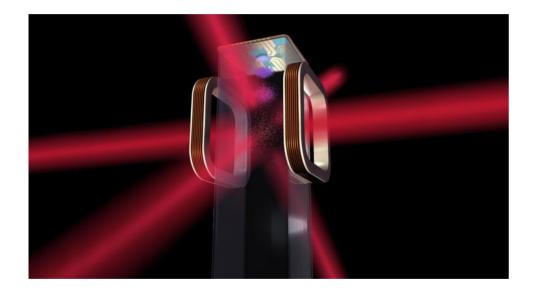
One-dimensional Yb gases with strong two-body losses

Leonardo Mazza

Université Paris-Saclay, LPTMS

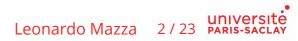
Mini-workshop "Open systems in quantym many-body physics" Collège de France – April 14, 2023

Coherence and decoherence in quantum gases



Gases of bosons or fermions cooled to quantum degeneracy

- No disorder
- Isolated from environments
- Controlled unitary dynamics



Dalibard, Bloch, Zwerger RMP (2008) - Zurek, RMP (2003)

Coherence and decoherence in quantum gases

Gases of bosons or fermions cooled to quantum degeneracy

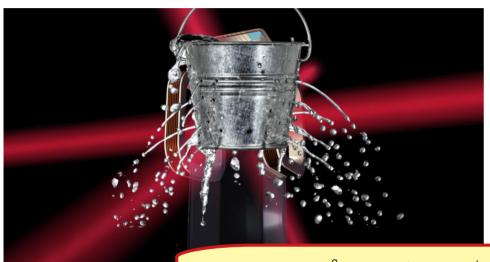
- No disorder
- Isolated from environments
- Controlled unitary dynamics

Yet, particle losses have always been a problem (and still are!)

In reality, the quantum gas is coupled to an environment

Dalibard, Bloch, Zwerger RMP (2008) - Zurek, RMP (2003)

Coherence and decoherence in quantum gases



Gases of bosons or fermions cooled to quantum degeneracy

- No disorder
- Isolated from environments
- Controlled unitary dynamics

Yet, particle losses have always been a problem (and still are!)

In reality, the quantum gas is coupled to

The presence of an environment causes decoherence and hides genuine quantum effects

Today's talk:

can we change this viewpoint and find situations where losses produce interesting physics?

Leonardo Mazza

Dalibard, Bloch, Zwerger RMP (2008) – Zurek, RMP (2003)

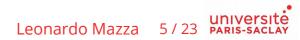
Losses and engineered correlations

The problem: a one-dimensional bosonic gas with strong two-body losses

First experiment: Rempe 2009 (MPQ-Munich)

1D optical lattice with Rb-Rb Feshbach molecules (bosons)

Gas prepared with 1 molecule per site. The optical lattice is lowered, what happens?



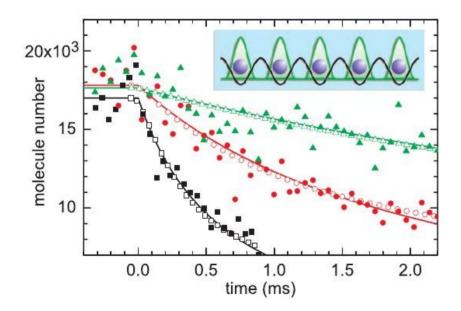
Losses and engineered correlations

The problem: a one-dimensional bosonic gas with strong two-body losses

First experiment: Rempe 2009 (MPQ-Munich)

1D optical lattice with Rb-Rb Feshbach molecules (bosons)

Gas prepared with 1 molecule per site. The optical lattice is lowered, what happens?



By increasing the loss rate beyond a certain threshold, the gas depopulates more slowly. Emergence of a novel decay time.

Theory: quantum Zeno effect (works by Garcia-Ripoll and Cirac, 2009)

Syassen et al. Science (2009)

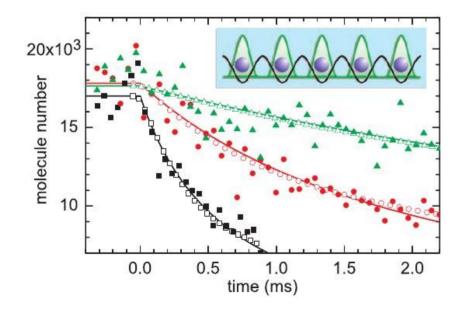
Losses and engineered correlations

The problem: a one-dimensional bosonic gas with strong two-body losses

First experiment: Rempe 2009 (MPQ-Munich)

1D optical lattice with Rb-Rb Feshbach molecules (bosons)

Gas prepared with 1 molecule per site. The optical lattice is lowered, what happens?



