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Séminaire	et	atelier

Ce	ma(n	:	Semilocaliza*on	of	disordered	spins	in	cavity	QED											
Guido	Pupillo	
Université	de	Strasbourg	et	Centre	Européen	de	Sciences	Quan(ques,	ISIS	(U.	Strasbourg	et	CNRS)

Cet	après-midi,	14h00-18h00	:	atelier	Rydberg	Atoms	and	Quantum	Simula5on		co-organisé	avec	Michel	Brune

Intervenants	:		

Guido	Pupillo	(ISIS,	Strasbourg),	Mul*-qubit	gates	with	neutral	atoms:	Towards	fault-tolerant	quantum	compu*ng	

Monika	Aidelsburger	(U.	Munich),	Quantum	simula*on	of	Floquet	topological	systems	with	ultracold	atoms	

Thomas	Ayral	(ATOS	Quantum	Lab,	Paris),	Combinatorial	op*miza*on	with	Rydberg	plaEorms:	advances	and	challenges		

Thierry	Lahaye	(LCF,	Palaiseau),	Exploring	the	proper*es	of	the	dipolar	XY	model	with	arrays	of	Rydberg	atoms	

Benoît	Vermersch	(LPMMC,	Grenoble)	,	Robust	universal	quantum	processors	in	spin	systems	via	Walsh	pulse	sequences	

Clément	Sayrin	(LKB,	Paris),	Interac*ng	Laser-Trapped	Circular	Rydberg	Atoms	for	Quantum	Simula*on
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L’interaction	dipôle-dipôle	et	son	anisotropie

Fluide	quan(que	(bosons)	à	température	nulle	avec	des	interac(ons	binaires

V(r) = g δ(r) +
3gdd

4π
1
r3 (1 − 3 cos3 θ)

z

r
θ

dipôles	polarisés	selon	z

Caractère	anisotrope	:

interac(on	répulsive

interac(on	a5rac(ve

Mise	en	place	d’un	confinement	fort	selon	l’axe	 	pour	empêcher	la	forma5on	de	gou?ele?es	allongéesz

géométrie	quasi-1D
géométrie	quasi-2D

gdd =
1
3

μ0μ2
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La	supersolidité

Co-existence	de	deux	ordres	pour	une	assemblée	de	par(cules

• un	ordre	spa(al	:	brisure	spontanée	de	la	symétrie	de	transla(on

• un	ordre	superfluide	:		
					—	émergence	d’un	ordre	en	phase	à	longue	portée	
					—	possibilité	d’un	écoulement	sans	dissipa(on

Etat	de	la	ma(ère	dont	l’existence	est	postulée	dès	
les	années	1960,	cherché	(en	vain)	sur	l’hélium	solide

Les	gaz	d’atomes	froids	en	interac5on	dipolaire	perme?ent	de	réaliser	un	tel	état	
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Rappel	sur	le	cas	uni-dimensionnel	(cours	5)

SUPERSOLID BEHAVIOR OF A DIPOLAR … PHYSICAL REVIEW A 99, 041601(R) (2019)

N = 6 × 104. To compute the spatial derivatives appearing in
(2), we used an accurate 13-point finite-difference formula.
Density n and wave function φ are represented in real space on
a three-dimensional spatial mesh with spacing h = 0.1 µm.
The convolution integral in the potential energy term of
Eq. (2) is efficiently evaluated in reciprocal space by using
fast Fourier transforms, recalling that the Fourier transform
of the dipolar interaction is [5] Ṽk = (µ0µ/3)(3 cos2 α − 1),
where α is the angle between k and the z axis. We verified
that the transverse dimensions of our simulation cell are wide
enough to make negligible the effects, on the energy values
and density profiles, of the spurious dipole-dipole interaction
between periodically repeated images.

In order to study the elementary excitations, we expand
the wave function in the Bogoliubov–de Gennes (BdG) form
#(r, t ) = e−i µ

h̄ t [φ(r) + u(r)e−iωt − v∗(r)eiωt ], and insert this
expansion in Eq. (2). Keeping only terms linear in the ampli-
tudes u and v, one gets the BdG equations for the amplitudes u
and v and the excitation energies ε, that can be cast in a matrix
form as [16]

(
H0 − µ + X̂ −X̂ †

X̂ −H0 + µ + X̂ †

)(
u
v

)
= ε

(
u
v

)
, (3)

where H0 is given in Eq. (2) and the operator X̂ is defined by
its action on the function f as

X̂ f (r) = φ(r)
∫

dr′[Vdd (r − r′) + gδ(r − r′)]φ∗(r′) f (r′)

+ 3
2
γ (εdd )|φ(r)|3 f (r). (4)

Because of our use of Fourier transforms, which imply that
PBCs must be imposed in our calculations, we can expand the
wave function φ and the complex functions u, v in the Bloch
form appropriate to a periodic system. In this way, Eqs. (3)
can be solved in reciprocal space allowing us to find εk in the
right-hand side of Eq. (3) [see Ref. [28] for details about the
numerical methods used to solve Eq. (3)].

We first solve the BdG equations to compute the excitation
spectrum for a dipole system characterized by a uniform
density along the tube axis (x axis). The energies εk of the
mode along the kx direction are shown in Fig. 1 (upper panel)
for the choice n0 = 3.78 × 103 µm−1, for different values of
εdd . Notice that, as εdd is increased (i.e., the scattering length
a is decreased), a roton minimum develops in the dispersion
relation, eventually vanishing at εdd = 1.45.

This signals a possible density modulation instability that
might break the uniform symmetry along the tube axis. In or-
der to verify this, we calculated the equilibrium density profile
by solving Eq. (2) for different values of εdd . In Fig. 1 we
show the resulting density for two different values of εdd . We
plot in Fig. 1 the density ny(x, z) =

∫
n(x, y, z)dy integrated

along the y axis perpendicular to the polarization direction.
One can see that the density remains uniform along the tube
for finite values of the roton gap, while it becomes periodically
modulated as the roton gap vanishes. The resulting structure
in the latter case is shown in the lower panel of Fig. 1. The
periodicity of the density profile is fixed by λ = 2π

kc
x

, where
kc

x is the critical value of the momentum at which the roton
gap vanishes. When the tube length is not commensurate with
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FIG. 1. Upper panel: Dispersion relation of excitations propagat-
ing along the tube axis in the homogeneous system. Energies are in
atomic units. Lower panel: Integrated density ny(x, z) just below and
at the critical value of εdd where the roton gap vanishes. The total
number of atoms is N = 6 × 104. The lowest plot shows the density
n along the tube axis for different values of εdd .

the roton wavelength, as is the case shown in the figure, the
modulation develops at a wavelength most close to it. Such a
periodic modulation is maintained well below the transition,
as shown in the lowest plot in Fig. 1.

If we start instead from an initial state modulated with a
wavelength different from 2π/kc

x , we sometimes got trapped,
during the minimization procedure, into metastable states
characterized by a different number of stripes, with a higher
energy than the state shown in Fig. 1. This happens, for
instance, with a state having 12 or 9 stripes in the tube (for
values of εdd close to the roton instability value εdd = 1.45),
instead of the 11 stripes found for the ground state (a 10-stripe
solution is found to be unstable towards the lowest-energy
11-stripe structure, i.e., it always evolves towards it during
the imaginary-time evolution). The energy differences with
respect to the ground state are, however, very small (the 12-
stripe state being almost degenerate with the 11-stripe one,
with just a 0.1% relative difference, while we find a 1%

041601-3

Roccuzzo & Ancilotto, 2019

Comparaison	de	l’énergie	de	l’état	uniforme		ψ0(x) =
1

L

et	de	l’état	modulé	: ψθ(x) =
1

L [cos θ + 2 sin θ cos(kx)]

TransiAon	du	deuxième	ordre	vers	un	état	modulé	au	dessus	d’une	densité	criAque

E(θ) E(θ)

θ θ

E(θ) = E0 + a2θ2 + a4θ4 + ⋯
	a4 > 0

	 	peut	changer	de	signea2

a2 > 0 a2 < 0 Point	cri(que	:	a2 = 0
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Cas	1D:	lien	avec	le	minimum	de	roton	(cours	5)

Spectre	de	Bogoliubov	:

ℏωk = [ϵk (ϵk + 2ρṼk)]
1/2

ωk

k

densité	croissante	
du	rouge	au	bleu

annula(on	quand	
ϵk + 2ρṼk = 0

A	une	dimension,	le	point	cri5que	de	la	transi5on	vers	un	état	
supersolide	coïncide	avec	l’annula5on	du	minimum	de	roton	

ϵk =
ℏ2k2

2m

E(θ) = E0 + a2θ2 + a4θ4 + ⋯

Energie	de	la	fonc(on	modulée	:

a2 = ϵk + 2ρṼk

SUPERSOLID BEHAVIOR OF A DIPOLAR … PHYSICAL REVIEW A 99, 041601(R) (2019)

N = 6 × 104. To compute the spatial derivatives appearing in
(2), we used an accurate 13-point finite-difference formula.
Density n and wave function φ are represented in real space on
a three-dimensional spatial mesh with spacing h = 0.1 µm.
The convolution integral in the potential energy term of
Eq. (2) is efficiently evaluated in reciprocal space by using
fast Fourier transforms, recalling that the Fourier transform
of the dipolar interaction is [5] Ṽk = (µ0µ/3)(3 cos2 α − 1),
where α is the angle between k and the z axis. We verified
that the transverse dimensions of our simulation cell are wide
enough to make negligible the effects, on the energy values
and density profiles, of the spurious dipole-dipole interaction
between periodically repeated images.

In order to study the elementary excitations, we expand
the wave function in the Bogoliubov–de Gennes (BdG) form
#(r, t ) = e−i µ

h̄ t [φ(r) + u(r)e−iωt − v∗(r)eiωt ], and insert this
expansion in Eq. (2). Keeping only terms linear in the ampli-
tudes u and v, one gets the BdG equations for the amplitudes u
and v and the excitation energies ε, that can be cast in a matrix
form as [16]

(
H0 − µ + X̂ −X̂ †

X̂ −H0 + µ + X̂ †

)(
u
v

)
= ε

(
u
v

)
, (3)

where H0 is given in Eq. (2) and the operator X̂ is defined by
its action on the function f as

X̂ f (r) = φ(r)
∫

dr′[Vdd (r − r′) + gδ(r − r′)]φ∗(r′) f (r′)

+ 3
2
γ (εdd )|φ(r)|3 f (r). (4)

Because of our use of Fourier transforms, which imply that
PBCs must be imposed in our calculations, we can expand the
wave function φ and the complex functions u, v in the Bloch
form appropriate to a periodic system. In this way, Eqs. (3)
can be solved in reciprocal space allowing us to find εk in the
right-hand side of Eq. (3) [see Ref. [28] for details about the
numerical methods used to solve Eq. (3)].

We first solve the BdG equations to compute the excitation
spectrum for a dipole system characterized by a uniform
density along the tube axis (x axis). The energies εk of the
mode along the kx direction are shown in Fig. 1 (upper panel)
for the choice n0 = 3.78 × 103 µm−1, for different values of
εdd . Notice that, as εdd is increased (i.e., the scattering length
a is decreased), a roton minimum develops in the dispersion
relation, eventually vanishing at εdd = 1.45.

This signals a possible density modulation instability that
might break the uniform symmetry along the tube axis. In or-
der to verify this, we calculated the equilibrium density profile
by solving Eq. (2) for different values of εdd . In Fig. 1 we
show the resulting density for two different values of εdd . We
plot in Fig. 1 the density ny(x, z) =

∫
n(x, y, z)dy integrated

along the y axis perpendicular to the polarization direction.
One can see that the density remains uniform along the tube
for finite values of the roton gap, while it becomes periodically
modulated as the roton gap vanishes. The resulting structure
in the latter case is shown in the lower panel of Fig. 1. The
periodicity of the density profile is fixed by λ = 2π

kc
x

, where
kc

x is the critical value of the momentum at which the roton
gap vanishes. When the tube length is not commensurate with
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FIG. 1. Upper panel: Dispersion relation of excitations propagat-
ing along the tube axis in the homogeneous system. Energies are in
atomic units. Lower panel: Integrated density ny(x, z) just below and
at the critical value of εdd where the roton gap vanishes. The total
number of atoms is N = 6 × 104. The lowest plot shows the density
n along the tube axis for different values of εdd .

the roton wavelength, as is the case shown in the figure, the
modulation develops at a wavelength most close to it. Such a
periodic modulation is maintained well below the transition,
as shown in the lowest plot in Fig. 1.

