Losses in quantum gases with contact interactions
with an emphasis on the one-dimensional case

1. Bouchoule, M. Schemmer, A. Johnson, Léa Dubois, Léo-Paul
Barbier,C. Henkel, S. Szigetti, J. Dubail, B. Doyon

College de France, 14™ April 2023



Open quantum systems

Quantum systems coupled to environements :

o Exchange of energy = heat transfer
o Exchange of particles
e Transport phenomena
e Case of loss process
e Zeno effect — strongly correlated gases
F. Verstraete et al., Nature Physics 5, 633 (2009)
M. Roncaglia et al., Phys. Rev. Lett. 104, 096803 (2010)
N. Syassen et al., Science 320, 1329 (2008)

Effect of losses : still a lot to discover

Losses in a correlated system : a field at its begining
Here : slow losses in gases with contact interactions

“Long-lived nonthermal states realized by atom losses in one-dimensional quasicondensates” (2017)
“Cooling phonon modes of a Bose condensate with uniform few body losses” (2018)

“Cooling a Bose gas by three-body losses” (2018)

“Asymptotic temperature of a lossy condensate” (2020)

“The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas” (2020)
“Breakdown of Tan’s relation in lossy one-dimensional Bose gases” (2021)

“Losses in interacting quantum gases : Ultraviolet divergence and its regularization” (2021)



o UV divergence in D > 1 for 1-body losses

© Losses in 1D Bose gas : general results
@ Evolution of the rapidity distribution
@ Analytic result for hard-core bosons

@ Failure of Tan’s relation
© Quansicondensate limit

o Experimental results : asymptotic temperature of phonons
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@ UV divergence in D > 1 for 1-body losses



Reservoir of vanishing correlation time : Lindblad equation

Homogeneous 1-body loss process
e System : density matrix p

Lindblad equation for homogeneous 1-body losses

@ Reservoir of correlation time < system’s dynamics time

dp

<L — A, p]+r/ (——{w wr,p}+¢rp¢r+>

Lindblad equation : used in all previous works in cold atoms domain
o Universal behavior : single parameter I
o trivial if uncorrelated system p =[] p, : dN,/dt = —T'N,

e If quantum correlations present between atoms ?
= Difficult problem

Interactions between atoms = correlations



Interactions between atoms : contact interaction

Potential = boundary condition for » — 0

~ solution of Ay =0
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e Universal behavior
Pseudo-potential : V = §(r)U

1/ p4 momentum tail tail = UV divergence of Eyi,

For p?/m > E,|[upl? = & (U)oy & = &

Eyin o< fddp%h/;p\z = FEyjn = oo for D > 1

compensated by diverging interaction energy (E; finite)




D > 1: UV divergence

UV divergence of the energy deposited by a loss event

Lindblad : loss event instantaneous

= [¢) = (') = Yr ) = (12,13, ... ) < P(F] = Tiggs, 12,13, . .)

Singularity at loss event position :

=> momentum tails decreasing as 1/p*

= Ekll’l = 0 |
No compensation by interaction term Hoss

Energy diverges in D > 1 after a loss event

X2

UV catastrophe for Lindblad dynamics with contact interactions

dE/dt = 0o

Regularisation

| \

o Finite interaction range

o Finite correlation time of the reservoir = finite energy width




Reservoir of finite energy width E

Role of the contact
@ Contact C : quantifies the number of pairs in the system

o Amplitude of 1/p* momentum tails :C = lim,_, p*n(p)

Energy increase rate

For large Eres, dE/dt =T CB with B~ /mE,s (3D)
Case of a BEC : Bogoliubov calculatlon

Slow losses = at any time, thermal equilibrium at temperature 7'(¢)
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1. Bouchoule et al., arxiv (2021)

3
13
|



Losses in 1D Bose gas
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Q Losses in 1D Bose gas : general results
@ Evolution of the rapidity distribution
@ Analytic result for hard-core bosons



Losses in 1D Bose gas
K-body losses in a 1D Bose gas with Contact repulsive
interactions

Reservoir of large energy width : Lindblad equation

dp

a - 1+G/ ( {w;%,,o}wxw)

H = / dx (=12 [ (2m)bi 02, + (g/2)0 202)

Integrable system : No relaxation towards thermal equilibrium
Keeping track of n and e not sufficient