By increasing the loss rate beyond a certain threshold, the gas depopulates more slowly. Emergence of a novel decay time.

Theory: quantum Zeno effect (works by Garcia-Ripoll and Cirac, 2009)

The open problem: to characterise completely the dynamics of a gas subject to two-body losses and in particular the interplay between losses and quantum dynamics

> A theoretical activity ignited by discussions @CdF with Fabrice Gerbier and Jérôme Beugnon before the pandemics :)

> > Leonardo Mazza

Syassen et al. Science (2009)

My focus: two-body losses

Mean-field / phenomenological analysis

The trap empties completely

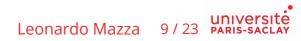
$$n(\tau) = \frac{n(0)}{1 + \frac{\kappa\tau}{n(0)}} \sim \frac{1}{\tau}$$

My focus: two-body losses

Mean-field / phenomenological analysis

 $\frac{dn(\tau)}{d\tau} = -\kappa n^2(\tau)$

$$n(\tau) = \frac{n(0)}{1 + \frac{\kappa\tau}{n(0)}} \sim \frac{1}{\tau}$$



My focus: two-body losses

Mean-field / phenomenological analysis

$$\frac{dn(\tau)}{d\tau} = -\kappa n^2(\tau)$$

The trap empties completely

$$n(\tau) = \frac{n(0)}{1 + \frac{\kappa\tau}{n(0)}} \sim \frac{1}{\tau}$$

Our results for one- dimensional lattice models:	Bosons	Fermions
Weak dissipation	We don't expect anything fancy here (but great results in the continuum! Bouchoule, Dubail)	Dissipative preparation of entangled Dicke states
Strong dissipation (Zeno)	Anomalous transient dynamics and creation of quantum correlations	Dissipative spin cooling and creation of quantum correlations

My focus: two-body losses

 $\frac{dn(\tau)}{d\tau} = -\kappa n^2(\tau)$

Mean-field / phenomenological analysis

The trap empties completely

$$n(\tau) = \frac{n(0)}{1 + \frac{\kappa\tau}{n(0)}} \sim \frac{1}{\tau}$$

	Our results for one- dimensional lattice models:	Bosons	Fermions	The stationary states are not trivial
The stationary states are trivial but they are reached in a non-trivial way	Weak dissing on	We don't expect anything fancy here (but great results in the continuum! Bouchoule, Dubail)	Dissipative preparation of entangled Dicke states	
	Strong dissipation (Zeno)	Anomalous transient dynamics and creation of quantum correlations	Dissipative spin cooling and creation of quantum correlations	

Leonardo Mazza 11/23 Université

- **Part 1:** Two-body losses in correlated bosonic gases
- Part 2: Two-body losses in correlated fermionic gases
- Conclusions

A master equation for strong two-body losses

The 1D Bose-Hubbard Hamiltonian with parameters J and U

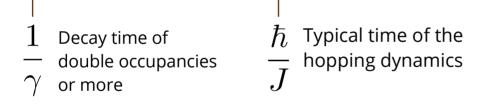
$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\frac{i}{\hbar}[H,\rho(t)] + \gamma \sum_{j} b_{j}^{2}\rho(t)b_{j}^{\dagger 2} - \frac{1}{2}\left(b_{j}^{\dagger 2}b_{j}^{2}\rho(t) + \rho(t)b_{j}^{\dagger 2}b_{j}^{2}\right)$$

A master equation for strong two-body losses

The 1D Bose-Hubbard Hamiltonian with parameters J and U

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\frac{i}{\hbar}[H,\rho(t)] + \gamma \sum_{j} b_j^2 \rho(t) b_j^{\dagger 2} - \frac{1}{2} \left(b_j^{\dagger 2} b_j^2 \rho(t) + \rho(t) b_j^{\dagger 2} b_j^2 \right)$$

Time-scales of the problem



Idea: use this separation of timescales to develop an effective perturbative approach

Perturbative parameter: $\,J/(\hbar\gamma)\,$

- 1) For J=0 all hard-core bosons states are stable (no decay)
- 2) A small value of J gives to the hardcore bosons a little decay width

$$\Gamma \propto rac{J^2}{\gamma}$$

Syassen et al. Science (2008) - Garcia-Ripoll et al. NJP (2009)