If we start instead from an initial state modulated with a
wavelength different from 2π/kc

x , we sometimes got trapped,
during the minimization procedure, into metastable states
characterized by a different number of stripes, with a higher
energy than the state shown in Fig. 1. This happens, for
instance, with a state having 12 or 9 stripes in the tube (for
values of εdd close to the roton instability value εdd = 1.45),
instead of the 11 stripes found for the ground state (a 10-stripe
solution is found to be unstable towards the lowest-energy
11-stripe structure, i.e., it always evolves towards it during
the imaginary-time evolution). The energy differences with
respect to the ground state are, however, very small (the 12-
stripe state being almost degenerate with the 11-stripe one,
with just a 0.1% relative difference, while we find a 1%
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N = 6 × 104. To compute the spatial derivatives appearing in
(2), we used an accurate 13-point finite-difference formula.
Density n and wave function φ are represented in real space on
a three-dimensional spatial mesh with spacing h = 0.1 µm.
The convolution integral in the potential energy term of
Eq. (2) is efficiently evaluated in reciprocal space by using
fast Fourier transforms, recalling that the Fourier transform
of the dipolar interaction is [5] Ṽk = (µ0µ/3)(3 cos2 α − 1),
where α is the angle between k and the z axis. We verified
that the transverse dimensions of our simulation cell are wide
enough to make negligible the effects, on the energy values
and density profiles, of the spurious dipole-dipole interaction
between periodically repeated images.

In order to study the elementary excitations, we expand
the wave function in the Bogoliubov–de Gennes (BdG) form
#(r, t ) = e−i µ

h̄ t [φ(r) + u(r)e−iωt − v∗(r)eiωt ], and insert this
expansion in Eq. (2). Keeping only terms linear in the ampli-
tudes u and v, one gets the BdG equations for the amplitudes u
and v and the excitation energies ε, that can be cast in a matrix
form as [16]

(
H0 − µ + X̂ −X̂ †

X̂ −H0 + µ + X̂ †

)(
u
v

)
= ε

(
u
v

)
, (3)

where H0 is given in Eq. (2) and the operator X̂ is defined by
its action on the function f as

X̂ f (r) = φ(r)
∫

dr′[Vdd (r − r′) + gδ(r − r′)]φ∗(r′) f (r′)

+ 3
2
γ (εdd )|φ(r)|3 f (r). (4)

Because of our use of Fourier transforms, which imply that
PBCs must be imposed in our calculations, we can expand the
wave function φ and the complex functions u, v in the Bloch
form appropriate to a periodic system. In this way, Eqs. (3)
can be solved in reciprocal space allowing us to find εk in the
right-hand side of Eq. (3) [see Ref. [28] for details about the
numerical methods used to solve Eq. (3)].

We first solve the BdG equations to compute the excitation
spectrum for a dipole system characterized by a uniform
density along the tube axis (x axis). The energies εk of the
mode along the kx direction are shown in Fig. 1 (upper panel)
for the choice n0 = 3.78 × 103 µm−1, for different values of
εdd . Notice that, as εdd is increased (i.e., the scattering length
a is decreased), a roton minimum develops in the dispersion
relation, eventually vanishing at εdd = 1.45.

This signals a possible density modulation instability that
might break the uniform symmetry along the tube axis. In or-
der to verify this, we calculated the equilibrium density profile
by solving Eq. (2) for different values of εdd . In Fig. 1 we
show the resulting density for two different values of εdd . We
plot in Fig. 1 the density ny(x, z) =

∫
n(x, y, z)dy integrated

along the y axis perpendicular to the polarization direction.
One can see that the density remains uniform along the tube
for finite values of the roton gap, while it becomes periodically
modulated as the roton gap vanishes. The resulting structure
in the latter case is shown in the lower panel of Fig. 1. The
periodicity of the density profile is fixed by λ = 2π

kc
x

, where
kc

x is the critical value of the momentum at which the roton
gap vanishes. When the tube length is not commensurate with
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FIG. 1. Upper panel: Dispersion relation of excitations propagat-
ing along the tube axis in the homogeneous system. Energies are in
atomic units. Lower panel: Integrated density ny(x, z) just below and
at the critical value of εdd where the roton gap vanishes. The total
number of atoms is N = 6 × 104. The lowest plot shows the density
n along the tube axis for different values of εdd .

the roton wavelength, as is the case shown in the figure, the
modulation develops at a wavelength most close to it. Such a
periodic modulation is maintained well below the transition,
as shown in the lowest plot in Fig. 1.

If we start instead from an initial state modulated with a
wavelength different from 2π/kc

x , we sometimes got trapped,
during the minimization procedure, into metastable states
characterized by a different number of stripes, with a higher
energy than the state shown in Fig. 1. This happens, for
instance, with a state having 12 or 9 stripes in the tube (for
values of εdd close to the roton instability value εdd = 1.45),
instead of the 11 stripes found for the ground state (a 10-stripe
solution is found to be unstable towards the lowest-energy
11-stripe structure, i.e., it always evolves towards it during
the imaginary-time evolution). The energy differences with
respect to the ground state are, however, very small (the 12-
stripe state being almost degenerate with the 11-stripe one,
with just a 0.1% relative difference, while we find a 1%

041601-3

a2 > 0 a2 < 0

Ṽk = ∫ V(x) e−ikx dx

Pour	le	poten(el	dipolaire,	 	pour	 	assez	grand	Ṽk < 0 k
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Buts	de	ce	cours

Explorer	la	transi(on	vers	un	état	supersolide	à	deux	dimensions

Le	lien	avec	le	minimum	de	roton	est	moins	évident

Définir	la	frac(on	superfluide	 	fs

Bornes	de	Legge5	pour	la	frac(on	superfluide

Observa(ons	et	perspec(ves	expérimentales

Expérience	du	récipient	tournant

Permet	d’encadrer	fs
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1.	

La	transi(on	supersolide	à	deux	dimensions
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Quelles	fonctions	d’essai	choisir	?

A	deux	dimensions,	on	peut	chercher	pour	les	maxima	de	densité	un	réseau	triangulaire,	carré	ou	hexagonal

• triangulaire	:	symétrie	d’ordre	6	
• carré	:	symétrie	d’ordre	4	
• hexagonal	:	symétrie	d’ordre	3

Le	calcul	montre	que	c’est	un	réseau	triangulaire	de	maxima	de	densité	qui	permet	de	minimiser	l’énergie

0 1 2 3
0

1

2

3

x

y

1

1.5

0 1 2 3
0

1

2

3

x
y

1

1.5

Remarque	:	les	minima	de	densité	
forment	alors	un	réseau	hexagonal
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Les	fonctions	d’essai

ψθ(r) =
1

L2
cos θ +

2
3

sin θ
3

∑
j=1

cos(kj ⋅ r) k1

k2

k3

Par(e		
non	modulée

Par(e		
modulée

Pour	 ,	les	maxima	de	densité	forment	un	réseau	triangulaire	(et	les	minima	un	réseau	hexagonal)sin θ > 0

Situa(on	inversée	pour	sin θ < 0

Dans	ce?e	situa5on	2D,	on	ne	s’a?end	pas	à	une	énergie	paire	:			E(θ) ≠ E(−θ)

∫L×L
|ψθ(r) |2 d2r = 1
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La	fonctionnelle	d’énergie

ϵ[ψ] =
ℏ2

2m ∫ |∇ψ(r) |2 d2r +
N
2 ∫ ∫ |ψ(r) |2 |ψ(r′ ) |2 V(r − r′ ) d2r d2r′ 

Energie	ciné(que Energie	d’interac(on

Energie	par	par(cule	:

ψθ(r) =
1

L2
cos θ +

2
3

sin θ
3

∑
j=1

cos(kj ⋅ r)

Energie	ciné(que	:	

ϵcin(θ) = ϵk sin2 θ ϵk =
ℏ2k2

2mavec

Energie	d’interac(on	:	

ϵint(θ) =
1
2

ρṼ0 + sin2 θ ( 2 cos θ +
1

3
sin θ)

2

ρ Ṽk +
1
12

sin4 θ (4Ṽk 3 + Ṽ2k) ρ

k1

k2

k3

Ṽk = ∫ V(r) e−ik⋅r d2r On	suppose	 	isotrope	dans	le	plan	V(r) xy	 	densité	2Dρ :
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Recherche	de	la	transiAon	de	phase	vers	un	état	supersolide

Développement	en	puissances	de	θ : ϵ(θ) = ϵ0 + ∑ anθn

Energie	ciné(que	:	 ϵcin(θ) = ϵk sin2 θ

Energie	d’interac(on	:	

ϵint(θ) =
1
2

ρṼ0 + sin2 θ ( 2 cos θ +
1

3
sin θ)

2

ρ Ṽk +
1
12

sin4 θ (4Ṽk 3 + Ṽ2k) ρ

Energie	par	par(cule		:			ϵ(θ) = ϵcin(θ) + ϵint(θ)

Quelles	valeurs	de	 		minimisent	l’énergie	?θ



Transition	supersolide	pour	un	potentiel	de	cœur	mou

Transformée	de	Fourier	2D	de	 	:V(r)

Ṽk = ∫
+∞

0
V(r) e−ik⋅r d2r = Ṽ0

2J1(ka)
ka

avec		Ṽ0 = πa2V0

V(r)

r
a

V0

0 2 4 6 8 10

0

0.5

1

ka

Ṽk

Ṽ0

Ṽk

Ṽ0

ka

Situa(on	physique	caractérisée	par	le	paramètre		

sans	dimension	 		avec			Λ =
ρṼ0

ℏωa
ℏωa =

ℏ2

ma2

0 0.1 0.2 0.3 0.4 0.5
�5 · 10�2

0

5 · 10�2

0.1

A B

✓

✏

h̄!a
� ⇤

2

⇤ = 39
⇤ = 40.128
⇤ = 41

ka = 4.767
ϵ(θ)
ℏωa

−
Λ
2

Pomeau-Rica 1994
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Transition	supersolide	2D	et	spectre	de	Bogoliubov

0 0.1 0.2 0.3 0.4 0.5
�5 · 10�2

0

5 · 10�2

0.1

A B

✓

✏

h̄!a
� ⇤

2

⇤ = 39
⇤ = 40.128
⇤ = 41

ka = 4.767

ϵ(θ)
ℏωa

−
Λ
2

0 1 2 3
0

1

2

3

x

y

1

1.5

0 1 2 3 4 5 6
0

5

10

15

ka

!k

!a

⇤ = 39
⇤ = 40.128
⇤ = 41

La	transi(on	supersolide	se	produit	sans	
que	le	minimum	de	roton	s’annule	

Situa5on	différente	du	cas	1D	:	
transi5on	du	premier	ordre	(discon5nue)

ℏωq = [ϵq (ϵq + 2ρṼq)]
1/2

ωq

ωa

qa
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Transition	supersolide	pour	un	potentiel	en	 	tronqué1/r3

F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo (2010) 

V(r)

V0

r0

1/r3

Analyse	par	simula(on	Monte	Carlo	quan(que	:	
à	basse	température,	une	phase	spa(alement	
ordonnée	apparaît

and the low-temperature phase diagram of Eq. (2) is that of
purely dipolar bosons in two dimensions, investigated
previously by several authors [15,16]. It is known that for
rs & rCs ¼ 0:06 the ground state of the system is a trian-
gular crystal, whereas for rs * rLs ¼ 0:08 it is a uniform
superfluid (in the intermediate density range a more com-
plex scenario is predicted [17]). As we show below, a very
different physics sets in when Rc * rs, in the density
ranges which correspond to either the crystalline or super-
fluid phase in the purely dipolar system.

Figure 1 shows typical configurations (i.e., particle
world lines) produced by Monte Carlo simulations of a
system of bosons interacting via the potential (1), at a
nominal density corresponding to rs ¼ 0:14, at different
temperatures spanning 3 orders of magnitude. The value of
the cutoff Rc in this case is 0.3. At the highest temperature,
a simple classical gas phase is observed, as shown by the
pair correlation function gðrÞ, shown in Fig. 2(a), which is
just a constant [note that gðrÞ does not vanish at the origin,
owing to the flattening off of the potential at short dis-
tance]. As T is decreased, an intriguing effect takes
place, namely, particles bunch into mesoscopic droplets,
in turn forming a regular (triangular) crystal. This is shown
qualitatively in the snapshots in Fig. 1, but also con-
firmed quantitatively by the structure of the gðrÞ as well
[Fig. 2(a)], which displays pronounced, broad maxima, as
well as well-defined minima, where the function ap-
proaches zero. We henceforth refer to this phase as the
droplet-crystal phase.

