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Introduction

Solitons are fascinating objects that appear in many fields of science,
from hydrodynamics to biology, mathematics, theoretical physics and
chemistry. Their existence is based on a nonlinear process, making them
intrinsically difficult to describe. It is hardly surprising, then, that the con-
cept has taken a long time to establish itself in all its generality: it is only
since the 1960s that the universal nature of solitonic structures has been
understood, beyond the various contexts in which they appear.

In this course, we will discuss a relatively recent field of research, based
on the use of coherent matter waves to generate and characterize solitons.
This field emerged around 25 years ago, with the possibility of manipulat-
ing and shaping Bose-Einstein condensates formed from laser-cooled and
trapped atoms. It has developed considerably since then, and we will be
presenting several remarkable achievements.

The date of birth of the scientific study of solitons is known': in Au-
gust 1834, the Scottish engineer John Scott Russell (1808-1882), inspecting
the canal linking Edinburgh and Glasgow, observed the birth of a wave
generated by the sudden stop of a boat. He described the phenomenon as
follows:

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped — not so the mass of
water in the channel which it had put in motion; it accumulated round the prow
of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course along
the channel apparently without change of form or diminution of speed. I followed

IThe historical aspects described here are mainly taken from Ablowitz & Segur (1981),
Drazin & Johnson (1989), Dauxois & Peyrard (2006) and Marin (2012). One can also consult
the comprehensive article by Darrigol (2003).

it on horseback, and overtook it still rolling on at a rate of some eight or nine miles
an hour, preserving its original figure some thirty feet long and a foot to a foot
and a half in height. Its height gradually diminished, and after a chase of one or
two miles I lost it in the windings of the channel. Such, in the month of August
1834, was my first chance interview with that singular and beautiful phenomenon
which I have called the Wave of Translation

The main characteristics of a soliton are identified: "large solitary eleva-
tion", "without diminution of speed", "preserving its original figure". Over the
next ten years, Russell devoted a great deal of time, both theoretically and
experimentally, to characterizing this "translation wave" (which he also
called the "large solitary wave"). He even went so far as to build a 10-
meter-long pond in his garden for measurements. Russell published all his
results in Russell (1844), but his work was met with skepticism from his
contemporaries, especially Airy and Stokes. The latter’s arguments were
in fact irrelevant, as they were based on a linear approach — the only one
known at the time — to wave propagation; yet the solitons observed by
Russell are intrinsically nonlinear. Unfortunately, Russell did not have the
right wave equation to answer these objections, so he abandoned his re-
search.

Towards the end of the 19th century, the Frenchman Boussinesq (1871),
the Englishman Rayleigh (1876), then the Dutchmen Korteweg and de
Vries (1895), understood the wave structure observed by Russell and es-
tablished its equation of motion?. For a relatively narrow channel of axis x
and for shallow water, this equation can be written (in reduced units and

2The genesis of the ideas around the KdV equation is described by Darrigol (2003) and by
De Jager (2006). See also R.K. Bullough’s contribution in Lakshmanan (1988).



in an appropriate reference frame):
Up = —Ugze — OUUy (1)

where u(z,t) represents the height of the water above its reference level®
The solitonic solution of this equation is

B v/2
cosh? [y/v/2 (z — vt)]

i.e. a structure that propagates without deformation at speed v.

u(x,t) = v>0, (©)

Once this solution was known, interest in this type of problem waned.
It was not until the early 1950s, with the work of Fermi, Pasta, Ulam and
Tsingou4 (Fermi, Pasta, et al. 1955) to see solitonic behavior emerge again.
This article actually describes the first digital experiment, as Fermi sought
to use the brand-new computer at his disposal, the MANIAC, to explore
physical phenomena. The initial idea was to solve the equations of motion
of 64 nonlinearly coupled oscillators, in order to demonstrate a thermaliza-
tion phenomenon. The conclusion of this work was non ambiguous®: The
results show very little, if any, tendency toward equipartition of energy among the
degrees of freedom.

What was going on? One had to wait another ten years for the work
of Zabusky & Kruskal (1965) to elucidate the paradox. These authors first
showed that the problem studied by Fermi and his collaborators boiled
down to solving the Kortewew — de Vries equation. They also understood
that the initial condition chosen by Fermi fragments into several solitons,
which collide with each other without deforming, before reproducing the
initial state almost identically. Zabusky & Kruskal (1965) introduced the
word "soliton"® and wrote:

3In this course, we will use the notations :

_ _ Ou . ou .3 O
ut:(’ﬂtu_a uz:é)zuza uzzz:é)zu:@. 2)

“The article (actually a classified report from Los Alamos) is signed by the first three au-
thors only, but it explicitly mentions that the work was done by the three signatories and
Mary Tsingou [see, for example, Dauxois (2008)].

5Tn fact, we now know that if Fermi and his collaborators had used a significantly stronger
nonlinearity, they would have reached a threshold where the dynamics of their system would
have become chaotic, leading to equipartition of energy.

6They first tried "solitron", but this word had already been pre-empted by a company.

In other words, solitons “pass through” one another without losing their iden-
tity. Here we have a nonlinear physical process in which interacting localized
pulses do not scatter irreversibly.

Since then, solitons have remained at the forefront of the scientific
scene, with considerable impact in a wide variety of fields. They can ap-
pear in any system governed by a nonlinear equation, and they result from
a competition between two terms, one tending to spread the solitonic object
in question, the other tending on the contrary to compress it. The nonlin-
ear nature of the problem links the size of the object to its amplitude, as
seen on the solution (3) of amplitude v and width ~ 1/y/v. These solitons
are found in particular in optics and hydrodynamics, with fruitful parallels
between the two fields.

As mentioned above, this series of lectures will focus on the physics of
solitons generated from matter waves in ultra-cold atomic gases. The nec-
essary nonlinearity will come from the interaction between atoms, which
we will describe using a mean-field approach, limiting ourselves to one-
dimensional systems for simplicity. The outline of this lecture series will
be as follows:

¢ The first two chapters will be devoted to the case of an attractive in-
teraction, for which the soliton consists of an aggregate of atoms, gen-
erally propagating on a dark background. In Chapter 1, we will estab-
lish the evolution laws of a soliton based on the nonlinear Schrodinger
equation. We will then generalize these laws to the case of several soli-
tons, and demonstrate the possibility of generating large-amplitude
"rogue waves" from an almost uniform wave (figure 1). Then, in chap-
ter 2, we will introduce an extremely powerful theoretical approach to
studying these solitons, called inversion scattering transform (IST), and
discuss the possibility of generating and analyzing "multi-solitons".

¢ Chapter 3 will be devoted to the case of repulsive interaction, which
allows the realization of dark solitons, i.e. density holes with the right
phase profile to obtain stable structures propagating at constant veloc-
ity. We will also tackle the tricky problem of defining the momentum
of a soliton, which we will link to the counterflow existing in the bath
on either side of the density hole.

¢ In Chapter 4, we turn to a broader class of solitons, called magnetic



Figure 1. The Great Wave of Kanagawa, print by Katsushika Hokusai, 1831.
The connection with a rogue wave is explained by Cartwright & Nakamura (2009)
and Dudley, Sarano, et al. (2013).

solitons. We will see how these can be realized in a mixture of conden-
sates, and we will study a remarkable property of these magnetic soli-
tons: when subjected to a constant force, they do not undergo a uni-
formly accelerated motion as one would intuitively expect, but take on
an oscillatory motion, reminiscent of the Bloch oscillations of a quan-
tum particle in a spatially periodic lattice. We will analyze this phe-
nomenon and describe its very recent experimental demonstration.

On a subject as vast as solitons, this series of lectures can by no means
claim to be exhaustive. Our aim is to illustrate some salient properties of
these objects, linked to their robustness and the consequences of the inte-
grability of the underlying evolution equations. We refer readers wishing
to delve deeper into the subject to recent articles or books, such as Mal-
omed (2022), Dudley, Finot, et al. (2023), Suret, Randoux, et al. (2024) and
Malomed (2024) for multi-dimensional aspects.

Acknowledgements I am very grateful to Jérome Beugnon, Guillaume
Brochier, Raphael Lopes, Sylvain Nascimbene and Franco Rabec for multi-
ple discussions on the subject and for proofreading a preliminary version
(in French) of these lecture notes.






Chapter I

Bright solitons

The first chapter of this course is devoted to the simplest configuration
for the emergence of a solitonic structure for matter waves: a set of inter-
acting atoms forced to move along a straight line. The soliton then appears
as the ground state of the system, with the IV atoms forming a bound state.
The spatial extension of this state results from a balance between attractive
interactions, which tend to reduce the size of the soliton as much as possi-
ble, and the kinetic energy linked to particle confinement, which tends on
the contrary to extend the atomic wave packet.

This structure is called a "bright soliton" because the atoms form a den-
sity peak located at an arbitrary position on the straight line along which
they can move. Outside this density peak, the probability of finding a par-
ticle is negligible. We will see that the wave function describing this state is
the solution of lowest energy for the nonlinear Schrodinger equation (also
known as the Gross—Pitaevskii equation) in the one-dimensional geometry.

Once we have understood this solitonic structure, we will turn our at-
tention to more complex structures than this simple bright soliton. In par-
ticular, we will show that solitons behave like particles when they interact
with each other, i.e. they emerge "unchanged" from a binary soliton-soliton
collision. We will also present structures that are non-stationary, but can
recur periodically over time (breathers).

The chapter ends with a model to explain the formation of soliton trains
in gases whose interactions are suddenly changed from repulsive to attrac-
tive. We will say a few words about the dynamics of an assembly of atoms
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Figure 1.1. A gas of particles forced to move along a straight line. Particles interact
with each other through a contact potential.

with energies well above the ground state, giving rise to a gas of solitons.
This dynamic provides a model to explain the existence of "rogue waves"
in hydrodynamics, i.e. waves with a very large amplitude that may emerge
in an otherwise nearly flat sea.

Many of the results shown in this chapter are related to the integrability
of the 1D nonlinear Schrodinger equation. Here, we will restrict ourselves
to pointing out these integrability signatures. We will return to this notion
in greater detail in Chapter I

1 A bright soliton at rest

Most of this course will be devoted to effectively one-dimensional situ-
ations for quantum fluids. These are obtained by strongly confining the
fluid along two directions in space (noted here as y and z), so that the two
corresponding degrees of freedom can be considered frozen. On the other
hand, motion along the z direction is free, and this is what we will be fo-
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cusing on (figure 1.1). We will come back in §2-4 to the validity conditions
for this one-dimensional approach.

For the electromagnetic field, this one-dimensional situation is ob-
tained by sending light through a single-mode optical fiber. For atoms or
molecules, confinement in the y, z directions can be achieved with a strong
magnetic field gradient or by using light beams to create an optical lattice,
for example. In what follows, we will start from the case of a gas of atoms
to construct solitons, but the results obtained will also apply to the case of
light pulses propagating in a fiber.

1-1 The Gross-Pitaevskii energy functional

Throughout this course, we will assume that interactions between atoms
are binary, short-range and describable by a contact potential. For two
atoms located at z; and x5, we will assume

V(z1,22) =g 6(z1 — 22) 1.1)

where the real coefficient g characterizes the strength of the interactions.
The cases g < 0 and g > 0 correspond to attractive and repulsive interac-
tions, respectively. The 1D situation considered here is much simpler than
the three-dimensional case, where the contact interaction must be regular-
ized to avoid uncontrolled divergences (see courses 2020-21 and 2021-22).
Here, the Dirac distribution simply corresponds to the limit of a potential
well (g < 0) or a potential bump (g > 0), with a width small compared to all
the physical quantities of the problem (in particular the distance between
particles).

We assume in this paragraph that the quantum fluid is well described
by a classical field approach. The state of the fluid at an instant ¢ is there-
fore characterized at a point = by a complex wave function v (x, t), normal-
ized by the total number of particles along the length accessible to the gas,
which we will assume here to be infinite:

/+°o |(z,t)* de = N (1.2)

— 00

and corresponding to the spatial density at point x:

p(z,t) = Wj(xat)'Q' (1.3)
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The total energy of the gas is given by the Gross—Pitaevskii functional

Qm/’ dx—i—%//p(x)‘/(xm)p

where the first term corresponds to kinetic energy and the second to in-
teraction energy. This expression is simplified for contact interaction (I.1)

to
Zm/‘

This energy functional corresponds to a mean-field description of the fluid,
where each particle evolves in a potential proportional to the local fluid
density p(x).

ED)[y (z') da da’ (1.4)

E(lD)

do + 2 /|¢ )|t da (L5)

The equation of motion deduced from the energy functional (I.5) is the
nonlinear Schrodinger equation (or Gross-Pitaevskii equation):

N h2 9%

Mo = omas b

+ gy (Le)

We will often use a dimensionless version of this equation. For this, let
us introduce a unit of length ¢ and a unit of time ¢y (which are arbitrary

at this stage)

=2 = 17)
Zo to

We link these units of length and time by

2ma3
to = — 0 (1.8)
and we simultaneously make the function change
u(@d) = || 3 vl t) (19)
so that the norm of w is related to that of 9 by:
/|u(5c )|>dz = /|¢ (z,1)|? d. (1.10)
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The nonlinear Schrodinger equation is then written as

Ou 0%u 9

Nmzxg

with G = 2

(L11)

At this stage, the length scale x is still arbitrary. In what follows, we will
choose it so that G = +1 for repulsive interactions (¢ > 0) and —1 for
attractive interactions (g < 0):

h2
= — 112
" Nl 2
with the associated time scale given the link (I.8) between ¢y and z(:
2h3
th= —— . 1.1

We will therefore write the equation for the evolution of the function u
in the form :

g + Uge * 2|u|2u:0 (1.14)

where we have omitted the © above the variables x and ¢ to simplify the
writing and where we have adopted here the usual notation

_ Ou 0%u

=5  tm=g (1.15)

Ut

The + sign in (I.14) corresponds to the attractive case g < 0 (called the
focusing case in nonlinear optics), on which we will concentrate in this
chapter. The — sign corresponds to the repulsive (defocusing) case, which
we will describe in chapter III, and gives rise to dark solitons.

This equation appears in many other physics problems, such as the
propagation of the envelope of a light pulse in an optical fiber, or deep-
water wave dynamics [see, for example, Dudley, Genty, et al. (2019) and
refs. in]. Note that in the case of a light pulse propagating in an optical
fiber, the roles of space and time variables are reversed: the variable 7 in
the above equation represents the position along the fiber and the variable
7 is related to time (Dauxois & Peyrard 2006).
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1-2 Some general properties

The nonlinear Schrodinger equation has a number of general properties,
independent of the chosen initial condition, which will play a crucial role
in what follows. These properties are well known for the usual (i.e. linear)
Schrodinger equation as a consequence of the Hermitian character of the
Hamiltonian, and they remain valid in the presence of the nonlinearity of
(L6).

Conservation of the number of particles. The number of particles is
given by the squared norm of the function (z, t), as indicated in (I.2). We
simply check that

dN

=@ [v@w) (116)

vanishes. To do this, simply use the evolution equation (1.6) and its com-
plex conjugate, then perform integration by parts for the kinetic energy

term:
[@vyo=- [ @) @)= [0 (@),

We have assumed here that © is sufficiently regular and tends to 0 fast
enough at infinity for these manipulations to be legitimate.

(1.17)

Momentum conservation. The momentum associated with the wave
function ¢ is obtained by taking the average of the momentum operator
p = —ih0,:

p= 7ih/ U (0z1) (1.18)
and we can check that
dp
i 0. (1.19)

The cancellation of the kinetic energy term is ensured as above (as for the
linear Schrodinger equation), and the contribution of the interaction terms
is proportional to [ 9,]¢|*, which cancels out assuming that 1) decreases
fast enough at infinity.
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Energy conservation. This conservation is in fact assured insofar as the
evolution equation (I.6) is obtained from the energy functional (I.5). It can
also be checked directly by taking the derivative with respect to time of the
functional (1.5) and ensuring that all terms cancel out after the appropriate
integrations by parts.

Homothety. We can check that if ¢(z, t) is a solution to (1.6), then

Ve(z,t) = ko (Ka, mzt) (1.20)

is also a solution of this equation for the same mass m and the same inter-
action parameter g, with each term of the nonlinear Schrodinger equation
multiplied by 3. Note that ¢ and 1,, correspond to different numbers of
particles:

/|1/)(x,t)|2dx =N = / | (z,1)|? dz = KN. (1.21)

1-3 Stationary solution: the fundamental soliton

For the moment, we will not attempt to give families of time-dependent
solutions to the equation (1.6) and we will restrict ourselves to stationary
solutions:

b, t) = p(a) e N (1.22)

satisfying the equation

(1.23)

For a gas of atoms, the quantity p corresponds to the chemical potential,
i.e. the energy required to add a particle to the system. We will check this
property a little further on.

In a box of size L — 400 and for a finite number of particles N, the
equation (L.6) always has as its solution the constant function correspond-
ing to a density p = N/L — 0, i.e. zero chemical potential. The energy (I.5)
associated with this uniform solution is also zero.

14
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-15 -10 -5 0 5 10 15

Figure 1.2. Profile of the bright soliton given by equation (1.24).

In the attractive case we are interested in here, it is possible to find sta-
tionary solutions of (1.6) or (1.14) corresponding to negative ;s and E. In the
dimensionless version (1.14), a possible solution is:

elt / | ‘2 1 )
u xr =
coshx

with the chemical potential equal to —1. This function is plotted for ¢ = 0 in
figure 1.2. More generally, given the homothety property mentioned above,
we find the family of solutions

/ |u|? dz = 2k .

Let us express the solution (I.25) with dimensioned variables, choosing
k = 1/2 so that the link (I.10) between the norms of u and ¢ results in

u(zx,t) = (1.24)

_ K ikt
u(z, t) = cosh(na) (1.25)

k=1/2: /|u|2 de=1 = /W\Q dz = N. (I.26)
We then find
wO —iut/h . hQ N
= - 1 h = — = _—
V(= t) cosh(x/2x0) ¢ with o Nm|g| Yo dxg
(1.27)
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E/l’()
Figure 1.3. Variation of total energy with wave packet size.

with the chemical potential :

lmg

ith =
wi =g

= —3aN? (1.28)

The energy of the Gross—Pitaevskii functional associated with this wave
function is E = Eyi, + Eins with

Exin =aN®  Ep=—-2aN?® (1.29)
so that
a0

We then recover the relationship between the chemical potential and the
energy:
OF

b= onr (I.31)

The fact that the energy is negative indicates that we are dealing with a
bound state: the (negative) interaction energy is greater in absolute value
than the kinetic energy, and the N-particle system minimizes its energy by
forming a wave packet of size x(, inversely proportional to the number of
particles N. More precisely, for a wave packet of size , these two energies

vary as follows

h? 219l
Ekin = NW Eint =-N 7 (1-32)

15

so that the total energy Euin, + Ein has the shape shown in figure 1.3, with
a minimum for ¢ ~ z.