A master equation for hard-core bosons

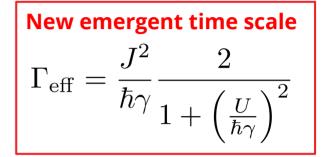
- Derivation of an effective master equation restricted to the steady space (no double occupancies or more)
- Introduce spin operators

$$H_1 = -J \sum_j \sigma_j^+ \sigma_{j+1}^- + \sigma_{j+1}^+ \sigma_j^-$$
$$C_j = \sqrt{\Gamma_{\text{eff}}} \sigma_j^- \left(\sigma_{j+1}^- + \sigma_{j-1}^-\right)$$

A master equation for hard-core bosons

- Derivation of an effective master equation restricted to the steady space (no double occupancies or more)
- Introduce spin operators

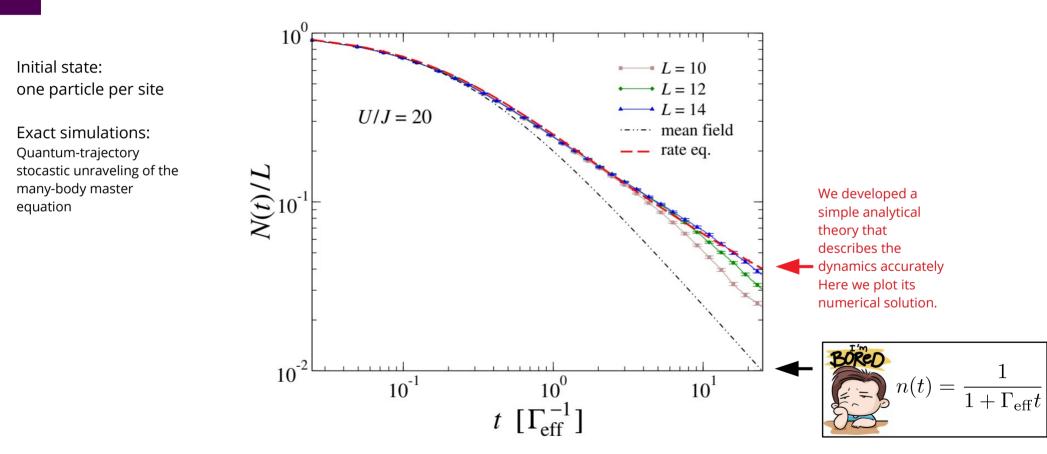
$$H_1 = -J \sum_j \sigma_j^+ \sigma_{j+1}^- + \sigma_{j+1}^+ \sigma_j^-$$
$$C_j = \sqrt{\Gamma_{\text{eff}}} \sigma_j^- \left(\sigma_{j+1}^- + \sigma_{j-1}^-\right)$$



Time-scales of the problem

$rac{1}{\gamma}$ Decay time of double occupancies γ or more	${\hbar\over J}$ Typical time of the ${\overline J}$ hopping dynamics	$\displaystyle rac{1}{\Gamma_{eff}}$ Effective decay time for hard-core bosons	

