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An example of combinatorial optimization problem

A successful party
Optimal solution?
runtime exponential with system 
size!

Approximate solution?
hard limit to get close to optimal 
solution!

Maximum independent set (MIS) 
problem

Many other examples
Traveling salesperson, maximum cut
problem…

Many industrial applications!

Can (Rydberg) quantum 
processors help?
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Outline

The unit-disk maximum independent set problem:
a promising application for Rydberg quantum simulators?

1

The challenge of decoherence
2

Towards more general graphs… and applications
3
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The unit-disk maximum independent set

Restriction to unit-disk graphs: UDMIS

Still an exponential runtime for optimal solution.

For approximate solution:
can get 𝜖 close to optimal, but runtime is
exponential in 𝟏/𝝐!
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The unit-disk maximum independent set

Restriction to unit-disk graphs: UDMIS

Still an exponential runtime for optimal solution.

For approximate solution:
can get 𝜖 close to optimal, but runtime is
exponential in 𝟏/𝝐!

Precise definition of success?

Approximation ratio:

𝜶 =
𝑪(𝑺)

𝑪(𝑺∗)
≤ 𝟏

Your solution

Optimal 
solution

Cost function
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The unit-disk maximum independent set

Restriction to unit-disk graphs: UDMIS

Still an exponential runtime for optimal solution.

For approximate solution:
can get 𝜖 close to optimal, but runtime is
exponential in 𝟏/𝝐!

Precise definition of success?

Approximation ratio:

𝜶 =
𝑪(𝑺)

𝑪(𝑺∗)
≤ 𝟏

Your solution
Cost function

𝜶 = 𝟏 − 𝝐

Optimal 
solution
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How could quantum mechanics help?

Turn cost function minimization into estimation of 
ground state of Hamiltonian!

One solution = a string of bits 𝑆 = (𝑛1, 𝑛2, … , 𝑛𝑛)

Here 𝑆 = (0,0,1,1,0)

1
2

3
5

4
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Here 𝑆 = (0,0,1,1,0)
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𝐶 𝑆 =෍

𝑖

𝑛𝑖

with constraint: 𝑛𝑖𝑛𝑗 = 0 if (𝑖, 𝑗) is an edge

To convert to Hamiltonian: easier to relax constraint
with Lagrange multiplier:

𝐶 𝑆, 𝑈 =෍

𝑖
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How could quantum mechanics help?

Turn cost function minimization into estimation of 
ground state of Hamiltonian!

One solution = a string of bits 𝑆 = (𝑛1, 𝑛2, … , 𝑛𝑛)

Here 𝑆 = (0,0,1,1,0)

Cost function:

𝐶 𝑆 =෍

𝑖

𝑛𝑖

with constraint: 𝑛𝑖𝑛𝑗 = 0 if (𝑖, 𝑗) is an edge

To convert to Hamiltonian: easier to relax constraint
with Lagrange multiplier:

𝐶 𝑆, 𝑈 =෍

𝑖

𝑛𝑖 − 𝑈′ ෍

𝑖,𝑗∈𝐸

𝑛𝑖𝑛𝑗

Turn into operators (+minus sign):

𝐻 = −𝛿෍

𝑖

ො𝑛𝑖 + 𝑈 ෍

𝑖,𝑗∈𝐸

ො𝑛𝑖 ො𝑛𝑗

with ො𝑛 0 = 0, ො𝑛 1 = |1⟩ .

Equivalent quantum problem:
Find lowest eigenstate

𝐻 Ψ0 = 𝐸0|Ψ0⟩

1
2

3
5

4

Pichler et al 2018
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Finding a quantum ground state in practice: quantum annealing

Review: Albash & Lidar RMP 2018
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Finding a quantum ground state in practice: quantum annealing

To create quantum tunneling:

𝐻 𝑡 =
𝑡

𝑡𝑓
𝐻 + 1 −

𝑡

𝑡𝑓
𝐻tunnel

with e.g

𝐻tunnel = Ω෍

𝑖

ො𝜎𝑖
𝑥

If annealing time 𝒕𝒇 long enough (adiabatic):

Start from GS |Φ0⟩ of 𝐻tunnel, end in GS |Ψ0⟩ of 𝐻.

One experimental implementation: d-wave
computers: Classical + quantum annealing.

Review: Albash & Lidar RMP 2018
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Analog computers?