We have considered here the solution centered at x = 0, but as the
problem is invariant by translation, the function ¢(z — a), where a is any
distance, is also a solution for the same energy.

Note: norm of a soliton. For the wave function (1.27), we find as indi-
cated that [ |[¢(z)|> dz = N. In the literature, this situation is frequently
referred to as the "N-norm soliton". In the usual sense of the norm of wave
functions, it is the square of the norm of ¢ that is N and the wave func-
tion is of norm v/N. One must therefore be careful to re-establish the true
normalization of the wave function in question, depending on the context.

1-4 The quantum version of the problem

Remarkably, certain physical quantities of a 1D assembly of quantum par-
ticles obeying Bose statistics and in contact interaction can be calculated
exactly, both in the repulsive and in the attractive case.

The system’s Hamiltonian can be written as

sz +g25 7xj

1<J

(1.33)

In the repulsive case (g > 0), Lieb & Liniger (1963) determined the spec-
trum of the Hamiltonian and the corresponding eigenstates using Bethe’s
ansatz. In the attractive case of interest here, McGuire (1964) calculated
exactly the energy of the ground state:

mg*

E =
- 24h?

N(N%-1). (1.34)

The associated wave function is written, to within a normalization coeffi-
cient [Castin & Herzog (2001) and refs. in]:

_ m|g|
e Dl = s

1<J

Wi,

(L35)

7xN)
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0.20

=0) [N/E]

p(z|Z

0.10

0.0 20 4.0 6.0
z[g]

Figure 1.4. Function p(z|Z.m = 0) giving the probability of finding a particle at
point z, knowing that the center-of-mass of the N particles is located at Z = 0.
Solid line: result obtained for the N-body wave function (1.35) of the ground state.
Dashed line: result obtained for the wave function 1 (x) of a soliton in the classical
field approach, breaking the translational invariance of the quantum problem. Left
(resp. right) panel: N = 10 (resp. N = 45).

In the limit of a number of atoms much larger than 1, the energy is very
close to that found using the functional (1.30), the relative difference being
of order 1/N2.

As far as the states are concerned, we immediately note a major differ-
ence between the soliton wave function, 9(x) o< 1/ cosh(z/2x() and the N-
body wave function (1.35): the former is localized in the vicinity of z = 0,
whereas the latter is completely delocalized, a natural consequence of the
translational invariance of the quantum many-body problem. To explore
this point further, Castin & Herzog (2001) have calculated, from the N-
body wave function, the probability of finding a particle at z, knowing the
position Z., of the center-of-mass of the ensemble. This quantity is plot-
ted in figure 1.4 for N = 10 and N = 45 particles. We can see that it is very
close to the classical field result obtained from #)(z), the agreement being
all the better as IV is larger.

The situation encountered here is an example of a very general problem,
where a broken-symmetry description of a system (here, the wavefunction
¥ (x) solution of the nonlinear Schrédinger equation) is compared with the
exact many-body wavefunction of the system (here, the state (1.35)), which
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itself respects this symmetry. Another example of this issue is the deter-
mination of the relative phase of two condensates (Javanainen & Yoo 1996;
Castin & Dalibard 1997).

2 The bright soliton in motion

2-1 Soliton in uniform motion

The Schrodinger equation has a Galilean invariance that is not modified
by the addition of the nonlinear term in (1.6). Starting from a stationary
solution (1.22), we can generate a family of solutions corresponding to the
transition to a frame of reference in uniform translation with respect to the
initial frame of reference:

W(x,t) — P(x — vt, t) em(ve=vt/2)/h (1.36)

Each solution here corresponds to a soliton whose envelope (i.e. the
modulus of ) is moving at speed v, its total energy being the sum of its
internal energy (1.30) and the kinetic energy of the center of mass Nmuv? /2.
The corresponding momentum is P = Nmuv and the wave function is:

wo eimvz/h e R
1) = it(u+muo /2)/?‘1' .37
Yl t) cosh[(x —vt)/on]e (1.37)

As shown by Dauxois & Peyrard (2006), this family of solitons corresponds
to the set of possible solutions of the nonlinear Schrédinger equation when
we impose the form

Y(x,t) = Alz — v,t) ?@ort) (1.38)
where v, and v, correspond to the propagation velocities for the amplitude
and the phase. Note that it is not possible to have a solution with a constant

profile, i.e. v, = vy, unlike in the case of the Korteweg—de Vries and sine-
Gordon equations.
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2-2  Action of a force on a soliton

Galilean invariance is just a special case of a more general invariance of
the Schrodinger equation (linear or nonlinear). We can check that if the
function ¢ (z, t) is a solution of

13} h? 92

ih O = LS gy (1.39)

then the function ¢(x,t) defined by

i . 1 rt.
o) = ol = 0] oo |7 (63 [@ar)| a0
is solution of
0 h? 9? -

iha—f = *%87(5 + glo]?p —méx . (141)

Galilean invariance (1.36) corresponds to the case £(t) = vt with a veloc-
ity v independent of time, but the result (1.41), sometimes called extended
Galilean invariance (Greenberger 1979), can be used to deal with the transi-
tion to non-inertial reference frames, or to solve problems where particles
are subjected to a uniform force F, hence a potential V(z) = —Fx, knowing
the solution for F' = 0.

Consider a soliton initially at rest with wave function 1/ cosh(z/2x)
[cf. (1.27)]. From this result, we deduce that if we apply a force F' = ma
that is uniform in space and constant in time, this soliton will undergo
a uniformly accelerated motion without any deformation of its envelope,
whatever the value of the force. Its wave function at time ¢ is written:

Yo —it(p—Fa+Ft/6m)/h

;1) = cosh((z — at?/2)/2x]

(1.42)

This result is no longer valid if the force is not uniform. For example,
the application of an inverted harmonic potential V (z) = —mw?x?/2, cor-
responding to the force F' = mw?z, can destabilize the soliton if the number
of atoms N does not reach a critical value (Carr & Castin 2002).
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Figure 1.5. Schematic diagram of the Khaykovich, Schreck, et al. (2002) experi-
ment that revealed a bright matter-wave soliton. Atoms are initially confined to
the intersection of two light beams, one horizontal (HB), the other vertical (VB).
The scattering length is controlled by a Fano—Feshbach resonance by adjusting the
magnetic field.

2-3 Observation of a single soliton

The prediction of the existence of solitons for the nonlinear Schrodinger
equation dates back to a paper by Hasegawa & Tappert (1973) on the prop-
agation of light in an optical fiber. This type of soliton was then demon-
strated experimentally by Mollenauer, Stolen, et al. (1980). See Dudley,
Finot, et al. (2023) for a recent review of the study of solitons in this non-
linear optics context.

The first observation of a bright soliton for matter waves was made by
Khaykovich, Schreck, et al. (2002). These authors started with a spherical
condensate containing ~ 20000 atoms of lithium (isotope 7, i.e. a boson).
These atoms were trapped at the intersection of two focused laser beams,
and the scattering length a was positive, of the order of 2 nanometers (fig-
ure L.5).

One of the two light beams is then slowly extinguished (200ms),
preparing the atoms in a quasi-1D geometry, and the scattering length a
is changed by a Fano-Feshbach resonance (see lecture series 2020-21) to a
final value that is zero or negative. The cloud of atoms is then allowed to
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Figure 1.6. Evolution of a cloud of atoms in the horizontal laser beam of figure 1.5,
with the vertical beam switched off. The top line is obtained with a zero scattering
length (perfect gas), and the atom cloud is seen to spread out (o represents the
width of the cloud). The bottom line is obtained with a negative scattering length
and corresponds to a soliton of around 6000 atoms. There is no detectable spread-
ing. The acceleration observed in both cases is due to an expelling force exerted by
a residual magnetic field gradient. Figure taken from Khaykovich, Schreck, et al.
(2002).
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Figure 1.7. Evolution of a soliton from N = 4500 to 6000 atoms of 3°K with
a = —1.5a9 where ay is the Bohr radius. The soliton is stable as long as a >
—2.15 ag, above which the one-dimensional approach ceases to be valid (see § 2-4).
Figure taken from Lepoutre, Fouché, et al. (2016).

evolve in this configuration for an adjustable time, before its size is mea-
sured.

If the final scattering length is zero, the atom cloud behaves like a per-
fect gas, and we therefore expect it to spread out because of its initial ki-
netic energy. This is indeed what is observed in figure 1.6, top. On the
other hand, for a negative scattering length, we observe a cloud that re-
mains constant in size: this is the soliton we are looking for. The number
of atoms in the soliton is NV = 6000.

In the Khaykovich, Schreck, et al. (2002) experiment, the atoms making
up the soliton are subjected to a force from a magnetic field gradient, which
accelerates the soliton. The authors checked that the soliton trajectory was
identical to that of a material point of the same mass and subjected to the
same force. A similar experiment was carried out by Lepoutre, Fouché,
et al. (2016), from which we have extracted figure L.7. It shows a soliton
formed by 6000 3K atoms evolving in a light trap providing strong radial
confinement, with longitudinal acceleration.
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Figure 1.8. Quasi- 1D gas of x axis obtained by strong confinement in the y and
z directions.
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2-4 The validity of the one-dimensional approach

The solitons we have just described are actually formed in our usual three-
dimensional space. In this section, we will briefly revisit the 3D description
of a Bose gas and explain under which conditions the 1D approach devel-
oped above is valid.

For a stationary Bose—Einstein condensate confined in a potential V()
and described by the mean-field approach, the Gross-Pitaevskii energy
functional is written:

2
EGD) (1] :/ {;nw\m? +V(E)e(r)? + %g(gD)I\If(r)\4 dr  (143)

where the interaction constant ¢g(*P) is related to the scattering length a
characterizing low-energy collisions between two atoms:

2
gBD) = @. (1.44)
m
The wave function ¥(r) is assumed to be normalized by:
/ |T(r)|? d3r = N. (1.45)

To obtain an effectively one-dimensional system along the x axis, we
apply a strongly confining potential in the two orthogonal directions y and
z (figure 1.8). As an example, let us take a harmonic potential:

1
Vir)= imw2 (v* + 2°) (L46)
whose energy levels are F,, = (n + 1)hw, n € N. We assume that the
interaction energy between atoms is low enough for the gas wave function
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to be written to a good approximation

U(r) = xo(y, 2) ¥(x)

where  is the single-particle ground state of motion in the zy plane nor-
o~ (WP+2%)/2a3,

malized to 1, i.e. the Gaussian
[ h
with aon =/ —.
aon/T oh mw

We can then simply transfer the ansatz (1.47) into the 3D energy functional
written in (1.43) to arrive at

(1.47)

Xo(y, 2) = (1.48)

ECDW] = hw + EMD)[y] (1.49)
with the link between the 1D and 3D coupling constants given by
9= [ Ixolw 2| dydz = 2hwa, (150)

This result calls for several comments:

* The use of the relation (I.44) linking g©®®) to the scattering length a
assumes that collisions retain their three-dimensional nature despite
confinement along the y and z directions. This assumption is only
correct if the extension a,n of the ground state along these directions
is much greater than the scattering length itself (or its absolute value),
which imposes:

(L51)

When this condition is not satisfied, the collision process must be de-
scribed by explicitly taking into account the transverse confinement
potential V(r) (Olshanii 1998).

la] < aon.

¢ For the frozen transverse motion approximation to be correct, the en-
ergies involved in forming the soliton must be small compared with
the quantum 7w. Otherwise, it is likely that a correct description of the
atomic motion will have to take into account the excited levels in the
potential V(y, z). A necessary condition is therefore

N < (\laT (152)

which limits the number of atoms in the soliton.

|p| < hw =
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Figure 1.9. Energy landscape of a soliton in a transverse harmonic trap as a func-
tion of longitudinal ¢, and transverse ¢ sizes, obtained by a variational ansatz
for the 3D energy functional of equation (1.43). The soliton represents a metastable
state, with the minimum energy state (E — —oo) corresponding to £,,¢, — 0.
The abbreviations "cc” and "dc” stand for "collapse channel” and "dispersive
channel”. Figure adapted from Parker, Cornish, et al. (2007).

¢ The soliton we have constructed is an essentially one-dimensional ob-
ject, with extension z( along the z axis. For this construction to be
valid, its transverse size in the y and z directions must be very small
compared with z, which imposes:

a
N

|al

aoh K T = (153)

We recover the validity condition (I.52).

¢ Finally, it is important to note that we are interested here in the attrac-
tive case g < 0, i.e. a negative scattering length a according to (1.50),
which poses a problem of principle: A 3D gas of bosons with a nega-
tive scattering length tends to implode on itself. This result is easy to
understand: if we assume that the N particles occupy a ball of radius
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R, the (negative) interaction energy varies as follows

2
(1.54)

which tends to minimize R. The kinetic energy cost resulting from this
confinement varies as follows

Eyin X —5 (L55)

R2
and it is not enough to compensate for this tendency to collapse when
R — 0. It follows that an attractive 1D gas is not actually a stable
system, but only metastable, i.e. a local minimum for the 3D energy
functional.

Carr & Castin (2002) studied this problem using a variational ap-

proach and showed that this local minimum is indeed present when

the validity condition (1.52) is satisfied. The result of a similar analysis

by Parker, Cornish, et al. (2007) is shown in figure 1.9. A numerical

study of the energy landscape carried out by these authors shows that

the local minimum corresponding to the soliton exists only if
Nal

—— < 0.675 (£0.005).
Goh

(L56)

See also the articles by Perez-Garcia, Michinel, et al. (1998) and Gam-
mal, Frederico, et al. (2001) on the analysis of this problem.

In conclusion, solitons obtained in a quasi-one-dimensional gas with
a negative scattering length are metastable objects. They are all the more
robust as the above inequalities are well verified, but it will still be possible
to lower the gas energy (towards —oo in the mean-field approximation) by
making a cloud of size < a,p, in all three directions of space.

3 Beyond the stationary soliton

The stationary soliton found in the first part of this chapter represents the
lowest-energy state of the system, at least when limited to strictly 1D mo-
tion. We now turn our attention to states of higher energy than this ground
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state, in which several solitons may co-exist, or other states, corresponding
to oscillating structures in time or space. In the next chapter, we will look
at other complex structures (high-order solitons), resulting from the inte-
grability of the problem considered here.

3-1 Soliton collisions

A remarkable property of bright solitons is that they emerge intact from a
collision between them. This property was discovered for the Korteweg—
de Vries equation by Zabusky & Kruskal (1965). We will see in the next
chapter that it can be explained by the integrable nature of the nonlinear
Schrodinger equation, and is a direct consequence of the IST approach (In-
verse Scattering Transform). This property is illustrated in figures 1.10 and
I.11. The former shows a collision between solitons of the same mass, and
the latter a collision between solitons of different masses.

This fundamental characteristic of a system described by an integrable
nonlinear equation has been observed experimentally in many systems,
notably in hydrodynamics and optics [see, for example, Mitschke & Mol-
lenauer (1987) for the first demonstration in an optical fiber]. It can also
be shown that, although the solitons emerge from the collision unchanged,
there is an effective interaction between them, resulting from the interfer-
ence between the two wave packets, the attractive or repulsive nature of
which depends on their relative phase (Gordon 1983): two solitons of the
same phase attract each other, while two solitons whose phases differ by
w repel each other (see figure 1.10). Figure .12, taken from Copie, Suret, et
al. (2023), illustrates this phase sensitivity for the collision of two solitons
propagating in an optical fiber.

For matter waves, Nguyen, Dyke, et al. (2014) have provided an elegant
illustration of this collisional property using “Li atoms. The principle of the
experiment is described on the left of figure 1.13:

* A stable condensate is formed in an elongated harmonic trap by
choosing a positive scattering length (a = 4140 ao).

¢ A potential barrier formed by a focused laser beam is switched on
around the center of the trap, cutting the cloud in two parts.

A A
AA
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Figure 1.10. Numerical solution of the nonlinear Schrodinger equation (1.14) for
an initial condition involving two solitons of opposite velocities, same mass (k = 1
in (1.25)), and equal phases (left) or phases differing by m (right).
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Figure 1.11. Numerical solution of the nonlinear Schrodinger equation (1.14) for
an initial condition with two solitons of opposite velocities and different masses,
corresponding to k = 1 and k = 4 in (1.25).
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Figure 1.12. Collision of two solitons propagating in an optical fiber. Tracking
the collision is made possible by a recirculation loop that provides a "stroboscopic”
view of the solitons” propagation. The relative velocity of the solitons is adjusted
using electro-optical amplitude and phase modulators to control the group velocity
of each soliton. Each sub-figure corresponds to a given value of relative phase.
For these fiber-optic experiments, time and space play opposite roles to the case of

quantum gases. Figure taken from Copie, Suret, et al. (2023).

¢ The scattering length is brought to a negative value a = —0.57qg to
transform these two clouds of atoms into bright solitons.

¢ The barrier is released and the solitons move towards the center of the
trap, where they collide.

Nguyen, Dyke, et al. (2014) use an imaging system based on phase con-
trast, enabling them to take several images of the same cloud. This is im-
portant because the relative phase of the solitons fluctuates from one real-
ization to the next, so not all images of the collision are identical. The two
sequences shown in figure 1.13 correspond to a phase close to 0 for one and
close to 7 for the other.

3-2 Kuznetsov-Ma structure

The bright soliton we studied in § 1 is a stationary solution of the nonlinear
Schrodinger equation. Non-stationary solutions are of course possible, but
it is generally difficult to provide analytical forms for them.

There are, however, relatively simple expressions corresponding to lo-
calized structures in time and/or space (breathers). We will not go into de-
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Figure 1.13. Left: preparation sequence for a pair of solitons (read from bottom to
top). Middle and right: two different realizations of a collision between solitons
oscillating in a harmonic trap, obtained using phase-contrast imaging. They cor-
respond to a relative phase of 0 (middle) and = (right). Figure taken from Nguyen,
Dyke, et al. (2014).

tail on all of them here, but we will focus on the Kuznetsov-Ma "breathing
structure” (Kuznetsov 1977; Ma 1979). We refer readers interested in a gen-
eral discussion of these structures to the recent articles by Dudley, Genty,
et al. (2019), Akhmediev (2021) and Karjanto (2021).

