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Optimal solution?

runtime exponential with system
size!

Approximate solution?

hard limit to get close to optimal
solution!
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Optimal solution?

runtime exponential with system
size!

Approximate solution?

hard limit to get close to optimal
solution!

Many other examples
Traveling salesperson, maximum cut
problem...

Many industrial applications!

Can (Rydberg) quantum
processors help?
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Outline

The unit-disk maximum independent set problem:
a promising application for Rydberg quantum simulators?

The challenge of decoherence

Towards more general graphs... and applications
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The unit-disk maximum independent set problem:

a promising application for Rydberg quantum
simulators?



The unit-disk maximum independent set
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Restriction to unit-disk graphs: UDMIS
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The unit-disk maximum independent set

Restriction to unit-disk graphs: UDMIS
Still an exponential runtime for optimal solution.

For approximate solution:

can get € close to optimal, but runtime is
exponential in 1/¢!
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The unit-disk maximum independent set

Restriction to unit-disk graphs: UDMIS
Still an exponential runtime for optimal solution.

For approximate solution:

can get € close to optimal, but runtime is
exponential in 1/€!

Precise definition of success?

Approximation ratio: .
Your solution

Cost function —, C( S)
a =

cisH =1t

Optimal
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The unit-disk maximum independent set
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Restriction to unit-disk graphs: UDMIS
Still an exponential runtime for optimal solution.

For approximate solution:

can get € close to optimal, but runtime is
exponential in 1/€!
a=1-—¢€

Precise definition of success?
Approximation ratio: .
Your solution

Cost function —, C( S)
a =

cisH =1t

Optimal
© Eviden SAS SOI ution

15



How could quantum mechanics help?

Turn cost function Mminimization into estimation of
ground state of Hamiltonian!

One solution = a string of bits § = (ny,n,, ...,n,)

Here § = (0,0,1,1,0)
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How could quantum mechanics help?

Turn cost function Mminimization into estimation of
ground state of Hamiltonian!

One solution = a string of bits § = (ny,n,, ...,n,)

Here § = (0,0,1,1,0)

Cost function:

c(s) = Zni

i
with constraint: n;n; = 0 if (i,)) is an edge
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To convert to Hamiltonian; easier to relax constraint
with Lagrange multiplier:

C(S,U) =Zni - U’ z n;n;

i i,JEE
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How could quantum mechanics help?

Turn cost function minimization into estimation of
ground state of Hamiltonian!

One solution = a string of bits § = (ny,n,, ...,n,)

o 2.

Here § = (0,0,1,1,0)

Cost function: Q
c(s) = z ng

i
with constraint: n;n; = 0 if (i,)) is an edge
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Pichler et al 2018

To convert to Hamiltonian; easier to relax constraint
with Lagrange multiplier:

C(S,U) =Zni—U' z n;n;

i i,JEE

Turn into operators (+mMinus sign):

H——5znl+U2nn]

i,JEE
with A]0) = 0,7A[1) = [1).

Equivalent quantum problem:
Find lowest eigenstate

HN’O) = Eo|q10)

© Eviden SAS



Review: Albash & Lidar RMP 2018

Finding a quantum ground state in practice: quantum annealing

Energy Classical (thermal)
annealing

Coordinate

20



Review: Albash & Lidar RMP 2018
Finding a quantum ground state in practice: quantum annealing

To create quantum tunneling:

t t
H(t) = t_H + (1 - _> Htunnel
f Ly

with e.g

. ~AX
Energy Classical (thermal) Hiunnel = Qz %
annealing :

If annealing time t; long enough (adiabatic):

Start from GS |®,) of Hiypnnel, €nd in GS |W,) of H.

Coordinate One experimental implementation: d-wave
computers: Classical + quantum annealing.

=VIDEN 21
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Bull machine
(F. Bull, 1920s)

Slide rule
(J. Napier, 1614)

Pascaline
(B. Pascal, 1642)




SVIDEN Analog computers?