An anomalous transient dynamics

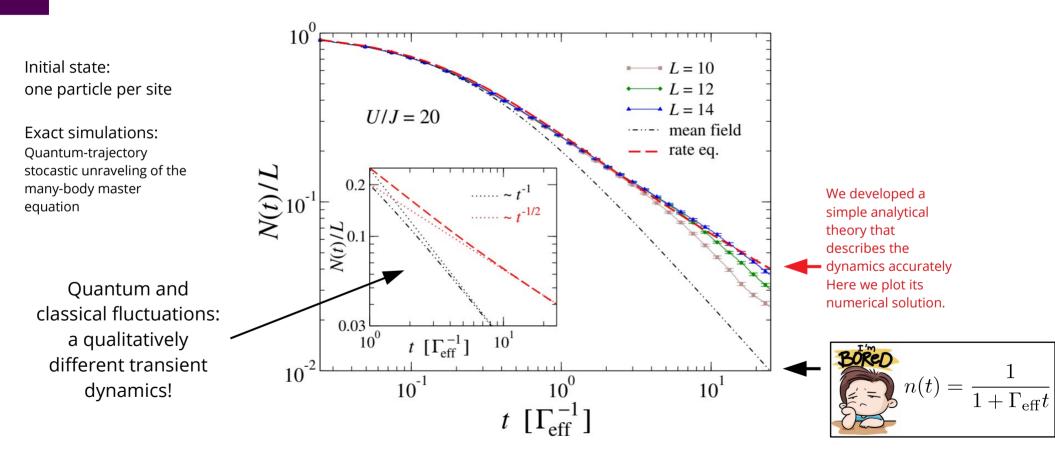


Leonardo Mazza 8/38

PARIS-SACLAY

D. Rossini, A. Ghermaoui, M. Bosch Aguilera, R. Vatré, R. Bouganne, J. Beugnon, F. Gerbier, LM, PRA 103 L060201 (2021)

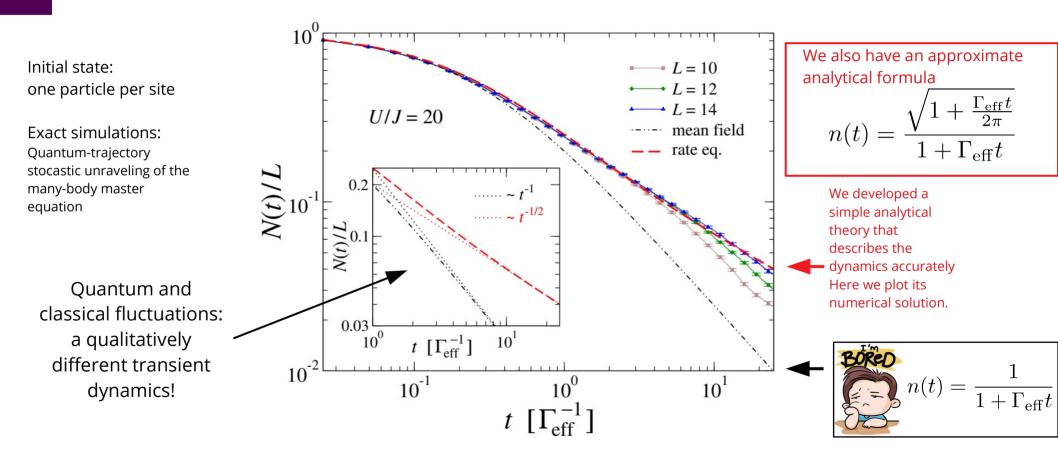
An anomalous transient dynamics



D. Rossini, A. Ghermaoui, M. Bosch Aguilera, R. Vatré, R. Bouganne, J. Beugnon, F. Gerbier, LM, PRA 103 L060201 (2021)

Leonardo Mazza 8/38 PARIS-SACLAY

An anomalous transient dynamics



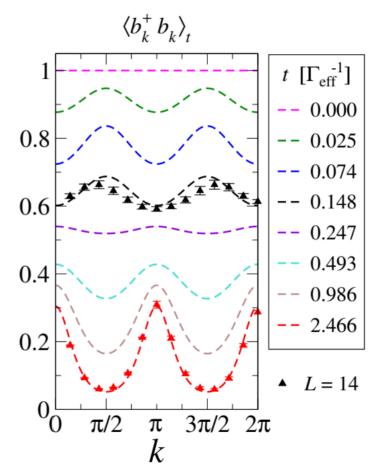
D. Rossini, A. Ghermaoui, M. Bosch Aguilera, R. Vatré, R. Bouganne, J. Beugnon, F. Gerbier, LM, PRA 103 L060201 (2021)

Leonardo Mazza 8/38 PARIS-SACLAY

Momentum distribution function

Bosonic momentum distribution function

- Clear peaks develop at different momenta at different times
- Observable in time-of-flight experiment
- No relation with an equilibrium distribution



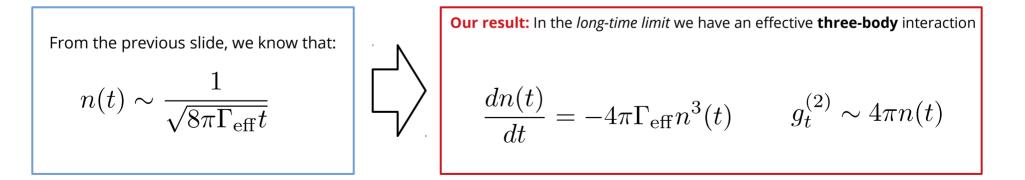
D. Rossini, A. Ghermaoui, M. Bosch Aguilera, R. Vatré, R. Bouganne, J. Beugnon, F. Gerbier, LM, PRA 103 L060201 (2021)

Leonardo Mazza 9/38 PARIS-SACLAN

Zero-range correlation function

The time-evolution of the population gives direct access to the correlation function of the gas

$$\frac{dn(t)}{dt} = -\Gamma_{\text{eff}} \langle \hat{n}(\hat{n}-1) \rangle_t = -\Gamma_{\text{eff}} g_t^{(2)} n^2(t) \qquad g_t^{(2)} = \frac{\langle b^{\dagger} b^{\dagger} b b \rangle_t}{\langle \hat{n} \rangle_t^2}$$



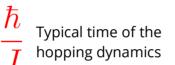
Leonardo Mazza 10 / 38 PARIS-SACLAY

How do we get these results?