The Kuznetsov-Ma solution centered at = = 0 is written for the dimen-
sionless version of the nonlinear Schrodinger equation! :

§ = v? cos(pt) + ipsin(pt) 1] o2t
2cos(pt) — £ cosh(va

Yo (x (157)

~—

with p = vv/4 + v? and with a possible offset in time (¢ — t — () and space
(x = x — o). The result, plotted in figure 1.14 for v = 0.3, is spectacular:
for v <« 1, the spatial density is almost uniform and very close to 1 most of
the time, but it periodically takes on a value close to 9 in z = 0.

In practice, the study of this type of solution can be made difficult by the modulational
instability studied in §4-2, which develops from noise on the preparation of the initial state.
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()

Figure 1.14. "Breathing structure” of Kuznetsov-Ma, whose analytical formula is
given in (1.57), plotted here for v = 0.3.

This possibility of seeing successive appearances of density peaks much
larger than the mean value of this density constitutes a prototype of a rogue
wave, i.e. an event a priori very unlikely within the framework of a lin-
ear analysis, but made more frequent by the nonlinearity of the problem
(Shrira & Geogjaev 2010). We will come back to these rogue waves in sec-
tion §4-4.

Akhmediev structure. There is also an analytical expression for a struc-

ture that is only significant around a given time (here ¢ = 0) and spatially

periodic:

v? cosh(ot) + io sinh(ot)
2cosh(ot) — < cos(vx)

with ¢ = vv/4 — 2. The Kuznetsov-Ma and Akhmediev structures were
experimentally realized on light pulses propagating in an optical fiber by

¥y (z,t) = —1] e (1.58)
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Kibler, Fatome, et al. (2012).

3-3 The Peregrine breather

It is interesting to consider the limiting case of the Kuznetsov-Ma structure
when v — 0 [see Karjanto (2021) for a precise definition of this limit]. We
then find the structure proposed by Peregrine (1983):

4(1 + 4it) 2it
Y(x,t) = |1— 1T 42 11682 e (1.59)
The ;1 — 0 limit has the effect of making the period of the recurrence of the
central peak tend towards infinity, so that all that remains is the emergence
of a single peak at ¢ = 0. When t — oo, the wave function ¢ (z,t) is
virtually flat and equal to 1 at every point in space, apart from one global
phase. However, in the vicinity of time ¢ = 0, it is strongly peaked inz = 0,
with the value ¢(0,0) = —3. The density at + = 0 and ¢ = 0 is therefore 9

times greater than the quasi-uniform density at long times.

Observation of the Peregrine structure. The Peregrine structure was ob-
served in an optical fiber by Kibler, Fatome, et al. (2010). Here we describe
a very recent achievement in a cold atomic gas by Romero-Ros, Katsimiga,
et al. (2024). The experiment was carried out on a gas of N ~ 130000 *"Rb
atoms confined in a highly elongated trap (frequencies 2.5 x 250 x 250 Hz),
with an effective scattering length set to the negative value a = —2.41 ag at
time ¢ = 0 (we will come back to the method used to obtain a negative scat-
tering length for rubidium atoms in a moment). To initiate the formation
of the Peregrine structure, an auxiliary light beam is focused in the vicinity
of x = 0, where it creates a Gaussian-shaped potential well. At time ¢ =0
(figure .16 a), there is a slight density surplus around this point.

The presence of this slight initial density bump is sufficient to generate
a much more significant local density maximum at a later instant, of the
order of 65 ms in the experiment (figure 1.16). After this instant, the density
hump becomes much less significant. At long times, the profile measured
or calculated from this initial condition differs markedly from that of the
Peregrine structure, with three similar density maxima around ¢ ~ 90 ms
(figure 1.17).
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Figure 1.15. Peregrine breather, whose analytical formula is given in (1.59).

How to get a < 0 with " Rb atoms?  For a pair of rubidium atoms pre-
pared in a given Zeeman sub-level j of the ground electronic level, the
scattering length a;; is always positive and of the order of 100 ao. How-
ever, if we start with a bath of atoms prepared in one sublevel j and trans-
fer a small proportion of the atoms to another sublevel i, these atoms will
evolve under the effect:

* | — i interactions characterized by the scattering length a;;;

¢ interactions mediated by the much denser bath, which can under cer-
tain conditions be modeled by the scattering length —ag; /a;;.

Interactions between atoms in state i are then described by the effective
scattering length

(L60)
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Figure 1.16. Observation of a structure close to the Peregrine breather in a 1D
condensate. The series of images correspond to times t = 10, 30, 65, 85 ms after the
switch to a negative effective scattering length. Top series: experimental results,
bottom series: 3D simulation of the experiment. Figure taken from Romero-Ros,
Katsimiga, et al. (2024).
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Figure 1.17. Comparison between the Peregrine breather profile (red dotted line)
and the density profile calculated under experimental conditions (blue solid line)
fort = 33.6ms (left) and t = 94.9ms (right). Figure taken from Romero-Ros,
Katsimiga, et al. (2024).

which is much smaller than each of the initial scattering lengths (since they
are all neighbors) and can be negative for a suitable choice of the ¢ and j
sublevels (Bakkali-Hassani, Maury, et al. 2021; Bakkali-Hassani, Maury,
et al. 2023). This approach was used in the experiment by Romero-Ros,
Katsimiga, et al. (2024).

4 Dynamic instability and soliton train

In most experiments on bright solitons performed with atomic gases, the
starting point is not a small spherical cloud, as in the experiment of
Khaykovich, Schreck, et al. (2002) described above, but a very elongated
cloud. This cloud is prepared in the positive scattering length regime, and
the scattering length is suddenly brought to a negative value. One then
observes the formation of a train of solitons, as a result of a modulational
instability.

We will describe this observation of a soliton train in § 4-3. Before that,
we will look at the nature of this modulational instability, which was first
described in a hydrodynamic context by Benjamin & Feir (1967). We will
recover it from Bogoliubov dispersion relation, which characterizes the dy-
namics of a condensate subjected to small initial perturbations.
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4-1 The speed of sound in a uniform condensate

Let us first consider a condensate of uniform density py and determine the
value of the speed of sound in this medium. As this problem has been
dealt with in detail in previous lecture series (see, for example, the 2016
course, Chapter III, and the 2024 course, Chapter III), we will confine our-
selves here to its simplest version; we will not therefore discuss the differ-
ent regimes that may appear in addition to the phonons we are interested
in here.

The dynamics of the condensate is described by the Gross-Pitaevskii
equation

i h?
ihoy = = — 2 + gy
m

where ¢(x, t) is a complex wave function. For g > 0, the minimum-energy
state of the condensate corresponds to

1/)(33,t) — \/p»oefiyt/h

The quantity ;1 represents the chemical potential, i.e. the energy required
to add a particle to the system. We characterize the deviation from equilib-
rium by two complex numbers U and V, and the parameter € assumed to
be small in front of 1:

(L61)

with p = gpo. (1.62)

W(z,t) = \/po {1 te [U eilka—wt) | e‘iUm_w*f)] } oot/ (163)
It is necessary to introduce simultaneously these two numbers U and V,
amplitudes of the two plane waves of wave number +k and frequency
+w and —w*, because of the simultaneous presence of ¢ and ¢* in the
evolution equation (1.61).

Let us look for the dispersion relation between k£ and w. When we trans-
fer the form (1.63) into (1.61), we find at order zero in € the relationship (1.62)
between i and pg. At order 1 in ¢, we find the system

{ (9p0 + €1 — hw) U + gpo V =0

1.64
gpo U* + (gpo + €, + hw*)V* = 0 (16

where we set ¢, = h?k?/2m and we used p = gpo. Let us take the com-
plex conjugate of the second equation; we then obtain a linear system in
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Figure 1.18. Bogoliubov dispersion relation (1.66) for g > 0. The dotted line
corresponds to the phonon limit, with the dispersion relation w = ck, the speed of

sound c being given by ¢ = \/gpo/m. We define h?x%/m = hwy = gpo.

(U, V) which admits a non-zero solution if and only if the determinant of
the system cancels out:

gpo + € — hw gpo
=0. L.65
gro gpo + €k + hw (165)
This leads to the Bogoliubov dispersion relation
(hw)? = € + 2exgpo , (I.66)

plotted in figure 1.18 for g > 0 and in figure 1.19 for g < 0.

For repulsive interactions (g > 0), the frequencies w are all real: a small
initial disturbance will propagate without attenuating or amplifying. On
the other hand, for attractive interactions (¢ < 0), we find a range of & val-
ues for which w? is negative, i.e. pure imaginary w. This can lead to an
exponential increase in the amplitude of the perturbation with time, stem-
ming from the e/“!* term: this is the origin of the modulation instability.
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Figure 1.19. Bogoliubov dispersion relation (1.66) for g < 0. The blue line cor-
responds to a pure imaginary w frequency, the red line to real w. The instability
zone extends between k = 0 and k = 2x, with h2k? /m = hwo = |g|po. The point
of maximum instability is obtained for kins, = V2 k.

4-2 Modulational instability

As we saw in the previous paragraph, an attractive uniform gas (g < 0)
is unstable with respect to perturbations whose wavenumber k is such
that e, — 2|g|p < 0. If noise is initially present at all wavenumbers, the
wavenumber leading to the largest value of |w| is expected to grow fastest
and become dominant after a certain time. This wave number kj is such
that (see figure 1.19):

h2k2

inst

2¢/|alpo
om l91po Einst = 2Vlalpo

1.67
5 o (L67)

where we used the relationship between g and the 3D scattering length
given in (1.50).

The initially quasi-uniform gas will then break up into approximately
evenly-spaced particle packets with spatial period linst = 27/kins;. The
characteristic time for this instability to develop is 1/|w(kinst)| = &/|g|po-
Each packet contains approximately N, = pofinst atoms, which gives using
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(1.67):

2
N, = /%. (168)
Each cluster of atoms will form a soliton, at least if the metastability con-
dition with respect to 3D collapse (1.56) is met. The peak density ppcax of
each soliton (once a stationary regime has been reached) can be deduced
from the study carried out in § 1-3 and we find ppeax = pom?/2. Given the
result obtained above for N,, the metastability condition is written:

N,lal

<0.7 =
Goh

polal < 0.05. (1.69)

For a gas with a given initial density po, prepared with a positive scattering
length, this condition limits the exploitable range for the transition to neg-
ative scattering lengths. A more detailed theoretical study of modulational
instability in quasi-1D atomic gases can be found in Salasnich, Parola, et al.
(2003) and Carr & Brand (2004).

4-3 QObservation of a soliton train

The splitting of a gas of 1D bosons with a negative scattering length was
observed in the early 2000’s in Hulet’s group in Houston, then in Wieman's
group in Boulder. This type of experiment has been taken up more recently
by several teams, the Houston team first (Nguyen, Luo, et al. 2017), then
by Everitt, Sooriyabandara, et al. (2017) and MeZnar$i¢, Arh, et al. (2019).

We show in figure 1.20 the result obtained by Nguyen, Luo, et al. (2017)
on a gas of "Li atoms prepared in an elongated trap (7 x 350 x 350 Hz).
The gas is first prepared with a positive scattering length (4-3 ag) before
being switched to the negative value ¢ = —0.18 ag by a ramp lasting 1m:s.
This group uses a phase-contrast optical detection method, which enables
several successive images to be taken of a sample without destroying it
(see also figure 1.13). During the time explored in this figure (20ms), the
total number of atoms is virtually constant (8 x 10°). The number of solitons
formed, N, ~ 12, is in excellent agreement with the estimate obtained from
the total length of the condensate and the spatial period ¢, expected for the
modulational instability.
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Figure 1.20. Formation of a soliton train in a 1D condensate of "Li when the
scattering length is brought to the negative value a = —0.18 aqy. Figure taken
from Nguyen, Luo, et al. (2017).

0 ' 100 ’ 200 300

Figure 1.21. Evolution of a train of solitons under the effect of the trap’s axial
confinement potential (breathing mode). The relative motion of the solitons indi-
cates a repulsive interaction between them. Figure taken from Nguyen, Luo, et al.
(2017).

Nguyen, Luo, et al. (2017) indicate that the onset of the instability is due
to noise present in the initial cloud, which may be of thermal or quantum
origin. This conclusion is based on the fact that the instability first starts in
the center of the gas, where the density p(x) and therefore the imaginary
part of the frequency |w| are greatest.

Phase contrast imaging enables one to follow a given soliton train over a
wide time range. In this way, one can observe a breathing mode of the soli-
ton train in the axial harmonic potential. The fact that the solitons remain
relatively well separated from each other during this oscillation indicates
that two neighboring solitons interact repulsively, i.e. they have a phase
difference close to 7. This phase distribution between adjacent solitons
emerges spontaneously from the development of modulational instability,
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as shown numerically by Salasnich, Parola, et al. (2003).

4-4 A soliton gas

The notion of soliton gas was introduced to describe the behavior of a di-
lute assembly of bright solitons propagating in both directions of an infi-
nite line. A detailed review of the history of this concept and its connection
with integrable turbulence is presented in the recent review article by Suret,
Randoux, et al. (2024). Since this notion has not yet been implemented with
matter waves?, we will limit ourselves here to the description of numeri-
cal and observational work on light propagation in an optical fiber. This
work in optics is particularly important because its results can be directly
mapped onto observations of waves on the ocean surface, in particular of
rogue waves (Dudley, Genty, et al. 2019).

We will be relying here on two papers by Soto-Crespo, Devine, et al.
(2016) and Akhmediev, Soto-Crespo, et al. (2016). These authors have
solved the dimensionless nonlinear Schrodinger equation (I.14) with an
initial condition of the form

u(w.0) = — 1+ 1 (@)
where f(z) is a complex function, whose real and imaginary parts are in-
dependent random functions of zero mean value and variance 1, generated
from Gaussian distributions of equal correlation length L.. The normaliza-
tion factor @ is adapted so that the spatial mean value of p(z, 0) = |u(z, 0)|?
remains equal to 1 for different choices of parameters y and L.. For each
choice of parameters, we calculate the quantity o2 = (p?) — (p)? for the
incident field.

(1.70)

The authors solve the nonlinear Schrodinger equation (1.14) to obtain
u(z,t) and study the probability distribution function (PDF) for the den-
sity p(z,t). They give their results for three values of o: 0.1, 0.5, 0.9, the
calculations being made with L. = 0.76. This distribution first evolves and
then stabilizes after a time ¢ 2 20. Figure .22 shows the result obtained for
t = 100. For the smallest value of o, we find to a good approximation the

2see nevertheless the recent work of Siovitz, Lannig, et al. (2023) and Mossman, Katsimiga,

et al. (2024) on multicomponent condensates.
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Figure 1.22. Distribution law of the density p(x) at a given instant (t = 100) for
the three noises considered for the incident field. Figure taken from Soto-Crespo,
Devine, et al. (2016).

exponential law for the density p [i.e. a Rayleigh statistic for the amplitude
|u|] (Bromberg & Cao 2014):

P(p,0)=e"" (I.71)
characteristic of a Gaussian field, as is the case with speckle in optics, for
example. On the other hand, as ¢ increases, large deviations become much
more important. For example for o = 0.9, the probability of finding p = 16
at a point is 500 times greater than the value given by the exponential law,
while the mean (p) = 1 remains unchanged by construction. This is a
signature of the existence of rogue waves, which occur with a much greater
probability than might be assumed from the simple exponential law (1.71).

In the regime of strong fluctuations, the plot of the density versus time
reveals the predominant role of solitons with significant velocities, inces-
santly colliding with each other (figure 1.23, right). On the other hand, for
weak fluctuations (figure 1.23, left), Soto-Crespo, Devine, et al. (2016) show
that the dynamics is dominated by near-zero velocity solitons or quasi-
immobile structures of the breather type (Peregrine or Akhmediev), gener-
ated from the modulational instability described above. See recent articles
by Gelash, Agafontsev, et al. (2019) and Congy, El, et al. (2024) for a dis-
cussion of the link between these "integrable turbulence" dynamics and
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Figure 1.23. Variations of |u(x,t)| for the three values of o considered in figure
1.22. Figure taken from Soto-Crespo, Devine, et al. (2016).

the spectrum obtained from the IST method (Inverse Scattering Transform),
which we will present in the next chapter.

The study of light propagation in an optical fiber has revealed a phe-
nomenology very similar to that just described. Since Solli, Ropers, et al.
(2007)’s initial observation, a great deal of work has been carried out on
rogue waves in optics and hydrodynamics, and we refer interested readers
to Dudley, Genty, et al. (2019)’s review article. In figure 1.24 we show the
comparison between the intensity distribution of a random light field be-
fore and after traversing a nonlinear optical fiber (Walczak, Randoux, et al.
2015). This clearly shows the emergence of a very wide distribution tail,
with a considerably increased probability of extreme events. Shortly after-
wards, Suret, Koussaifi, et al. (2016) developed a "time microscope”, to an-
alyze the structure of light pulses at the fiber output with 0.25 picosecond
resolution, which enabled them to identify the respective roles of solitons
and Peregrine-like structures in the emergence of a wide distribution tail
[see also Kraych, Agafontsev, et al. (2019) for an experimental study in the
regime dominated by modulational instability]. The essential role of non-
linearity in the emergence of these rare events was highlighted in a 2D
experiment by Safari, Fickler, et al. (2017).
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Chapter I1

Bright soliton dynamics and the IST method

In the previous chapter, we started from the nonlinear Schrodinger
equation to obtain the shape of a bright soliton, an object that can be sta-
tionary or moving at constant speed. We put the soliton’s wave function
into the form ¢ (x) = 1o/ cosh(z/2x(), and established the link between the
soliton’s width xy and the number of particles it contains.

We have also shown that solitons are robust objects: two bright solitons
emerge intact from a binary collision, whatever their masses and velocities.
In this chapter, we continue to explore the robustness of bright solitons. In
particular, we will consider imperfect preparation. This may result, for ex-
ample, from a width ill-suited to its number of atoms, or from an envelope
that does not have the canonical 1/ coshz form. We will see that, in these
cases, the wave packet evolves by oscillating and ejecting particles, even-
tually forming a stationary soliton, slightly smaller than the starting object,
but which is an exact solution of the nonlinear Schrodinger equation.

This robustness was behind the suggestion to use optical solitons for
fiber-optic telecommunications [see Haus & Wong (1996) for a review]. It
should be noted, however, that the implementation of this technique even-
tually came up against practical problems and this route did not meet with
the initially expected success (Hasegawa 2022; Dudley, Finot, et al. 2023).