Pascaline 
(B. Pascal, 1642)

Slide rule
(J. Napier, 1614)

Bull machine
(F. Bull, 1920s)

Rube Goldberg 
machine (!)
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Rydberg atoms: an analog quantum computer

We want to realize

𝐻 𝑡 =
𝑡

𝑡𝑓
−𝛿෍

𝑖

ො𝑛𝑖 + 𝑈 ෍

𝑖,𝑗∈𝐸

ො𝑛𝑖 ො𝑛𝑗 + 1 −
𝑡

𝑡𝑓
Ω෍

𝑖

ො𝜎𝑖
𝑥

Rydberg atoms: artificial system that realizes a 
similar Hamiltonian

|1⟩

|0⟩

𝜔0

Review: Browaeys & Lahaye 2020
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Optical 
tweezer

Review: Browaeys & Lahaye 2020
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Rydberg atoms: an analog quantum computer

We want to realize
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similar Hamiltonian

|1⟩
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van der Waals interaction ∝ 𝟏/𝒓𝟔

𝜔0

𝛿

Ω 𝑡 cos 𝜔0 + 𝛿 𝑡 𝑡

Review: Browaeys & Lahaye 2020
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Rydberg atoms: an analog quantum computer

We want to realize

𝐻 𝑡 =
𝑡

𝑡𝑓
−𝛿෍

𝑖

ො𝑛𝑖 + 𝑈 ෍

𝑖,𝑗∈𝐸

ො𝑛𝑖 ො𝑛𝑗 + 1 −
𝑡

𝑡𝑓
Ω෍

𝑖

ො𝜎𝑖
𝑥

Rydberg atoms: artificial system that realizes a 
similar Hamiltonian

Rydberg Hamiltonian:

𝐻Ryd = −𝛿 𝑡 ෍

𝑖

ො𝑛𝑖 +෍

𝑖<𝑗

𝐶

𝑟𝑖 − 𝑟𝑗
6 ො𝑛𝑖 ො𝑛𝑗 +

Ω(𝑡)

2
෍

𝑖

ො𝜎𝑖
𝑥|1⟩

|0⟩

|1⟩

|0⟩

van der Waals interaction ∝ 𝟏/𝒓𝟔

𝜔0

𝛿

Ω 𝑡 cos 𝜔0 + 𝛿 𝑡 𝑡

detuning RabivdW

Review: Browaeys & Lahaye 2020
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Rydberg atoms: an analog quantum computer

We want to realize

𝐻 𝑡 =
𝑡
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similar Hamiltonian

Rydberg Hamiltonian:
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𝑖
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𝑖<𝑗
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Rydberg 
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Review: Browaeys & Lahaye 2020
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Rydberg atoms: an analog quantum computer

We want to realize

𝐻 𝑡 =
𝑡

𝑡𝑓
−𝛿෍

𝑖

ො𝑛𝑖 + 𝑈 ෍

𝑖,𝑗∈𝐸

ො𝑛𝑖 ො𝑛𝑗 + 1 −
𝑡

𝑡𝑓
Ω෍

𝑖

ො𝜎𝑖
𝑥

Rydberg atoms: artificial system that realizes a 
similar Hamiltonian

Rydberg Hamiltonian:

𝐻Ryd = −𝛿 𝑡 ෍

𝑖

ො𝑛𝑖 +෍

𝑖<𝑗

𝐶

𝑟𝑖 − 𝑟𝑗
6 ො𝑛𝑖 ො𝑛𝑗 +

Ω(𝑡)

2
෍

𝑖

ො𝜎𝑖
𝑥

Differences: interaction term
• cannot turn vdW on/off

•
1

𝑟6
dependence

|1⟩

|0⟩

|1⟩

|0⟩

van der Waals interaction ∝ 𝟏/𝒓𝟔

𝜔0

𝛿

Ω 𝑡 cos 𝜔0 + 𝛿 𝑡 𝑡

detuning RabivdW

Review: Browaeys & Lahaye 2020

Rydberg 
blockade
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Summary: analog quantum computation with Rydberg atoms

𝐻Ryd = −𝛿 𝑡 ෍

𝑖

ො𝑛𝑖 +෍

𝑖,𝑗

𝐶

𝑟𝑖 − 𝑟𝑗
6 ො𝑛𝑖 ො𝑛𝑗 +

Ω(𝑡)

2
෍

𝑖

ො𝜎𝑖
𝑥

Unit-disk graph 

Detuning 
𝜹(𝒕)