Time-scales of the problem

 $rac{1}{\gamma}$ Decay time of double occupancies or more

 $\dot{\rho}$



 $1/\Gamma_{\rm eff}$

Intuitive picture: loss events are rare.

Between two lossy events the system has a lot of time to evolve unitarily

Leonardo Mazza 11 / 38 UNIVERSILE

time

Generalised thermalisation

How to characterize the state

 $|\Psi(t)\rangle = e^{-\frac{i}{\hbar}\hat{H}_1 t} |\Psi(0)\rangle$

at long times?

$$H_{1} = -J\sum_{j} \sigma_{j}^{+} \sigma_{j+1}^{-} + \sigma_{j+1}^{+} \sigma_{j}^{-}$$

$$H_{1} = -2J\sum_{k} \cos(k)c_{k}^{\dagger}c_{k}$$

$$Jordan-Wigner transformation$$

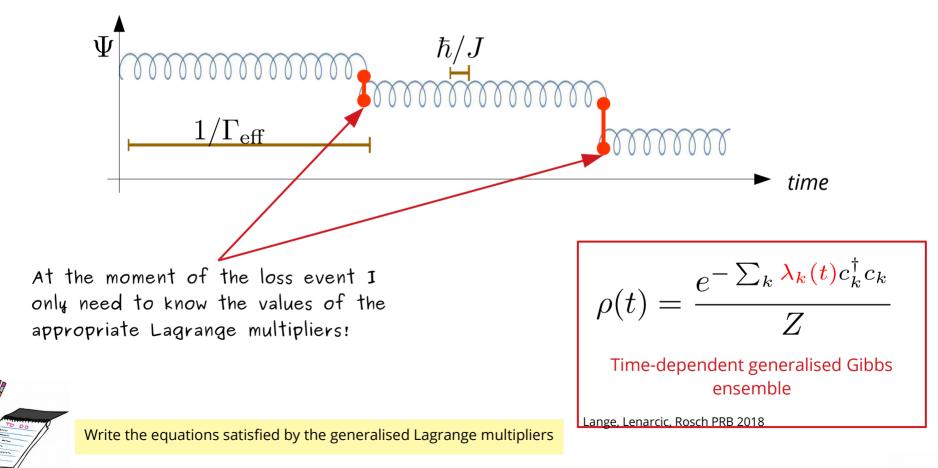
Thermalization in closed quantum systems: At long times the quantum state is indistinguishable from a

generalised Gibbs state

$$\lim_{t \to \infty} \langle \Psi(t) | \hat{A}_j | \Psi(t) \rangle = \operatorname{tr} \left[\frac{e^{-\sum_k \lambda_k c_k^{\dagger} c_k}}{Z} \hat{A}_j \right]$$

Rigol, Dunjko, Yurovsky, Olshanii, PRL 98, 050405 (2007)

Time-dependent generalised thermalisation



Leonardo Mazza 13 / 38 Universite PARIS-SACLAY

Time-dependent generalised thermalisation

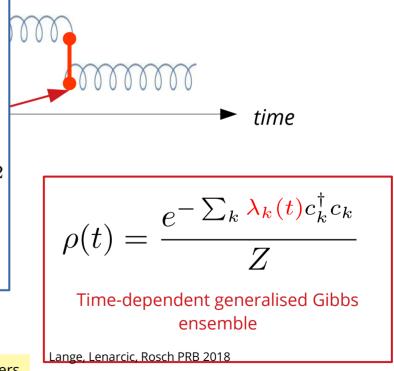
In practice:

- The time-dependent generalised Gibbs ensemble is a fermionic Gaussian state
- Compute the time-evolution of the occupation of each mode k with the master equation

$$\frac{d}{dt}n_k(t) = -\frac{4\Gamma_{\text{eff}}}{L}\sum_q n_q(t)n_k(t)[\sin(k) - \sin(q)]^2$$

Simple set of coupled first-order differential equations. Polynomial effort in the system size L.

Write the equations satisfied by the generalised Lagrange multipliers



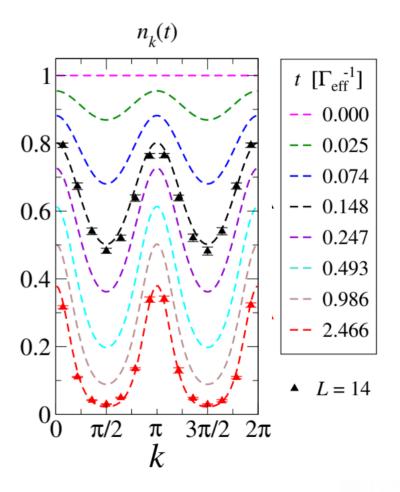
Leonardo Mazza 13 / 38

PARIS-SACLA

Fermionic rapidities

- Observable with an expansion in the 1D tube (stable modes of the 1D dynamics)
- Clear peaks at well-defined quasimomenta

$$n_k(t) \sim f(t) e^{-g(t)\sin^2 k}$$



Gangardt and Shlyapnikov , NJP 2006 D. Rossini, A. Ghermaoui, M. Bosch Aguilera, R. Vatré, R. Bouganne, J. Beugnon, F. Gerbier, LM, PRA 103 L060201 (2021)