Losses in 1D Bose gas

Rapidity distribution

Eigenstates of Lieb-Liniger :
Yo <xp <o <ay) = B, agelleii et o)
ki, ..., ky : rapidities

Rapidity distribution

_ #rapidities in [k,k+5k]
P p(k)ok = L

System locally described by p(k)

Slow losses : At each time, system described by p(k, ¢)
effect of losses :

dp(k)
dt

= —Gn"~Flp](k)




Evolution of p(k)

Evolution of conserved quantities under Lindblad

Q= [ dxq(x) d(Q)/dt = LG(¢5 [0, ¥ 1) )
Observable Q; : 05 (k)
QY = 3, 8 (k= M)A o
I/L <o < (dp(k)/dk)/p(k) = | Lp(k) >~ (Q)

Flolt) = =118 Y pony 32 [} KON P
{i} {m}

(%00 (1 = ) = 2,8, (5 = )

Numerical calculation (J. Dubail) :
@ Double Markov chain

@ Form factors : L. Piroli and P. Calabrese (2015), B. Pozsgay
(2011)



Losses in 1D Bose gas

Exact results in the hard-core Bosons limit

Hard-core Bosons : Typical energy per atom fulfills : E < mg?/h* .
(p KXY = 0if K > 1: K = 1 only relevant

Mapping to fermions : Jordan-Wigner c(x) = (—1)Mo4 ¥ (x)

Fermionic boundary N odd : periodic N even : antiperidoic

condition: (NVAVEVAV I NV,
1 [ A L I 7

depends on N parity z'z\/z'g ZHS 21 VU




Losses in 1D Bose gas

Fonctional F|[p] in the hard-core Bosons limit

g/n=10", T/n* =1.02

10.3

°-15"p<k) — L f\ ‘ / \ M(k)*"-z
= AV
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-6 -3 0 3

6 -6
rapidity & (n)
Exact time integration : analytic solution for p(k, ?)

losses = p(k, t) non thermal
Numerical results in very good agreement with exact result

L.Bouchoule, Benjamin Doyon, Jerome Dubail, SciPost Phys. 9, 044 (2020)
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e Failure of Tan’s relation



Failure of Tan’s relation

Breakdown of Tan’s relation

The Tan’s relation : a famous thermodynamic relation

Contact interactions : velocity distribution limy_, . k*w(k) = c.
I amw)zf - 3#&);; =g¥(z1 =z, - -

cc = m’g’n’g>(0)/(2h) ‘

Z; 21

Olshanii and Dunjko (Phys. Rev. Lett. 91, 090401 (2003).).

Generalized Tan’s relation for rapidity distribution with 1/k* tails

lim k*w(k) = c. + cr, where ¢, = lim k*p(k)
k—o00 k—o00

Initial growing of 1/k* tails of p(k) :

| | |
W % _ GnK—HKZng(K) (O)g(K+l)(O)
— S i — %)

Conclusion : Tan’s relation most probably violated in 1D

1 Bouchoule, J Dubail, Physical Review Letters 126 (16), 160603 (2021)
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@ Quansicondensate limit



Quansicondensate limit

Quasi-condensate : Bogoliubov description

Wavelength considered : > 1/n. Small density fluctuations

Bogoliubov Hamiltonian

Linearisation in 7 (r) and 0(r)
Collective modes : Fourier modes. H = Cste + ) _, Hi

Hj,

hug (1 _
— Tk <2n()fk5n£ + 2ngf; 19%) = hwi(ai ax +1/2)

wi = 2+/B2k2 ) (2m) (h2k2 [ (2m) + 2gn), fi = hwy/(h?k*/(2m))

Effect of slow 1-body losses on Bogoliubov modes :
P. Grisins et al., Phys. Rev. A93, 033634 (2016)
Our work :

@ quantum trajectories calculation, K-body losses, trapped gases



Quansicondensate limit

Effect of losses

Effect on density fluctuations and phase flluctuations
don = —K*Gnf 'éndt+ dn ,{dn(r)dn(r')) = K*Gn§5(r — v')dt
—_—