Rabi 
𝛀(𝒕)

time 𝒕

time 𝒕
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Summary: analog quantum computation with Rydberg atoms

𝐻Ryd = −𝛿 𝑡 ෍
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Summary: analog quantum computation with Rydberg atoms

𝐻Ryd = −𝛿 𝑡 ෍
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Summary: analog quantum computation with Rydberg atoms

𝐻Ryd = −𝛿 𝑡 ෍

𝑖

ො𝑛𝑖 +෍

𝑖,𝑗

𝐶

𝑟𝑖 − 𝑟𝑗
6 ො𝑛𝑖 ො𝑛𝑗 +

Ω(𝑡)

2
෍

𝑖

ො𝜎𝑖
𝑥

Unit-disk graph 

Detuning 
𝜹(𝒕)

Rabi 
𝛀(𝒕)

time 𝒕

time 𝒕

= (|0⟩ − |1⟩)/ 2

Read off maximum 
independent set



The challenge of decoherence2
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Many things can go wrong!

𝐻Ryd = −𝛿 𝑡 ෍

𝑖

ො𝑛𝑖 +෍

𝑖,𝑗

𝐶

𝑟𝑖 − 𝑟𝑗
6 ො𝑛𝑖 ො𝑛𝑗 +

Ω(𝑡)

2
෍

𝑖

ො𝜎𝑖
𝑥

Optical 
tweezer

Heisenberg 
uncertainty:

𝑟 + Δ𝑟

Δ𝐸𝑣𝑑𝑊 ∝
𝐶

𝑟𝑖 − 𝑟𝑗
7 (Δ𝑟𝑖 + Δ𝑟𝑗)

Systematic 
(calibration) 
error: ሚ𝛿 𝑡
+
Decoherence

෩𝜹 𝒕 + 𝚫𝜹(𝒕)

Systematic 
(calibration) 
error: ෩Ω 𝑡
+
Decoherence

෩𝛀 𝒕 + 𝚫𝛀(𝒕)

+ Readout errors

+ intrinsic limitations
cannot turn vdW on/off
1

𝑟6
dependence

need long annealing time!Irreversible processes: 
accumulate with time
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Can we make a quantitative prediction of the approximation ratio?

Numerical simulation of the analog computation
Simplified (but realistic) error model with
• Readout noise.

• Dephasing white noise: Lindblad equation
𝑑𝜌

𝑑𝑡
= −𝑖 𝐻 𝑡 , 𝜌 −

𝜸

2
෍

𝑖

𝑛𝑖 , 𝜌 − 2𝑛𝑖𝜌𝑛𝑖

• Solved with trajectories method (Dalibard, 
Castin & Mølmer 1992)

Eviden Qaptiva
compact 

19’’ HPC appliance
NUMA architecture: 
up to 32 Tb memory
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Can we make a quantitative prediction of the approximation ratio?

Numerical simulation of the analog computation
Simplified (but realistic) error model with
• Readout noise.

• Dephasing white noise: Lindblad equation
𝑑𝜌

𝑑𝑡
= −𝑖 𝐻 𝑡 , 𝜌 −

𝜸

2
෍

𝑖

𝑛𝑖 , 𝜌 − 2𝑛𝑖𝜌𝑛𝑖

• Solved with trajectories method (Dalibard, 
Castin & Mølmer 1992)

Eviden Qaptiva
compact 

19’’ HPC appliance
NUMA architecture: 
up to 32 Tb memory

Validation for 𝜸 = 𝟑. 𝟎 (exp: Lienhard ‘18)

Note: today’s experiments: 𝜸 = 𝟎. 𝟑 or 
even less! 
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Not too short, nor too long!

• Noiseless case (𝜸 = 𝟎): the longer, the better 
(adiabatic theorem)

• Noisy case: longer evolution = longer exposure to 
noise

In the following:
• work at optimal time
• work in “IS” subspace (dashed lines)

Serret, Marchand, TA, PRA 2020
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Noise & size dependence

• Noise 𝛾 :
• Noise degrades 𝛼avg
• Even at 𝛾 = 0, 𝛼avg < 1 (imperfect annealing 

schedule: VdW interactions…)

• Size 𝑁atoms :
• Decreasing, then stable
• Stable earlier for higher 𝛾

Solid: no 
readout noise
Dashed: with
readout noise

Serret, Marchand, TA, PRA 2020

Dependence of expected apx ratio 𝛼avg on noise 𝛾
and graph size (𝑁atoms)?
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Correlations & decoherence

▶ Simple example: 1D chain

MIS

▶ Correlation function: 𝑧𝑖𝑧𝑗
– Perfect “MIS” (antiferromagnetic) state: 𝑧2𝑖𝑧2𝑗 =

1, 𝑧2𝑖𝑧2𝑗+1 = −1

– In the presence of decoherence: defects

Generically: 𝐸( 𝑧𝑖𝑧𝑖+𝑟 ) ∝ 𝑒−𝑟/𝜉

with 𝜉 correlation length.

