldots
$$

Braaten/ Platter 2008
OPE $\quad \mathcal{O}_{a}(\mathbf{R}-\mathbf{x} / 2) \mathcal{O}_{b}(\mathbf{R}+\mathbf{x} / 2)=\sum_{\ell} W_{\ell}^{(a, b)}(\mathrm{x}) \mathcal{O}_{\ell}(\mathbf{R})$

- pair distribution function at short separation
$\hat{n}(\mathbf{R}+\mathbf{x} / 2) \hat{n}(\mathbf{R}-\mathbf{x} / 2) \xrightarrow[|\mathbf{x}| \rightarrow 0]{ } \delta(\mathbf{x}) \hat{n}(\mathbf{R})+\frac{\psi_{0}^{2}(r)}{16 \pi^{2}} \hat{\phi}^{\dagger}(\mathbf{R}) \hat{\phi}(\mathbf{R})+\ldots$
contact density $\quad \mathcal{C}_{2}(\mathbf{R})=\left\langle\hat{\phi}^{\dagger}(\mathbf{R}) \hat{\phi}(\mathbf{R})\right\rangle$
$\lim _{r \rightarrow 0} n^{2} g^{(2)}(r)=\frac{\mathcal{C}_{2}}{16 \pi^{2}}\left(\frac{1}{r^{2}}-\frac{2}{a r}+\ldots\right) \quad$ S. Tan 2005
BEC with repulsive interaction bunching at $r \lesssim a \quad!!$

Naraschewski/ Glauber 1999
the two-body contact density determines the

- tail in the momentum distribution $n(\mathbf{q}) \rightarrow \mathcal{C}_{2} / q^{4}+\ldots$
- closed channel fraction near a Feshbach resonance
- derivative of the energy with respect to $\mathbf{1} / \mathbf{a} \frac{\partial \varepsilon}{\partial(1 / a)}=-\frac{\hbar^{2}}{8 \pi m} \mathcal{C}_{2}$
- clock-shift and asymptotic decay of the RF-spectrum
- rates for two- or three-body losses

$$
\Gamma_{2}=\frac{\hbar \mathcal{C}_{2}}{4 \pi m n} \operatorname{Im}(1 / a)
$$

- Ramsey-type measurements of the contact
$(4 \pi n a)^{2}+\ldots$ dilute BEC at $T=0$
$32 \pi\left(n \lambda_{T}\right)^{2}\left(1-\lambda_{T} / \sqrt{2}|a|+\ldots\right) \sim 1 / T$

non-degenerate gas with $\lambda_{T} \ll|a|$

precession rate $\Omega=\frac{\hbar}{4 \pi m}\left(\frac{\mathcal{C}_{2}}{n a}+\frac{5 \pi^{2}}{n} \mathcal{C}_{3}\right) \quad$ Fletcher et al 2017 change in clock-transition frequency ${ }^{87} \mathrm{Rb}$ $\Delta \nu \sim \mathcal{C}_{2} \cdot \Delta a$ with $\Delta a=a_{22}-a_{11}=-5.7 a_{0}^{5}$ contact across BKT-transition Zou et al 2021

hard sphere fluids $3 p_{\mathrm{HS}}=2 \varepsilon+\sigma^{2} g^{\prime \prime}(\sigma) \cdot \pi n^{2}\left(\hbar^{2} \sigma / m\right)$ Fierz 1957
$\sigma \neq 0$ breaks scale invariance \rightarrow trace anomaly $\sim g^{\prime \prime}(\sigma)$
non-analyticity at contact $g^{(2)}\left(r \rightarrow \sigma^{+}\right)=g^{\prime \prime}(\sigma)(r-\sigma)^{2} / 2+\ldots$
gives rise to $\lim _{q \gg n^{1 / 3}} n(\mathbf{q})=\mathcal{C}_{\mathrm{HS}}\left(\frac{\sin (q \sigma)}{q^{3}}\right)^{2}$ with $2 \mathcal{C}_{\mathrm{HS}}=(4 \pi n \sigma)^{2} g^{\prime \prime}(\sigma)$
Tan relation $n(\mathbf{q}) \rightarrow \mathcal{C}_{2} / q^{4}$ emerges for $\sigma \rightarrow 0$ and $\sigma^{2} \mathcal{C}_{\mathrm{HS}} \rightarrow \mathcal{C}_{2}$ finite!