The formation of such droplets is a purely classical
effect, that depends on the flattening off of the repulsive

interparticle potential below the cutoff distance. In fact, a
simple estimate of the number Nd of particles per droplet,
can be obtained by considering a triangular lattice of
pointlike dipoles, each one of strength / Nd (as it com-
prises Nd particles), and by minimizing with respect to Nd

the potential energy per particle, for a fixed density. The
result is

Nd ¼ !
!
Rc

rs

"
2

(3)

where ! $ 2:79. Equation (3) furnishes a fairly accurate
estimate of Nd for the (wide) range of values of the
parameters rs and Rc explored here. For instance, using
the parameters of Fig. 1, we find from Eq. (3) Nd $ 13,
which agrees quite well with our simulation result. It is
worth noting that a similar sort of pattern formation, due to
competing interactions, has been previously established for
classical colloidal systems [18,19].
In the T ! 0 limit, long exchanges of identical particles

can take place, as a result of particles tunneling from one
droplet to an adjacent one. Long exchanges of particles can

FIG. 1. Snapshots of a system of bosons interacting via poten-
tial (1), at the four different temperatures 200 (a), 20 (b), 1.0 (c)
and 0.1 (d), expressed in units of "0. Points shown are taken
along individual particle world lines. The nominal value of rs in
this case is 0.14, whereas the cutoff of the potential (1) is Rc ¼
0:3.
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(a)
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(c)

FIG. 2 (color online). Results shown are for rs ¼ 0:14 and
Rc ¼ 0:3. Temperature is in units of "0. (a) Pair correlation
function gðrÞ at a temperature T ¼ 200 (triangles), 20 (squares),
1.0 (diamonds) and 0.1 (circles). The simulated system com-
prises N ¼ 200 particles. (b) Superfluid density vs T for systems
with N ¼ 100 (square), and 200 (diamond) particles.
(c) Frequency of occurrence of permutation cycles of length L
at the same four temperatures reported in panel (a). Longer
permutation cycles occur at lower temperature.

PRL 105, 135301 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

24 SEPTEMBER 2010

135301-2

La	simula(on	permet	de	vérifier	le	caractère	superfluide
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Observation	d’une	modulation	spontanée	2D
Groupe d’Innsbruck

Norcia et al., 2021

Transi(on	d’un	état	modulé	1D	vers	une	structure	bi-dimensionnelle

On	part	d’un	piège	allongé,	de	fréquences	(33,120,167)	Hz	et	on	relâche	le	confinement	transverse

Nature | Vol 596 | 19 August 2021 | 359

This long lifetime is a useful feature for future studies of excitation 
dynamics. Further, the droplet configuration patterns are fairly repeat-
able, with clear structure visible in averaged images as shown in the inset 
of Fig. 2c, which is an average of 23 trials taken over roughly two hours.

The transition from 1D to 2D is immediately visible when plotting 
the atomic aspect ratio αa versus αt, as shown in Fig. 2c. We find that αa 
undergoes a rapid change at αt

", as the single linear chain develops 2D 
structure. For comparison, we plot αa measured for an unmodulated 
Bose–Einstein condensate, formed at a different magnetic field, which 
does not feature the sharp kink present for the supersolid state.

In Fig. 2e, we show the number of droplets present for different 
αt. In the 1D regime, we typically see between five and six droplets. 
For α α>t t

" , this number increases up to an average value of eight 
droplets at our maximum αt. Although some of this increase can be 
associated with the larger N achieved at a higher aspect ratio, we 
expect from theory (Fig. 1) that changes in the configuration of 
droplets are typically accompanied by a change in droplet number 
even at a fixed atom number.

Evidence of phase coherence
The measurements of in-trap density presented above inform us about 
the structural nature of the transition, but not about phase coherence, 
which is the key distinguishing feature between an incoherent droplet 
crystal and a supersolid. Previous observations of 2D droplet arrays35 were 
performed in traps where the ground state is a single droplet8, and the 
observed droplet crystal was probably a metastable state lacking inter-
droplet phase coherence. In contrast, we expect from our theoretical 
calculations that the 2D array is the ground state of our surfboard-shaped 
trap (for α α>t t

"), facilitating the formation of a phase-coherent, and there-
fore supersolid, state for our experimental parameters.

We experimentally demonstrate the supersolid nature of our 2D 
modulated state using a matter-wave interference measurement, as 
previously used in linear supersolid chains11–13 (Fig. 3a). In this measure-
ment, an array of uniformly spaced droplets creates an interference 
pattern with a spatial period proportional to the inverse of the in-trap 
droplet spacing. The relative internal phase of the droplets determines 
both the contrast and spatial phase of the interference pattern42. When 
averaging over many interference patterns, obtained on separate runs of 
the experiment, clear periodic modulation persists for phase-coherent 
droplets, but averages out if the relative droplet phases vary between 
experimental trials. Thus, the presence of periodic modulation in an aver-
age TOF image provides a clear signature of supersolidity in our system, 
as it indicates both periodic density modulation and phase coherence.

Figure 3a shows an example of such an averaged interference pat-
tern for a linear chain. Uniaxial modulation is clearly present along the 
direction of the chain, indicating a high degree of phase coherence. For 
comparison, we also show the expected interference pattern calculated 
for a linear array of four droplets from free-expansion calculations, 
showing similar structure.

For conditions where in-trap imaging shows a 2D zigzag structure, 
the averaged interference pattern exhibits clear hexagonal symmetry 
(Fig. 3b). This is consistent with our expectation, and is indicative of 
the triangular structure of the underlying state. Because we evaporate 
directly into the final trap conditions, the phase coherence we observe 
in both 1D and 2D configurations must form during the evaporative 
process, indicating a mechanism for establishing phase coherence 
between droplets41. This is in contrast to protocols involving a dynami-
cal ramp of interaction strength or trap parameters, where coherence 
may be inherited from a pre-existing phase-coherent state. To confirm 
that the observed modulation is not present without phase coherence, 
we repeat the measurement of Fig. 3b at a magnetic field corresponding 
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Fig. 2 | Linear to zigzag transition in an anisotropic trap. a, We confine and 
condense dipolar 164Dy atoms within an anisotropic ODT formed by the 
intersection of two laser beams. By tuning the aspect ratio of the trap in the x–y 
plane (αt), perpendicular to an applied magnetic field B, we induce a transition 
between linear and zigzag configurations of droplets. b, Single-trial images of 
the in-trap density profile of atoms at different αt, showing the structural 
transition from linear to zigzag states, as well as an increase in droplet number 
for higher αt. The stars indicate values αt and N corresponding to the eGPE 
calculations of Fig. 1a. c, Atomic aspect ratio αa versus trap aspect ratio αt for 
the dataset of b. αa is the ratio of minor to major axes of a 2D Gaussian fit to the 
imaged in-trap density profile (inset). For the supersolid droplet array (black 
markers), we see an abrupt change in αa at the critical trap aspect ratio α t

", 

extracted from the fit (grey line; see Methods). The shape of the transition 
agrees well with eGPE prediction (green diamonds; see Methods). For an 
unmodulated condensate (white markers), no abrupt change is evident.  
The error bars represent the standard error on the mean over approximately  
20 trials, and are smaller than the markers on most points. d, Reducing trap 
confinement at a trap aspect ratio of αt = 0.4(1) enables the creation of states 
with more than two rows (Extended Data Fig. 2). e, Distribution of droplet 
number versus αt, showing a distinct increase in droplet number at the 
transition from linear to zigzag configurations. The saturation of the colour 
scale corresponds to the fraction of trials with a given droplet number,  
with blue (red) indicating 1D (2D) configurations for individual trials.

αt =
fx
fy

Diagnos5c	de	la	cohérence	de	phase	entre	amas	:	y	a-t-il	un	profil	d’interférence	stable	après	expansion	balis5que	?

60	000	atomes	de	164Dy

Réponse	:	oui	!
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Observation	d’un	supersolide	2D	isotrope

coherence (incoherence) [69]. In Fig. 2(a), we plot this
quantity for interaction quenches into the pancake super-
solid regime (red) and linear supersolid regime (blue) and
temperature quenches into the pancake supersolid (black).
The time t ¼ 0 indicates when the droplet number has
approximately stabilized and the crystal has first matured
[70]. For the linear chain, the system remains coherent
(high Cp ≈ 0.8), indicating a stable supersolid. However,
quenching into the pancake geometry is qualitatively
different, with strong incoherence (Cp ≈ 0.3) soon after
crystal formation, recovering a high value at around 150 ms
after the crystal forms. During evaporative cooling, the
global phase coherence is predicted by the high value of
Cp ≈ 0.8 around 50 ms after the crystal forms, with
qualitatively similar values to the interaction quench
simulations for the linear supersolid case.
We quantify the quality of the supersolid crystal by

measuring the density overlap Cd between the ground state
target solution and the time-dependent wave function [71].
We find the maximal value of Cd after applying translations
and rotations to the state, noting that perfect overlap would
give Cd ¼ 1. In Fig. 2(b), this quantity is presented for the
two geometries, with the ground state solutions shown as
insets. For the linear chain, once the droplets have formed,
the density overlap rapidly attains Cd > 0.9 and remains
there, consistent with the interaction quenched state being
close to the ground state supersolid. However, the pancake
case shows weak overlap after the droplets are formed,
which only recovers slowly—after around 300 ms—to
values comparable with the linear chain. Primarily, this is
due to the sensitivity of droplet positions of Cd and
indicates that there are many excited supersolid modes
present after the droplets form [40]. Direct evaporative
cooling for the pancake case, however, shows that after the
droplets have formed they rapidly settle into the expected
crystal pattern (Cd ≈ 0.95).
Finally, it is important to note that for the pancake

interaction quench, while the phase coherence is restored
by around t ¼ 150 ms after the droplets are formed, the
crystal remains highly excited until around 300 ms. On
these timescales, three-body losses become significant, and
it is unlikely that a large supersolid would be observed. In
contrast, direct evaporative cooling may lead to a robust
supersolid within around 50 ms of the crystal first appear-
ing, a timescale that we find to be weakly dependent on the
value of γ [40].
Experimental observation.—While experiments have

evaporatively cooled directly into the supersolid phase
for linear and elongated 2D configurations [12,13,34],
this could prove an optimal method in circular traps for
avoiding the excitations associated with crossing the
roton instability. We confirm this by producing a 7-droplet
hexagon supersolid in a near-circular trap, as shown in
Fig. 3. The experimental apparatus and procedure is similar
to that described previously [13], but new modifications in

the optical dipole trap setup have enabled us to tune
between anisotropic and round traps. The current optical
trap consists of three 1064 nm wavelength trapping beams,
each propagating in the plane perpendicular to gravity. Two
of the beams, which cross perpendicularly, have approx-
imately 60 μm waists and define the horizontal trapping
frequencies. The third, crossing at a roughly 45° angle from
the others, has a waist of approximately 18 μm and is
rapidly scanned to create a time-averaged light sheet that
defines the vertical confinement.
In a harmonic trap with frequencies fx;y;z ¼ ½47ð1Þ;

43ð1Þ; 133ð5Þ% Hz, we observe in trap a 7-droplet state
consisting of a hexagon with a central droplet, with a
condensate atom number of N ∼ 4 × 104 [Fig. 3(a)]. To
confirm that this state is phase coherent, we release the
atoms from the trap and image the interference pattern after
36 ms time of flight [Fig. 3(b)]. The presence of clear
modulation in the interference pattern averaged over
68 runs of the experiment indicates a well-defined and
reproducible relative phase between the droplets and is
consistent with our expectations for a phase-coherent state
undergoing expansion [Fig. 3(d)], obtained through 3D
dynamic simulations starting from the eGPE ground state
[Fig. 3(c)]. Even rounder traps are possible, but the slight
anisotropy orients the state, helping to observe the repro-
ducible interference pattern.
Summary.—We have theoretically explored the forma-

tion of large 2D supersolids using both an interaction

FIG. 3. Experimental realization of a 7-droplet hexagon state.
(a) Exemplary in situ image of the density profile. (b) Image after
36 ms time-of-flight (TOF) expansion, averaged over 68 trials of
the experiment. Hexagonal modulation structure is clearly present
in the averaged image. Note the rotation of the hexagon between
in situ and TOF images. (c),(d) Corresponding simulations for
the same trap, and with as ¼ 90a0 and ≈4.4 × 104 atoms within
the droplets.