Bull machine
(F. Bull, 1920s)

Slide rule
(J. Napier, 1614)

Rube Goldberg

Pascaline machine (1

(B. Pascal, 1642)




Rydberg atoms: an analog quantum computer

We want to realize

H(t) ——( (San +U z nn]> (1 —£f> <QZ 6.ix>

[,JEE L

Rydberg atoms: artificial system that realizes a
similar Hamiltonian

@-—»

o
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Review: Browaeys & Lahaye 2020



Rydberg atoms: an analog quantum computer

We want to realize

H(t) ——( San+U Z nn]> (1—%)(9235)

[,JEE L

Rydberg atoms: artificial system that realizes a

similar Hamiltonian

@) — |()) o)

>

van der Waals interaction « 1/r°

Review: Browaeys & Lahaye 2020
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Rydberg atoms: an analog quantum computer

Optical
. tweezer
We want to realize

Review: Browaeys & Lahaye 2020

H(t)——< (Sznl+uznnj) (“%)(QZ@") )

I,JEE [

Rydberg atoms: artificial system that realizes a
similar Hamiltonian

O O—»

O m— () O m— ()

>

van der Waals interaction « 1/r°
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Rydberg atoms: an analog quantum computer

We want to realize

Review: Browaeys & Lahaye 2020

H(t) = (62nl+UZnn]) (1——)<Qzﬁi"> @

I,JEE 1

Q(t)cos ((wo + S(t))t)
@) ~ ®)
o)

Rydberg atoms: artificial system that realizes a

similar Hamiltonian
i )

4—>

van der Waals interaction « 1/r°

09
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Review: Browaeys & Lahaye 2020
Rydberg atoms: an analog quantum computer

Q(t)cos ((a)o + S(t))t)

We want to realize

H(t) = ( 52n1+UZnn]) (1—%)(925;6) R o o o)

I,JEE 1

Rydberg atoms: artificial system that realizes a
similar Hamiltonian

O1p"

4—>

van der Waals interaction « 1/r°

Rydberg Hamiltonian:

Q(t
— 1) HRyd = —S(t)an + Z Tl n] +% 6.ix
i<j (rl —T‘ i

detuning vdwW Rabi

Oo

=VIDEN 30



Review: Browaeys & Lahaye 2020
Rydberg atoms: an analog quantum computer

Q(t)cos ((a)o + S(t))t)

We want to realize

H(t) = San+UZnn] (1——) QZ&{‘ o © o) Q
gl e

Rydberg Hamiltonian:

Q(t
— 1) HRyd = —S(t)an + Z Tl n] +% 6.ix
i<j (rl —T‘ i

detuning vdwW Rabi

Rydberg atoms: artificial system that realizes a
similar Hamiltonian

O1p"

4—>

van der Waals interaction « 1/r°

Oo
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Review: Browaeys & Lahaye 2020
Rydberg atoms: an analog quantum computer

Q(t)cos ((wo + S(t))t)
TN\

Rydberg
blockade

We want to realize

H(t) = San+UZnn] (1—2) QZ&{‘ o © o)
(g )

Rydberg atoms: artificial system that realizes a A
similar Hamiltonian

O1p"

4—>

van der Waals interaction « 1/r°

Rydberg Hamiltonian:

Q(t
— 1) HRyd = —S(t)an + Z Tl n] +% 6.ix
i<j (rl —T‘ i

detuning vdw Rabi

Oo
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Review: Browaeys & Lahaye 2020
Rydberg atoms: an analog quantum computer

Q(t)cos ((a)o + S(t))t)
TN\

Rydberg
blockade

We want to realize

H(t) = San+UZnn] (1—%) QZ&{‘ o © o)
(g )

Rydberg atoms: artificial system that realizes a A
similar Hamiltonian

O1p"

Rydberg Hamiltonian:

Q(t
— 1) HRyd = —S(t)an + Z Tl n] +% 6.ix
i<j (rl —T‘ i

detuning vdwW Rabi

Oo

Differences: interaction term

_  cannot turn vdW on/off

van der Waals interaction « 1/r° - — dependence
r
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Summary: analog quantum computation with Rydberg atoms

Hgyq = —5(?5)27’% +z nn] + ;t)z&-x
Unit-disk graph 7 (= 1) i
o . o
7

Detuning
o(t)