LHY $1957 \sigma^{2} g^{\prime \prime}(\sigma) \rightarrow 2$

Boronat/ Casulleras 1994
(a)

C. Carcy et al 2019
rate of momentum transfer $\frac{d \mathbf{P}}{d t}=-\frac{\hbar \mathbf{q} \Omega^{2}}{2} \operatorname{Im} \chi(\omega+i 0, \mathbf{q})$

$$
S(\omega, \mathbf{q})=\frac{1}{\pi}\left[1-e^{-\beta \hbar \omega}\right]^{-1} \operatorname{Im} \chi(\omega+i 0, \mathbf{q})
$$

- the single mode approximation (SMA)

Bogoliubov theory $\left(n^{1 / 3} a \ll 1\right) \quad \hat{H}_{\mathrm{Bog}}=E_{0}+\sum_{q} E_{q} \hat{\alpha}_{q}^{\dagger} \hat{\alpha}_{q}$

$$
S_{\mathrm{Bog}}(\omega, \mathbf{q})=n S(\mathbf{q}) \delta\left(\hbar \omega-E_{\mathbf{q}}\right) \quad \text { with } \quad E_{\mathbf{q}}=\varepsilon_{\mathbf{q}} / S(\mathbf{q})
$$

R. Feynman 1954 SMA is exact at small momenta $q \xi \ll 1$

Bogoliubov spectrum at large momentum $q \xi \gg 1$

$$
E_{\mathbf{q}}=\sqrt{\varepsilon_{\mathbf{q}}\left(\varepsilon_{\mathbf{q}}+2 g n_{0}\right)} \quad \text { approaches } \quad E_{\mathbf{q}}=\varepsilon_{\mathbf{q}}+g n+\ldots
$$

Bragg scattering in ${ }^{85} \mathrm{Rb}$ up to $(q a)_{\max }=0.8$ Papp et al 2008
line-shift $\Delta(\hbar \omega)=\hbar \tilde{\omega}_{\mathbf{q}}-\varepsilon_{\mathbf{q}} \rightarrow g n \quad$ should be linear in a

FIG. 2 (color online). Typical Bragg spectra at a scattering length of $100 a_{0}$ (blue triangles), $585 a_{0}$ (red circles), and $890 a_{0}$ (black squares). The excitation fraction is determined from the measured momentum transferred to the BEC and plotted as a function of the frequency difference between the two Bragg beams. Lines are fits of the data as described in the text.

downturn of line-shift near $q a=\mathcal{O}(1)$

- Bragg scattering on BEC's in a box configuration

Lopes et al $2017{ }^{39} \mathrm{~K}$ in a box, Feshbach reson. at $B_{0}=402.7 \mathrm{G}$

$\lim _{r \rightarrow 0} n^{2} g^{(2)}(r)=\frac{\mathcal{C}_{2}}{16 \pi^{2}}\left(\frac{1}{r^{2}}-\frac{2}{a r}+\ldots\right) \quad$ implies $\quad S(q) \rightarrow 1+\frac{\mathcal{C}_{2}}{8 n q}\left(1-\frac{4}{\pi q a}\right)+\ldots$
single mode approximation predicts non-monotonic line shift

$$
\Delta\left(\hbar \omega_{q}\right)_{\mathrm{SMA}}=\varepsilon_{q}\left[S^{-1}(q)-1\right] \rightarrow g n(1-\pi q a / 4+\ldots)
$$

Feynman/Tan

Hohenberg/Platzman $1966 \quad S_{\mathrm{IA}}(\omega, \mathbf{q})=\int_{\mathbf{k}} n(\mathbf{k}) \delta\left(\hbar \omega+\varepsilon_{\mathbf{k}}-\varepsilon_{\mathbf{k}+\mathbf{q}}\right)$
gives rise to scaling $\quad S(\omega, \mathbf{q})=\frac{m}{\hbar^{2} \tilde{\xi}^{2}} \frac{1}{q} J_{\mathrm{IA}}(Y) \quad$ with $\quad Y=\frac{m \tilde{\xi}}{\hbar^{2}} \frac{\hbar \omega-\varepsilon_{\mathbf{q}}}{q}$
symm. peak around $Y=0$ line shift $\Delta\left(\hbar \omega_{q}\right) \sim q$
gives rise to line shifts $\quad \Delta\left(\hbar \omega_{q}\right) \sim q^{2}!$

continuum of energies

$$
\varepsilon_{\mathbf{q}} / 2 \leq \hbar \omega^{(2)}(\alpha)=\frac{\varepsilon_{\mathbf{q}}}{2 \cos ^{2} \alpha / 2}<\infty
$$