PHYSICAL REVIEW LETTERS 128, 195302 (2022)

195302-4

coherence (incoherence) [69]. In Fig. 2(a), we plot this
quantity for interaction quenches into the pancake super-
solid regime (red) and linear supersolid regime (blue) and
temperature quenches into the pancake supersolid (black).
The time t ¼ 0 indicates when the droplet number has
approximately stabilized and the crystal has first matured
[70]. For the linear chain, the system remains coherent
(high Cp ≈ 0.8), indicating a stable supersolid. However,
quenching into the pancake geometry is qualitatively
different, with strong incoherence (Cp ≈ 0.3) soon after
crystal formation, recovering a high value at around 150 ms
after the crystal forms. During evaporative cooling, the
global phase coherence is predicted by the high value of
Cp ≈ 0.8 around 50 ms after the crystal forms, with
qualitatively similar values to the interaction quench
simulations for the linear supersolid case.
We quantify the quality of the supersolid crystal by

measuring the density overlap Cd between the ground state
target solution and the time-dependent wave function [71].
We find the maximal value of Cd after applying translations
and rotations to the state, noting that perfect overlap would
give Cd ¼ 1. In Fig. 2(b), this quantity is presented for the
two geometries, with the ground state solutions shown as
insets. For the linear chain, once the droplets have formed,
the density overlap rapidly attains Cd > 0.9 and remains
there, consistent with the interaction quenched state being
close to the ground state supersolid. However, the pancake
case shows weak overlap after the droplets are formed,
which only recovers slowly—after around 300 ms—to
values comparable with the linear chain. Primarily, this is
due to the sensitivity of droplet positions of Cd and
indicates that there are many excited supersolid modes
present after the droplets form [40]. Direct evaporative
cooling for the pancake case, however, shows that after the
droplets have formed they rapidly settle into the expected
crystal pattern (Cd ≈ 0.95).
Finally, it is important to note that for the pancake

interaction quench, while the phase coherence is restored
by around t ¼ 150 ms after the droplets are formed, the
crystal remains highly excited until around 300 ms. On
these timescales, three-body losses become significant, and
it is unlikely that a large supersolid would be observed. In
contrast, direct evaporative cooling may lead to a robust
supersolid within around 50 ms of the crystal first appear-
ing, a timescale that we find to be weakly dependent on the
value of γ [40].
Experimental observation.—While experiments have

evaporatively cooled directly into the supersolid phase
for linear and elongated 2D configurations [12,13,34],
this could prove an optimal method in circular traps for
avoiding the excitations associated with crossing the
roton instability. We confirm this by producing a 7-droplet
hexagon supersolid in a near-circular trap, as shown in
Fig. 3. The experimental apparatus and procedure is similar
to that described previously [13], but new modifications in

the optical dipole trap setup have enabled us to tune
between anisotropic and round traps. The current optical
trap consists of three 1064 nm wavelength trapping beams,
each propagating in the plane perpendicular to gravity. Two
of the beams, which cross perpendicularly, have approx-
imately 60 μm waists and define the horizontal trapping
frequencies. The third, crossing at a roughly 45° angle from
the others, has a waist of approximately 18 μm and is
rapidly scanned to create a time-averaged light sheet that
defines the vertical confinement.
In a harmonic trap with frequencies fx;y;z ¼ ½47ð1Þ;

43ð1Þ; 133ð5Þ% Hz, we observe in trap a 7-droplet state
consisting of a hexagon with a central droplet, with a
condensate atom number of N ∼ 4 × 104 [Fig. 3(a)]. To
confirm that this state is phase coherent, we release the
atoms from the trap and image the interference pattern after
36 ms time of flight [Fig. 3(b)]. The presence of clear
modulation in the interference pattern averaged over
68 runs of the experiment indicates a well-defined and
reproducible relative phase between the droplets and is
consistent with our expectations for a phase-coherent state
undergoing expansion [Fig. 3(d)], obtained through 3D
dynamic simulations starting from the eGPE ground state
[Fig. 3(c)]. Even rounder traps are possible, but the slight
anisotropy orients the state, helping to observe the repro-
ducible interference pattern.
Summary.—We have theoretically explored the forma-

tion of large 2D supersolids using both an interaction

FIG. 3. Experimental realization of a 7-droplet hexagon state.
(a) Exemplary in situ image of the density profile. (b) Image after
36 ms time-of-flight (TOF) expansion, averaged over 68 trials of
the experiment. Hexagonal modulation structure is clearly present
in the averaged image. Note the rotation of the hexagon between
in situ and TOF images. (c),(d) Corresponding simulations for
the same trap, and with as ¼ 90a0 and ≈4.4 × 104 atoms within
the droplets.

PHYSICAL REVIEW LETTERS 128, 195302 (2022)

195302-4

Groupe d’Innsbruck
Bland et al., 2022

Expansion	balis(que	
de	36	ms

40	000	atomes	de	164Dy	
piège	quasi-isotrope	:	(45,43,133)	Hz

Moyenne	de	68	profils	d’interférence	:	
l’ensemble	est	bien	cohérent
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2.	

La	frac(on	superfluide
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Lien	entre	 		et	 		:	effet	Sagnacθ Ω

Expérience	du	récipient	tournant	
à	la	vitesse	angulaire	Ω

DéfiniAon	physique	

Ω

L

La	frac(on	normale	tourne	avec	le	récipient
La	frac(on	superfluide	reste	au	repos

On	u(lise	des	condi(ons	aux	limites	
avec	distorsion	de	phase		θ

DéfiniAon	mathémaAque	

ΔE =
ℏ2ρ
2m

fs θ2 + 𝒪(θ4)

FracAon	superfluide	 	et	fracAon	normale	 							 	fs fn ( fs + fn = 1)
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Récipient	tournant	et	fractions	superfluide/normale Ω

L

Dans	le	référenAel	du	laboratoire	:

• 	 	par(cules	au	repos	
• 	par(cules	en	mouvement	à	la	vitesse	

Nfs
Nfn v0 = ΩR

Condi5ons	aux	limites	périodiques,	mais	poten5el	dépendant	du	temps	

Dans	le	référenAel	tournant	avec	le	récipient	:

• 	 	par(cules	en	mouvement	à	la	vitesse	 	
• 	par(cules	au	repos

Nfs −v0 = − ΩR
Nfn

Poten5el	indépendant	du	temps,	condi5ons	aux	limite	distordues	avec	θ = − mv0L/ℏ

ΔE =
ℏ2ρ
2m

fs θ2 =
1
2

mv2
0 N fs

Energie	ciné(que	des	 	par(cules,	calculée	dans	le	référen(el	tournantNfs
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Lien	entre	fraction	superfluide	et	vitesse	du	son

Fluide	quan(que	à	température	nulle	avec	une	modula(on	spa(ale	imposée	de	l’extérieur

Un	seul	mode	de	Goldstone		
	un	seul	son	bien	décrit	par	une	approche	hydrodynamique	⇒

densité

x

On	peut	alors	montrer	la	relaAon				fs = κmc2

testée par Chauveau et al. (2023),  Tao et al. (2023)

Dans	un	supersolide,	il	y	a	plusieurs	modes	de	Goldstone	:	lien	encore	possible,	mais	plus	compliqué	

Sindik, Zawislak, Recati, Stringari (2024)

	 	compressibilitéκ :
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3.	

Les	bornes	de	Legge5	pour	la	frac(on	superfluide

f (−)
s ≤ fs ≤ f (+)

s
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Approche	variationnelle	et	borne	supérieure

• Fonc(on	d’onde	de	l’état	fondamental	 	supposé	réelle	(pas	de	brisure	de	
l’invariance	par	renversement	du	temps)	

Ψfond( ⃗r1, …, ⃗rj, …, ⃗rN)

• Torsion	en	phase	des	condi(ons	aux	limites	:

eiθ

Ψtorsion( ⃗r1, …, ⃗rj, …, ⃗rN)

inconnue	!

ΔEtorsion ∝ Nθ2fs

• Recherche	d’un	majorant	de	l’énergie	due	à	la	torsion	en	phase	par	l’approche	varia(onnelle

Ψessai( ⃗r1, …, ⃗rj, …, ⃗rN) ΔEessai ∝ N θ2 f (essai)
s

ΔEtorsion ≤ ΔEessai fs ≤ f (essai)
s

avec

⟹

A. J. Leggett 
PRL 25, 1543 (1970)

Lx
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Le	choix	des	fonctions	d’essai

eiθ

Lx

Un	choix	simple	:

Ψessai( ⃗r1, …, ⃗rN) = ei∑j φ(xj) Ψfond( ⃗r1, …, ⃗rN)

Etat	fondamental	en	
l’absence	de	torsion

facteur	de	phase	
à	une	par(cule

La	torsion	en	phase	est	prise	en	compte	en	imposant	:							φ(x + Lx) = φ(x) + θ

• Les	énergies	d’interac(on	et	de	confinement	sont	inchangées

• L’énergie	ciné(que	est	augmentée	de

Ec → Ec +
ℏ2

2m ∫ ( dφ
dx )

2

ρ̄(x) dx ρ̄(x) = ∫ ρ(x, y, z) dy dz 	 	densité	spa(ale	pour	ρ(r) : Ψfond

Connaissant	 ,	quel	est	le	choix	op5mal	pour	 	qui	minimise	 	?ρ̄(x) φ(x) ΔEessai



Le	choix	optimal	pour	la	phase	φ(x) eiθ

Lx

Minimisa(on	de		 			avec	le	contrainte		 		ΔEessai =
ℏ2

2m ∫ ( dφ
dx )

2

ρ̄(x) dx φ(x + Lx) = φ(x) + θ

Ψessai( ⃗r1, …, ⃗rN) = ei∑j φ(xj) Ψfond( ⃗r1, …, ⃗rN)

Choix	op(mal:				
dφ
dx

∝
1

ρ̄(x)
Gradient	de	phase	important	là	où	la	densité	est	faible	:		
								minimise	le	coût	en	énergie	ciné*que

ρ̄(x) ρ̄(x)

φ(x) φ(x)θ θ

x x0 0L L



La	borne	supérieure	de	Leggett eiθ

Lx

D’où	l’inégalité	recherchée	:

ΔEtorsion = N θ2 fs
ℏ2

2mL2
x

≤ ΔEessai ⟹ fs ≤
1

⟨ρ̄(x)⟩ ⟨
1

ρ̄(x)
⟩

Choix	op(mal	:				
dφ
dx

∝
1

ρ̄(x)

Résultat	pour	ce5e	fonc(on	d’essai:	 ΔEessai = θ2 ℏ2

2mLx

1

⟨ 1
ρ̄(x) ⟩

		⟨ 1
ρ̄(x)

⟩ =
1
Lx ∫

Lx

0

dx
ρ̄(x)

⟨ρ̄(x)⟩ =
1
Lx ∫

Lx

0
ρ̄(x) dx =

N
Lx

Leggett, 1970

ρ̄(x) = ∫ ρ(x, y, z) dy dz
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Remarques	sur	la	borne	supérieure	de	Leggett fs ≤
1

⟨ρ̄(x)⟩ ⟨
1

ρ̄(x)
⟩

• La	quan(té	 		est	toujours	plus	grande	que	1,	donc	l’inégalité	est	toujours	“u(le”⟨ρ̄(x)⟩ ⟨
1

ρ̄(x)
⟩

• Une	superfluidité	complète	(	 )	n’est	possible	que	si	 		est	uniformefs = 1 ρ̄(x)

Une	modula*on	de	densité,	qu’elle	soit	causée	par	un	poten*el	extérieur	ou	par		
une	transi*on	spontanée	vers	un	état	supersolide,	induit	toujours	une	réduc*on	de		 	fs

• L’inégalité	peut	devenir	une	égalité

Gaz	de	Bose	1D	décrit	par	la	fonc(onnelle	de	Gross-Pitaevskii Ψ(x1, …, xN) = ψ(x1) ψ(x2) ⋯ ψ(xn)

fs =
1

⟨ρ̄(x)⟩ ⟨
1

ρ̄(x)
⟩
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Analogie	électrique	

Courant	électrique	 						 	:	conductance	I = GU G

U

θ

Courant	de	par(cules		 											Iθ = Gsθ Gs =
ℏρs

m
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Version	électrique	de	la	borne	supérieure	de	Leggett

A B

i

j

Gij

A B

i

j

Gij A B

i

Ḡj

j

		rectangles	blancs	:	conductances	N × N Gij

rectangles	gris	:	conductances	inconnues

On	veut	es(mer	la	conductance	GAB

On	remplace	les	rectangles	gris	par	des	courts-circuits	:	augmente	la	conductance	entre	 	et	 	A B

2

A B

i

j

Gij A B

j

G̃i

i

G̃i = ∑
j

Gij = N⟨Gij⟩j

1
G(+)

AB
= ∑

i

1
G̃i

= N⟨
1
G̃i

⟩i

GAB ≤ G(+)
AB =

1

⟨ 1
⟨Gij⟩j

⟩i

ρs ≤
1

⟨
1

⟨ρ(x, y)⟩y
⟩x
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Une	borne	inférieure	pour	la	conductance	électrique

A B

i

j

Gij

A B

i

j

Gij A B

i

Ḡj

j

		rectangles	blancs	:	conductances	N × N Gij

rectangles	gris	:	conductances	inconnues

On	veut	es(mer	la	conductance	GAB

On	enlève	les	rectangles	gris	:	diminue	la	conductance	entre	 	et	 	A B

A B

i

j

Gij

A B

i

j

Gij A B

i

Ḡj

j
1
Ḡj

= ∑
i

1
Gij

= N⟨
1

Gij
⟩i

G(−)
AB = ∑

j

Ḡj = N⟨Ḡj⟩j

G(−)
AB = ⟨

1

⟨ 1
Gij

⟩i

⟩j ≤ GAB
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Les	deux	bornes	de	Leggett
A B

i

j

Gij

A B

i

j

Gij A B

i

Ḡj

j

Pour	la	version	électrique,	on	a	:	

G(−)
AB = ⟨

1

⟨ 1
Gij

⟩i

⟩j ≤ GAB ≤ G(+)
AB =

1

⟨ 1
⟨Gij⟩j

⟩i

Legge5	:	

ρ(−)
s = ⟨ 1

⟨
1
ρ

⟩x

⟩y
≤ ρs ≤ ρ(+)

s =
1

⟨
1

⟨ρ(x, y)⟩y
⟩x

1970	:	inégalité	varia(onnelle,	
applicable	à	tout	système		

quan(que	à	 	corpsN

1998	:	inégalité	de	portée	plus	limitée,	
valable	pour	un	système	décrit	par		
une	fonc(on	d’onde	macroscopique	

de	type	Gross-Pitaevskii
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Transition	supersolide	à2D	et	bornes	de	Leggett

0 1 2 3
0

1

2

3

x

y

1

1.5

Transi(on	supersolide	pour	un	poten(el	de	cœur	mou	:	Λ =
ρṼ0

ℏωa
≈ 40

Remarque	:	dans	un	milieu	non	homogène,	
la	densité	superfluide	est	a	priori	un	tenseur	:

ΔE =
ℏ2ρ
2m ∑

i,j

fs,ij θiθj

Pour	un	réseau	triangulaire	régulier	:		fs,ij = fs δij

Λ

7

10-6

10-4

10-2

100

50 100 150 200 250

10-3

10-2

10-1

100

50 100 150

-1

0

1

10-3

FIG. 5. (a) Superfluid fraction fxx computed using (21) for the var-
ious geometry stationary states (solid lines) as a function of ⇤. The
data from Sepùlveda et al. [27] for the triangular state presented for
comparison (black line squares) and the relevant analytic bound of
Aftalion et al. [39]. (b) The Leggett bounds f± shown relative to the
triangular state results from (a). The Leggett bounds are tighter for
the square state and are shown in the inset.

fraction by Aftalion et al. [39]. Their work was developed for
soft-core models, with the 2D result we show here being

fLB =
⇤2

64
e�2

p
⇤
⇡

a
asc . (37)

Our results in Fig. 5(a) confirm that this is a lower bound, but
is more than two orders of magnitude smaller than our calcu-
lated superfluid fraction for the interaction parameter regime
we consider.