𝒛𝟎 = 𝟏 𝒛𝟑 = −𝟏

Serret, Marchand, TA, PRA 2020
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Correlations & decoherence

distance

▶ Simple example: 1D chain

MIS

▶ Correlation function: 𝑧𝑖𝑧𝑗
– Perfect “MIS” (antiferromagnetic) state: 𝑧2𝑖𝑧2𝑗 =

1, 𝑧2𝑖𝑧2𝑗+1 = −1

– In the presence of decoherence: defects

Generically: 𝐸( 𝑧𝑖𝑧𝑖+𝑟 ) ∝ 𝑒−𝑟/𝜉

with 𝜉 correlation length.

𝒛𝟎 = 𝟏 𝒛𝟑 = −𝟏

On our (2D) graphs:

Exponential fit 
𝒆−𝒓/𝝃

▶ 𝜉 decreases with increasing noise
▶ Can check: Correlation length is roughly 

independent of system size

Serret, Marchand, TA, PRA 2020
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Correlation length & approximation ratio

Can we relate the quality of a quantum algorithm with the correlation length?

46
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Classical approaches… also have a kind of ‘correlation length’!

All classical approaches:
“Divide and conquer”

Split the problem in smaller pieces and solve the 
pieces exactly
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Classical approaches… also have a kind of ‘correlation length’!

All classical approaches:
“Divide and conquer”

Split the problem in smaller pieces and solve the 
pieces exactly

For instance:
• Pick a vertex at random
• Solve exactly within ‘distance’ 𝑑
• Append sub-solution to solution
• Remove subgraph (+connected vertices) from

available vertices
• Iterate
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A roadmap for quantum ‘advantage’

Two ways to overperform the classical heuristic:

• Go faster for bigger systems (beat the 
exponential): “Size”

~ 1,000 atoms for 0.2 secs
~ 8,000 atoms for 2 secs

Scaling of repetition rate?

• Reach higher approximation ratios: “Quality”
~ e.g, 0.97 for 2000 atoms (2 secs)

Better hardware?
(better readout, lower noise, …)

(Cf circular Rydberg atoms, Nguyen et al 2018)

Better algorithms?
QAOA (digital), QA (better resource Hamiltonian), … 

Or solve more difficult problems!

2 sec 
budget

0.2 sec 
budget

Serret, Marchand, TA, PRA 2020



Towards more general graphs… and 
applications

3
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What about non-unit-disk graphs?

If 𝐺 not unit disk graph: Harder problem… better
candidate for quantum acceleration!?

Nguyen et al 2022
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What about non-unit-disk graphs?

If 𝐺 not unit disk graph: Harder problem… better
candidate for quantum acceleration!?

Crossings of edges need to be handled properly!

Nguyen et al 2022:
Can write a larger unit-disk graph 𝐺′ such that:
the MIS of original graph 𝑮 can be read off MIS of 
𝑮′!

Comes at a price:
• Number of vertices (atoms): quadratic increase: 
𝐎(𝑵𝟐) atoms!

• Needs local detuning 𝛿𝑖(𝑡)!

Nguyen et al 2022
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What about other combinatorial optimization problems?

At the cost of adding vertices, can solve any « quadratic, unconstrained optimization problem » (QUBO):

𝐻 =෍

𝑖𝑗

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 +෍

𝑖

ℎ𝑖𝑠𝑖

For instance, MaxCut problem:

𝐻 = ෍

𝑖𝑗∈𝐸

𝐽𝑖𝑗𝑠𝑖𝑠𝑗

𝑠𝑖 ∈ {−1,1}

Nguyen et al 2022
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What about other combinatorial optimization problems?

At the cost of adding vertices, can solve any « quadratic, unconstrained optimization problem » (QUBO):

𝐻 =෍

𝑖𝑗

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 +෍

𝑖

ℎ𝑖𝑠𝑖

For instance, MaxCut problem:

Other example: number factoring.