Leonardo Mazza 14 / 38 Universite

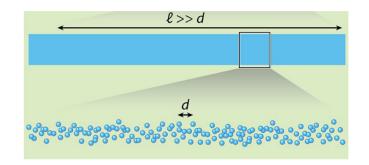
A hydrodynamic theory in the trap

The rate equations are amenable to a treatment of the problem within the framework of the local density approximation.

• Two-body losses with a harmonic confinement.

$$n_k(t) \longrightarrow n_k(x,t)$$

A Boltzmann-like equation

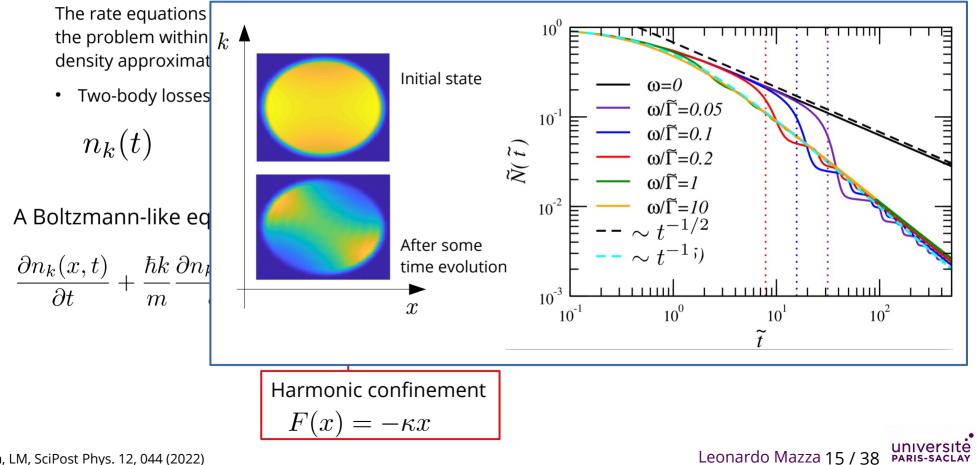


$$\frac{\partial n_k(x,t)}{\partial t} + \frac{\hbar k}{m} \frac{\partial n_k(x,t)}{\partial x} + F(x) \frac{\partial f_k(x,t)}{\partial k} = -\Gamma_{\text{eff}} \int (k-q)^2 f_k(x,t) f_q(x,t) dq$$
Harmonic confinement
$$F(x) = -\kappa x$$

Rosso, Biella, LM, SciPost Phys. 12, 044 (2022)

Leonardo Mazza 15 / 38 PARIS-SACLA

A hydrodynamic theory in the trap

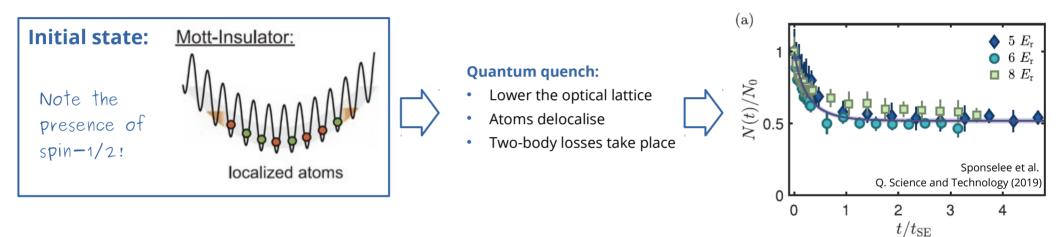


PARIS-SACLAY

Rosso, Biella, LM, SciPost Phys. 12, 044 (2022)

- **Part 1:** Two-body losses in correlated bosonic gases
- Part 2: Two-body losses in correlated fermionic gases
- Conclusions

Two-body losses in 1D spin ½ fermi gases



Experiments: molecules (JILA) and ytterbium (Hamburg and Kyoto)

Leonardo Mazza 30/23

PARIS-SA

- The gas does not depopulate even if it is spin balanced.
- There is a finite population in the stationary state.