D. Anisotropic 2D Superfluidity

Our earlier results showed that for the 2D crystalline square
and triangular states states have an isotropic superfluid re-
sponse (36), whereas the 1D stripe phase is anisotropic. We
investigate here the conditions where 2D crystals become
anisotropic. To do this we can extend our consideration to unit
cells of the form a1 = a1x̂, and a2 = a2(cos ✓x̂ + sin ✓ŷ),

/3 5 /12 /2 7 /12 2 /3
0

0.05

0.1

0.15

0.2

0.25

0.3

sqtr tr

(a)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

sq

(b)

FIG. 6. Anisotropic superfluidity characterized by the superfluid
fractions {f̃1, f̃2} and anisotropy parameter ⌘ = (f̃1�f̃2)/(f̃1+f̃2).
(a) Results for unit cell with varying ✓ where a1 = a2 = 1.377 asc

is the optimal value for the square lattice. (b) Results for a rectan-
gular cell (✓ = ⇡/2) as a2 varies, with a1 = 1.377 asc. Results are
computed from stationary states with ⇤ = 60.

i.e. allowing the direct lattice vectors to be of different length
and for ✓ to vary continuously. To analyse these cases we
consider the superfluid fraction tensor, and here we denote the
matrix representing this as f . This is a real symmetric matrix
and can be taken to a diagonal form by the similarity transfor-
mation f̃ = R'fR†

', where

R' =


cos' � sin'
sin' cos'

�
(38)

is the rotation matrix with angle '. From this we identify the
eigenvalues (f̃1, f̃2) of f̃ as the superfluid fractions along the
principal axes, which are orthogonal axes rotated at an angle
' with respect to x and y.

In Fig. 6(a) we consider a crystalline ground state with the
lengths of the unit cell fixed (a1 = a2), but allow the angle ✓ to
vary. The results show that the isotropic condition (f̃1 = f̃2)
occurs for triangular (✓ = ⇡/3, 2⇡/3) and square (✓ = ⇡/2)
lattices, but is anisotropic at other angles. For these results the
rotation angle defining the principal axes is ' = ✓/2.

In Fig. 6(b) we fix the angle to the rectangular case (✓ =
⇡/2) and vary the length of a2 relative to a1. In general a
difference in length causes the superfluid tensor to become

Blackie, 2023

fs
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4.	

Perspec(ves	expérimentales
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La	superfluidité	des	condensats	dipolaires	modulés	spatialement

Au-delà	des	mesures	de	cohérence	spa(ale	:

• Mesure	du	moment	d’iner(e	par	un	mode	ciseaux

-	Mesure	fait	par	le	groupe	de	Florence,	Tanzi	et	al,	2021	

-	Analyse	cri(que	par	Norcia	et	al.,	2022

VOLUME 83, NUMBER 22 P HY S I CA L R EV I EW LE T T ER S 29 NOVEMBER 1999

Scissors Mode and Superfluidity of a Trapped Bose-Einstein Condensed Gas

D. Guéry-Odelin and S. Stringari
Dipartimento di Fisica, Università di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo, Italy

(Received 16 July 1999)
We investigate the oscillation of a dilute atomic gas generated by a sudden rotation of the confining

trap (scissors mode). This oscillation reveals the effects of superfluidity exhibited by a Bose-Einstein
condensate. The scissors mode is also investigated in a classical gas above Tc in various collisional
regimes. The crucial difference with respect to the superfluid case arises from the occurrence of low
frequency components, which are responsible for the rigid value of the moment of inertia. Different
experimental procedures to excite the scissors mode are discussed.

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.40.–w

Superfluidity is one of the most spectacular conse-
quences of Bose-Einstein condensation and has been the
object of extensive experimental and theoretical work in
the past, especially in connection with the physics of liquid
helium [1]. Indirect signatures of superfluidity in trapped
Bose-Einstein condensed gases are given by their dynamic
behavior at very low temperatures [2] which well confirms
the predictions of the hydrodynamic theory of superfluids,
as well as by the occurrence of spectacular interference
phenomena [3] which point out the importance of coher-
ence effects, typical of superfluids. However, direct evi-
dence of superfluidity is still missing in these systems.
Important manifestations of superfluidity are associated

with rotational phenomena. These include the strong re-
duction of the moment of inertia with respect to the clas-
sical rigid value and the occurrence of quantized vortices
[4]. These peculiar features are the direct consequence of
the irrotational nature of the superfluid flow and have al-
ready been the object of theoretical work also in the case
of dilute trapped gases (see, for example, Ref. [5] and ref-
erences therein).
The purpose of this paper is to focus on the oscillatory

behavior exhibited by the rotation of the atomic cloud
with respect to the symmetry axis of the confining trap
(see Fig. 1) and on the corresponding superfluid effects
caused by Bose-Einstein condensation. A similar mode,
called the scissors mode, is well known in nuclear
physics [6], where it corresponds to the out-of-phase
rotation of the neutron and proton clouds, and its recent
systematic experimental investigation [7] has confirmed
the occurrence of superfluidity in an important class of
deformed nuclei.
In the presence of a deformed external potential the

restoring force associated with the rotation of the cloud
in the x-y plane is proportional to the square of the
deformation parameter e of the trap [see Eq. (1) below].
The mass parameter is instead fixed by the moment of
inertia. For a superfluid system this is given by the
irrotational value and is hence proportional to e2. As a
consequence, the frequency of the oscillation approaches
a finite value when the deformation tends to zero. Vice

versa, in the absence of superfluidity, the moment of
inertia takes the rigid value and the scissors mode exhibits
low frequency components.
Let us start our investigation by considering a Bose-

Einstein condensed gas at equilibrium in a deformed
potential of the form

Vext!r" !
m
2

v2
xx2 1

m
2

v2
yy2 1

m
2

v2
z z2 (1)

with v2
x ! v2

0!1 1 e" and v2
y ! v2

0!1 2 e", where e
gives the deformation of the trap in the x-y plane. For
large enough samples, one can safely use the Thomas-
Fermi approximation for the ground state density,

n0!r" ! #m 2 Vext!r"$%g , (2)

where the strength parameter g is related to the scattering
length a by the relation g ! 4p h̄2a%m. We consider
a gas initially at equilibrium in the !x0, y0, z" frame. At
t ! 0, one rotates abruptly the eigenaxis of the trap from
its initial position to !x, y, z" by a small angle 2u0 (see
Fig. 1). As a consequence of the sudden rotation, the
system will no longer be in equilibrium and will start
oscillating. If the angle u0 is not too large the oscillation

FIG. 1. Exciting the scissor mode: initially the gas is ther-
malized in an anisotropic trap. One then abruptly rotates the
eigenaxis of the trap by a small angle.

4452 0031-9007%99%83(22)%4452(4)$15.00 © 1999 The American Physical Society
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• Lien	entre	le	condensat	modulé	et	un	réseau	de	jonc(ons	Josephson

-	Possibilité	d’extraire	 	à	par(r	des	modes	d’oscilla(on	du	réseau	(Biagioni	et	al.,	2023)fs

• Recherche	de	vortex	?

-	Klaus	et	al,	2022	:	observa(on	dans	le	régime	de		
			gou5ele5es	indépendantes
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at the same angular speed as the field and deforms with increasing 
elongation (Fig. 1b, top). We then stop the adiabatic ramp at a given 
value of Ω and probe the system under continuous rotation. We now 
find that the cloud continues rotating in the radial plane with an almost 
constant shape (Fig. 1b, bottom). Note that B is held constant at 
5.333(5) G, where we estimate a contact scattering length of about 
as = 111a0, where a0 is the Bohr radius (Methods).

We further explore the response of our dipolar BEC to magneto-
stirring by repeating the measurements in Fig. 1b (top), but stopping 
the ramp at different final values of Ω. The maximum value used for Ω 
approaches ω", corresponding to a ramp duration of 1 s. We quantify 
the cloud elongation in terms of the aspect ratio AR = σmax/σmin, where 
the cloud widths σmax and σmin are extracted by fitting a rotated 2D 
Gaussian function to the density profiles. Figure 1c summarizes our 
results. We observe that initially the AR slightly deviates from 1 due to 
magnetostriction. It then slowly grows with increasing Ω, until a rapid 
increase at around 0.6ω" occurs, as this allows the angular momentum 
to increase, which decreases the energy in the rotating frame52. Sud-
denly, at a critical rotation frequency Ωc ≈ 0.74ω", the AR abruptly col-
lapses back to AR ≈ 1, showing how the superfluid irrotational nature 
competes with the imposed rotation. This critical frequency is close to 
the value found in non-dipolar gases with a rotating elliptical harmonic 
trap, associated with a resonance at the quadrupole frequency53.

To substantiate our observation, we perform numerical simula-
tions of the zero-temperature extended Gross–Pitaevskii equation 
(eGPE)54 (Methods). Quantum and thermal fluctuations are added to 
the initial states, which are important to seed the dynamic instabilities 
once they emerge at large enough Ω; see later discussion. The lines in 
Fig. 1c show our results. The dashed line is obtained through the same 
procedure as the experiment, whereas for the solid line, we halve the 
ramp rate, spending more time at each frequency. Both ramp proce-
dures show quantitatively the same behaviour up to Ω = 0.8ω" and are 
in excellent agreement with the experimental results. The stability of 
the 1 s ramp exceeds the experimentally observed critical frequency. 
We partly attribute this discrepancy to asymmetries of the rotation in 
the experiment that are not present in the simulations, which may lead 
to an effective speed-up of the dynamical instabilities. However, in all 
cases, the AR rapidly decreases to about 1.

The growing AR and subsequent collapse to 1 is a signature of the 
dynamical instability of surface modes, known for being an important 
mechanism for seeding vortices and allowing them to penetrate into 
the high-density regions of rotated BECs52,53,55, as also predicted for 
our dipolar system40. To search for quantum vortices in our system, we 
perform a new investigation where we directly set Ω close to Ωc, aiming 
to trigger the instability at an earlier time when more atoms are con-
densed. We then hold the magnetic-field rotation fixed at this constant 
frequency for a time tΩ. As shown in Fig. 2 (bottom), the cloud rapidly 
elongates, and the density starts to exhibit a spiral pattern, emanating 

from the tips of the ellipsoid. As early as tΩ = 314 ms, clear holes are 
observed in the density profile, forming in the density halo around the 
centre, the first clear indication of vortices in a dipolar gas. These vorti-
ces, initially nucleated at the edge of the sample, persist as we continue 
to stir and eventually migrate towards the central (high-density) region. 
Vortices are still visible in the experiment after 1 s of magnetostirring, 
although our atom number decreases throughout this procedure.  
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Fig. 2 | Observation of vortices in a dipolar BEC. Each column shows the 
simulated (top) and experimental (bottom) images for various rotation times 
tΩ. For the experiment, the atoms are imaged along the z direction. In each 
experimental run, we rotate the magnetic field anticlockwise at Ω = 0.74ω" for 
different rotation times tΩ. The magnetic-field value is kept to B = 5.333(5) G. The 

initial condensed atom number is N = 15,000. The decreasing size of the cloud 
suggests a decrease in atom number. However, for states with vortices or spiral 
shapes, appearing at large tΩ, our bimodal fit to extract the atom number breaks 
down. For the corresponding simulations, the parameters are as = 112a0, trap 
frequencies (ω", ωz) = 2π × [50, 150] Hz, N = 8,000 and Ω = 0.75ω".
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Fig. 3 | Time evolution of the average vortex number, 𝒩𝒩
v

