

Exploring the properties of the dipolar XY model using arrays of Rydberg atoms

Thierry Lahaye

Laboratoire Charles Fabry, CNRS & Institut d'Optique, Palaiseau, France

Workshop on Rydberg quantum simulators Collège de France, April 5th, 2024

The Rydberg team in Palaiseau

Collaborators (theory): N. Yao (Harvard), T. Roscilde (ENS Lyon)...

https://atom-tweezers-io.org/

Rydberg atom arrays

Arrays of single atoms

Up to 200 atoms Spacing: a few microns Full control of geometry in 2D

Rydberg atom arrays

Arrays of single atoms

Up to 200 atoms Spacing: a few microns Full control of geometry in 2D

Strong interactions via Rydberg excitation

Interaction strength: 1 to 10 MHz for $R \sim 5 \,\mu m$ Lifetime > 100 μs

Rydberg atom arrays

Arrays of single atoms

Up to 200 atoms Spacing: a few microns Full control of geometry in 2D

Strong interactions via Rydberg excitation

Interaction strength: 1 to 10 MHz for $R \sim 5 \ \mu m$ Lifetime > 100 μs

- Implement quantum gates
- Quantum simulation of spin models

Ising (van der Waals interactions)

XY (resonant dipole-dipole interaction)

Interactions between Rydberg states

Many experiments on the Ising model

P. Schauss et al., Nature 491, 87 (2012)

H. Bernien et al., Nature 551, 579 (2017)

G. Semeghini *et al.*, Science **374**, 1242 (2021)

P. Scholl *et al.*, Nature **595**, 233 (2021).

And many, many more examples!

Interactions between Rydberg states

The resonant dipole-dipole interaction: dipolar XY model

$$H_{\rm XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y)$$

- Ground-state properties?
- Effect of "long-range" couplings?
- Elementary excitations?

Outline

1. Our tools

2. Quasi-adiabatic preparation of the ground state

3. Quench dynamics: spin squeezing and spectroscopy of spin waves

Outline

1. Our tools

2. Quasi-adiabatic preparation of the ground state

3. Quench dynamics: spin squeezing and spectroscopy of spin waves

First step: excite all the atoms to *n*S

STIRAP at high Rabi frequencies to overcome the Rydberg blockade

First step: excite all the atoms to *n*S

STIRAP at high Rabi frequencies to overcome the Rydberg blockade

60S – 60P Rabi oscillations

5S —

Last step: de-excite selectively the nS atoms to 5S for imaging

Last step: de-excite selectively the nS atoms to 5S for imaging

 $|\uparrow\rangle$ Last step: de-excite selectively the nS atoms to 5S for imaging nS - $- |\downarrow\rangle$ \downarrow → |↑⟩ 6*P*— 5S -

Detection errors (false positives and false negatives) at the percent level

The resonant dipole-dipole interaction: spin exchange

Consider just two atoms:

$$H = J\left(\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y\right)$$

Scaling with distance and angular dependence

Quantization axis

• **Prepare** $|\uparrow\downarrow\rangle$ and let the two atoms evolve

Coherent flip-flops over $R = 30 \ \mu m$ (!)

Scaling with distance and angular dependence

Prepare $|\uparrow\downarrow\rangle$ and let the two atoms evolve

Scaling with distance and angular dependence

Optical addressing

Microwave manipulations are **global** ($\lambda \sim cm$)

 \Rightarrow use local light shifts to address atoms with an array

Optical addressing

Microwave manipulations are **global** ($\lambda \sim cm$)

 \Rightarrow use local light shifts to address atoms with an array

Optical addressing

Microwave manipulations are **global** ($\lambda \sim cm$)

 \Rightarrow use local light shifts to address atoms with an array

Adding an SLM: spatial control (but time dependence is global)

Multi-basis rotations

Use several values of light-shift and multi-tone microwaves:

Measure different atoms in different bases: X, Y, Z...Access to crossed-basis correlation functions, e.g., $\langle X_1 Z_2 Y_3 X_4 \rangle$

G. Bornet et al., arXiv:2402.11056

Similar results in quantum gas microscopes: A. Impertro et al., arXiv:2312.13268

Preparing and measuring a 3-spin chiral state

Chirality for three spins

 $\hat{\chi} = \vec{\sigma}_1 \cdot (\vec{\sigma}_2 \times \vec{\sigma}_3)$

Takes up a maximum value of $2\sqrt{3}$ for the state

$$|\chi_{+}\rangle = \frac{|\uparrow\downarrow\downarrow\rangle + \omega|\downarrow\uparrow\downarrow\rangle + \omega^{2}|\downarrow\downarrow\uparrow\rangle}{\sqrt{3}} \qquad (\omega = e^{\frac{2i\pi}{3}})$$

Preparing and measuring a 3-spin chiral state

Chirality for three spins

 $\hat{\chi} = \vec{\sigma}_1 \cdot (\vec{\sigma}_2 \times \vec{\sigma}_3)$

Takes up a maximum value of $2\sqrt{3}$ for the state

$$|\chi_{+}\rangle = \frac{|\uparrow\downarrow\downarrow\rangle + \omega|\downarrow\uparrow\downarrow\rangle + \omega^{2}|\downarrow\downarrow\uparrow\rangle}{\sqrt{3}} \qquad (\omega = e^{\frac{2i\pi}{3}})$$

- (i) Prepare $|W\rangle = (|\uparrow\downarrow\downarrow\rangle + |\downarrow\uparrow\downarrow\rangle + |\downarrow\downarrow\uparrow\rangle)/\sqrt{3}$ with global MW
- (ii) Apply local light-shifts to imprint phases ϕ and 2ϕ