Main previous theory works:

Foss-Feig, Thomson, Daley, Rey, PRL 109, 230501 (2012) Nakagawa, Tsuji, Kawakami, Ueda, PRL 124, 147203 (2020) Nakagawa, Kawakami, Ueda, PRL 126, 110404 (2021)

A master equation for 2-body losses

$$\dot{\rho} = -\frac{i}{\hbar} \left[-J \sum_{j,\sigma} \left(c_{j,\sigma}^{\dagger} c_{j+1,\sigma} + H.c. \right) + U \sum_{j} n_{j,\uparrow} n_{j,\downarrow}, \rho \right] + \gamma \sum_{j} L_{j} \rho L_{j}^{\dagger} - \frac{1}{2} \{ L_{j}^{\dagger} L_{j}, \rho \}$$

The jump operator takes out one spin singlet → The dynamics conserves spin

$$L_j = c_{j,\uparrow} c_{j,\downarrow}$$

 \rightarrow The gas cannot depopulate completely

Leonardo Mazza 31/23 Universite PARIS-SACLAY

Foss-Feig, Thomson, Daley, Rey, PRL 109, 230501 (2012) – Nakagawa, Tsuji, Kawakami, Ueda, PRL 124, 147203 (2020)

A master equation for 2-body losses

$$\dot{\rho} = -\frac{i}{\hbar} \left[-J \sum_{j,\sigma} \left(c_{j,\sigma}^{\dagger} c_{j+1,\sigma} + H.c. \right) + U \sum_{j} n_{j,\uparrow} n_{j,\downarrow}, \rho \right] + \gamma \sum_{j} L_{j} \rho L_{j}^{\dagger} - \frac{1}{2} \{ L_{j}^{\dagger} L_{j}, \rho \}$$
The jump operator takes out one spin singlet \rightarrow The dynamics conserves spin $L_{j} = c_{j,\uparrow} c_{j,\downarrow}$

 \rightarrow The gas cannot depopulate completely

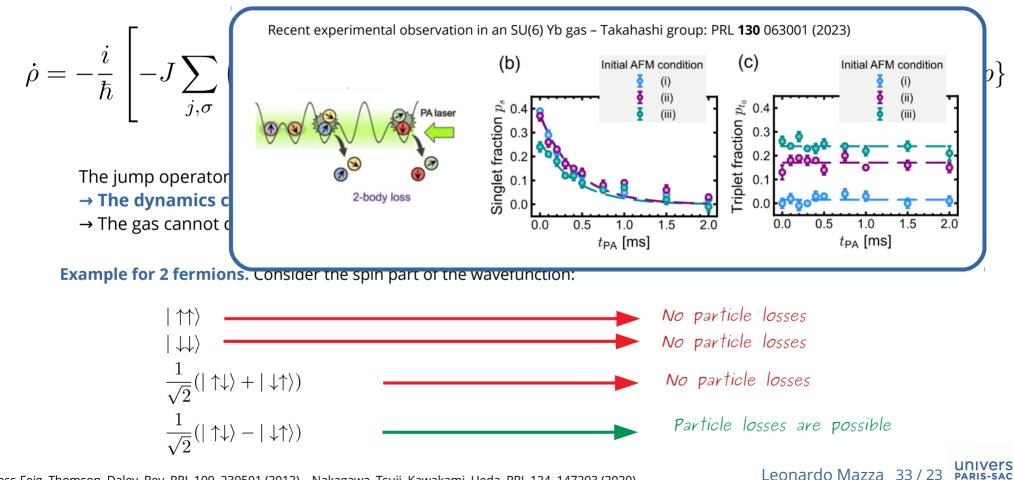
Example for 2 fermions. Consider the spin part of the wavefunction:

 $|\uparrow\uparrow\rangle$ $|\downarrow\downarrow\rangle$ No particle losses Particle losses are possible

Leonardo Mazza 32/23

Foss-Feig, Thomson, Daley, Rey, PRL 109, 230501 (2012) – Nakagawa, Tsuji, Kawakami, Ueda, PRL 124, 147203 (2020)

A master equation for 2-body losses



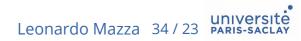
Foss-Feig, Thomson, Daley, Rey, PRL 109, 230501 (2012) – Nakagawa, Tsuji, Kawakami, Ueda, PRL 124, 147203 (2020)

Dynamical theories for fermionic gases

Weakly interacting and weakly dissipative regime

Our result: A correction to the mean-field equation that takes into account the spin conservation in the thermodynamic limit

$$\dot{n}(t) = -\kappa \left(n(t)^2 - \frac{4}{\hbar^2} \frac{\langle \hat{S}^2 \rangle}{L^2} \right) \xrightarrow{\text{stationary state}} \langle S^2 \rangle \approx \hbar^2 \left(\frac{N}{2} \right)^2 \approx \hbar^2 \frac{N}{2} \left(\frac{N}{2} - 1 \right)$$
In the thermodynamic limit, the stationary state has maximal spin A Dicke state! Entanglement through dissipation!