, and cloud AR. a, Left: 
sample image after rotating for tΩ = 474 ms. Middle: blurred reference image 
(σ = 2.1 µm). Right: residuals with markers (black circles) indicating the identified 
vortices. b, The detected vortex number 𝒩𝒩

v

 (top) and the AR of the cloud 
(bottom) after the rotation time tΩ. Data points and error bars show the mean and 
standard error from about ten experimental runs. Solid lines indicate the 
averaged results from ten corresponding simulations with different initial noise 
for parameters as = 110a0, (ω", ωz) = 2π × [50, 130] Hz, N = 10,000 and Ω = 0.75ω"; 
the shaded area gives its standard error.

mais	le	28	mars	2024….
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Observation	de	vortex	dans	un	supersolide	dipolaire
Observation of vortices in a dipolar supersolid

Eva Casotti ,1, 2, ⇤ Elena Poli ,2, ⇤ Lauritz Klaus ,1, 2 Andrea Litvinov ,1 Clemens Ulm ,1, 2

Claudia Politi ,1, 2, † Manfred J. Mark ,2, 1 Thomas Bland ,2 and Francesca Ferlaino 2, 1, ‡

1
Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der

Wissenschaften, Technikerstr. 21A, 6020 Innsbruck, Austria

2
Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik,

Institut für Experimentalphysik, 6020 Innsbruck, Austria(Dated: March 28, 2024)Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance

due to the appearance of a crystal structure and phase invariance due to phase locking of single-particle wave

functions, responsible for superfluid phenomena. While originally predicted to be present in solid helium1–5,

ultracold quantum gases provided a first platform to observe supersolids6–10, with particular success coming

from dipolar atoms8–12. Phase locking in dipolar supersolids has been probed through e.g. measurements of

the phase coherence8–10 and gapless Goldstone modes13, but quantized vortices, a hydrodynamic fingerprint of

superfluidity, have not yet been observed. Here, with the prerequisite pieces at our disposal, namely a method to

generate vortices in dipolar gases14,15 and supersolids with two-dimensional crystalline order11,16,17, we report on

the theoretical investigation and experimental observation of vortices in the supersolid phase. Our work reveals

a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids. This

opens the door to study the hydrodynamic properties of exotic quantum systems with multiple spontaneously

broken symmetries, in disparate domains such as quantum crystals and neutron stars18.Rotating fluids on all scales exhibit a whirling motion known
as vorticity. Unique to the interacting quantum world, how-
ever, is that this rotation is quantized due to the single-
valued and continuous nature of the underlying macroscopic
wavefunction19,20. Observing quantized vortices is regarded
as unambiguous evidence of superfluidity, relevant for a
wide variety of many-body quantum systems from super-
fluid 4He 21,22 through gaseous bosonic23 and fermionic24
condensates, exciton-polariton condensates25, to solid-state
superconductors26,27. Remarkably, this phenomenon persists
over a wide range of interaction scales, since it only requires
the irrotational nature of the velocity field. However, all of
these examples refer to the case in which the vortices are free
to move in the system, and any density non-uniformity due
to, e.g., the trap, occurs on scales much larger than the vortex
core.

The supersolid phase does not belong to this category,
spontaneously breaking this spatial uniformity. Super-
solids, characterized by the coexistence of superfluid and
solid properties1–5, have been investigated through two dis-
tinct approaches. The first approach involves infusing su-
perfluid characteristics into a solid, as demonstrated in
phenomena such as pair density wave phases28 in 3He29,
superconductors30,31, and through a 4He monolayer on
graphite32. The second approach entails imparting solid
properties into superfluid systems, as observed in ultracold
atomic settings in optical cavities7, those with spin-orbit
coupling6, and with atoms exhibiting a permanent magnetic
dipole moment8–11. Among these systems, supersolids com-
posed of dipolar atoms have emerged as a versatile platform
for exploring the superfluid characteristics and solid proper-
ties of this long sought-after state12, including the sponta-
neous density modulation and the global phase coherence8–10,
the existence of two phononic branches, one for each broken

symmetry13,33,34, and Josephson-type dynamics35,36. Where
these tests have found a roadblock is in probing the response
to rotation. One consequence of irrotational flow is the scis-
sors mode oscillation, where the signature of superfluidity is
the lack of a rigid body response to a sudden rotation of an
anisotropic trap37. However, supersolids show a mixture of
rotational and irrotational behavior, leading to a multimode re-
sponse to perturbation. This complexity hinders a straightfor-
ward extraction of the superfluid contribution16,38,39. Instead,
the presence of quantized vortices is an unequivocal signal
of irrotationality, and thus unambiguously proves the super-
fluidity of the system. These vortices are also anticipated to
exhibit other distinctive characteristics, including a reduced
angular momentum40,41, and unusual dynamics due to their
interplay with the crystal such as pinning and snaking18,42,43.
Nevertheless, a critical gap exists in the current experimen-
tal exploration of supersolids — an investigation into whether
the supersolid can maintain its structure and coherence un-
der continuous stirring, as well as if, and how, vortices may
manifest and behave in this unique state. The experimental
challenge lies in the inherent complexity and fragility of the
supersolid phase, which lives in a narrow region within the
phase diagram12. In our work, we explore this uncharted ter-
ritory by investigating the supersolid response to rotation, us-
ing a technique known as magnetostirring14,15,44. Combining
experiment and theory, our study explores both the unmod-
ulated and modulated states, revealing distinctive signatures
associated with the presence of vortices in the supersolid.Predicting the supersolid response to rotationOwing to the inherent long-range interactions among atoms,

a dipolar gas exhibits a density distribution that extends
along the magnetic field direction, a phenomenon known as
magnetostriction45. This imparts an elliptical shape to the
cloud. The rotation of the magnetic field consequently in-
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smoking gun of superfluidity in supersolid states41–43. However, despite 
these intriguing predictions, vortices in dipolar quantum gases have 
not been observed until now.

This Article presents the experimental realization of quan-
tized vortices in a dipolar BEC of highly magnetic dysprosium (Dy) 
atoms. Following a method proposed in ref. 40, extended to arbitrary 
magnetic-field angles in ref. 44, we show that the many-body phenom-
enon of magnetostriction45, genuinely arising from the anisotropic 
DDI among atoms, provides a natural route to rotate the systems and 
nucleate vortices in a dipolar BEC. We carry out studies on the dynam-
ics of the vortex formation, which agree very well with our theoretical 
predictions. Finally, we observe one of the earliest predictions for 
vortices in dipolar BECs: the formation of vortex stripes in the system.

In non-dipolar gases, quantized vortices have been produced using 
several conceptually different techniques, for instance, by rotating 
non-symmetric optical6,11 or magnetic46 potentials, by rapidly shaking 
the gas14, by traversing it with obstacles with large enough velocity7,47, by 
rapidly cooling the gas across the BEC phase transition48,49 or by directly 
imprinting the vortex phase pattern50. Dipolar quantum gases, while 
able to form vortices with these same standard procedures29, also offer 
unique opportunities that have no counterpart in contact-interacting 
gases. Crucially, the DDI gives rise to the phenomenon of magnetostric-
tion in position space45. When dipolar BECs are polarized by an external 
magnetic field B—defining the dipole orientation—the DDI causes an 
elongation of the cloud along the polarization direction. This is a direct 
consequence of the system tendency to favour head-to-tail dipole 
configurations, which effectively reduces the interaction energy19.

Such a magnetostrictive effect provides a simple method to induce 
an elliptic effective potential and drive rotation with a single control 
parameter. This modification of the effective potential is shown in 
Fig. 1a for a BEC in an oblate trap with cylindrical symmetry about the 
z axis. While a non-dipolar BEC takes the same shape as the confining 
trap (Fig. 1a(i)), introducing dipolar interactions with polarization axis 
along z stretches the cloud along this axis yet maintains cylindrical 
symmetry (Fig. 1a(ii)). Tilting the magnetic field leads to a breaking 
of the cylindrical symmetry, resulting in an ellipsoidal deformation 
of the cloud shape, as seen from the density projection onto the x–y 
plane (Fig. 1a(iii)). Finally, under continuous rotation of the magnetic 
field, which we coin ‘magnetostirring’, the condensate is predicted to 
rotate (Fig. 1a(iv)). This unique approach to stir a dipolar condensate 
can eventually lead to the nucleation of vortices40,44, realizing genuinely 
interaction-driven vorticity through many-body phenomena.

We explore this protocol using a dipolar BEC of 162Dy atoms. We 
create the BEC similar to our previous work51 with the distinction that 
here the magnetic-field unit vector, ̂B, is kept tilted at an angle of θ = 35° 
with respect to the z axis both during evaporative cooling and magne-
tostirring (Fig. 1a(iii) and Methods). After preparation, the sample 
contains about 2 × 104 condensed atoms confined within a cylindrically 
symmetric optical dipole trap (ODT) with typical radial and axial trap 
frequencies (ω#, ωz) = 2π × [50.8(2), 140(1)] Hz. Here, before stirring, 
the magnetostriction is expected from simulations to increase the 
cloud aspect ratio (AR) in the horizontal plane from 1 up to 1.03, whereas 
the trap anisotropy is negligible. We use a vertical (z) absorption imag-
ing to probe the radial (x,y) atomic distribution after a short 
time-of-flight (TOF) expansion of 3 ms. The atom number is instead 
measured using horizontal absorption imaging with a TOF of 26 ms.

Similarly to a rotation of a bucket containing superfluid helium or 
of a smoothly deformed ODT for non-dipolar BECs, magnetostirring 
is predicted to transfer angular momentum into a dipolar BEC40,44. In 
response to such an imposed rotation, the shape of an irrotational 
cloud is expected to elongate with an amplitude that increases with 
the rotation frequency Ω. This phenomenon is clearly visible in our 
experiments, as shown in Fig. 1b. Here we first revolve the tilted ̂B 
around the z axis with a linearly increasing rotation frequency 
( ̇

Ω = 2𝜋𝜋 × 50Hz s

−1) and observe that the dipolar BEC starts to rotate 

minimum in the dispersion relation30–34. For vortex pairs, the aniso-
tropic DDI is expected to alter the lifetime and dynamics33,35 and can 
even suppress vortex–antivortex annihilation33. These interaction 
properties are predicted to give rise to a vortex lattice structure that can 
follow a triangular pattern30,34, as is typical for non-dipolar BECs11, or a 
square lattice for attractive or zero contact interactions36–38 when the 
DDI is isotropic (dipoles aligned with the rotation axis). A very striking 
consequence of the dipoles tilted towards the plane is the formation of 
vortex stripes30,39,40. Moreover, vortices could provide an unambiguous 
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Fig. 1 | Magnetostirring of a Dy dipolar BEC and evolution of the cloud aspect 
ratio. a, 3D simulations and corresponding shadow on the x-y plane of a 
non-dipolar (i) and dipolar BEC with B ≠ 0 (ii–iv) in a cylindrically symmetric, 
oblate trap. The magnetic-field (green arrows) angle with respect to the z axis 
varies from θ = 0° (ii) to θ = 35° (iii) and rotating at θ = 35° around z (iv). b, Left 
panels show the experimental sequence for the stirring procedure. The grey areas 
indicate the stage during which the images in the right panels were taken. The 
right panels are representative axial absorption images showing the dipolar BEC 
while spinning up the magnetic field for t

̇

Ω

= [140,430,627,692]ms (top) and 
subsequent constant rotation at Ω = 2π × 36 Hz for tΩ = [0, 6, 11, 17] ms (bottom). 
The rotation of the magnetic field in the x-y plane is indicated by the white line.  
c, (left) Time evolution of the magnetic field rotation frequency. Ω is linearly 
increased to its final value at a speed of ̇

Ω = 2𝜋𝜋 × 50Hz s

−1. (right) Cloud AR for 
different final rotation frequencies. To mitigate influences of trap anisotropies on 
the AR, a full period at the final rotation frequency is probed. The error bars, 
representing the standard error on the mean after 100 trials per point, are smaller 
than the symbol size. The solid (dashed) black line shows the corresponding eGPE 
simulations with a 2 s (1 s) ramp and as = 110a0, (ω#, ωz) = 2π × [50, 130] Hz, and 
N = 15,000. Different colors of the experimental point in the right panel indicate 
the corresponding time during the ramp in the left panel.
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FIG. 4. Time-of-flight interference pattern. a 36ms real-time
expansion interference pattern for three droplets (i) in the absence
of a vortex and (ii) with a vortex. b Experimental observation af-
ter TOF (i) without rotation and (ii) after 189ms of rotation at
⌦=0.3!? with ✓=30

�, before spiraling up to ✓=0
� in 11ms,

while ⌦ is kept constant. The supersolid is produced at 18.24(2)G
with (!?, !z)= 2⇡⇥ [50.0(4), 113(2)] Hz, the condensed atom
number N ⇡ 5 ⇥ 10

4. The theoretical parameters: N =5 ⇥ 10
4,

(!?,!z)= 2⇡⇥ [50, 113]Hz and as =92.5a0.

vortices directly in the supersolid state. To test the robustness
of this observation, we repeat the measurement many times,
and study the occurrence of the non-vortex [b(i)] or vortex
[b(ii)] pattern. Among the images with a clear interference
pattern, about 70% contain a vortex signature when rotating
above ⌦=0.3!?, see Methods. This can be understood by
considering that supersolid states exist in a very small pa-
rameter regime58, and typical shot-to-shot atom number and
magnetic-field (as) fluctuations can significantly alter the ob-
served interference pattern.