In this chapter, we will first illustrate a few facets of this robustness,
before placing it in the general context of integrable systems. To this end,
we will introduce the inverse scattering transform (IST) method for the
case of the nonlinear Schrodinger equation. We will see that solitons are
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associated with very specific eigenvalues of a spectral problem, and that
these eigenvalues remain constant over time: the robustness of solitons
follows immediately from this.

We conclude this chapter with the study of "multi-solitons", composite
solitons formed by the superposition of elementary solitons, which also
form stable structures but are less robust than basic solitons, and which
have recently been demonstrated with cold atomic gases.

1 Temporal evolution of a soliton

1-1 Eigenmodes of a soliton?

A bright soliton is a stationary wave packet that results from the balance
between two opposing phenomena: kinetic energy is minimized by taking
the largest possible wave packet; interaction energy, on the other hand, is
minimized by taking the most concentrated possible wave packet. If we
note ¢ the size of this wave packet, we have for these two contributions (to
numerical factors unimportant here):

n? 9]
—s By = —N?=2
me2 ’ ¢
so that the total energy Eii, + Eint has the shape shown in figure I1.1, with a
minimum for ¢ = x¢ with zo = #%/(Nml|g|), a result we had already found

Egn =N (IL1)



CHAPITRE II.  BRIGHT SOLITON DYNAMICS AND THE IST METHOD

§ 1. Temporal evolution of a soliton

6/1’0
Figure I1.1. Variation of total energy with wave packet size.

in the previous chapter.

This figure suggests that if we prepare the wave packet with a size close
to xo, we will be able to observe small oscillations of the soliton size, which
would correspond to a soliton eigenmode. This idea is stricto sensu incor-
rect, as we shall now explain.

To tackle the problem, we can use Bogoliubov’s method, which we in-
troduced in the previous chapter to study modulational instability. We are
interested in the evolution of a small perturbation of the initial condition

Yo by posing

Y(x,t) = {Yo(z) + € [U(x)e_i“’t + V(x)ei”t] } e it/ (IL.2)

where 1 (z) here represents the wave function of the unperturbed soliton,
varying as 1/ cosh(z/2x), with chemical potential u = —mg?N?/(8h?).
The quantity hw represents the energy to be supplied to the soliton to ex-
cite the eigenmode in question, the functions U(z) and V' (z) characterize
the spatial structure of this mode and ¢ < 1 is the perturbative develop-
ment parameter. We inject this expression for ¢ (z,t) into the nonlinear
Schrodinger equation

op _ 0o
ot 2m Ox2

and we obtain at order 1 in € a linear differential system for the functions

in + glv*y (IL.3)
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(h+ 1)U = [~f202 —2lglud] U~ |glud v -
14
(h=t)V = [~2202 ~2lglu| V ~ |glu3 U .

Solving this system (which we will not do here) shows that all these
eigenmodes (except two, see remark below) vary as e*** for |z| — +oo
with k£ € R; they are therefore non-localized traveling waves (Kaup 1990;
Castin & Herzog 2001). The energy spectrum of these delocalized modes
is

K2 k>
2m

hOJ:

+ 1l (IL5)
which means that to excite them, we must first pay the energy |u| to ex-
tract a particle from the soliton, then the kinetic energy h2k?/2m to set this
particle in motion with the momentum hk. There is therefore no discrete
eigenmode, localized in the vicinity of the soliton and with energy fw less
than |x|, which would correspond, for example, to an undamped oscilla-
tion of the soliton size around its equilibrium value .

Note 1. There are in fact two localized modes, of frequency w = 0, which
correspond to the fact that we can, without paying energy, change the po-
sition or the phase of the soliton. These are the two Goldstone modes that
correspond to gauge invariance (for phase) and translational invariance
(for position). Their existence in no way invalidates our conclusion on the
absence of localized eigenmodes, which would correspond to undamped
oscillation of the soliton’s width.

Note 2. The absence of other localized modes, corresponding for exam-
ple to an oscillation of the soliton width, is a consequence of the integrable
nature of the nonlinear Schrodinger equation, as we will see in the follow-
ing sections. If we modify this evolution equation by adding terms that
break the integrability, then localized modes may appear, as discussed by
Kivshar, Pelinovsky, et al. (1998) and Pelinovsky, Kivshar, et al. (1998).
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po—1

Figure 11.2. Damped oscillations of the central density po(t) = |u(0,t)|? of a
solitonic packet with the initial condition (11.10) for e = 0.01. The dashed black
curves correspond to a decay of the oscillation envelope in 1/+/t. Calculated on a
box of length 640 with discretization on 32768 points.

1-2 Damped oscillations

The absence of localized eigenmodes does not prevent oscillations of the
soliton amplitude and width from being observed for an appreciable pe-
riod of time. To convince ourselves of this, we can first turn to a numerical
simulation. Consider the nonlinear Schrodinger equation in its dimension-
less version!

iUy + Uy + 2Jul*u =0 (I1.7)
a particular soliton of which is given by
1
u(@) = —— (IL8)
of mass M and energy I given by
+oo +oo 2
M = /OO lu?de =2 E= /oo (|0zul?* = |u|*) dz = -3 (I1.9)

1Recall the choice of length and time units that lead to this equation:
h? 2mad
xo = to =
Nmlgl h

(IL6)
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Figure I1.2 shows the evolution of the central density associated with the
function u(x, t), taking as initial condition

VvV1+e

cosh [z(1 + ¢€)] with

e< 1. (I1.10)

u(z,0) =
So we still have a mass [ |u(z,0)]> dz = 2, but with a central density
slightly too large and a width slightly too small (by a factor of 1 + €) to
correspond to the stationary soliton (IL.8).

The time evolution of the central density reveals a damped oscillation,
with a decay in 1/v/t and an asymptote very slightly below 1. The fact that
the excitation decays irreversibly is characteristic of coupling to a contin-
uum: if we had excited only one discrete mode, the oscillation would occur
at the frequency w of that mode without damping. Atlong times, we find a
stationary soliton, with a mass slightly reduced compared with the initial
mass.

The interpretation of the result shown in figure I1.2 is straightforward
within the framework of Bogoliubov’s analysis: non-localized modes are
excited by the choice € # 0 in (I1.10) and the time evolution of these modes
corresponds to particle or radiation emission (depending on the nature of
the objects — matter or light — that are described). The period of oscillation
is, to a good approximation, 27h/p (27 for these reduced units), which
means that it is essentially modes at the bottom of the continuum (II.5) that
are excited?. On the other hand, we can understand the decay law in 1/ NG
as follows. Let us decompose the initial state u(x, 0) onto the final solitonic
state, us(z), to which is added the small wave packet du(z,0) formed by
the Bogoliubov modes. Initially, this wave packet is localized at u(z, 0), but
we know that it will spread, since the Bogoliubov modes are not bound.
Its width will increase linearly with time and its central amplitude will
therefore decrease as 1/ V1, since its norm must remain constant over time.
The decreasing oscillation of |u(0,)|* shown in figure I1.2 demonstrates
the interference between u;(z) and du(0, t).

The calculation of the evaporated mass in this particular case is pre-
sented by Carr & Castin (2002), who show that it is a term of order 2 in ¢,
so very small in relative value (~ 107*) for the example in figure I1.2. We

ZMore precisely, it is the final value of the chemical potential that determines the frequency
of oscillation, as discussed by Sroyngoen & Anglin (2025).
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Length (um)

Figure 11.3. Oscillations of the length of a cloud of cesium atoms confined in an
elongated harmonic trap. Blue dots: standard Bose-Einstein condensate regime
(repulsive interactions). The oscillation frequency is equal to ~ /3x the ax-
ial confinement frequency. Red dots: solitonic regime (attractive interactions).
The damped oscillation corresponds to an "eigenmode” of the soliton and is sim-
ilar to that shown in figure 11.2. The green dots also correspond to the solitonic
regime, but the excitation of axial motion is negligible. Figure taken from Di Carli,
Colquhoun, et al. (2019).

will see later how the IST method can be used to calculate the mass of the
soliton reached at long times, by solving the eigenvalue problem of the Lax
operator L for the initial condition u(x, 0).

1-3 Experimental study

Di Carli, Colquhoun, et al. (2019) have studied the variation over time of
the width of a soliton prepared in a highly elongated harmonic trap (fig-
ure II.3). The transverse frequencies of this trap are of the order of 100 Hz,
while the longitudinal frequency can be varied between 1 and 10 Hz. The
authors used cesium atoms initially forming a "standard" Bose-Einstein
condensate, with ~ 2000 atoms in repulsive interaction. For this conden-
sate (blue dots in figure 11.3), a "breathing" mode can be excited for which
the condensate length oscillates with a frequency equal to v/3w,, as theo-
retically expected (Menotti & Stringari 2002).

The authors then placed their gas in the vicinity of a Fano-Feshbach res-
onance to switch the scattering length from a positive value (~ 7 ag where
ap represents the Bohr radius) to —5ay. They then form a bright soliton
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Figure I1.4. Variation of the oscillation frequency of the soliton length with the
axial frequency of the trap confining the atoms. The limit of zero confinement
frequency corresponds to a free soliton. Colored area: result of a numerical solution
of the 1D nonlinear Schrodinger equation for a number of atoms between 1300 and
1500. The dashed line gives the prediction for an ideal gas. Figure taken from Di
Carli, Colquhoun, et al. (2019).

and observe a faster, damped oscillation of the cloud length (red dots in
figure I1.3). This "mode" corresponds to the oscillation described above
(see figure I1.2).

Di Carli, Colquhoun, et al. (2019) verified that the frequency associated
with damped oscillations of the soliton length became quasi-independent
of the trap’s axial frequency when this frequency was strongly reduced
(figure 11.4). This limit therefore corresponds to an intrinsic characteristic
of the soliton. The experimental results are in good agreement with theo-
retical predictions based on the numerical solution of the one-dimensional
nonlinear Schrodinger equation (shaded area in figure I1.4).

1-4 Case of a (relatively) large initial deviation

The emergence of a stationary soliton at long times is not restricted to the
case where the initial condition is close to a solitonic wave function. We
show in figures 1.5 and IL.6 the evolution of an initially triangular wave
function under the effect of the dimensionless equation (IL.7). We can see
that, at the cost of losing around 1% of the particles, the wave function
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evolves towards a solitonic solution x/ cosh(kz). The missing particles are
"radiated"” and thus form a background of asymptotically zero density in
the limit of a box of infinite length L. For these calculations, we have taken
L = 640.

2 The IST method

The IST method, which stands for inverse scattering transform, was ini-
tiated by Gardner, Greene, et al. (1967) to solve the KdV equation. It was
then generalized to other nonlinear equations by several authors, in partic-
ular by Zakharov & Shabat (1972) for the nonlinear Schrodinger equation
of interest here. We will present it schematically in the version proposed
by Lax (1968). We will restrict ourselves here to the case where the wave
function u(z,t) tends to 0 at infinity [see, for example, Shrira & Geogjaev
(2010), Roberti, El, et al. (2021) and refs. in for nonzero boundary con-
ditions, which correspond to the cases of the Kuznetsov—-Ma, Akhmediev
and Peregrine structures, for example].

The IST method is an extremely powerful technique for tackling many
integrable nonlinear problems. It has been the subject of several reference
books, such as Ablowitz & Segur (1981), Novikov, Manakov, et al. (1984),
Drazin & Johnson (1989), Zakharov (1991), and Korepin, Korepin, et al.
(1997). One can also consult Dauxois & Peyrard (2006) for a remarkably
clear presentation in the case of the KdV equation.

2-1 A reminder: Eigenstates decomposition

In simplified terms, we can think of the IST method as a generalization of
the eigenmode decomposition for solving the evolution of a linear system.
Let us start by recalling the principle of this decomposition. We are given
an evolution equation, for example the (linear) Schrodinger equation for a
function ¢ (x, t) describing the evolution of a particle in a potential V' (z):

. ﬁ2
with H = om +V(x)

ih oy = Hi (IL.11)
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Figure I1.5. Evolution of an initial triangular wave function. The number of
atoms N is defined as f_+: lu(z,t)|? dx with the (somewhat arbitrary) choice
a = 20. The calculation is performed on a segment of length L = 640 with
discretization on 32 768 points.
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Starting from a arbitrary initial condition ¥ (x, 0), it is not always easy to
find the function at a later time ¢ by numerical integration. But we can get
round this difficulty by proceeding in three steps:

* We solve the eigenvalue problem for H :

Héx = Ex ¢y (IL12)

The eigenvalues E can be discrete, corresponding to bound states in
the potential V' (z), or they can be part of a continuum, corresponding
to scattering states.

* The initial state ¢(x, 0) is decomposed onto the eigenbasis {¢(z)}:

P(@,0) = er, oa,(x) + /c,\ dalz) dA. (IL.13)

ju()]

where we have explicitly separated the contributions of the discrete

and continuous parts of the spectrum of H.
‘A ¢ We obtain the wave function at any time using:
D, t) =Y en, (@) e NN / exoa(z) e dA (114)

If we want to determine the evolution of several initial conditions
Y(z,0), the first step only needs to be performed once, and the problem
then boils down to determining the coefficients {c,} for each of the initial
conditions considered.

2-2 The Lax pair of operators

| | |
—10 0 10 Let us consider the nonlinear Schrodinger equation in its dimensionless
x

form for attractive interactions:

Figure 11.6. Evolution of an initial triangular wave function (see figure IL.5). ity + Uge + 2|ul*u =0 (IL.15)

From top to bottom, times aret =0, 2.5,5,--- ,12.5. o o ) ) o
and start from an initial condition u(z, 0) localized in space. The princi-

ple of the IST method is to replace the study of the nonlinear evolution of
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u(x,0)

lDirect

Scattering data
{ax(0),6x(0)}
{2,(0),¢;(0)}

—

u(x,t)

InverseT

Scattering data
{ax(t), bA(1)}
{Ai (@), ¢i ()}

Figure I1.7. Principle of the IST method. We replace the (numerical) calculation
of the nonlinear evolution (red arrow) by three (a priori) easier, linear steps (green
arrows).

u(z,t) by a linear evolution in a different space, this evolution itself be-
ing treated as described in the previous paragraph (§ 2-1). This principle is
summarized in figure IL.7.

In Lax’s method (Lax 1968), which implements this general idea, we as-
sociate a pair of linear operators I and A with the function u(z,t) solution
of the nonlinear equation under study. The operators L and A involve the
function v and its spatial derivatives; they therefore implicitly depend on
time, since u(z, t) itself depends on time, but they do not involve J;. The
link between the equation verified by u and the pair {L, A} is as follows:

dL

u(w,t) solution of (IL15) & = =[A,1L). (I1.16)

For a given integrable nonlinear equation, there is no uniqueness of the
pair of Lax operators. In the case we are interested in here (eq. 11.15), these
operators act in the two-component spinor space (Zakharov & Shabat 1972)
¢a (96))
O(z) =
(=) (¢b(fﬂ )

das(z) €C (11.17)
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and a possible choice is

~ (0w
Ll(u* —3;p>

With this choice, we find:

Uy + 2u0

(2024 |ul? A
A= 1< Sy ) (018)

wh + 2u* 0y

dIA/ . 0 Ut
= =i (uf 0) (IL.19)

N 0 ~Ugy — 2|ul?u
4, L] = (u;w + 2|u|?u* 0

hence the equivalence given in (I.16).

and
(I1.20)

Note that A can also be written as a trinomial in L, with coefficients that
depend on z, but which do not involve the 9, operator:

P o1 0 sy 0 [ E—
A= 21(0 _1)L +2<u* >L+1( w ) @20

This form is useful for formulating the Lax problem in a slightly different
way (see appendix on the AKNS method).

*

The repulsive case. In the case of repulsive interactions, for which the
nonlinear Schrédinger equation is iu; + ug, — 2|ul*u = 0, a possible Lax

pair (L, A) is:
i 0 —u Ao 202 — |ul®  —u, — 2ud, (I.22)
“ur —o, - ul +2u*d, —202+ |ul?*) ’

Note that in this case, the operator I is Hermitian and its spectrum consists
solely of real numbers.

As we shall now see, the spectrum of L given in (I1.18) for the attractive
case is not restricted to the real numbers, and this increase in the spectrum
compared with the repulsive case is precisely due to the possibility of gen-
erating bright solitons, i.e. localized solutions u(z,t) that do not deform
nor expand with time.



CHAPITRE II.  BRIGHT SOLITON DYNAMICS AND THE IST METHOD

§2. The IST method

2-3 Scattering data associated with L

Once equivalence (I1.16) has been established, we can replace the evolution
under the effect of the nonlinear Schrodinger equation by the evolution of
spinors under the effect of the linear operators A and L according to the
scheme shown in figure I1.7. More precisely, let us consider the eigenvalue
problem for the operator L at a given time t:

S . ([ a(z,t)
L® =X  with ®(z,t) = <¢b(l‘, 0 (I1.23)
or its more explicit version:
10:0q +iudy = Aq (I1.24)
—i0, ¢y +iu"Pq = Ay, (IL.25)

This system is close to an eigenvalue problem for a one-dimensional
Schrodinger (or rather Dirac) equation, with the function u(z) playing the
role of a localized potential. In particular, outside the zone where u(z)
takes on significant values, this eigenvalue problem reduces to the solu-
tion of

Ozpa = —iAdq Oupp = 1Ay (IL.26)
which gives at lowest order in u(x):
r — +o0: bg x e AT by x e (I1.27)

The analogy with the Schrodinger equation is not perfect, as L is not
self-adjoint and its eigenvalues A can be complex. Furthermore, the func-
tion u(z) that acts as a potential can also be complex. However, some gen-
eral characteristics remain:

e Ata given time t, the spectrum of L consists of a continuum plus a set
of discrete eigenvalues Aq,..., A, .

¢ The continuous part of the spectrum corresponds to scattering states,
propagating as e to infinity. It corresponds to values of A covering
all real numbers. For each value of A € R, the solutions of the system
(I1.24-11.25) form a space of dimension 2.
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e~ irx a4y e~ AT
0 b)\ e-H)\:t

Figure IL8. The scattering states, eigenstates of the operator L, associated to a
real eigenvalue X\. The corresponding scattering data are the two coefficients a
and by.