Dynamical theories for fermionic gases

Weakly interacting and weakly dissipative regime

Our result: A correction to the mean-field equation that takes into account the spin conservation in the thermodynamic limit

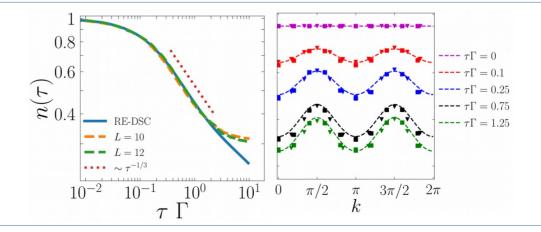
$$\dot{n}(t) = -\kappa \left(n(t)^2 - \frac{4}{\hbar^2} \frac{\langle \hat{S}^2 \rangle}{L^2} \right) \quad \xrightarrow{\text{stationary state}} \quad \langle S^2 \rangle \approx \hbar^2 \left(\frac{N}{2} \right)^2 \approx \hbar^2 \frac{N}{2} \left(\frac{N}{2} - 1 \right)$$

In the thermodynamic limit, the stationary state has maximal spin A Dicke state! **Entanglement through dissipation!**

Rosso, Biella, Rossini, LM PRA 104, 053305 (2021)

Strongly interacting or strongly dissipative regime

Our result: Study of the quantum Zeno regime. A modified theory for fermionised fermions.



Rosso, Biella, De Nardis, LM PRA 107 013303 (2023)

Conclusions

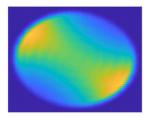
The lossy dynamics of one-dimensional quantum gases results from the interplay of unitary and dissipative dynamics:

Entangled stationary states & non-equilibrium dynamics

Our contribution: we have developed a theory for the dynamics of 1D lattcie gases in the weakly- and strongly-dissipative regimes, focusing on two-body losses

Bosonic gas

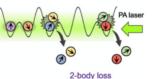
- Rate equations for the dynamics of the rapidities
- Hydrodynamical theory of the trap



D. Rossini, ... J. Beugnon, F. Gerbier, LM, PRA **103** L060201 (2021) Rosso, Biella, LM, SciPost Phys. **12**, 044 (2022)

Fermionic gas

- Spin conservation and entangled steady states
- 2-body losses in SU(N) gases
- Quantum Zeno effect and dissipative spin cooling



Rosso, Biella, Rossini, LM PRA **104**, 053305 (2021) Rosso, Biella, LM PRA **105**, L051302 (2022) Rosso, Biella, De Nardis, LM PRA **107** 013303 (2023)

Perspectives - experiments

A generation of **old-style experiments**

- performed when theory was not sufficiently developed
- Average over many 1D tubes hides interesting non-equilibrium scalings

Main result: No probe of emerging correlations, just the emergence of a new lifetime

Perspectives - experiments

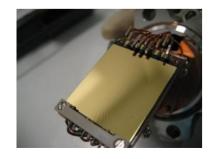
A generation of **old-style experiments**

- performed when theory was not sufficiently developed
- Average over many 1D tubes hides interesting non-equilibrium scalings

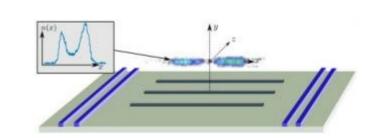
Main result: No probe of emerging correlations, just the emergence of a new lifetime

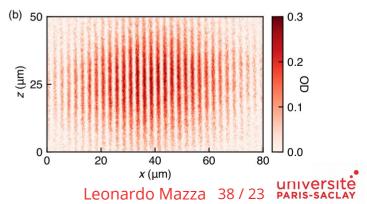
New activities

- Takahashi: small two-sites double-wells. First clean data on the generation of entanglement.
 - Can we scale it up?
- One-dimensional resolved experiments (quantum gas microscope, atom chip experiments...)



Images taken from labs of I. Bouchoule and LKB





Acknowledgememts

Guillaume Roux

Lorenzo Gotta LPTMS → Geneva

Lorenzo Rosso

Alberto Nardin Trento → LPTMS

The group on 1D quantum matter @ LPTMS

Our recent collaborators on these projects

Jacopo De Nardis

Alberto Biella LPTMS → Trento

Leonardo Mazza 39/23 Université

Thank you

The new LPTMS