Conclusions

After three decades since the original predictions59, we re-
port on the observations of vortices in a supersolid state. This
result is relevant not only because it adds the final piece to
the cumulative framework of evidence for superfluidity in this
state12, but also because it reveals a distinctive vortex behav-
ior in the supersolid. The system’s characteristic response
to rotation can serve as a fingerprint to identify supersolid-
ity in diverse systems with multiple broken symmetries, over
scales ranging from solid-state systems30, high-temperature
superconductors60,61, and helium platforms29–32, to a neutron
star’s inner crust18,62.

Furthermore, in the context of supersolids, a fascinating in-
terplay of competing length scales emerges. These include
the separation between vortices, the wavelength of the self-
forming crystal, and the diameter of the vortex core. This
competition has the potential to lead to intriguing dynamics,
ranging from constrained motion and pinning to avalanche es-
cape. These phenomena are genuinely unique to supersolids.
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FIG. 1. Phase diagram and morphologies beyond the supersolid
droplet regime. (a) The left-hand side shows the N-as phase diagram
for trap frequencies ω/2π = (125, 125, 250) Hz. The right-hand
side shows 2D density cuts n(x, y, 0) at relevant points in the phase
diagram, shown by the corresponding markers. The density distribu-
tions for a specific marker are ordered in atom number from left to
right. The BEC at high atom numbers has a ring of depleted density
near its boundary (circles) and forms honeycomb structures toward
smaller scattering lengths (diamonds). The honeycomb structures
persist to higher atom numbers (squares) and move outwards to the
rim of the density distributions, while the core of the BEC spatially
saturates in density. An example of the pumpkin state can be seen in
Fig. 2. Dashed lines indicate crossovers between different regions.
(b) The transition between droplets and honeycombs occurs via
stripes (b2) that break up into droplets at small scattering lengths (b1).
At high atom numbers and low scattering lengths (b3–b6), labyrinth
structures form that are almost degenerate with many other mor-
phologically different labyrinth structures. The supersolid droplets
form density connections toward higher atom numbers and transition
to labyrinthine structures. The field of view for the 2D densities in
(a) and (b) is 14×14 µm2.

superglass phases, where crystalline or amorphous spatial
structure coexists with superfluid flow [53]. We find that the
BEC can transition to a variety of patterns, namely, supersolid
droplet (SSD), honeycomb, and stripe or labyrinth phases
[12,13,93,116]. The phase diagram is shown in Fig. 1(a) on
the left-hand side and examples of patterns for the different
phases are shown on the right-hand side and in Fig. 1(b).

As shown in Fig. 1(a) (circles), the BEC states near as,c
develop a radial substructure such that they differ from a
Thomas-Fermi density distribution. The BEC states in the
range N " (60–200)×103 near as,c show a ring of depleted
density near their boundary in addition to the maximum den-
sity in the center of the trap [Fig. 1(a), circles, left column]. At
intermediate atom numbers [N " (200–400)×103] a second
minimum in the center of the trap can occur and toward higher
atom numbers, the trap center is filled with atoms and only
the depleted density ring near the boundary remains [Fig. 1(a),
circles, right column]. A special case of the BEC shape occurs

toward lower atom numbers (N ! 50×103), where the maxi-
mum density in the center of the trap vanishes, leaving only
the density ring away from the trap center. These states are
known as biconcave or blood cell states [90,95,102,117–126]
due to the similarity to the shape of a red blood cell. Indi-
rect experimental evidence of these shapes has recently been
found [90] and a theoretical study explained their connection
to supersolid droplets by investigating elementary excitations
across the transition [92].

The honeycomb phase [Fig. 1(a), diamonds and squares]
forms for sufficiently high atom numbers with as < as,c,
where density bridges connect the central maximum and the
outer ring. When another density minimum is present in the
center of the trap, multiple rings with connecting density
bridges and honeycomb patterns with six, seven, or more
density minima form. These structures feature strong density
connections, facilitating superfluid flow along the honeycomb
pattern [12,75,80,93,127]. In combination with the crystalline
structure that develops, these states form a supersolid phase
[29,101]. Comparing the three-, four-, and six-droplet states
(stars) with the three-, four-, and six-minima honeycomb
states (diamonds) shown in Fig. 1(a) suggests that there is
a symmetry between positive droplets and negative droplets
on top of a background density distribution. In the infinite
quasi-2D system [93], it was shown that this is indeed a sym-
metry where the honeycomb structure becomes energetically
favorable over the hexagonal droplet crystal beyond a critical
density. We find that a similar symmetry exists in the harmon-
ically trapped finite size system we consider here [Fig. 1(a),
stars and diamonds]. The region in which the change from
droplet to honeycomb occurs is determined by an interplay
between the overall density and the quantum fluctuation
strength [93].

In a window of atom numbers where the BEC-SSD bound-
ary changes to the BEC-honeycomb boundary, the transition
below as,c can occur via stripes [Fig. 1(b), b2] or honeycomb
patterns deforming into stripes toward smaller as. The emer-
gence of the stripe phase between supersolid droplets and
honeycomb phases has been observed with quantum Monte
Carlo simulations [12] and in a mean-field theory in a scenario
where three-body interactions ∝n3 [101] take the stabilizing
role instead of quantum fluctuations ∝n5/2 [55,58,60]. We
have confirmed that toward larger aspect ratios, yielding larger
samples (toward the thermodynamic limit), the intermediate
stripe phase is enlarged in the phase diagram. When as is
further reduced, these stripes break up their connections and
reenter the supersolid droplet phase (b1). However, toward
higher N and smaller as, these stripes can curve and form
overlap with neighboring stripes, representing a small region
in the larger labyrinthine phase [Figs. 1(a) and 1(b), b3–b6].

This labyrinthine phase consists of elongated and curved
density stripes. The amorphous spatial structure together with
the strong density connections, supporting superfluid flow
along the labyrinthine stripes, classify the labyrinth as a su-
perglass [53]. In the labyrinthine regime [Fig. 1(b), b3–b6]
we cannot unequivocally determine the true ground state
by a random initial wave function or by choosing a previ-
ously found low-energy state, since we find for fixed N and
as many morphologically distinct labyrinthine patterns that
are almost degenerate [5,6,8,94,95,97,101], with total energy
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FIG. 1. Phase diagram and morphologies beyond the supersolid
droplet regime. (a) The left-hand side shows the N-as phase diagram
for trap frequencies ω/2π = (125, 125, 250) Hz. The right-hand
side shows 2D density cuts n(x, y, 0) at relevant points in the phase
diagram, shown by the corresponding markers. The density distribu-
tions for a specific marker are ordered in atom number from left to
right. The BEC at high atom numbers has a ring of depleted density
near its boundary (circles) and forms honeycomb structures toward
smaller scattering lengths (diamonds). The honeycomb structures
persist to higher atom numbers (squares) and move outwards to the
rim of the density distributions, while the core of the BEC spatially
saturates in density. An example of the pumpkin state can be seen in
Fig. 2. Dashed lines indicate crossovers between different regions.
(b) The transition between droplets and honeycombs occurs via
stripes (b2) that break up into droplets at small scattering lengths (b1).
At high atom numbers and low scattering lengths (b3–b6), labyrinth
structures form that are almost degenerate with many other mor-
phologically different labyrinth structures. The supersolid droplets
form density connections toward higher atom numbers and transition
to labyrinthine structures. The field of view for the 2D densities in
(a) and (b) is 14×14 µm2.

superglass phases, where crystalline or amorphous spatial
structure coexists with superfluid flow [53]. We find that the
BEC can transition to a variety of patterns, namely, supersolid
droplet (SSD), honeycomb, and stripe or labyrinth phases
[12,13,93,116]. The phase diagram is shown in Fig. 1(a) on
the left-hand side and examples of patterns for the different
phases are shown on the right-hand side and in Fig. 1(b).

As shown in Fig. 1(a) (circles), the BEC states near as,c
develop a radial substructure such that they differ from a
Thomas-Fermi density distribution. The BEC states in the
range N " (60–200)×103 near as,c show a ring of depleted
density near their boundary in addition to the maximum den-
sity in the center of the trap [Fig. 1(a), circles, left column]. At
intermediate atom numbers [N " (200–400)×103] a second
minimum in the center of the trap can occur and toward higher
atom numbers, the trap center is filled with atoms and only
the depleted density ring near the boundary remains [Fig. 1(a),
circles, right column]. A special case of the BEC shape occurs

toward lower atom numbers (N ! 50×103), where the maxi-
mum density in the center of the trap vanishes, leaving only
the density ring away from the trap center. These states are
known as biconcave or blood cell states [90,95,102,117–126]
due to the similarity to the shape of a red blood cell. Indi-
rect experimental evidence of these shapes has recently been
found [90] and a theoretical study explained their connection
to supersolid droplets by investigating elementary excitations
across the transition [92].

The honeycomb phase [Fig. 1(a), diamonds and squares]
forms for sufficiently high atom numbers with as < as,c,
where density bridges connect the central maximum and the
outer ring. When another density minimum is present in the
center of the trap, multiple rings with connecting density
bridges and honeycomb patterns with six, seven, or more
density minima form. These structures feature strong density
connections, facilitating superfluid flow along the honeycomb
pattern [12,75,80,93,127]. In combination with the crystalline
structure that develops, these states form a supersolid phase
[29,101]. Comparing the three-, four-, and six-droplet states
(stars) with the three-, four-, and six-minima honeycomb
states (diamonds) shown in Fig. 1(a) suggests that there is
a symmetry between positive droplets and negative droplets
on top of a background density distribution. In the infinite
quasi-2D system [93], it was shown that this is indeed a sym-
metry where the honeycomb structure becomes energetically
favorable over the hexagonal droplet crystal beyond a critical
density. We find that a similar symmetry exists in the harmon-
ically trapped finite size system we consider here [Fig. 1(a),
stars and diamonds]. The region in which the change from
droplet to honeycomb occurs is determined by an interplay
between the overall density and the quantum fluctuation
strength [93].

In a window of atom numbers where the BEC-SSD bound-
ary changes to the BEC-honeycomb boundary, the transition
below as,c can occur via stripes [Fig. 1(b), b2] or honeycomb
patterns deforming into stripes toward smaller as. The emer-
gence of the stripe phase between supersolid droplets and
honeycomb phases has been observed with quantum Monte
Carlo simulations [12] and in a mean-field theory in a scenario
where three-body interactions ∝n3 [101] take the stabilizing
role instead of quantum fluctuations ∝n5/2 [55,58,60]. We
have confirmed that toward larger aspect ratios, yielding larger
samples (toward the thermodynamic limit), the intermediate
stripe phase is enlarged in the phase diagram. When as is
further reduced, these stripes break up their connections and
reenter the supersolid droplet phase (b1). However, toward
higher N and smaller as, these stripes can curve and form
overlap with neighboring stripes, representing a small region
in the larger labyrinthine phase [Figs. 1(a) and 1(b), b3–b6].

This labyrinthine phase consists of elongated and curved
density stripes. The amorphous spatial structure together with
the strong density connections, supporting superfluid flow
along the labyrinthine stripes, classify the labyrinth as a su-
perglass [53]. In the labyrinthine regime [Fig. 1(b), b3–b6]
we cannot unequivocally determine the true ground state
by a random initial wave function or by choosing a previ-
ously found low-energy state, since we find for fixed N and
as many morphologically distinct labyrinthine patterns that
are almost degenerate [5,6,8,94,95,97,101], with total energy
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type I superconductors, that form labyrinthine patterns. The formation of the ferrofluid 
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found to be sensitively dependent on initial conditions, indicative of a space of configu- 

rations having a vast number of local energy minima. Certain geometric characteristics of 

the labyrinths suggest that these multiple minima have nearly equivalent energies. Kinetic 

effects on pattern selection were found in studies of fingering in the presence of time- 

dependent magnetic fields. The dynamics of this pattern formation was studied within a 

simple model that yields shape evolutions in qualitative agreement with experiment. 

Several distinct physical systems form 
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These include thin magnetic films (1, 2) ,  

amphiphilic "Langmuir" monolayers (3-5), 

and type I superconductors in magnetic 
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ics of these systems suggest a common 
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each case, the shape evolution is also dom- 

inated by dissipation. 

It has been recognized for some time, 

both in the context of amphiphilic systems 

(7) and superconductors ( 8 ) ,  that the com- 

petition between long-range forces and sur- 

face tension can result in a variety of regular 

patterns such as lamellar stripe domains and 

affiliated with the Princeton Materials Institute, Bowen hexagonal The more widely encoun- 

Hall, Princeton University, Princeton, NJ 08540. S. A. 