Rabi
Q(t)

time t

time t
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Summary: analog quantum computation with Rydberg atoms

t
HRyd——S(t)znl+z nn]+ 2)26{‘
Unit-disk graph 7 (= 1) i

T T /

= (10) — 1)) /V2
Detuning
5(¢)
timet
Rabi
Q(t)
timet
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Summary: analog quantum computation with Rydberg atoms

t
HRyd——S(t)znl+z nn]+ ;)z&i"
Unit-disk graph 7 (= 1) i

ST AR 0087

= (10) — 1)) /V2
Detuning
o(t)
timet
Rabi
Q(t)
timet
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Summary: analog quantum computation with Rydberg atoms

O(t)
H ——6tzn+z A+ —— 25?6
- e © l (rl —1) ! 2 & l Read off maximum
Unit-disk graph independent set
0 o 0 / /@ 0 Q 0
- 0 / 0
= (|0) = [1)/V2
Detuning
o(t)
timet
Rabi
Q(t)
timet
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Many things can go wrong!

Hrya = —6(t)an + z (r A, Q(t)z 5

[

Optical
tweezer
+
U Systematic Readout errors
: Systematic (calibration)
Heisenberg (calibration) error: Q(t)
uncertainty: error: §(t) +
r+Ar + Decoherence
Decoherence U) +AQ(t) 4 jntrinsic limitations
AE,qw & (Ar; + Ary) 6(t) +A44(1) ciarmot turn vdW on/off
T —17) = dependence

need long annealing time!



Can we make a quantitative prediction of the approximation ratio?

Numerical simulation of the analog computation
Simplified (but realistic) error model with
« Readout noise.

- Dephasing white noise: Lindblad equation

d
d_’i —i[H(t), p] — _z{nu p} — 2n;pny

» Solved with traJectones method (Dalibard,
Castin & Mglmer 1992)

Eviden Qaptiva — - @ € F )i ]

compact e g |

19" HPC appliance % _ crh
NUMA architecture: ; o " D

up to 32 Tb memory I




Can we make a quantitative prediction of the approximation ratio?

Numerical simulation of the analog computation Validation for y = 3.0 (exp: Lienhard 18)
Simplified (but realistic) error model with
« Readout noise. 0.35 -
0.30 A
« Dephasing white noise: Lindblad equation .
dp 1% -
L= —ilH(©,p1 =2 ) {ni,p} — 2nipm 220
i

» Solved with trajectories method (Dalibard, 0.15 -

Castin & Mglmer 1992)

4(=)Kl+llg2k, 1y-c

0.10 -

0.05 1

1

Eviden Qaptiva l
compact E
19" HPC appliance e
i

1

0.00 -

NUMA architecture:
up to 32 Tb memory

Note: today's experiments: y = 0.3 or
even less!



Not too short, nor too long!

Serret, Marchand, TA, PRA 2020

« Noiseless case (y = 0): the longer, the better

———————————————————————— —— y=0.0
n =0 o v=0s
—1.0 - atoms —— V:30
=== max. mixed state

S N S B R B O MIS solution
>
o
Q
C
w —2.0 A

_25 -

_30 .

(adiabatic theorem)

« Noisy case: longer evolution = longer exposure to
noise

In the following:
« work at optimal time
« work in “IS" subspace (dashed lines)

Annealing time t

=VIDEN
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Noise & size dependence Serret, Marchand, TA, PRA 2020

Dependence of expected apx ratio agyg on noise y
and graph size (Natoms)?

 Noise y:

—4— y=0.0 runtime: 0.2 s * Noise degrades aavg
—4— y=0.3 i * Evenaty =0, aaqvg <1 (imperfect annealing
—$— vy=3.0 schedule: VAW interactions...)
== uniform -

°

E * Size Natoms .
solid: no S I « Decreasing, then stable

. ] . .
readout noise >¢ « Stable earlier for higher y
Dashed: with g -
readout noise
0.6F = 4 _
‘,-’. No-0-0-g-0-0-¢_,

0.5} o

6 8 1012141618 2022 24 26 28

Natoms




Correlations & decoherence

» Simple example: 1D chain

00000000

Z3:—1

» Correlation function: (z;z;)
— Perfect “MIS” (antiferromagnetic) state: (z,;z,;)

1, (ZZiZZj+1> = -1

— In the presence of decoherence: defects

00000000

Generically: E(|(z;z;4,)|) x e™7/¢
with & correlation length.