¢ Discrete eigenvalues are associated with eigenfunctions ® that are lo-
calized where the function u(x) itself takes significant values. To en-
sure localization, A must have a nonzero imaginary part, A = £ + in
with ¢ and 7 real, to ensure that & decays as e~ /"l at infinity. Note
that the existence of these bound states does not depend on the sign (or
phase) of the "potential” u(x). More precisely, if (¢4, ¢5)7 is a bound
state in the potential u(z) for the eigenvalue A, then (¢,, —¢,)” will be
a bound state in the potential —u(z) for the same eigenvalue.

It is important to stress right away that we will not need to know the
exact form of the eigenfunctions ®(x) to carry out the IST program. This
method relies solely on the spectrum of eigenvalues and on the asymptotic
behavior of the eigenfunctions at +oc.

More precisely, at a given point in time, for example the initial time
t = 0, we will associate the function u(x,0) with a set of scattering data,
such as the reflection coefficient associated with the "potential” u(z,0) and
the behavior of the bound states in this "potential". We will then show that
the time evolution of these scattering data is remarkably simple.

For the continuous part of the spectrum (real \), we define the coeffi-
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) ()
¥

u(z)

Figure I1.9. Blue curve: A bound state, eigenstate of the operator L with eigen-
value \; = &; + in;, with here §; = 0, n; > 0. The corresponding scattering data
are the eigenvalue \; and the coefficient c;.

cients ay and by characterizing the scattering states as (figure 11.8)

Oy (x) ~ ((1)) e A

Dy () ~ ay (é) e AT 4 by (g) etA@  (11.29)

(I1.28)
xr — +00

For the discrete part of the spectrum, in addition to knowing the eigenval-
ues \; = &; + in;, an important quantity is the ratio of the amplitudes on
either side of where the u function is located (figure I1.9):

T — —00 () ~ (é) QMo it (IL.30)

r — +00 Q;(z) ~ ¢ <(1)> e il (I1.31)

We have favored eigenfunctions proportional to the spinor (1,0)” when
x — —oo [cf. (11.28) and (I1.30)], which for bound states imposes a positive
imaginary part for the eigenvalue \. Eigenvalues with negative imaginary
parts can also be obtained by considering the spinor ® conjugate to ®:

[ Pa = [ ¢
q"(%) q"(eb:z)'

(I1.32)
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Indeed, if the spinor @ is an eigenstate of L for the eigenvalue ), the spinor
d is an eigenstate of L for the eigenvalue \*. In what follows, we will re-
strict ourselves to describing the spectrum in the upper complex half-plane
(including the real axis), with the A <+ A* symmetry implicitly assumed.

For a given function u(z, t), the spectrum of L is therefore formed by:

¢ the set of real axes for scattering states,

¢ discrete eigenvalues outside the real axis, conjugated two by two, cor-
responding to localized states.

The first part of the program in figure I1.7 therefore consists in associat-
ing these scattering data with the initial function u(z, 0):

u(z,0) — scattering data:  {ax(0),bx(0)},{};(0),¢;(0)} (I1.33)

2-4 The evolution of scattering data

A central point of the integrability criterion, linked to the existence of a
pair of Lax operators, lies in the simplicity of the evolution over time of the
scattering data.

Let us start by introducing the evolution operator I (t) between 0 and ¢

defined by

a o
— = A(t t

= A u
Note that unlike in quantum physics, where the role of A is played by
a Hermitian Hamiltonian and the evolution operator is therefore unitary,
this property is not generally verified by the operator ¢/ introduced here.
However, this absence of the unitarity property will not be a hindrance in
what follows.

with  2(0) = 1. (I1.34)

The inverse operator I/~ ! obeys the evolution equation:

du—1*

= U WA

(IL35)

as can be seen by calculating Ut + dt)U(t + dt) as a function of
Ut)UL(t) to order 1 in dt.
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Once this evolution operator has been introduced, we can integrate the
evolution equation for the operator L:

% =[A@t),L(t)] < L(t)=Ut)LOU (). (IL.36)
Let us recast this relationship as

L(tyu(t) =u(t) L(0)

)=
and let it act on an eigenstate ®;(0) of the operator L(0) at the initial time,
associated with the eigenvalue )\ ;(0):

L) [Um;0)] = x,0) [Um@;0)] -

We deduce that the eigenvalue A;(0) at the initial time remains an eigen-
value over time and that the associated eigenvector is
. dd
D;i(t) =U(t)P —7
S(0) = (1) -
The discrete part of the spectrum is therefore invariant during time evo-
lution. We will see later that this discrete part is associated with solitons,

and this invariance is therefore a signature of soliton robustness during
evolution.

(IL37)

(I1.38)

i(0) & = A(t)®,(t). (I1.39)

The evolution of the other scattering data can be deduced directly from
the above. In the asymptotic region  — o0, the function u(z, t) takes on
negligible values so that the operator A there is given by [cf. (I1.21)]:

T — oo Aw—?i(l 0>ﬁ2

0 1 (I1.40)

which gives, when we make it act on an eigenstate of L and take into ac-
count (I1.39):

¢b 2
= —2i\’ =2 11.41
dt iA ¢a dt iA d)b ( )
The system (I1.28-11.29) becomes at time ¢
e—2i)\2t o
x— =0 Py (,t) ~ ( 0 ) e (I1.42)
—2iX%¢ ) 0 )
T — +00 D)\ (z,t) ~ ay <e 0 > e T 4 by <62i)‘2t) e PMI1.43)
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Multiplying this set of equations by e%*’, we derive for the continuous

part of the spectrum (scattering states, A real):
bA(t) = by (0) Xt

a)\(t) = ay (0) (1144)

For the discrete part (bound states, A with a non-zero imaginary part),
an identical reasoning yields:

() =200 () = c;(0) ¥, (I1.45)

We have therefore completed the second part of the program in figure
I1.7:
{ax(0),62(0)}, {4;(0),¢;(0)}  — {aa(t),ba

O}, {Ai(t), (1)} (1L.46)

2-5 Inversion of scattering data

The third and final part of the program in figure IL.7 consists in invert-
ing the scattering data: knowing the {ax(t),bx(¢)}, {};(t),¢;(¢)} at time ¢,
can we reconstruct the "potential" associated with them, i.e., the function
u(z,t)? This inversion is indeed possible, even if it can be numerically dif-
ficult to put into practice. Fortunately, even if we do not completely per-
form this last step, we can still deduce a number of interesting properties
by considering the formal structure of the inversion process for scattering
data.

Knowing the scattering data, we introduce the intermediate function
defined at a given time ¢:

1 oo bA(t) 1)\'r 1)\<ac

This function involves an integral over the continuous spectrum of the op-
erator L, with A ranging from —oo to +00, as well as a sum over all discrete
eigenvalues, of non-zero and positive imaginary part.

Fx,t) = (11.47)

Once we know F'(z,t), we look for the solutions K and K, of the pair
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of integral equations (Marchenko equations)

+oo

0 Ko(z,s)F(y+s)ds + F(z+y) (1L48)

—Ki(z,y) +
+oo

0 = K(z,y)+ Ki(z,s)F(y+ s)ds (I1.49)

x
where the dependence on ¢, which plays the role of a constant parameter in
these two equations, is omitted for the different functions K1, K» and F'. In
the general case, this resolution is the step requiring the greatest numerical
effort, but it remains a linear operation. Once this has been done, we obtain
the function u(x, t) as the solution to the original nonlinear equation:

—+o0
w(w,t) = 2Ky (z,2,t)  and / lu(z, )2 dz = —2Ka(z, 2, 1).
’ (IL50)

We will not go into the justification of this procedure here, but refer the
reader to the seminal articles by Zakharov & Shabat (1972) and Ablowitz,
Kaup, et al. (1974). Let us simply point out that it is based on the analysis
of the large A behavior of the solutions of the initial eigenvalue problem
L® = \®, with the unknown function u(z,t) appearing as the coefficient
of the ™! term in the development of the eigenfunctions ®.

Note. A notable simplification occurs for functions u(z) such that the re-
flection coefficient b(\) cancels out for all values of A, since only the discrete
sum over the bound states in (I1.47) then remains. It is in fact this case that
we will discuss first in what follows, as it corresponds to the case of "pure”
solitons.

3 The fundamental soliton

3-1 The fundamental soliton at rest

As a first example of the IST method, let us look at the fundamental soliton
at rest. We take as our initial function
1

cosh

u(z,0) = (IL51)

Figure I1.10. Eigenfunction ®, = (¢a, )7 of the operator L associated with the
eigenvalue Ay = 1/2 for the choice u(x) = 1/ cosh(z).

for which we know it corresponds to an immobile soliton:
it

u(x,t) =

Let us check that we can recover this result using the IST method by ex-

plicitly determining the scattering data, i.e. the reflection coefficients b(\)
for the scattering states and the spectrum of bound states.

. 11.52
coshx ( )

The calculation of the reflection coefficient b(\) involves the use of hy-
pergeometric functions. The result is that for the choice (I1.51), the re-
flection coefficient b(\) cancels for all scattering states (Satsuma & Yajima
1974):

choice (I1.51): b(A)=0 VAeR (I1.53)

Consequently, only the discrete part of the spectrum of L contributes in
this case to the function F(x) defined in (I1.47).

Let us consider now this discrete part. Solving the eigenvalue equation

o)

. ax¢a + h :—i>\¢a
Ld =)\ & CO; t (I1.54)
Doty — ———= iAgy,
cosh x

also involves the use of hypergeometric functions. The result is that there
is a single eigenvalue in the upper half of the complex plane ? outside the

3We remind that the eigenvalues of the discrete spectrum appear in pairs (\;, A}). There
is therefore also the eigenvalue —i/2 in the lower complex plane.
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X i/2

»
»

Figure IL11. Spectrum of the operator L in the upper complex half-plane for
the function uw(x) = 1/ coshz, i.e. a soliton at rest of mass 2. The spectrum is
composed of the real axis and the point Ay = 1/2.

real axis (Satsuma & Yajima 1974):

@1 () :( e/2/(1 + e27) )

>\1 = 1/2 efa:/Q/(l + 6721)

(IL55)
so that ¢;(0) = 1. These two components of the spinor ® are plotted in fig-
ure I1.10. The evolution of scattering data given in (I1.45) therefore reduces

to: .
1

Ai(t) = 3 ci(t) = e 't (I1.56)
and the function F'(z) reads at time ¢:
F(x,t) =e e /2, (IL57)

This single eigenvalue in the upper complex half-plane (figure II.11) is the
signature of the soliton chosen in (I1.52), as we will now show.

For this function F(z), solving the system (II.48-11.49) is very simple
because we can look for solutions in the form

Kj(z,y,t) = Li(z,t)e”¥/?  j=1,2. (I1.58)
This system can then be written
— _T* —it—x —it—x/2
0 Ll + € L2 + e (11.59)

0= Li+eit=oL,
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and its solution is

it—x/2 e—3:c/2

e

11.60
1+e 2= ( )

Ly(z,t) = Ly(z,t) =

Trem
We can then use the general solution (II.50) and check that we recover the
exact result that is already known (I1.52). Of course, using all the formalism
of the IST method for the simple case of the fundamental soliton at rest
seems disproportionate, but it does allow us to check that the formalism
we have presented is indeed under control. Furthermore, we will soon see
how to use this same formalism to find much less obvious solutions.

3-2 Variants around the soliton at rest

Soliton displaced from = = 0. Choosing the initial function u(x,0) =
1/ cosh(x — o) does not change the coefficients b(\), which remain zero,
nor the discrete eigenvalue A\; = i/2. We find the same system as in (I1.54)
after changing the variable + — = — x¢, which has the effect of modifying
the value of ¢;(0), which becomes

c1(0) = e (I.61)
Solving (I1.48-11.49) is done as in the case zy = 0 and leads to:
eite—z/Qezg e—3:c/2e210
Ll(x,t) = m Lg(x,t) = —m (II62)

We then deduce the solution of the Schrodinger equation at time ¢: u(x,t) =
el / cosh(x — x0).

Soliton of different mass. The soliton considered in (I.51) has a mass

equal to 2:
/ lu(z,0)|* dz = 2. (I1.63)
Of course, other stationary solitons are also of interest:
u(z,0) = —— (IL64)
" cosh(kx) '
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with a mass and an energy given by:
2
M= /|u(x,0)|2 dz =2k E = / (|0zul?* = |u|*) dz = —§m3. (11.65)

The above treatment remains valid whatever the value of x. More precisely,
(i) all reflection coefficients remain zero and (ii) the system (I1.54) is solved
identically by changing the variable 2’ = kx, indicating that the eigenvalue
associated with the soliton is now:

A = ir/2. (IL.66)

It therefore remains purely imaginary and at time ¢ we find

K ikt

u(z,t) = (I.67)

cosh(kx)

Soliton of different phase. If we change the phase of the initial condition
(IL51) by taking u(z,0) = e'¥/ cosh(x), we can easily see that we find the
same system as in (IL.54), with the substitution ¢, — ¢, e ¥. The reflec-
tion coefficients b(\) are always zero, and we keep the same single pure
imaginary eigenvalue \; = i/2 in the upper complex half-plane. The only
change concerns the coefficient ¢; (0), which becomes:

c1(0) = e . (I1.68)

The function F(z) then also acquires the phase e™¢, with the resolu-
tion of (I1.48-11.49) remaining unchanged. We finally arrive at u(z,t) =
e~1(t+¢) / cosh(x), as expected.

Comparing (I1.61) and (I1.68) is instructive: changing the coefficient
¢1(0), other things being equal, allows us to account for a phase change
or a translation of the initial function u(z,0) depending on whether we
modify the phase or the modulus of ¢;.

3-3 The fundamental soliton in motion

Still in a one-soliton scheme, we can also take as our initial condition

eikx
u(z,0) = P (I1.69)

We saw in the previous chapter that it represents a soliton whose envelope
propagates at velocity 2k. Let us check that we can recover this result using
the IST method.

The eigenvalue equation (II.23) still admits one and only one solution
for A in the upper complex half-plane, but this eigenvalue now has a non-
zero real part (figure I1.12):

e—i)\lw eQx
A= (= k)/2 O, (z) = (emlw /((11;220 (IL.70)

from which we deduce
c1(0)=1 a(t) = el — 1)t g2kt F(z,t) = ¢ (t)e /2 /2 (IL71)

Solving the integral system (I1.48-11.49) at a given time ¢ can still be done
by posing ‘
Kj(@',y,t) = Lj('rvt) e(_1+zk)y/2 (1172)
and we find
el(1=E*)t o(ik—1)x/2 o2kt

Li(e,t) =~ —aman with v=2k  (IL73)

and finally A,
ik gi(1-k*)t

t) =2K )= ——F—. 11.74
u(@, ) i(@2,1) cosh(z — vt) (L74)
Summarizing the previous two paragraphs, the fundamental soliton
problem
u(z,0) = Lﬂm —  u(xz,t) = Lﬂm iR k%)t (I.75)
"7 cosh(kz) " cosh[k(z — 2kt)] '

is characterized at any time ¢ by :

* anull reflection coefficient b(\) for all real ), i.e. for all scattering states
resulting from the resolution of L® = A® ;

* asingle eigenvalue X in the upper complex half-plane, and thus a sin-
gle bound state:

AL = %(m — k). (I1.76)
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Figure I1.12. Spectrum of the operator L in the upper complex half-plane for a
soliton of mass 2k and velocity 2k. This spectrum is composed of the real axis and
the point Ay = (—k +ik)/2.

This bound state is associated with the soliton, the imaginary part  of
the eigenvalue characterizes the mass of the soliton (A = 2x) and the
real part k characterizes the velocity of its envelope (v = 2k).

Summary. The results we have just obtained give a broader view of the
robustness of the soliton discussed in §1. Let us first consider a function
u(z,0) having exactly the form required to form a soliton. We know that
the spectrum of L will be composed of the set of real numbers and a pair
of conjugate non-real eigenvalues. We also know that the reflection coeffi-
cients by will all be zero.

Now let us suppose that we slightly distort this initial condition u(z, 0).
The nature of the spectrum will remain unchanged: it will always be com-
posed of the real axis (scattering states) and a single pair of eigenvalues off
the real axis (a bound state in the "potential" associated with u(x,0)). On
the other hand, the by coefficients will probably become non-zero.

However, we know that the pair of non-real eigenvalues corresponds
to a soliton. The imaginary part may differ from that of the desired soliton,
which means that the number of particles will not be exactly that targeted,
and the real part may also be different, corresponding to a velocity that is
also slightly different from that desired. But the soliton will still be there!
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The fact that the by, coefficients are nonzero indicates that the delocalized
states will be populated, a necessary counterpart since the soliton will not
have the initially expected number of atoms at long times.

If we modify the initial condition more drastically, the pair of complex
eigenvalues may merge with the real axis and disappear: this means that
we have not put in enough particles (given the initial size) to prevent the
wave packet from expanding under the effect of kinetic energy. All the
particles will disperse and no localized, stable collective structure will have
been formed.

If the initial wave function is significantly different from the one ini-
tially targeted, other pairs of non-real eigenvalues may also appear. In this
case, several solitons will be generated, a situation to which we will return
in the next paragraph.

In any case, the first stage of the IST method, i.e. the diagonalization of
the operator L, can be seen as a "soliton detector”, providing quantitative
information on the final state that will be reached after evaporation of all
surplus particles, by giving the number of solitons, their masses and their
velocities.

4 Higher-order solitons

In this paragraph, we are interested in the situation where we have pre-
pared an initial function u(x,0) and where the diagonalization of the cor-
responding operator L

s Oy u(zx,0)
L=i (u*(m, 0) -0, ) (I1.77)
leads (in addition to the real axis) to several eigenvalues {};, j =1,...,n}

in the upper complex half-plane, and of course their complex conjugates in
the lower half-plane.
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Figure I1.13. Function u(x) obtained by taking the sum of envelopes of funda-
mental solitons well separated from each other.

4-1 N solitons of different velocities

In this paragraph, we assume that the function u(x, 0) is made up of n wave
packets well separated from each other (figure 11.13),

n

u(z,0) = Z uj(z)

j=1

(IL78)

where each function u; corresponds exactly to a soliton located in z;, with
mass M; and velocity v;.

Let us take a look at the eigenvalue problem for L and consider the scat-
tering states first. We know that each of the "potentials" u;(z), taken alone,
leads to a reflection coefficient by that is strictly zero. If the envelopes of the
functions u; are well separated, the interferences between these different
scattering centers can be neglected, leading to a zero reflection coefficient
for each value of A. In optical terms, a stack of surfaces, each with an anti-
reflective coating, forms itself a non-reflective system.