Langer is in the Department of Physics, Simon Fraser 
tered Or disordered, patterns are 

University, Burnaby, British Columbia, V5A 1S6, Can- poorly understood.~ In analyzing these 

ada. 

shapes, a, number of general questions nat- 

*To whom correspondence should be addressed. urally arise. (i) Is an observed time-inde- 

149. J. Cook et a/., Antisense Res. Dev. 2, 199 

(1 992). 
150. A. West and B. Cooke, Mol. Cell. Endocrinol. 79, 

R9 (1991). 

151. A. Witsell and L. Schook, Proc. Natl. Acad. Sci. 

U.S.A. 89, 4754 (1 992). 

152. C.A.S. is the Irving Assistant Professor of 

Medicine and Pharmacology at Columbia Uni- 

versity and is grateful to the Mathieson Foun- 

dation and the Dubose Hayward Foun- 

dation for support. A. Krieg, J. Reed, and M. 

Caruthers participated in helpful conversa- 

tions. The research of Y.-C.C. is supported by a 

grant from the National Cancer Institute (CA 

44538). 
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state or does the energy functional contain 

multiple minima? (ii) If the latter, are the 

minima roughly equivalent in energy? (iii) 

Might kinetic considerations force a relax- 

ing system into a metastable minimum in- 

stead of the true ground state? Such ques- 

tions are of course not confined to these 

particular examples of pattern formation, 

but also arise in systems such as spin glasses 

(9) and protein folding (1 0). 

Motivated by the above-mentioned sim- 

ilarities among labyrinthine pattern form- 

ing systems, we have investigated the fin- 

gering instabilities of macroscopic domains 

of magnetic fluids (also known as "ferroflu- 

ids")., which are colloidal suspensions of 

microscopic magnetic particles in a hydro- 

carbon medium (1 1). Ferrofluids are known 

to produce complex labyrinthine patterns 

when trapped between closely spaced glass 

plates (a "Hele-Shaw cell") and subjected 

to a magnetic field normal to the plates 

(1 1-13). Here, as in the systems described 

above, there is a competition between the 

ferrofluid-water surface tension and bulk 

induced magnetic dipole interactions. The 

motion satisfies a global constraint (fixed 

fluid volume) and is-dominated by viscbsity. 

The macroscopic nature of this system af- 

fords distinct experimental advantages, in- 

cluding ease of visualization and direct con- 

Fig. 1. Stages in the fingering instability of a 

magnetic fluid drop of initial diameter 2.1 cm, in 

a field of 87 gauss, as seen from above. 
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Description	microscopique	des	interactions

Dans	ce	cours,	nous	avons	modélisé	les	interac(ons	par	le	poten(el	“simple”	

V(r) = g δ(r) +
3gdd

4π
1
r3 (1 − 3 cos3 θ)

Masque	une	réalité	beaucoup	plus	complexe	qui	conduit	à	un	spectre	de	résonances	de	diffusion	“chao(que”:

atom-atom processes, where the spin projection of one or
both of the atoms changes, are absent, and consequently,
Feshbach resonances can be readily observed. In fact, in
collisions with atoms in this ‘‘stretched’’ state there exists
exactly one channel with zero relative nuclear orbital

angular momentum ~‘. Consequently, for ultracold colli-
sions resonances only occur due to anisotropic coupling to
bound states with nonzero ‘. This is in contrast with
collisions between alkali-metal atoms in the energetically
lowest hyperfine level. Multiple ‘ ¼ 0 or s-wave channels
are present and s-wave Feshbach resonances exist.

We start by setting up the Hamiltonian, interatomic
potentials, and channel basis for two bosonic 5I8 Dy atoms
with zero nuclear spin. This Hamiltonian assuming a mag-
netic field B along the ẑ direction is

H ¼ " @2
2!r

d2

dR2 þ
~‘2

2!rR
2 þHZ þ Vð ~R; "Þ; (1)

where ~R describes the orientation of and separation be-
tween the two atoms. The first two terms are the radial
kinetic and rotational energy operators, respectively.
The Zeeman interaction is HZ ¼ gj!Bðj1z þ j2zÞB with
gj ¼ 1:24159 the g factor of Dy [21], and jiz is the z
component of the angular momentum operator ~|i of atom
i ¼ 1, 2. The electronic Hamiltonian, including nuclear
repulsion, Vð ~R; "Þ is anisotropic, and " labels the electronic
variables. Finally, !r is the reduced mass, and for R ! 1
the interaction Vð ~R; "Þ ! 0.

Our coupled-channel calculations [22] are performed in
the atomic basis jðj1j2Þjmj; ‘m‘i & Y‘m‘

ð#;$Þjðj1j2Þjmji,
where ~| ¼ ~|1 þ ~|2 with its projection mj, Y‘m‘

ð#;$Þ is a
spherical harmonic and angles # and$ give the orientation
of the internuclear axis relative to the magnetic field
direction. In this basis, the Zeeman and rotational interac-
tion are diagonal with energies gj!BmjBþ @2‘ð‘þ 1Þ=
ð2!rR

2Þ. Coupling between the basis states is due to
Vð ~R; "Þ and will be discussed in detail below. Excited
atomic states, for example those with ji ! 8, are not in-
cluded as their internal energy is sufficiently high that the
effects of coupling to these states is negligible. The
Hamiltonian H conservesMtot ¼ mj þm‘ and is invariant
under the parity operation so that only even (odd) ‘ are
coupled. For homonuclear collisions, only basis states with
even jþ ‘ exist. Figure 1 shows an example of the long-
range diagonal matrix elements in the atomic basis of the
sum of the rotational, Zeeman, and electronic Hamiltonian.
We have used Mtot ¼ "16 and even ‘ ' 10. In fact, only
the potentials dissociating to the six energetically lowest
Zeeman states are shown. The large number of potentials
indicates the large number of resonances that, in principle,
are possible.

Coupling between basis states is due to Vð ~R; "Þ. It is
convenient to first evaluate this operator in a molecular
basis with body-fixed projection quantum numbers defined

with respect to the internuclear axis. We use the molecular
basis jðj1j2Þj!i with projection ! of ~| along the internu-

clear axis. The matrix elements of Vð ~R; "Þ conserve the

projection ! but not j. The eigenenergies of Vð ~R; "Þ at
each value of R are the adiabatic (relativistic) BO poten-
tials [23,24]. Typically, these potentials Unj!j%ðRÞ are ob-
tained from an electronic structure calculation and labeled
by nj!j(% , where j!j is the absolute value of !, % ¼ g=u
is the gerade/ungerade symmetry of the electronic wave
function, and n ¼ 1; 2; . . . labels curves of the same j!j(g=u
in order of increasing energy. For bosonic Dy2, the 81
gerade (72 ungerade) states are superpositions of even
(odd) j.
For R> 27a0, beyond the Le Roy radius where the

atomic electron clouds have negligible overlap, Vð ~R; "Þ is
the sum of the magnetic dipole-dipole, V!!ð ~RÞ / 1=R3,

the electrostatic quadrupole-quadrupole, VQQð ~RÞ / 1=R5,

and the van der Waals dispersion Vdispð ~RÞ / 1=R6 interac-

tion. Reference [15] reported the matrix elements of the

operator Vdispð ~RÞ in the molecular basis and tabulated the

adiabatic C6;n!% dispersion coefficients obtained by diago-

nalizing Vdispð ~RÞ. Crucially, the eigenfunctions of Vdispð ~RÞ
are independent of R.
At shorter range, coupling between basis states is more

complex. Rather than determining all BO potentials, we
have opted for the following approach. First, we calculate
the single gerade potential U16gðRÞ with maximal projec-

tion ! ¼ 16 (and omitting the n ¼ 1 label) using a
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FIG. 1 (color online). Potential energy curves for 164Dyþ
164Dy collisions in a magnetic field B as a function of internu-
clear separation. The (red) dashed line with zero energy indicates
the energy of the entrance channel. A resonance occurs when a
bound state energy equals the entrance-channel energy.
The graph shows the 91 diagonal potential matrix elements at
B ¼ 50 G for channels jðj1j2Þjmj; ‘m‘i with mj þm‘ ¼ "16
and even ‘ ' 10. The curves are colored by their mj value.
The ‘ value for mj ¼ "16 curves is indicated. Here 1 G ¼
0:1 mT, a0 ¼ 0:0529177 nm is the Bohr radius, and
k ¼ 1:38065) 10"23 J=K is the Boltzmann constant.
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our results imply the presence of highly anisotropic interactions,which
call into play resonant states of high orbital momentum. We answer
these questions in the affirmative using full coupled-channel calcula-
tions, supported by an analytical model.
We construct a first-principles coupled-channel model for Er1Er

scattering to calculate the spectrumofFano–Feshbach resonances. Fol-
lowing ref. 18, our model uses the atomic basis set and Hamiltonian
(Methods) that includes the radial kinetic and rotational energy opera-
tors, the Zeeman interaction and the 91 anisotropic B–O potentials.
For small interatomic separations, R, the B–O potentials are calculated
using theab initio relativistic,multi-reference configuration–interaction
method21. At intermediate to large values of R, the B–O potentials are
expressed as a sum ofmultipolar interaction terms. The van derWaals
dispersion interactionpotentials (/ 1/R6) are determined fromexperi-
mental dataonatomic transition frequencies andoscillator strengths22,23.
An important point is that thedispersionpotentials have both isotropic
and anisotropic contributions. The latter comes from the non-S state
character of the Er electronic ground state. The B–O potentials thus
induce either isotropic (, andm, conserving) or anisotropic (, or m,

changing) couplings. Here, , and m, are the partial-wave quantum
number and its projection on the magnetic field quantization axis.
We perform coupled-channel calculations for bosonic 168Er, con-

sidering s-wave (,5 0) collisions and couplings to molecular states
with even , up to Lmax5 20. We calculate the elastic collisional rate
coefficient as a function ofmagnetic field to obtain the Fano–Feshbach
resonance spectrum. ForLmax5 20,we observe a very dense resonance
spectrum with about 1.5 resonances per gauss, which qualitatively re-
produces our experimental observation (Extended Data Fig. 2). We
note that resonances belonging to incident channels with ‘w0 are
substantially narrower and do not contribute much to the density of
resonances. To get deeper insight into the role of the anisotropy of the
potentials, we calculate the mean density of resonances, !r, from our
coupled-channel calculations for different values of the maximum par-
tial wave Lmax (Fig. 2). For Lmax up to 20, we observe that !r increases

with Lmax in a quadratic manner. This dependence stands in stark
contrast to alkali-metal atoms, where high-‘ resonances tend to be
too narrow to be observed.
Because our limited computational resources do not allow us to

perform calculations for Lmax. 20, it is worth estimating the density
of resonances in a simpler way, based on the separated atom quantum
numbers3. The key ideas of ourmodel are the following. For each chan-
nel jj1mJ,1, j2mJ,2, ,m,æ, we define the long-range potential 2C6/R

61
B2,(,1 1)/2mR21 gmB(mJ,11mJ,2)B, whereC6 is the isotropic van der
Waals coefficient of the B–O potentials and B is Planck’s constant
divided by 2p. Here m is the reduced mass, g is the atomic g-factor and,
for ground-state Er, C65 1,723 atomic units (a.u.). Fano–Feshbach
resonances in our open channel with mJ,1526 andmJ,2526 are due
to couplings to the most weakly bound rovibrational level of closed
channels. For a van derWaals potential2,24 this bound state has a bind-
ing energy thatmust fall within the ,-dependent energywindow [2D,,
0] with D,. 0. The short-range potentials are not accurately known
and, for each closed channel, there is a probability dEb/D, of finding a
bound state with a binding energy between Eb and Eb1 dEb. From ref.
24 andnumerical simulations,we findD,/EvdW< 38.71 25.5,1 3.17,2,

whereEvdW~B2
!
2mx2vdW and xvdW~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mC6

!
B24

q
=2. Eachclosed chan-

nel contributes gmBdm/D, to the mean resonance density, where
gmBdm. 0 is the magnetic-moment difference of the closed and open
channels and dm is their difference in molecular projection quantum
numbers. Adding the contributions for the closed channels gives the
total mean resonance density. This simple counting technique, which
wehere name randomquantumdefect theory (RQDT), yields themean
density of resonances shown in Fig. 2. For Lmaxƒ20, the results of our
analytic RQDT agrees very well with the exact coupled-channel calcu-
lations. For larger values of Lmax, the density of resonances keeps
growing and eventually saturates to a value around r< 4G21, which
is close to the one observed in the experiment. RQDT shows that at
least 40 partial waves need to be considered to reproduce the experi-
mental observations.
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Figure 1 | Fano–Feshbach spectrum of 168Er and 166Er from 0 to 70G. The
trap-loss spectroscopy is performed in an optically trapped sample of Er atoms
in the energetically lowest Zeeman sublevel, mJ526, at a temperature of
330nK. The atom number is measured after a holding time of 400ms. We

observe 190 Fano–Feshbach resonances for 168Er (a) and 189 resonances for
166Er (b). Resonance positions are extracted by fitting a Gaussian shape to
individual loss features; a full list is given in Extended Data Tables 1 and 2.
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