Cooling S}tll%zg?lige

If lost atom number recorded : increase of knowledge on 6N

= (ON?) \, = (6%)
(dO(r)ad(r)) = K Gnk=25(r — v')dr

Fourier representation
d

E((sn%) = —2K>Gn{ 1 (6n2) + K*Gnf

d _
6D = K°Gn /4




Evolution of Bogoliubov modes

Mode population

d(a,jak>

L8 _ K2GnA (—(afa) = 1/2+ (G +£7)/4)

Large p behavior : d(a;fap)/dt = K*Gn*~1 (—(a} a,) + m*¢*n* /p*)
— 1/p* tails

Phononic limit 7%k? /m < gn = mc?, y = hwy(af ax)/(mc?)

dy/dt = KGn* ' (—y(K — 1/2) + K/2)

‘Stationnary value : yoo = 1/(2 — 1/K) ‘

Asymptotic phonons temperature : kgT = mc>ys

@ Calculation extended for non-homogeneous gases (effect of trap)

@ Calculation extended to take into account 3D effect at large n

1. Bouchoule et al. SciPost Phys. 5, 043 (2018)
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© Experimental results : asymptotic temperature of phonons



Experimental results

Experimental setup : realising and imaging 1D gases

e Magnetic confinement using atom-chip setup

Chip mount
CCD camera
NA=0.4
Probe beam
light sheet wy = 100pm
— 2 _ 3

° Nat =3 10 <10 A typical in-situ absoprtion image
@ w,=8—15Hz :
o Wl = 1.5 —-3kHz : 11:9«0/lm$'-=:":m i
o u~T=50-100nK
@ [,/ ~ 10 : deep into quasi-BEC



Experimental results

Thermometry in gBEC regime via density ripples analysis

o Trapping potential suddenly turned off : interactions ~\, 0

o 8 ms time of flight : 6(x) — density fluctuations ( density ripples)
Single shot image

Statistical analysis on ~ 50
images

= extract power spectrum
{lpgl?)

Density ripples power spectrum

404 — fit :T'= 55K, 0 = 3.0um
— data

Fit to deduce temperature
Sensitive to phononic modes
= phonons temperature




Experimental results

Decay of atom number under 3-body loss process

@ Losses dominated by 3-body process
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Experimental results

Evolution of phonons temperature

Evolution of 7/(mc?) Evolution in phase space
= W2kgTn?/(m3c*)

1.0 t
& PR . S 5 = m*c?/(h*n?)
g B
E s % DR .
5 1074 T —_— yy =07
0.0+ , : — .
0 50 100 150 200 250
n, [pm=]
. _ Tonks
— Yoo = 0.6 for homogenf:ous gas T A -
——- Yoo = 0.70 for harmonic trap ) 5 )

@ Good agreement with theory
o Initial state already close to asymptotic behavior



Experimental results

I-body losses

Ingeneered 1-body losses

E = ppgrmr|B| )
20000 . ..
:ek& Energy-insensitive
2 R losses : noisy HF field
AL N Large parameter range
+, explored :

F=1mp=1)

" w, = 1.5—4kHz

V.

Evolution of the phonons temperature

@ Good agreement with theory

2)
>

@ Solve the open question raised by
E _ _ former results (Rauer et al. , Phys.
Rev. Lett.116, 030402 (2016))

y = kT (mc




Experimental results

Evidence for non-thermal states produced by losses

@ Profile and density ripples incompatible
b)

0 — Thermal profile at T deduced
0 from density ripples analysis

250 500
2z [pm]

@ Profile and insistu density fluctuations incompatible
Insitu density thermometry : (AN?) = - K&T

— Adn/op

T T T 200F T —
2001 (a) q (b) © [T¢ Profile T
L 4 = = Fluctuation T
- D

Z 100}

500 1000
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A. Johnson et al., Phys Rev A 96, 013623 (2017)



Experimental results

Conclusion

e UV divergence for Lindblad dynamics with contact interactions
in D > 1 = finite E,.s and/or finite r,

@ Lieb-Liniger gas : evolution of rapidity distribution, analytic
expression for har-core bosons

@ Peculiar state : failure of Tan’s relation

@ Observation of the asymptotic temperature of phonons

@ Numerical effort requiered to compare to profile data

@ Link between Bogoliubov picture and p(k)
@ Bouchoule, et al., Phys Rev Lett (2023)

o Effect of finite reservoir energy width in D > 1
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