We deduce from the general result (I11.44) that the coefficients b, will re-
main zero over time, even if the solitons momentarily come into contact
with each other. Therefore only discrete states will contribute to the func-
tion F'(z) given in (I1.47) and the determination of u(z, t) at any instant will
not involve scattering states. In physical terms, we know from the outset
that no particles will be evaporated during soliton collisions.
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Let us now consider the bound states in the "potential” u(z, 0). By con-
struction, each u;(z) gives rise to a bound state localized in the vicinity of
x, associated with the eigenvalue )\; of L. Assuming that the "potentials"
u;(z) are very far apart, the diagonalization of L will lead to n bound states
very close to the bound states of each individual "potential” u;. In a stan-
dard quantum formulation, this amounts to neglecting the tunnel coupling
between potential wells arbitrarily far apart.

We also know that the spectrum {);} will remain constant [cf. (I1.45)].
Once all the solitons have crossed, we will have the same eigenvalues ;
as at the input. Remember that the real part of \; determines the mass of
soliton j, and the imaginary part determines its velocity.

The general result (I1.44-11.45) for the evolution of scattering data is
therefore extremely powerful, since it allows us to account for the stability
of solitons during a collision, whatever their number, masses and veloci-
ties. Solving the integral system (I1.48-11.49) is only necessary if we wish
to know the exact position of each soliton at a given instant ¢, this position
resulting from the attractive or repulsive character of the interactions be-
tween solitons, itself dependent on their relative phase, and therefore on
the coefficients c; [cf. (IL.68-11.61)].

4-2 Multi-solitons (or composite solitons)

In the previous paragraph, we assumed that there was an initial instant at
which the n solitons were well separated from each other. We will now
consider the opposite situation, where the solitons are initially superim-
posed on each other with the same velocity, which we will choose to be
zero.

To further simplify the discussion, we will assume that the function «
reads at initial time

u(z,0) = A

= 11.79
coshz’ ( )

corresponding to the following mass and energy:

2
M= / |u|? dz = 242 E = / (|0ul* = |u|*) dz = —5142(2142 —1).
(IL.80)
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If we take A = 1, we recover the fundamental soliton studied in the previ-
ous section (§ 3). The question we wish to address concerns the evolution
of the system for any value of A. To this end, we will use the results of
Satsuma & Yajima (1974).

The eigenvalue problem for L is solved by eliminating the function ¢,
from the differential system (I1.24-I1.25) to obtain a second-order differen-
tial equation for the function ¢, only. This equation can be solved exactly
and its solution can be written in terms of a hypergeometric function. The
important result here concerns the discrete spectrum of L, which we have
seen to be a "soliton detector". This spectrum is plotted as a function of A
on figure I1.14 and has a very simple expression:

e For A < 1/2, there are no eigenvalues outside the real axis. There is
therefore no soliton, and the initial wave packet will spread out indef-
initely over time.

* For A €]1/2,3/2], there is one and only one eigenvalue in the upper
complex half-plane, and therefore only one soliton:

. 1
)\1:1<A—2)

We return to the situation shown in figure I1.2 and discussed at the
end of section 3: apart from the A = 1 case, which constitutes the
fundamental soliton (A; = i/2), particles or radiation are emitted to
asymptotically reach a soliton at rest, of mass M, = 2k with \; = ix/2,
ie. k = 2A—1and M, = 2(2A—1). The difference between the starting
mass M = 2A? and that of the solitonis AM = M — M, = 2(A —1)2.
This is a strictly positive quantity, except for A = 1 since the initial
state is then the fundamental soliton, as already mentioned.

(IL.81)

When A tends towards the lower limit A = 1/2, the mass of the fi-
nal soliton tends towards 0, corresponding to a wave packet of very
low amplitude and large width. When A tends towards the upper
limit A = 3/2, the mass of the soliton formed tends towards M, = 4,
whereas the initial mass is M = 9/2. The radiated mass is therefore
1/2, the final solitonic wave packet x/ cosh(kz) having a height greater
than the initial height (2 instead of 3/2) and a narrower width.
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e For A €]3/2,5/2], there are two discrete eigenvalues in the upper com-

plex half-plane:
1 3
M=ilA4A-2 A=ilA—-—
We thus find a situation with two superimposed fundamental solitons,
each at rest since the real part of these eigenvalues is zero. We will call
this structure a "bi-soliton" and come back to it a little later to show
that it gives rise to an oscillating structure (breather).

(IL.82)

* More generally, for A €]n —1/2,, n + 1/2], there are n discrete eigen-
values in the upper complex half-plane:

. 1 . 1
)\1:1<A—2)7 ,)\nzl(A—n—i—Z).

This structure corresponds to a multi-soliton, i.e. n superimposed fun-
damental solitons, all with zero velocity.

(I1.83)

The reflection coefficients b, that characterize the continuous spectrum
(real A) also have a remarkable expression (Satsuma & Yajima 1974):
. sin(mA)
by = 1m. (I1.84)
In particular, for integer values of A, i.e. A chosen at the center of the seg-
ments we have just identified, the reflection coefficients b cancel out for all
values of k. At these points, the continuous spectrum does not contribute
to the expression of the function F'(x) defined in (I1.47). Nor does it play a
part in solving the system (I1.48-11.49) that provides the function u(z, t) at
all times. For these integer values of A, no particles or radiation are emit-
ted by the system during its evolution: all particles remain in the form of a
multi-soliton.

This absence of evaporation can be verified for integer values A = n by
comparing the initial mass M;,; = 242 = 2n? [cf. (I1.80)] and the total mass
of A = nindividual solitons associated with eigenvalues \; = i(n—j+1/2)
[cf. (I1.64-11.66)]. The amplitudes x; = 2|);| of these n solitons are the odd
numbers 1,3, ..., (2n — 1) and the total mass is equal to

Moy =2 (2 — 1) = 2n”. (IL.85)

j=1
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Figure I1.14. Discrete eigenvalues of the operator L for the choice u(z) =
A/ cosh z.
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The equality between the initial mass and the total mass of the n funda-
mental solitons confirms the absence of evaporation in the case where A is
an integer.

4-3 Experimental observations

These multi-solitons were observed shortly after their prediction for light
pulses propagating in optical fibers (Mollenauer, Stolen, et al. 1980). Here,
we focus on their (much more recent) demonstration with matter waves by
Di Carli, Colquhoun, et al. (2019) and Luo, Jin, et al. (2020).

Figure I1.15 shows a series of results obtained by Luo, Jin, et al. (2020).
The authors started with a fundamental soliton realized with N = 50, 000
Li atoms strongly confined along two axes (w /27 = 300 Hz), with much
weaker confinement in the third direction, noted here z (w,/27 = 1Hz).
At a given instant, they suddenly modify the strength g of the interactions
by changing the scattering length using a Fano—Feshbach resonance. The
change corresponds to g — A%g with A = 1.9(3) for the top of the figure,
and A = 2.6(4) for the bottom. We can check that this is equivalent to
preparing the wave packet A/ coshz for the nonlinear Schrodinger equa-
tion in reduced coordinates that we have used in this chapter.

In the case A = 1.9 ~ 2, we obtain a composite object made up of the
two elementary solitons of amplitudes 1 and 3, associated with eigenvalues
i/2 and 3i/2. The two coefficients c; () and ¢z () used to calculate the func-
tion F(x) vary as Nt [of. (I1.45) and (I1.47)], giving the beat frequency
wp = 4(% — 1) = 8 in reduced units. We therefore expect to observe a
periodic oscillation in the width of the wave packet and its central density
at the frequency wp = 8, or wg = w; N%(a/2a0n)? in dimensioned units
where a denotes the scattering length after change.

Experimental data are in excellent agreement with this prediction. Sat-
suma & Yajima (1974) give the expression of the function u(z,t) for this
bi-soliton. We will not write it here as it is rather complicated, but we give
the evolution of the central density po(t) = |u(0,t)|*:

5 570(0) (I1.86)

=
Polt) 5+ 3cos(wpt

which leads to a variation of a factor of 4 over time. This prediction cor-
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Figure 11.15. Oscillations of a bi-soliton (top) and a tri-soliton (bottom) formed
with lithium atoms in a harmonic trap. Figures taken from Luo, Jin, et al. (2020).
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responds to the black curve shown in figure I1.15 (with a shift in the time
origin).

The data in the lower part of figure II.15 show the realization of a tri-
soliton, i.e. an object composed of the three fundamental solitons of am-
plitudes 1, 3 and 5. Here too, the time evolution of the central density is a
periodic function. It involves the "Bohr frequencies” w;; = 4|7 — X3| and
the experimental results are in good agreement with the predictions of the
IST method.

4-4 Can a multi-soliton be decomposed?

A multi-soliton obtained by taking A = n € N* for the initial wave packet
u(z,0) = A/coshz is a stable object. It results from the (nonlinear) com-
bination of elementary solitons u;(xz) = &;/cosh(k;z) with amplitudes
k; =1,3,---,2n — 1, and its width and central density evolve periodically
over time. However, this multi-soliton is not a bound state of n elementary
solitons. To prove this point, we can just compare the energy of the initial
wave packet [cf (IL.80)]:

Fini = —§n2(2n2 —1) (11.87)

and the sum of the energies of the n constituents:
ot ==Y _ 3H;- (I1.88)
j=1

The sum of the cubes of the first n odd numbers is precisely n?(2n? — 1),
hence the equality between the two energies.

To decompose a multi-soliton into its elementary constituents, it is
therefore sufficient in principle to introduce an element that breaks the
integrability of the evolution equation. This is precisely what has been
studied numerically by Marchukov, Malomed, et al. (2019). These authors
calculated the behavior of a bi-soliton when a potential barrier in the form
of a slightly off-center Dirac distribution is gradually applied to the sys-
tem. A typical result is shown in figure I1.16. It can be seen that, after
the initial bi-soliton has oscillated for around 10 periods, its two compo-
nents have separated, with one going to the left of the barrier and the other
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Figure I1.16. Evolution of a bi-soliton when a potential barrier V(x,t) =
ef(t)d(x) is applied to the system. The barrier is slightly off-center with respect
to the bi-soliton. The two components are then ejected on either side of the barrier.
The time T represents the oscillation period of the bi-soliton. Figure taken from
Marchukov, Malomed, et al. (2019).

to the right. One can check that the fission products are independent of
the details of the barrier, i.e. its final height or decentering: the fragments
are the fundamental constituents of the soliton, and the barrier is merely a
"catalyst" for revealing them.

A similar result is obtained when a multi-soliton is sent over a potential
barrier, with some elementary constituents being reflected while others are
transmitted (Dunjko & Olshanii 2015).

Appendix: the AKNS approach

An equivalent version of the formulation adopted in this chapter is to
switch from manipulating linear operators, such as L and A, to simple 2 x 2
matrices functions of z, which we will denote U and V/ (Ablowitz, Kaup,
et al. 1974). The price to pay is the introduction of an additional parameter
), which was an eigenvalue of L in this chapter’s treatment.

To present this approach for the nonlinear Schrodinger equation, let us
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rewrite the system (II.24-11.25) in the form

0,® =Ud (I1.89)

with*

U=Uy+\U, Uy= (5 0“) (11.90)

- —-i 0
o= (79,

Similarly, the combination of the evolution equation deduced from (I1.34)
d(t) = U(t)D(0) (I1.91)

and the development (I1.21) of A into powers of \ leads to the equation

Hd =V (11.92)
with ) R R )
V=V, + A\Vi + A2, (I1.93)
and
Y A —. . . . .
Vb =1 * 2 V1 = 2UO V2 = 2U1 (1194)
— Uy 7"LL|

In this point of view, A is a time-independent parameter and the nonlin-
ear Schrodinger equation is recovered by imposing that the two equations
0,® =U®and §,® = VP are compatible with each other whatever A. This
compatibility condition can be deduced from

0y (0,®) = 0, (0, D) (IL95)

or
(atU — 0,V + [0, V]) o = 0. (IL.96)
Remember that in this point of view, U and V' are only functions of z (not
operators). At any point where ® does not cancel, we must therefore im-
pose that the matrix acting on ® is zero. We can check, for example by
identifying the terms involving each power of ), that this condition is sat-
isfied if and only if u(x,t) obeys the nonlinear Schrodinger equation:

VA: QU -0,V+[U,V]=0 & w4 uge + 2u>u=0. (I197)

4Do not confuse this matrix U with the evolution operator ¢/ introduced above!
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The pair of matrices (U, V) is also called the Lax pair for this nonlinear
equation.

The equation (I1.96) is called zero curvature condition because it corre-
sponds to the cancellation of the curvature tensor F), , = [0, —A,,0, —A.].
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Chapter III

Gray solitons

The first two chapters of this course were devoted to the study of con-
densates with attractive interactions, for which the soliton is the funda-
mental state of the system, at least in a one-dimensional geometry. We now
turn to the case of repulsive interactions, still in a 1D or quasi-1D geometry.
The solitonic structure then appears as a local depletion in a condensate of
uniform or slowly varying density in space (Tsuzuki 1971). The depletion
can be total, in which case we speak of a dark (or black) soliton, or partial,
which is called a grey soliton. To a certain extent, these solitons can be seen
as the 1D cousins of the vortices appearing in two- or three-dimensional
quantum fluids.

The fact that grey solitons are generated in fluids which occupy a large
region of space raises interesting questions about their theoretical descrip-
tion. The search for their dispersion relation, which links their energy and
their momentum, is a tricky problem that we will tackle in two different
geometries, that of a gas arranged on an infinite straight line and that of a
gas on a ring.

Other interesting problems arise when the gas density is not uniform,
but varies slowly in space. The soliton then behaves like a quasi-particle,
whose equation of motion we will establish and compare with experimen-
tal observations. Finally, we will address the new questions that arise when
we take into account the transverse extension of the gas, with the possibil-
ity of a grey soliton evolving into a vortex ring or a solitonic vortex.

For lack of space, we will not go through the IST approach here. Let
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us simply mention that IST applies to the nonlinear Schrodinger equa-
tion in the repulsive case as well as in the attractive case explored in the
previous chapter. On this subject, see the article by Del Vecchio Del Vec-
chio, Bastianello, et al. (2020) and its references: this article makes the link
between the IST approach and generalized hydrodynamics for quantum
1D Bose gases!, and shows how this type of system can be described in
terms of a generalized Gibbs ensemble. The recent work of Bastianello,
Tikan, et al. (2025) describes an implementation of this generalized Gibbs
set concept on a photonic platform. In addition, see Saha & Dubessy (2025)
for a study of integrable turbulence with a soliton gas, also using the IST
method. We will not go into the subject of grey solitons in periodic lattices
either, and refer readers interested in these problems to the review article
by Frantzeskakis (2010).

1 The wave function of a grey soliton

1-1 The speed of sound in a uniform condensate

The solitons we will be considering in this chapter propagate in a conden-
sate of uniform density py and we will see that their speed is limited by the
speed of sound waves in this condensate. In the first chapter of this lecture

! The seminar by Jérome Dubail on Friday March 28 was devoted to a description of this
generalized hydrodynamic approach
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series, we explained how to calculate this speed of sound. Let us take a
brief look at the principle behind this calculation.

The dynamics of the condensate is described by the Gross—Pitaevskii

equation
h2
ih 0y = —o—87 + gly|* (IL.1)
2m

where 9 (z,t) is a complex wave function. For repulsive interactions (g >
0), the ground state of the condensate corresponds to

p(a,t) = /poe P

We characterize the deviation from equilibrium by two complex numbers
U and V of order 1 and a parameter ¢ < 1:

with p = gpo. (11.2)

’(/J(J),t) — \/% {1 +e [U ei(k’.t—wt) + v* e—i(km—wt):| } e—i/Lt/h. (HI?))

The dispersion relation linking k to w is obtained by injecting this form
for ¢(z, t) into the Schrodinger equation and restricting ourselves to order
1 included in e:

h%k?

with ,
2m

(hw)? = 2ergpo + €1

€ = (111.4)

which corresponds to the Bogoliubov dispersion relation.

We are interested here in the "phononic" limit of small k¥ (long wave-
length), so we can neglect the contribution of €; and keep only (Aw)? =
2ergpo, which gives

with ¢=+/gpo/m

w=ck (II1.5)

Validity of the mean-field approach. Throughout this chapter, we will
be using a macroscopic wavefunction (x, t) to describe the 1D gas. This
approach is valid as long as quantum fluctuations play a negligible role,
which is the case when the Lieb-Liniger parameter + verifies:

am

< 1
72 po

N = (IIL6)
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Figure I11.1. Wave function ¢ (z)  tanh(kz) in the vicinity of a wall. The
density p(z) = |y(z)|? becomes close to its asymptotic value po for a distance
from the wall of the order of the healing length ¢ = 1/(kv/2).

1-2 The healing length

Before considering the case of a soliton, let us look at a 1D condensate in
the presence of a wall located at # = 0, so that the fluid can only occupy
the x > 0 part of space. We must therefore find the ground state of the
fluid by imposing the wave function to cancel out on contact with the wall:

$(0) = 0.

We can verify that the lowest-energy stationary solution is the wave
function

W(x,t) = \/po tanh(kz) e /R (I1L.7)
with
h2 2

The wall thus creates a density hole over a typical length of the order of
1/k (figure IIL.1). Traditionally, the healing length £ is defined as

h
vV2mgpo

¢ (IIL.9)
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Figure II1.2. Wave function 1(x,0) of a dark soliton centered in x = 0 [cf. eq.
(I1L.10)].

ie. ¢ = 1/(kVv?2). Note that the condition (IIL.6) on the Lieb-Lininger pa-
rameter reads p§ > 1: there must be many atoms over the healing length &
for the mean-field approximation to be valid.

1-3 Dark soliton (at rest)

The construction of a dark soliton in a condensate with repulsive interac-
tions is straightforward once we know the result of the previous paragraph
concerning the influence of a wall (figure II1.2). We take the wave function

Y(x,t) = \/po tanh(kx) e~ H/R (II1.10)

over all accessible space, i.e. for x from —oo to +oco0. This is not the
ground state of the system, which is given by the uniform wave function
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Vpoe /P but it is a steady state solution of the Gross-Pitaevskii equa-
tion. We can, of course, translate the position of the node of the soliton and
replace the variable z by « — x¢, with z( arbitrary, in the expression of .

The density associated with this wave function is written as

p(x) = po tanh2(/§(§) = po — L (11111)

Its structure is therefore symmetrical with that of the bright solitons stud-
ied in the previous chapters, for which we had puignt () = po/ coshz(mx).
The phase is discontinuous in « = 0, with a phase jump of £ at this point
corresponding to the change in sign of ¢(x). Density and phase are plotted
in figure IIL3.