Hard problems (spin glass physics)

𝐻 = ෍

𝑖𝑗∈𝐸

𝐽𝑖𝑗𝑠𝑖𝑠𝑗

𝑠𝑖 ∈ {−1,1}

energy

configuration

Nguyen et al 2022
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What about… solving fermionic problems?

Hubbard model: prototypical correlated electron
problem.

• Quantum simulation by cold fermionic atoms!
• Rydberg atoms seem to be limited: described by 

spin Hamiltonian
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Can one not always turn fermions into spins?
Yes (Jordan-Wigner, etc…), but Hamiltonian is very
different from Rydberg Hamitonian!

𝑐𝑖
†𝑐𝑗 → 𝑋𝑖𝑍𝑖+1⋯𝑍𝑗−1𝑋𝑗 (+⋯ )
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What about… solving fermionic problems?

Hubbard model: prototypical correlated electron
problem.

• Quantum simulation by cold fermionic atoms!
• Rydberg atoms seem to be limited: described by 

spin Hamiltonian

Can one not always turn fermions into spins?
Yes (Jordan-Wigner, etc…), but Hamiltonian is very
different from Rydberg Hamitonian!

𝑐𝑖
†𝑐𝑗 → 𝑋𝑖𝑍𝑖+1⋯𝑍𝑗−1𝑋𝑗 (+⋯ )

Idea: use a slave-spin mapping: 𝑐𝑖𝜎
† = 𝑓𝑖𝜎

†𝑍𝑖

+ Mean-field decoupling

Very close to Rydberg Hamiltonian!

de’ Medici 2005
Rüegg et al 2010
Hassan 2010

Michel, Henriet, Domain, Browaeys, TA, 2312.08065
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Using Rydberg atoms to deal with the spin model

Effective model: Transverse Field Ising model 
(TFIM): 

… very close to Rydberg atom Hamiltonian!

Main challenges:
• Optimize atoms positions to reproduce 𝐽𝑖𝑗
• Check robustness to decoherence

Michel, Henriet, Domain, Browaeys, TA, 2312.08065



65© Eviden SAS

Using Rydberg atoms to deal with the spin model

Effective model: Transverse Field Ising model 
(TFIM): 

… very close to Rydberg atom Hamiltonian!

Main challenges:
• Optimize atoms positions to reproduce 𝐽𝑖𝑗
• Check robustness to decoherence

Rydberg algorithmics:

• Equilibrium: annealing algorithm to prepare
ground state

• Dynamics: Quench of the Rabi term Ω(𝑡)

Michel, Henriet, Domain, Browaeys, TA, 2312.08065



66© Eviden SAS

Using Rydberg atoms to deal with the spin model

Effective model: Transverse Field Ising model 
(TFIM): 

… very close to Rydberg atom Hamiltonian!

Main challenges:
• Optimize atoms positions to reproduce 𝐽𝑖𝑗
• Check robustness to decoherence

Rydberg algorithmics:

• Equilibrium: annealing algorithm to prepare
ground state

• Dynamics: Quench of the Rabi term Ω(𝑡)

Hope for advantage w.r.t classical methods:

Michel, Henriet, Domain, Browaeys, TA, 2312.08065

Exact 𝝃

Interaction 𝑈

Correlation length

max 𝜉 for 
classical 
methods

Possible 
quantum 

advantage

𝜉exp large 
noise

𝜉exp small noise

𝜉exp no noise
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Mott physics with Rydberg atoms: (emulated) results

Can we locate Mott transition?
… in the presence of noise.

Michel et al, 2312.08065

Numerical emulation with realistic noise
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Mott physics with Rydberg atoms: (emulated) results

Can we locate Mott transition?
… in the presence of noise.

What about out-of-equilibrium?
Interaction quench of the Hubbard model: becomes 
quench of transverse field in TFIM

Michel et al, 2312.08065

Numerical emulation with realistic noise

Time 𝑡 Time 𝑡

Ongoing experimental implementation!
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Conclusions

Rydberg platforms
• straightforward mapping to specific

combinatorial optimization problems

Decoherence limits correlation length
• Lesser success probability

Recent extensions
• More general graphs
• Fermionic problems
• And others
• machine learning: quantum evolution kernel 

Henry et al 2021

Recent breakthrough:
quantum error correction architecture (Bluvstein et 
al 2024)
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