=VIDEN
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Serret, Marchand, TA, PRA 2020
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Correlations & decoherence

» Simple example: 1D chain
00000000
z3 = —1

» Correlation function: (z;z;)

— Perfect “MIS” (antiferromagnetic) state: (z,;z,;)

1, (ZZiZZj+1> =-1

— In the presence of decoherence: defects

00000000

Generically: E(|(z;z;4,)|) x e™7/¢
with & correlation length.
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e_r/f

» ¢ decreases with increasing noise

(Z,'ZJ.-)

(H{ziz)])r

1.0F

05F

0.0

—0.5F

_10 |

Serret, Marchand, TA, PRA 2020
On our (2D) graphs:

Matoms = 14

—4— y=0.0
—4— y=03
—4— y=3.0
=$ = uniform

0.1

100}
Exponenti;

t

IRy

i

-
——
-
-

distance

» Can check: Correlation length is roughly

independent of system size

45
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Correlation length & approximation ratio

Can we relate the quality of a quantum algorithm with the correlation length?



Classical approaches... also have a kind of ‘correlation length’!

All classical approaches:
“Divide and conquer”

Split the problem in smaller pieces and solve the
pieces exactly



Classical approaches... also have a kind of ‘correlation length’!

All classical approaches:
“Divide and conquer”

Split the problem in smaller pieces and solve the
pieces exactly

For instance;
 Pick a vertex at random
* Solve exactly within ‘distance’ d

~
~ -
__________

distance d



Classical approaches... also have a kind of ‘correlation length’!

All classical approaches:
“Divide and conquer”

Split the problem in smaller pieces and solve the
pieces exactly

For instance; @
« Pick a vertex at random

* Solve exactly within ‘distance’ d
* Append to solution
« Remove subgraph (+connected vertices) from

available vertices



Classical approaches... also have a kind of ‘correlation length’!

All classical approaches:

“Divide and conquer”

Split the problem in smaller pieces and solve the
pieces exactly

For instance;

Pick a vertex at random
Solve exactly within ‘distance’ d
Append to solution

Remove subgraph (+tconnected vertices) from
available vertices

lterate

=VIDEN
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A roadmap for quantum ‘advantage’

1.00 - ey N
15 WM. | 1 TTerm=—— el Quantum advantage
15: ---------- -.-‘""--
.‘.' ““““ . 10 ‘-"-""-,_.
0.95 A 10 = Quality
®
mp % c ®
dIA 6=
0.90 - > \ ) '
4 \ 4 1
o | 3 e ]
] u 3 \\ > 3 :
C 0.85 - 2 y=0.3 \ 2 ;
é_ o — — e — \P ——————————————————— T-—-—
< o
= \ ot 0 _I»
0.80 - 1 h 1 Size,
1
0.2 sgc |P 2 sec :
budglet budget !
0.75 - 9= | g :
i
y=3.0 [ :
_________________________ ) I I SN PPN S E—
0.70 I I I 1 1 1 II \&\ 1 1 1 I I
0 200 400 600 800 1000 1200 1400 2000 4000 6000 8000
Graph size (Natoms)
EVI] DE N © Eviden SAS

Serret, Marchand, TA, PRA 2020

Two ways to overperform the classical heuristic:

« Go faster for bigger systems (beat the
exponential): “Size”

~ 1,000 atoms for 0.2 secs
~ 8,000 atoms for 2 secs
Scaling of repetition rate?

« Reach higher approximation ratios: “Quality”
~e.g,0.97 for 2000 atoms (2 secs)
Better hardware?
(better readout, lower noise, ...)
(Cf circular Rydberg atoms, Nguyen et al 2018)

Better algorithms?
QAOQA (digital), QA (better resource Hamiltonian), ...

51
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3 Towards more general graphs... and
applications



What about non-unit-disk graphs?

If G not unit disk graph: Harder problem... better
candidate for quantum acceleration!?

=VIDEN
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Nguyen et al 2022
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What about non-unit-disk graphs?

If G not unit disk graph: Harder problem... better
candidate for quantum acceleration!?
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Nguyen et al 2022
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What about non-unit-disk graphs?