For the dimensionless version of the nonlinear Schrodinger equation in
the repulsive case, ius + uz, — 2|u|?u = 0, the wave function corresponding
to the dark soliton is

u(z,t) = tanhz e =2 (IL.12)

1-4 The grey soliton (in motion)

In the case of bright solitons, we can pass from a soliton at rest to a soliton
moving at speed v by a simple change of Galilean reference frame. The
situation is different for a dark soliton, as the fluid that fills the entire space
and in which the soliton is imprinted is at rest only in a particular reference
frame.

We can nevertheless construct a solution to the Gross-Pitaevskii equa-
tion that corresponds to a soliton in motion, but its expression is a little
more complicated than that of a soliton at rest. First, let us point out that
the speed of a moving soliton cannot exceed the speed of sound: |v| < c.
Under these conditions, it is useful to introduce the angle « €] — 7/2, 7/2|
such that

2

sina = < cosa=1/1— (TI1.13)

a = arcsin(v/c) =
c

DCR)
c2

the sign of o being the same as that of the velocity v. With this parameteri-
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Figure I11.3. Density and phase of a dark soliton centered in « = 0. The phase
choice corresponds to t = 0 in (111.10).

zation, the solution we are looking for is written:

U(z,t) = /po {cosa tanh [k, (x — vt)] + isina} e /" (I11.14)
with
02
Ky = K\[1— —. (II1.15)
c

where & is still defined by (IIL.8) and u = gpo.

The density profile p(z,t) = |¢(z,t)|?> moves without deformation at
speed v. For simplicity’s sake, consider the time ¢ = 0. We see that the
density is minimal in « = 0, but no longer cancels out, unlike in the case of
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the soliton at rest:

p(z,0) = po [coszatanhQ(/ivx) + sin? a]
(IT1.16)
cos? o
= l1-— 111.17
po [ COShz(Iiv.’I})] ( )

The minimum density is pg x Z—j the closer the soliton’s velocity to the

speed of sound, the smaller the density hole. The number of atoms con-
tributing to the soliton is calculated from :

+o0
N, :/ [(z,t)]> — 1] do (I11.18)
and we find:
h 1/2
No(p,v) = —2—— (u — mov? (I11.19)
(1, v) N (1 )
also written as
22\ /2
Nq(p,v) = =2V2 pof <1 - 02) : (111.20)

This number is negative, as the atoms are missing due to the density hole
at the soliton. The corresponding density profile is plotted in figure 114
(top) for v = £¢/2.

For a non-zero v velocity, the phase profile shows no discontinuity (fig-
ure II1.4, bottom). Again, let us take ¢ = 0 in (II1.14) and first choose v > 0.
We find that

e When z — 400, the wave function (II1.14) tends towards pg €' and its
phase ¢(z) therefore tends towards the value «, which is between 0
and 7/2 for v > 0.

* Atz =0, the wave function is i\/pg sin a. It is therefore pure imaginary
and has phase +7/2 since sina > 0.

e When z — —oo, the wave function (II1.14) tends towards —pg e~ ¢ =
poe' (™) and its phase ¢(x) tends towards the value m — «, between
/2 and 7.



CHAPITRE III. GRAY SOLITONS

§ 1. The wave function of a grey soliton

1
p(z)
po 05 [
O | | | | | | | | |
—-10 -8 —6 —4 -2 0 2 4 6 8 10
KT
10 —uv=+4c/2 ||
---v=—¢/2
@) ol T -
T e
B T e bebe bttt testebeta ety i
| | | | | | | | |

Figure II1.4. Density and phase profiles for a grey soliton, here with v = +¢/2.
We have chosen the phase convention ¢(0) = /2.

Across the soliton and for v > 0, the phase variation of the wave func-
tion Ag = ¢(+00) — ¢(—00) corresponds to the arc of circle from m — « to
a, represented in figure IIL.5, top:

‘v >0: A¢p =a— (1 —a) = —2arccos(v/c) ‘ (1.21)

where we used the fact that for z between —1 and 1, arcsinx + arccosx =
/2.

Now let us take a negative velocity v (but smaller than c in absolute
value), for which « is between —7/2 and 0.

e For z — oo, we again find the value ¢(4+00) = « for the phase of the
wave function pgel®.

e For z = 0, the wave function i,/p sin o has phase —/2 since sin a < 0.

¢ For z — —o0, the wave function —pg e~ can be written poe_i(”+“), or
¢(—o00) = —m — a if we choose this phase in the interval | — 7, —7/2].
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Figure II1.5. Top: phase variation, here equal to the polar angle, for a grey soliton
with velocity v > 0. By convention, we have assumed a phase of 7/2 at the
soliton’s center, which amounts to positing t = 0 in (II1.14). Bottom: ditto for
v < 0. In both figures, we set o = arcsin(v/c) as in (II1.13), with o > 0 for the
top figure and o < 0 for the bottom.
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Figure I11.6. Relationship between the velocity v and the phase difference A¢
across a moving soliton [Egs. (I11.21)-(111.22].

When we go from x = —oo to +00, we describe the arc of a circle going
from —m — a to «, represented in figure II1.5, bottom:

v<0: Ap=a— (—m —a) = 2m — 2arccos(v/c) ‘ (II1.22)

With the phase convention adopted in (II1.21)-(1I1.22), the phase variation
A¢ tends towards 0 when the soliton velocity tends towards +c. It is dis-
continuous when v crosses the point of zero velocity: it tends towards Fr
when v — 04 (figure II1.6).

Finally, let us note that in the v — =£c limit, the soliton wave function
(II1.14) continuously approaches that of a uniform condensate: the number
of missing atoms (II1.19) tends towards 0, and the density and phase pro-
files become quasi-constant. This point will serve as a basis in the following
paragraph for defining integration constants for velocity-dependent func-
tions.
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2 Energy and momentum of a grey soliton

2-1 Using the Gross-Pitaevskii functional

We now wish to calculate the energy required to go from a uniform con-
densate between x = —oo and © = 400, with density py, to a condensate
with a grey soliton of velocity v and the same asymptotic density py. It
should be noted at the outset that these two situations do not correspond
to the same number of atoms, since the second is deduced from the first
by digging a density hole in it. However, they do correspond to the same
chemical potential 1 = gpo.

We should therefore consider the energy functional best suited to a com-
parison in terms of chemical potential rather than number of atoms, i.e. the
grand-potential (also known as Landau’s free energy)

E'ly] = B[] - uN[y] (I1.23)
where E[1)] is the Gross-Pitaevskii energy functional we have already
used:

h? 2 g 4

=— [ 0¥ dz+ 2 [ [¢*da (II1.24)

2m 2

and
= / ¢[? da. (ITL.25)

Since the density p(z) = |1 (x)|? does not tend to 0 at infinity, some of
the integrals written above are not convergent. However, the difference
between solitonic and uniform solutions does converge. Using o = /p,
and p = gpo, we find:

Ey(uv) = {BIY] - NIy} ~ {Elo] - sV o]}
- {h2/|amw|2 2 fwwtt = fwr} {8 [s5-n [ m)
o [t aw+ 2 [ (o ) @ (I1L.26)

which is indeed a convergent quantity.
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We have written this free energy Ej, a function of chemical potential
and soliton velocity, for a condensate of uniform density outside the soli-
ton. However, this expression can be generalized to situations where the
bath density pg (and therefore u = gpo) varies with position, provided this
variation remains small on the length scale x~! associated with the soliton

(cf. §3-1).

Calculating E; (1, v) from the wave function (III.14) poses no major dif-
ficulties. We use the integral

oo da 4
—_— I11.27
/_OO cosh*z 3 ( )
and we arrive at
4 h 3/2
Ey(p,v) = =—— (u — mv? I11.28
(1,0) = 5 7 (=) (I1L.28)

Note the simple relationship between this energy and the number of atoms
N; < 0 calculated in (II1.19):

2
mg- .3

B = =5 s

(I11.29)

which is similar (except for a numerical factor) to that found for a bright
soliton in Chapter 1.

Note that the number of atoms N, can be found from the relation

OFE;
Ny =—
( Op >v
See Pitaevskii (2016) for an in-depth discussion of this relationship, ap-

plied to more complex situations, in particular those involving quantum
gas mixtures.

(I11.30)

2-2  Local momentum vs. total momentum

In the first chapter of this lecture series, we indicated that for any wave
function v (z, t) solution of the Gross-Pitaevskii equation, the momentum

57

defined by

P[Y] = —ih / V* (9,0) da (IIL.31)

is a constant of motion.

For the solitons we have considered here, the wave function ¢(z) varies
significantly around the soliton node. We can give ourselves two points z_
and x4 located on either side of this node, at a sufficiently large distance
(several 1) for the density to have resumed its asymptotic value pg. It is
then tempting to write P ~ P, with

Roo = =it [ 4" 0.0) da, (m.32)

where "loc" stands for local. This quantity is zero for the uniform wave
function ¢y = /p, and its value for the wave function (IIl.14) describing a
grey soliton is:

(I11.33)

v 2 1/2
Pioc(po,v) = _QRPOE (1 - CQ>

This momentum P is plotted as a red dashed line on figure IIL.7. It can-
cels out when v — =, since in this limit we recover the wave function of a
uniform condensate. It also cancels out at v = 0.

This local momentum can be written as a function of the number of
missing atoms N, calculated in (II1.19):

Poe = Nymu (TI1.34)

which corresponds to the expected momentum for a hole of IV, missing
particles, moving at speed v.

There is another way of calculating the momentum of a system, in the
Lagrangian sense of the term, when we know the relationship between its
energy and its velocity. We will call this momentum total, as opposed to the
local momentum defined above. This total momentum is also called the
canonical momentum and is the conjugate variable of velocity. The starting

point is the relation
(%)
v =
oP u

(IIL35)
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Figure I11.7. Local momentum Py, (red dashed curve) and total momentum P
(blue solid curve) for a grey soliton as a function of its velocity v.

where the derivative is taken holding constant the other intensive param-
eters, in this case the chemical potential 1 or equivalently the asymptotic
density po. This relationship is inverted to express P as a function of v and

L4
with y constant : dP = dEs _ (8E5> dv (I11.36)
v o ), v
which gives for a positive speed
c E /
v>0:  P(uc)— Puv) = / (a ) 4 (I11.37)
v \Ov /)

The momentum P(yu, ¢) will be taken to be zero, since the soliton wave
function tends towards that of a uniform condensate when |v| — ¢. We
then find

v>0:

P(p,v) = Poc(u,v) + 2hpg arccos(v/c) (I11.38)
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Figure I11.8. Dispersion relation of a grey soliton: variation of energy E with

momentum P. Units are Py = 2whpg and Ey = (thpS/m)l/Q.

The same reasoning can be used for a negative velocity v:

v<0: P(u,v) — P(u,—c) = /i (a;is)u dle’ (II1.39)
which gives, after setting P(u, —c) = 0 by continuity:
v<0: P(u,v) = Pioc(pt,v) + 2hpg [arccos(v/c) — ] (II1.40)
We can combine the two results (I11.38,111.40) in the form
| P(1,0) = Poc(pt,v) — hpo Ag | (IIL.41)

where A¢ = ¢(4+00) — ¢(—o0) represents the phase difference on either
side of the soliton [see (I11.21-111.22)].

The variation of the total momentum with soliton velocity is plotted in
figure IIL7 as a solid line (blue curve). It cancels out by construction at
v = Fec. Itis discontinuous in v = 0:

v— 04 : P(u,v) — tmwhpp. (1I1.42)

Similarly, we have plotted in figure III.8 the dispersion relation E(P) for P
varying between the two extreme values found above, £7fipg.



CHAPITRE III. GRAY SOLITONS

§2. Energy and momentum of a grey soliton

1
p(x)
po 05 [ |
—L T Tt +L
0 i ! ! ! ! ! i
—40 —-30 —20 —10 0 10 20 30 40
0.4
0.2
o) 2
T
—0.2 _I €T_ +L
—0.41 i ! ! ! ! ! i i
—40 —-30 —20 —10 0 10 20 30 40

Figure I11.9. A solitonic wavefunction "prepared” starting from a uniform con-
densate, by removing Ny particles in the vicinity of « = 0 and imparting the
expected phase profile between x_ and x. The preparation is local, in the sense
that it has no effect on the fluid beyond the distance L.

2-3 Why two momenta? The case of a straight line

It is, of course, surprising to find two different results for the momentum,
depending on whether it is calculated directly from the gradient of the
wave function or using a Lagrangian approach, based on the relationship
between energy and velocity.

This difference can be explained by considering how to prepare a soli-
ton in a real experiment. Starting with a uniform condensate of density po,
we need to act on it to remove N, atoms and "imprint" the desired den-
sity and phase profiles to prepare a soliton of velocity v, for example in the
vicinity of the origin « = 0. But such an imprint cannot simultaneously
affect all points on the z axis, which is assumed here to be infinite. It will
concern a finite region of the axis, say between —L and L, with the rest
of the wave function remaining unchanged as shown in figure II1.9. The

result is a density and phase profile like those shown in the figure. The
soliton itself is concentrated in the x_ < x < x4 zone, with |z4| of the
order of a few £, !, and the |24 | < |z| < L zone is one of uniform density
po, in which the phase connects smoothly to 0 beyond z = £L.

It is easy to see, then, that the assumption we made when moving
from (II1.31) to (IIL.32), namely that ¢)(z) does not vary outside the inter-
val [z_,z,], is incorrect in this case. More precisely, let us evaluate the
momentum to be supplied to the condensate to go from the uniform state
to the profile shown in figure II1.9. Let us start with the integral

—+oo

A-Psupplicd = —ih 'l/)* (ag;w) dz (III43)

—0o0

and separate the x axis into several regions:

e The parts |z| < |zi| are areas where the density and phase of the
soliton vary significantly, and this variation is identical to that of the
soliton considered in the previous section. The result for the integral
f;f is therefore the same as that found for P, in (II1.33).

e The zones |z4+| < |z| < L are zones of uniform density and slowly
varying ¢(x) phase. Their contribution to the integral is

xr +L
hpo [/L 0z +/ ar¢‘| = hpo [¢(I_) — (ls(*L) + ¢(+L) _ ¢($+)]

+

(I11.44)
The ¢(+L) values are equal by construction, since the starting con-
densate, of uniform phase, has not been affected at these points. The
quantity ¢(z4) — ¢(z_) corresponds to the phase difference A¢ be-
tween the two sides of the soliton [cf. (ITI1.21-I11.22)].

* The parts |z| > L do not contribute since the wave function has not
been affected in these areas.

The momentum to be supplied to the system to go from a uniform con-
densate to the wave function represented in figure IIL9 is therefore:

APsupplied = Ploc - hPO A¢ + 0. (11145)
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Figure I11.10. Two phase profiles leading to a dark soliton (zero velocity) at x =
0. The total momentum transferred during the preparation is +nhpg for the top
profile and —mhpg for the bottom profile.

This expression coincides with the total momentum expression given in
(II1.41). This is the Lagrangian expression to use when dealing with mo-
mentum exchange problems in the infinite gas in the presence of a soliton.

Note the rather unusual situation that arises for a soliton at rest. In this
case, the two phase impressions shown in figure II1.10 lead to the same
result, i.e. the 7 phase jump at the density hole. However, the momenta
supplied to the system are different: +nhp, for the top choice and —mhpg
for the bottom choice.

2-4 Why two momenta? The case of a ring

Another way of approaching the problem, which leads to an equivalent
result, is to place the gas on a ring, which means choosing periodic bound-
ary conditions for the wave function i (x), posing ¥(—L/2) = (L/2) for
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a ring of perimeter L. This produces a phase profile of the type shown in
figure I11.11.

Calculating the momentum? required to prepare the fluid in this state is
carried out in a similar way to that used above for an infinite straight line.

Starting from
+L/2

Y™ (0.9)) du, (I11.46)

A-Psupplied = _lh/

—L/2

we can cut the integral into three pieces:

¢ The part |z| < |z4]| gives the result P, found in (II1.33).

® The two parts |z+| < |z|] < L/2 correspond to zones of uniform
density, and contribute to Apgyppliea because of the phase gradient re-
quired to maintain periodic boundary conditions. For the contribution
of these two zones, we find:

T_ L/2
oo l / D26 + / axas] -
7L/2 ZL’+

= Thpo (—A¢ + 2nm)

where A¢ = ¢(z4) — ¢(z_) and where n € Z stands for the winding of
the phase. Indeed periodic boundary conditions el?(L/2) = el¢(=L/2)
entail that ¢(—L/2) = ¢(L/2) + 2n.

The sum of these contributions shows that the momentum to be supplied
is
P = Py — hP0A¢5 +n 27T5P0

nez (IT1.48)

The current flowing in the ring outside the soliton region is called the back-
flow current. It carries the momentum

Pyt = —hpoA¢ + n 2mwhpg (T11.49)

which is of the same order of magnitude as the local soliton momentum,
at least for small values of n (see figure 1II.7 where these two momentums
are plotted). The velocity v, of the backflow current can be deduced from

2In this ring geometry, it would be more appropriate to speak of angular momentum.

hpo [p(x-) — ¢(=L/2) + $(L/2) — d(x )]

(I11.47)
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Figure I11.11. Dark soliton on a closed ring. The two contributions to the total
momentum result from (i) the current between x_ and x corresponding to P,
(ii) the phase gradient over the rest of the ring x4y — +L/2 — x_. The two phase
profiles shown here correspond to a winding number n = 0 and n = 1 in (I111.47).
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the above, using the fact that in the uniform density part pg, the velocity is
equal to %395 ¢, which gives in the limit |24 | < L:

h
= —(=A 2 . I11.
Ubg mL( ¢+ 2nm) (IIL.50)

The variation of the phase change A¢ with the soliton velocity is plotted in
figure I11.6. Let us mention that Carr, Clark, et al. (2000) have searched for
all stationary solutions of the Gross—Pitaevskii 1D equation in a ring, i.e. so-
lutions such that the velocity of the backflow current exactly compensates
for the natural velocity of the grey soliton.