- Dynamical structure factor at large momentum
short-distance expansion $\hat{n}(t, \mathbf{r}) \hat{n}(0, \mathbf{0})=\sum_{\ell} W_{\ell}(t, \mathbf{r}, a) \hat{O}_{\ell}(0, \mathbf{0})$. asymptotic series for $\quad \chi(\omega, \mathbf{q})=\sum_{\ell} \frac{m}{\hbar^{2} q^{\Delta_{\ell}-1}} J_{\ell}\left(Z, \frac{1}{q a}\right)\left\langle\hat{O}_{\ell}(0, \mathbf{0})\right\rangle$
two-particle contribution $S(\omega, \mathbf{q})=\frac{m \mathcal{C}_{2}}{\hbar^{2} q^{3}} J_{2}\left(Z=\left(\hbar \omega-\varepsilon_{\mathbf{q}}\right) / \varepsilon_{\mathbf{q}}\right)$

spectrum is asymmetric!
collinear singularity at $\hbar \omega=\varepsilon_{\mathbf{q}} / 2$
tail $S(\omega, \mathbf{q}) \sim \mathcal{C}_{2} q^{4} / \omega^{7 / 2}$
Son/Thompson 2010
single particle excitations $\hbar \omega=\varepsilon_{\mathbf{k}+\mathbf{q}}-\varepsilon_{\mathbf{k}} \rightarrow Y=\frac{m \tilde{\xi}}{\hbar^{2}} \frac{\hbar \omega-\varepsilon_{\mathbf{q}}}{q}=\mathcal{O}(1)$

$$
\lim _{|Y| \gg 1} S_{\mathrm{IA}}(\omega, \mathbf{q})=\frac{m \mathcal{C}_{2}}{\hbar^{2} q^{3}} \frac{q^{2} \tilde{\xi}^{2}}{8 \pi^{2} Y^{2}} \quad \text { due to } \quad n(k \tilde{\xi} \gg 1)=\mathcal{C}_{2} / k^{4}
$$

coincides with $\quad \lim _{|Z| \ll 1} S_{\mathrm{OPE}}(\omega, \mathbf{q})=\frac{m \mathcal{C}_{2}}{\hbar^{2} q^{3}} \frac{1}{2 \pi^{2} Z^{2}} \quad$ since $\quad Z=2 Y /(q \tilde{\xi})$ smooth crossover from single to
many - particle excitations near $|Y| \simeq 1$

- Shift of the single-particle peak from the OPE
self-energy from OPE

$$
\Pi\left(\varepsilon_{\mathbf{q}}, \mathbf{q}\right)=\left[\frac{1}{2 \pi a^{2}} \frac{1}{a^{-1}+i q / 2}-\frac{i q}{8 \pi}-\frac{1}{4 \pi a}\right] \frac{\hbar^{2} \mathcal{C}_{2}}{m n}
$$

line-shift $\Delta\left(\hbar \omega_{q}\right)=\operatorname{Re} \Pi\left(\varepsilon_{\mathbf{q}}, \mathbf{q}\right)=\left\{\begin{array}{c}g n\left(1-(q a)^{2} / 2+\ldots\right) \\ -\frac{\hbar^{2} \mathcal{C}_{2}(a)}{4 \pi m n a} \rightarrow 0 \text { if } q a \gg 1\end{array}\right.$
vanishes at $\bar{q} a=2 \quad(\bar{q} a=4 / \pi$ in SMA)
missing: effects of three-body or higher order correlations

Lopes et al 2017

the spectrum is not described by a single-mode approximation

$$
\chi(\omega, \mathbf{q})=-\frac{Z_{\mathbf{q}}}{\hbar \omega-\varepsilon_{\mathbf{q}}-\Pi(\omega, \mathbf{q})}+\chi^{\mathrm{inc}}(\omega, \mathbf{q})
$$

incoherent background extends from $\varepsilon_{\mathbf{q}} / n$ with $n=2,3 \ldots$ to ∞

- Quantum fluids with zero range interactions obey a set of exact relations due to S. Tan. They connect short distance or time correlations with thermodynamic properties and they hold for arbitrary states of the many-body problem.
- Bragg scattering at large momentum involves multiparticle excitations. It can be described in a systematic expansion in inverse powers of q. This explains qualitatively the negative line shift observed at JILA in 2008 and in Cambridge 2017. The extension to three-body correlations and an observation of the detailed form of the spectrum remains open.

