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Programmable quantum simulators
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What kind of (robust) dynamics |¢(t)) = U(t) |1/(0)) can be accessed with such a
setup?



Programmable quantum simulators
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e Theorem: any non-trivial 2-local spin Hamiltonian Hgr with local pulses is
sufficient for universal quantum computation (Dodd et al., PRA 2002)
e This inspired the development of pulse sequences-based programmable
quantum simulation schemes:
1. Engineering of translation-invariant Hamiltonians (Hayes et al., NJP 2014)
2. Digital-analog quantum computation (Parra-Rodriguez et al., PRA 2020)
3. Robust experimental realizations of XYZ models (Choi et al. PRX 2020, ...)



In this talk
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We formulate a uniyfing approach which

e can engineer arbitrary 2-local Hamiltonian dynamics U(t) = et in an efficient
way
e is robust to experimental imperfections by design

e is implementable in state-of-art setups (e.g. trapped ions, Rydberg atom arrays)



Hamiltonian engineering
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e Assumption (temporary): dynamics of the external fields is fast enough and
isolated in time
o We have the pulse sequence {P(K) = X, p,(k)}’,zzl over a period 7 with
p; = e~ itohi
o For concreteness, we consider the resource Hamiltonian (c.f Thierry's/Clément’s
talk)
Hr = D (5 XX + I YiY))

i>j



Hamiltonian engineering
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o Resulting dynamics: (1) = U(7)4(0)

H P(k) 1e7iHRT/nP(k) _ H efiH(k)T/n
= k=1

o H® = (P))=1HpP(K) are called toggling-frame Hamiltonians



Hamiltonian engineering
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e Goal of Hamiltonian engineering: How to program {P(k)} to realize a target
Hamiltonian dynamics H over a time T?

e Mathematically, we would like to have

[U(T)]T/T ~ e—iI:IT



Engineering via Average Hamiltonian Theory
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Average Hamiltonian Theory (AHT, Kuwahara et al., AoP 2016):

n

T/T
(U(T))T/T _ (H e—iH(k)r/n> _ e—iI:IT + O(TT)

k=1
H=15 HW =15 (P()=1Hg P(k) is the average Hamiltonian

How do | reverse engineer the pulses P(¥) to form an arbitrary H?

We shall use two reductions to solve this difficult problem



Reduction 1: From pulse matrices to sign coefficients
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e Let us consider m—pulses: p ) e {1,X,Y,Z}
_ k) (k
H® = (P LHRP(R) = 3™ (s8)s8) XX + s 85 1Y viv)
i>j
where s.(lg = +1 (Pauli commutation relations, eg ZXZ = — X, etc)
e The functions 5(18 can be chosen arbitrarily (4 different pulses p,( ) for 2 x 2
(k)

different signs s; 'y ).



Reduction 2: Parameterize the signs with Walsh pulse sequences
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e The average Hamiltonian is related to scalar products between sign functions

Z H® = "((six|si.x)J5 XiX; + (sivlsiv) i YiYy)
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(si.olsi,0) Zs 0)5(2

e We choose Walsh functions s.(k) = ng), set of orthonormal sign functions
i,O g

(Walsh, AJM (1923)),0<a<n-1

(Walwp) = dap
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Example of Walsh functions with n =8
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Source: Bajalinov & Duleba 10.1007/s10100-019-00614-3.
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From Walsh pulse sequences to interaction graphs

o We assign two Walsh indices (x;, y;) per qubit
A =" (6 d5 XiX + 8y, 0] YiY))
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y1=0 1
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(;) Sy ={1,X,1,2,1,X,1,2}

o We have represented 1 in terms of interaction graphs GX, GY.
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Hamiltonian engineering via Walsh pulse sequences

e Theorem: Any arbitrary 2-local Hamiltonian can be realized using Walsh pulse
sequences (proof hint: graph decomposition)

e Example 1: from a long-range XX chain to the nearest-neighbor Ising chain

Resource J,-j-< = J,-}/ =

— Target A= F/l + /:IQ = _JZXiXi+1
i

il

13



Example 2: Surface code from Walsh sequences
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Robustness conditions from double averaging
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* Robustness conditions for finite pulse duration errors ¢; # ¢;, e; # 0 — AH =0
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Numerical example: nearest-neighbor Ising chain

N=6,(1=|.2, EFp=ERA=E

- e=0.01 £=0.01, robust
£=0.02 £=0.02, robust
e=0.04 £=0.04, robust

e £=0.06 - £=0.06, robust
--e-- £=0.08 --e-- £=0.08, robust
e £=0.1 --e-- £=0.1, robust

o We consider H = Hising, T = m/4

e Rotation angle errors are introduce randomly as (7 4 §;)—pulses, sampling
0; € [_2€RA72€RA] uniformly

e We observe that robustness conditions improve the fidelity by orders of
magnitude
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Summary of the technical details

The protocol is robust in leading order in t,/7 in finite pulse duration errors

Robustness also with respect to static fields Z,- hiZ;, and rotation angle errors.

Theory relies on average Hamiltonian theory: Trotter errors can be analytically
bounded as a function of Jr <« 1.

Pulse frequency n/7 can be reduced by using restricted sets of Walsh functions

&0 ¢ vl e Fold e o
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A simple experimental recipe for implementing any
circuit/Hamiltonian/Optimization problem using local pulses.

Precise ressource analysis: number of pulses, frequency

Analytical theory provides powerful robustness aspects.

More details, numerical examples, etc, in arxiv:2311.10600
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