If G not unit disk graph: Harder problem... better
candidate for quantum acceleration!?
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Nguyen et al 2022
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What about non-unit-disk graphs?

If G not unit disk graph: Harder problem... better
candidate for quantum acceleration!?

=VIDEN

Nguyen et al 2022

Crossings of edges need to be handled properly!

© Eviden SAS
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Nguyen et al 2022
What about non-unit-disk graphs?

If G not unit disk graph: Harder problem... better Crossings of edges need to be handled properly!

candidate for quantum acceleration!?

Nguyen et al 2022:
Can write a larger unit-disk graph G’ such that:

the MIS of original graph G can be read off MIS of
G'!
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Nguyen et al 2022
What about non-unit-disk graphs?

If G not unit disk graph: Harder problem... better Crossings of edges need to be handled properly!
candidate for quantum acceleration!?

Nguyen et al 2022:
Can write a larger unit-disk graph G’ such that:

the MIS of original graph G can be read off MIS of
G'!

Comes at a price:

« Number of vertices (atoms): quadratic increase:
O(N?) atoms!

* Needs local detuning §;(t)!
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. . « . . Nguyen et al 2022
What about other combinatorial optimization problems?

At the cost of adding vertices, can solve any « quadratic, unconstrained optimization problem » (QUBO):
H = ZJUSL'S]' + z hiSi Si € {—1,1}
i) i

For instance, MaxCut problem:

H = Z]ijSiSj

ijEE




. . « . . Nguyen et al 2022
What about other combinatorial optimization problems?

At the cost of adding vertices, can solve any « quadratic, unconstrained optimization problem » (QUBO):
H = ZJUSL'S]' + z hiSi Si € {—1,1}
i) i

For instance, MaxCut problem:

H = Z]ijSiSj

ijEE

energy

Other example: number factoring.

Hard problems (spin glass physics) \I\ANV\,V\.\/Conﬁguration



What about... solving fermionic problems?

Hubbard model: prototypical correlated electron
problem.

 Quantum simulation by cold fermionic atoms!

« Rydberg atoms seem to be limited: described by
spin Hamiltonian

=VIDEN
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What about... solving fermionic problems?

Hubbard model: prototypical correlated electron
problem.

 Quantum simulation by cold fermionic atoms!

« Rydberg atoms seem to be limited: described by
spin Hamiltonian

Can one not always turn fermions into spins?

Yes (Jordan-Wigner, etc...), but Hamiltonian is very
different from Rydberg Hamitonian!

ciej > XiZivr -+ Zi-a X; (++)



. . . Michel, Henriet, Domain, Browaeys, TA, 2312.08065
What about... solving fermionic problems?

Hubbard model: prototypical correlated electron
problem. / Interacting electrons (Hubbard model) \
hopping
) ) . interaefion —t
*« Quantum simulation by cold fermionic atoms! . U(t)' LY

* Rydberg atoms seem to be limited: described by o ’ J

spin Hamiltonian
Slave spin mapping @

Can one not always turn fermions into spins? — interaction .

Yes (Jordan-Wigner, etc...), but Hamiltonian is very . {f f),-_n J = —t{f f)nn
. o e i 7 & =

different from Rydberg Hamitonian! ed2a o b8 iy

[
ooy vy = U/

hopping i & 7 pt 1w
= —(5%5% W transverse field
C;I-Cj —>XL.ZL.+1...Z]._1X]. (_|_) Q }nn { }m_

Free, renormalized Interacting
. . + + electrons spins
Idea: use a slave-spin mapping: ¢;, = f; . Z;
+ Mean-field decoupling de’' Medici 2005 H=-] ) ZZ;+h) X,
RUegg et al 2010 \ Uj i /

Hassan 2010 . 3
Very close to Rydberg Hamiltonian!
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Using Rydberg atoms to deal with the spin model Michel, Henriet, Domain, Browaeys, TA, 2312.08065

Effective model: Transverse Field Ising model
(TFIM):

HS =) J;S7S; + % > SE+Y hiSt

i,jec ieC ieC

... very close to Rydberg atom Hamiltonian!