(iii) For
$$\phi = 2\pi/3$$
 we get $|\chi_+\rangle!$

G. Bornet *et al.*, arXiv:2402.11056

Preparing and measuring a 3-spin chiral state

Chirality for three spins

 $\hat{\chi} = \vec{\sigma}_1 \cdot (\vec{\sigma}_2 \times \vec{\sigma}_3)$

Takes up a maximum value of $2\sqrt{3}$ for the state

$$|\chi_{+}\rangle = \frac{|\uparrow\downarrow\downarrow\rangle + \omega|\downarrow\uparrow\downarrow\rangle + \omega^{2}|\downarrow\downarrow\uparrow\rangle}{\sqrt{3}} \qquad (\omega = e^{\frac{2i\pi}{3}})$$

Measure the states $|W\rangle$ and $|\chi_{\pm}\rangle$ by quantum tomography

 $F\simeq 0.75$

Bornet et al., arXiv:2402.11056

Outline

1. Our tools

2. Quasi-adiabatic preparation of the ground state

3. Quench dynamics: spin squeezing and spectroscopy of spin waves

The resonant dipole-dipole interaction: dipolar XY model

$$H_{\rm XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y)$$

- Ground-state properties?
- Effect of "long-range" couplings?
- Elementary excitations?

Preparing XY ferro- and antiferromagnets

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \delta_i \sigma_i^z$$
Staggered *z*-field

Preparing XY ferro- and antiferromagnets

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \delta_i \sigma_i^z$$

1. Prepare a *classical Néel state* along *z*: checkerboard pattern

- Apply local light-shift on atoms on sublattice *B*
- Apply microwave pulse

Preparing XY ferro- and antiferromagnets

Start from:
$$H_{XY} = -J \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \sum_i \delta_i \sigma_i^z$$

2. Adiabatically decrease δ to "melt" into XY AF/F

Long-range order for the FM case

$$C^x(\vec{d}) \equiv \langle C^x_{\vec{r},\vec{r}+\vec{d}} \rangle_{\vec{r}}$$

Ferromagnet: Long-range order Antiferromagnet: Correlations decay to 0

Crucial role of dipolar couplings (*cf.* Mermin- Wagner)

C. Chen et al., Nature 616, 691 (2023)

Outline

1. Our tools

2. Quasi-adiabatic preparation of the ground state

3. Quench dynamics: spin squeezing and spectroscopy of spin waves

Quantum quench from the mean-field ground state

• Ferromagnet:

Prepare $|\psi_0\rangle = | \rightarrow_x \cdots \rightarrow_x \rangle$ at t = 0 and let the system evolve

• Antiferromagnet:

Prepare $|\psi_0\rangle = | \rightarrow_x, \leftarrow_x, \cdots, \rightarrow_x \rangle$ at t = 0 and let the system evolve

Dipolar spin squeezing with Rydberg atoms

Ferromagnetic case

Prepare $|\psi_0\rangle = |\rightarrow_x \cdots \rightarrow_x\rangle$ at t = 0 and let the system evolve

Dipolar spin squeezing with Rydberg atoms

Ferromagnetic case

Prepare $|\psi_0\rangle = |\rightarrow_x \cdots \rightarrow_x\rangle$ at t = 0 and let the system evolve

Dipolar spin squeezing with Rydberg atoms

Ferromagnetic case

Prepare $|\psi_0\rangle = | \rightarrow_x \cdots \rightarrow_x \rangle$ at t = 0 and let the system evolve

Scaling of the squeezing parameter with N

Quench spectroscopy

Spin squeezing: global observables $\langle \vec{J} \rangle$, $\Delta \vec{J}$

But we also have access to *local* observables:

 \rightarrow correlation functions $C^{ZZ}(d, t)$

Quench spectroscopy

Spin squeezing: global observables $\langle \vec{J} \rangle$, $\Delta \vec{J}$

But we also have access to *local* observables:

 \rightarrow correlation functions $C^{ZZ}(d, t)$

Ferromagnet:

Quench spectroscopy

Spin squeezing: global observables $\langle \vec{J} \rangle$, $\Delta \vec{J}$

But we also have access to *local* observables:

 \rightarrow correlation functions $C^{ZZ}(d,t)$

Quench spectroscopy: dispersion relation of spin waves

Sanchez-Palencia, PRA (2019) Roscilde PRL (2023), PRB (2023) Ferromagnet:

 $C^{zz}(i,j,t)$ Time-dependent structure factor 12 $S^{ZZ}(k_x,k_y,t)$ 10 d (sites) 8 1.5 $(n_x, n_y) = (5, 5)$ 0.15 6 1.0 4 **Spatial** data C^{zz}(d, t) $(n_x, n_y) = (5, 1)$ 2 1.1 0.0 Fourier 1 12 1.0 transform Structure factor 10 1.2 $(n_x, n_y) = (3, 3)$ d (sites) 8 -0.15 1.0 6 $(n_x, n_y) = (3, 0)$ 1.0 **tVMC** -----0.8 0.9 2 0 3 $(n_x, n_y) = (1, 0)$ Time (ħ/J) 0.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 Time (ħ/J)

Correlation function

Dispersion relation: FM vs AFM

Anomalous dispersion relation of spin waves for the FM dipolar XY model! See D. Peter, S. Müller, S. Wessel, and H. P. Büchler, PRL **109**, 025303 (2012).

C. Chen et al., arXiv:2311.11726

Conclusion and outlook

• Better and better control on the simulation of the dipolar XY model

- Quench spectroscopy in 1D XY magnets
- Towards chiral spin liquids on Kagome arrays?
- Beyond pure spin models: doped magnets (bosonic t J model)
 L. Homeier et al., arXiv:2305.02322

Spin mapping

Thanks for your attention!