I:IR-}-'dberg = Z &-ﬁiﬁ.jﬁ— A7) Z 5’\*_;__?_55(7) Z i

2

1

Main challenges:
« Optimize atoms positions to reproduce J;;

« Check robustness to decoherence



Using Rydberg atoms to deal with the spin model Michel, Henriet, Domain, Browaeys, TA, 2312.08065

Effective model: Transverse Field Ising model Rydberg algorithmics:
(TFIM):
c U ) « Equilibrium: annealing algorithm to prepare
HS — Z J?jS;S; + Z Z S@m + Z ]?,Z‘S_,;_“, ground state
i,jec icC icC
... very close to Rydberg atom Hamiltonian! « Dynamics: Quench of the Rabi term Q(t)
~ C-Ye, o hQ(T) N - ~
Hrydbers = ; TR Z 2o (r) Z

Main challenges:
« Optimize atoms positions to reproduce J;;

« Check robustness to decoherence



Using Rydberg atoms to deal with the spin model Michel Henriet, Domain, Browaeys, TA, 2312.08065

Effective model: Transverse Field Ising model Rydberg algorithmics:
(TFIM):
U « Equilibrium: annealing algorithm to prepare
= Z J?ijSf — Z Z Sf + ZhZqu ground state
i,j€C ieC ieC

... very close to Rydberg atom Hamiltonian! « Dynamics: Quench of the Rabi term Q(t)
I:IRydberg Z | — |6 Z A-j:.

i#j Ti =1 i Hope for advantage w.r.t classical methods:

Correlation length

Main challenges:

. ) o exp NO NOIsSe
° Opt|m|ze atoms pOSItIOﬂS to reproduce ]ij

max & for

EagpSMall noise .
* Lo classical

methods
Exact ¢

e Check robustness to decoherence

Possible Interaction U

quantum
EVI] DE N © Eviden SAS adva ntage




Mott physics with Rydberg atoms: (emulated) results

Can we locate Mott transition?
.. In the presence of noise.

1.0

0.8

0.6

0.4

0.2

0.0

Numerical emulation with realistic noise

"h.
~

= == Perfect slave-spin method
—§— Realistic numerical simulation

6 sites
12 sites
[nsulator
o

A\ N m NN
\\ W= -\

2> 4 6

=VIDEN

S 10 12 14 16 18
Ut

-,L-_-_l

20

Michel et al, 2312.08065



Mott physics with Rydberg atoms: (emulated) results Mieneletal, 221208065

What about out-of-equilibrium?

Interaction quench of the Hubbard model: becomes
quench of transverse field in TFIM

Can we locate Mott transition?
.. In the presence of noise.

Numerical emulation with realistic noise

IS === Perfect slave-spin method 1.0 :
S~ erfect slave-spin method . 1.0 P
\"::"\ + Realistic numerical simulation l["f =25.0 MHz
0.81 Noiseless
6 sites — Noisy
0.61 12 sites N 0.5 o O
N Metal Insulator 1 =20 MHz |
t tt VAN S AN | Noiseless
047 4% \\ ) W W P — Noisy
Lo | NS N 0.0 - 0
. 0.0 2.5 5.0 0.0 2.5 5.0
0.2 \ Time t Timet
N\
.
0.0 . y o T e eei— . . . .
2 4 6 8 Ul;t 12161820 Ongoing experimental implementation!

© Eviden SAS



Conclusions

Rydberg platforms Recent breakthrough:
» straightforward mapping to specific guantum error correction architecture (Bluvstein et
combinatorial optimization problems al 2024)
Decoherence limits correlationlength | | sogealaubtsiorage ... Ancila quot reservor
« Lesser success probability AEREERIRNERE | BRI R
Recent extensions S| FTTIT] seeee svenn Shll TR eiiiieiiiiiiil
« More general graphs PRREE sraio zazazoofoRl (BRRRR) osiiiiaiiii
. . Logical 1Q gate [ 1 [
* Fermionic problems =
b And Others g — “w s s W o - - o 8 8 W
« machine learning: guantum evolution kernel En RYIDOG = = o b o o 11111
Hen ry et al 2021 g) laser i & & & - ", W e o o o op of o9 o
E . Syndrome
Logical 2Q gate extraction
g
TN A W —
g e eeeieccaeaas . —HH7 (A
g Local imaging
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Thank you!

thomas.ayral@eviden.com
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