Note. Even if the momentum associated with the backflow current is sig-
nificant, its energy cancels out at the thermodynamic limit L — +oc at con-
stant pg. As the phase difference A¢ is distributed over the entire perimeter
of the ring (outside the small arc 2_, x), the velocity associated with it in
the zone of uniform density is ~ -- A¢, which leads to the kinetic energy
for the N = po L particles concerned:

1
~mNv? ~
2

1 po 2
ARG
which decreases as 1/L at the thermodynamic limit. The same applies to
the velocity derived from the quantized component n 27fipg, at least for
small values of the integer n. We deduce that the dispersion relation E(P)
of a grey soliton in a ring at the thermodynamic limit is a periodic function
of momentum, since we can add the quantum 27#p, to P without changing
the energy. The dispersion relation shown in figure II1.8 can therefore be
extended to give the one shown in figure II1.12.

(IIL51)

2-5 Effective soliton mass

We define the effective mass M; of the soliton by
1 [(9%E,
M, \ OP2 B

L _ @ in _ (2L
i~ \ap ; since v=\{3p ”.

(IIL.52)

or

(IIL53)
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Figure I11.12. Dispersion relation of a grey soliton in a ring of radius R — oo:
variation of energy E with momentum P. The units are Py = 2whpo and Ey =

(h2gp3/m)'"*.

Using Es(p, P) = Es[u, v(p, P)], we also have

6ES> <6ES) <8v) (8E5> 1
= — = v= ,  (IIL54)
( or ), ov ) \orP), ov ), M
which allows this effective mass to be put into the form:
M, = E <8E5> : (II1.55)
v\ v/,

Using the explicit form E(u, v) given in (II1.28) and the expression (II1.19)
for N,, we then find:

M, = 2mN, (I11.56)

this mass being negative since N, is negative.

The origin of the factor 2 in the above relationship is explained by the
existence of the backflow current. For simplicity’s sake, let us consider
a gas with a soliton of zero initial velocity, and look for the momentum
that needs to be applied to this gas to set the soliton in motion at velocity
0v < c. The initial local momentum calculated from (II1.33) is zero and the
final local momentum is 6 P, = —2hpo dv/c. The initial momentum due to
the backflow current P,y = whpg and its final value, deduced from (II1.21)
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and (II1.49), is P.c =~ (m — 2dv/c)hipo, i.e. a change 6P, ~ —2hpy dv/c. We
therefore find that setting the soliton in motion requires the total momen-
tum

v

0P = 0Roc + 6P with 3FPloc ~ 0P ~ ~2hpo —. (IIL.57)

The effective mass, deduced from M, = §P/jv, therefore contains two con-
tributions which are found to be equal in the case of zero initial velocity:
M, ~ —4hpg/c to be compared with the number of atoms associated with
the soliton deduced from (II.19): mN; &~ —2hpy/c. In other words, the
effective mass takes into account the fact that, in order to set the soliton in
motion, it is necessary to count not only the momentum linked to the de-
pletion motion, but also the change in momentum of the backflow current,
both contributions being equal for a soliton initially at rest.

3 Gray soliton dynamics

3-1 The soliton seen as a quasi-particle

Consider a condensate at equilibrium in a potential V(x), with chemical
potential jig. Let us further assume that a dark soliton profile has been im-
printed in the vicinity of a point x in the condensate, and that the density
of the condensate varies only slightly over the characteristic soliton length
scale k!, evaluated for the local density p(z). In practice, this condition is
satisfied if the condensate is in the Thomas-Fermi regime, discussed below.
We can then treat the soliton as a quasiparticle and study its motion in the
local density approximation. This approach is justified in detail by Kono-
top & Pitaevskii (2004) [see also Brazhnyi & Konotop (2003), Theocharis,
Schmelcher, et al. (2005), and Brazhnyi, Konotop, et al. (2006)].

In this approach, we use the chemical potential at the soliton position

pu(z) = po — V() (LIL.58)

to deduce its energy £(z,v) as a function of its position = and velocity v.
This energy is equal to the free energy calculated above for a soliton in a



CHAPITRE III. GRAY SOLITONS

§3. Gray soliton dynamics

uniform condensate [cf. (II1.28)].

_4n
- 3gvm

and the soliton’s equation of motion can be obtained directly by writing
that £(z, v) is a constant of motion as the soliton’s position x and velocity
v change over time. We then write:
(3E3 > dw
ov ), dt

o dE _ (OB\ duds
dt \ ou , dz dt

A simple calculation using the explicit relation (II1.28) giving F; as a func-
tion of p and v then leads to:

2]3/2

E(x,v) = Eqlu(x),v] [w(z) —mo (IIL.59)

(IIL60)

dv
2m— = f(a) (IIL.61)
where the force f(z) derives from the potential V (x):
_ AV _dw
flx)= -4 (I11.62)

So it is as if the soliton were a particle of mass 2m feeling the same force as
the atoms in the condensate.

In general, the relation (IIL60) expressing the conservation of energy
Ey[u — V(x),v] is written as®

0= -N,f(@+ Mol = MY N () (IIL63)
dt dt
with the relationships already mentioned in (II1.30) and (II1.55):
E E
N, = — (9 Moo= — (2B (IIL64)
on /, v u

3We can also work with the variables (p, P) rather than (u, v). We then have
dP

- ()
op ),

dpP
0=—-N/ il
sﬂ@v+v&

v=-(%)
) ow /) p

with
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in accordance with (II1.61) after multiplication of both equation members
by N, and the relationship M; = 2mN, found in (II1.56). This form can be
interpreted as the equation of motion of an object of negative mass M, un-
der the effect of the "collective" force N, f, with N, also negative. From this
point of view, the fact that the soliton is accelerated in the same direction as
the atoms in the condensate results from the compensation between these
two negative signs.

Remarkably, the soliton’s motion occurs without any change of shape,
even if the bath is not of constant density. To demonstrate this, we can first
note that the relationship between the energy and the number of missing

atoms, £ = —%q:]\f 3, implies that N, is constant since £ is. More precisely,
the profile of the density hole itself remains unchanged, as can be seen from
the wave function (III.14). The position-dependent part, i.e. the real part of
the brace, can be written:

1 o 1/2 vm
— (g —mw tanh | — (u —
o= e o
so that the amplitude and width of this density hole remain constant, since
p — mv? is independent of time. Only the position of the soliton x and the
amplitude 2 ,/p of the imaginary part of the brace, i.e. the residual density
at the center of the soliton, vary with time.

mv®) 1/2 x(t) (IIL.65)

Figure II1.13 shows the numerical calculation of the evolution of a soli-
ton initially at rest, i.e. dark, prepared at the center of a condensate con-
fined in a segment and subjected to a constant force f, i.e. a linear potential
V(xz) = —fx. The total number of atoms is sufficiently large for the spa-
tial profile of the condensate to be given as a good approximation by the
Thomas-Fermi approximation*:

(I11.66)

W@V = > p) =L

g

The condensate state is prepared by performing an imaginary-time evolu-
tion of the Gross-Pitaevskii equation, with the constraint ¢(x) = 0 at the

4This approximation amounts to neglecting the kinetic energy term in the Gross—Pitaevskii
equation giving the equilibrium form of the condensate:

L2
22+ [ @) + V(@) () = o v(@).
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Figure 111.13. Evolution of a dark soliton under the effect of a force directed to the
right. The motion of the soliton center is in excellent agreement with x = ft?/4m,
i.e. an acceleration a = f /2m (calculated with a grid of 8192 points).

center of the segment. This constraint is then removed for the real-time
evolution shown in figure II1.13 and we see that the soliton moves in the
direction of the force with a uniformly accelerated motion, and an acceler-
ation equal to f/2m as expected from (IIL.61).

3-2 Oscillation in a harmonic trap

The results of the previous paragraph, obtained for a uniform force, can be
generalized to any type of potential V' (z) provided that the approximation
allowing the soliton to be treated as a quasiparticle is valid. A remarkable
situation is obtained for harmonic confinement along the z axis: V(z) =
mw?2?/2 (Busch & Anglin 2000). In this case, the force f(z) is equal to
—mw?z, so the equation of motion (IIL.61) is written:

d2 2
—x—l—%x:O

e (I11.67)

which indicates that the soliton oscillates with frequency w/v/2.
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Figure 111.14. Motion of a soliton in a 1D condensate confined in a (nearly)
harmonic potential of frequency w (the authors have added a slight potential bump
near the center). The number of atoms is sufficiently large for the equilibrium form
of the condensate (apart from the soliton) to be well described by the Thomas-Fermi
approximation. The frequency of the oscillating motion is close to w/+/2. Figure
taken from Busch & Anglin (2000).

This prediction is verified numerically (see figure II1.14) and remains
valid even if the amplitude of the soliton’s oscillation is not small com-
pared to the size of the condensate. The turning points of the soliton’s
oscillating motion (where its velocity cancels out) correspond to complete
depletion. The soliton’s oscillation can be superimposed on an oscillation
of the condensate’s center of mass in the harmonic trap.

The simplicity of the equation of motion (III.67) can be deceptive. It is
only valid in an ideal system, i.e. a perfectly condensed gas described by
the Gross-Pitaevskii equation, i.e. at zero temperature. If the temperature
is non-zero, energy dissipation towards already populated phonon modes
may occur. More precisely, for an ordinary oscillator, energy dissipation
has the effect of driving the oscillator towards the center of the trap with
zero velocity (we are neglecting quantum effects here). But for our soliton,
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the energy (I11.28) is written:

4 h 1 ?
Es(z,v) = - —= (,uo — —mw?a? — m112> . (I11.68)

3 gym

In a 3D gas, for which the Gross-Pitaevskii equation is not integrable, a dis-
sipative mechanism linked to phonon scattering can irreversibly increase
the quantity $mw?z? +mv?, thus accelerating the soliton towards the edge
of the condensate, which then makes it disappear. This is a thermodynamic
instability, which translates into the existence of excitations with negative
energy. Muryshev, Shlyapnikov, et al. (2002) show that the typical lifetime
of the soliton then decreases as 1/T in the regime where the temperature 7'
is greater than yio/kg.

Another type of instability, called dynamic instability (like that encoun-
tered in Chapter 1), results in the existence of excitations with complex en-
ergy, leading to an exponential growth of seeds coming from initial noise.
This type of instability is absent in the strictly 1D case studied here. On
the other hand, for a soliton in an elongated 3D trap, dynamic instability
can arise when the chemical potential 1.y becomes comparable to or greater
than the characteristic energy of the transverse confinement fiw . We will
come back to this in §4.

Quantum treatment of soliton motion. In this chapter, we have used a
classical field equation, the Gross-Pitaevskii equation, to treat the motion
of a grey soliton. These solitons can be found also in the quantum treat-
ment of a 1D gas, and they then appear as wave packets formed from type
II Lieb excitations [see articles by Wadkin-Snaith & Gangardt (2012) and
Del Vecchio Del Vecchio, Bastianello, et al. (2020) and their references]. In
this quantum treatment, solitons acquire a finite lifetime, even in a strictly
1D geometry and at zero temperature, as soon as they evolve in a bath of
variable density p(z) (this is enough to break the integrability of the prob-
lem). Moving solitons radiate phonons in a process formally analogous to
the electromagnetic radiation of an accelerated charged particle. Wadkin-
Snaith & Gangardt (2012) evaluate the corresponding lifetime, which re-
mains large in front of the oscillation period as long as the amplitude of
the soliton’s motion remains significantly smaller than the extension of the
condensate.
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Figure 111.15. Left: principle of the phase impression of a soliton on an elongated
condensate. Right: numerical solution of the Gross-Pitaevskii equation, showing
the creation of a density wave leaving behind a depleted zone of low velocity, corre-
sponding to a grey soliton with A¢ = 2 /3. The evolution times are (from bottom
to top): 0,1, 3, 5 ms. Figure taken from Burger, Bongs, et al. (1999).

3-3 Experimental observations

The first grey solitons in Bose-Einstein condensates were produced exper-
imentally by Burger, Bongs, et al. (1999) and Denschlag, Simsarian, et al.
(2000). In both experiments, the soliton is produced by phase printing.
One half of the condensate is illuminated by a non-resonant laser beam for
a short time 7 (figure I11.15, left). The illuminated part acquires a phase
¢ proportional to the light intensity and duration 7, which is adjusted to
¢ ~ m. At the boundary between light and dark, the strong phase gradient
induces a current that sets a density wave in motion (figure II1.15, right).
This movement leaves behind a density hole corresponding (roughly) to
the desired soliton.

In these early experiments and those that immediately followed, such
as Anderson, Haljan, et al. (2001) and Ginsberg, Brand, et al. (2005), the
soliton’s lifetime was short, less than ten milliseconds. This was due both
to dynamic instabilities of the soliton when the trap shape was too far from
the ideal 1D situation, and to thermodynamic instabilities when the ther-
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Figure I11.16. Simulation of Burger, Bongs, et al. (1999)’s experiment, showing
the effect of a thermodynamic instability when T = T./2. Figure taken from
Jackson, Proukakis, et al. (2007).

mal fraction of the gas was not negligible compared with the condensed
fraction.

Concerning this second type of instability, the simulation carried out
by Jackson, Proukakis, et al. (2007) for the parameters of the experiment
ofBurger, Bongs, et al. (1999) and shown in figure 1I1.16 is enlightening:
while at zero temperature, the soliton oscillates as expected in the trap, it
misses its first turning point if the temperature exceeds 0.5 T, (where 7 is
the critical Bose-Einstein condensation temperature) and disappears at the
edge of the condensate.

Since 2008, very low-temperature experiments with soliton lifetimes in
excess of one second have been performed, enabling one to demonstrate
the soliton dynamics described by (II1.61) (Becker, Stellmer, et al. 2008;
Weller, Ronzheimer, et al. 2008). Figure 2 shows the evolution of a soliton
prepared by phase printing, performing a complete oscillation in a conden-
sate confined in a harmonic trap with longitudinal frequency v, = 5.9 Hz.
The measured frequency of the oscillation is 3.8(1) Hz, in good agreement
with the v,/ V2 prediction.

66

9 AN "
o

' R\

018 e

::: PN

N

0.44 r"‘w II

0.58 m

B L

0,80 P

0.75
0.50 -
0.25

-0.25

-0.50

-0.75

—1. L L L L L L

00 0 50 100 150 200 250
Time (ms)

Soliton position
o

Figure I11.17. a) Oscillations of a grey soliton in a condensate of 50000 8"Rb
atoms, confined in a trap of frequencies 5.9 x 85 x 133 Hz. The chemical potential
to is of the order of h x 400 Hz, placing this system at the frontier of the dynamic
stability zone with respect to the transverse motion. The phase impression time
is 40 us, which is very short compared with other time scales in the problem. b)
Numerical solution of the 1D Gross-Pitaevskii equation. c) Position of the main
soliton (dark dots) and a secondary soliton (light dots) as a function of time. Data
fitting leads to a soliton oscillation frequency of 3.8(1) Hz. Figure taken from
Becker, Stellmer, et al. (2008).
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3-4 Collision between two grey solitons

The 1D nonlinear Schroédinger equation is integrable in both the attractive
(9 < 0) and repulsive (g > 0) cases. We explained in previous chapters that
for the attractive case, this means that the collision between two bright
solitons is elastic: both solitons emerge from the collision unchanged, with
the same number of atoms and the same velocity as on entry. The only
control parameter is their relative phase, which determines whether the
effective interaction between solitons is attractive or repulsive.

In the repulsive case of interest here, integrability again means that the
collision between two grey solitons is elastic, with both solitons emerg-
ing with a depletion (and hence a velocity) identical to their initial deple-
tion. Note that the phase is now fixed, as it is given by the extended con-
densate. It is therefore no longer a control parameter, and one can show
that the interaction between solitons is always repulsive® for the nonlinear
Schrédinger equation [see for example Kivshar & Krolikowski (1995) and
refs. in].

Elastic collisions between grey solitons have been observed by several
groups. Here we describe the experiment by Weller, Ronzheimer, et al.
(2008), which led to the spectacular images shown in figure IIL.18. The
two solitons were created by a collision between two condensates sharing
the same phase. To achieve this, the authors used an elongated trap with
a central barrier, i.e. a double potential well. The height of the barrier,
created with a focused light beam, was adjusted to maintain the coherence
of the whole gas, while creating a significant density hole in the center.
When the barrier is switched off, the two condensates came into contact
with each other and a pair of solitons was created (Reinhardt & Clark 1997).

In the experiment by Weller, Ronzheimer, et al. (2008), the sample con-
tains around N = 1500 atoms and the two clouds are initially separated by
5 micrometers. The temperature is ~ 10 nK, well below the critical temper-
ature (110nK), which ensures that the solitons have a long lifetime. Soli-
tons oscillate in the trap at a frequency close to w/+/2. Every half-period,
they collide with each other at the center of the trap (experimental resolu-
tion is insufficient to observe the repulsive nature of soliton interaction).

5For non-local particle interactions, i.e. beyond the Gross-Pitaevskii equation, one can
observe an attraction between grey solitons (Dreischuh, Neshev, et al. 2006).
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Figure I11.18. Top: experimental observation of the time evolution of two dark
solitons in a harmonic trap, with an elastic collision at each half-period of the oscil-
lation. Middle: numerical simulation of the experiment. Bottom: same numerical
simulation, taking into account the experiment’s temporal and spatial resolution.
Figure taken from Weller, Ronzheimer, et al. (2008).
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3-5 Does a quantum soliton stay dark?

The Gross-Pitaevskii equation is a classical field equation for which a soli-
ton represents a stationary state. A much-debated question concerns the
quantum version of the problem: does an initially dark soliton stay dark,
or is it destabilized by quantum fluctuations?

When one analyzes these fluctuations using Bogoliubov’s method and
calculate the average spatial density, one finds that the density hole cor-
responding to the soliton fills up due to the contribution of particles from
the non-condensed fraction (Dziarmaga 2004). However, this filling of the
one-body density function may well mask the following phenomenon: the
soliton remains completely dark, but its center moves randomly from one
realization of the experiment to another, so that the average of the density
profiles sees its depletion reduced.

To predict unambiguously whether a given measurement of a soliton’s
density profile corresponds to full depletion, one needs to calculate the sys-
tem’s N-body correlation function. Equivalently, one can simulate the suc-
cessive detection of the positions of N particles during a given run of the
experiment; to do this, after each detection, that of particle j for example,
one needs to project the state vector onto the subspace £; corresponding to
the measurement result z;, then move on to the detection of the position of
particle j + 1. One then constructs a set {1, 2, ...,zx} of positions and
one can check whether this set of positions is compatible with a completely
dark soliton.

This procedure has been implemented by several authors, starting from
different initial N-body states. Here we present the results obtained by De-
lande & Sacha (2014) who started from the N-body quantum state of a 1D
gas of N = 180 bosons in repulsive interaction, confined on a segment
with open boundary conditions. The state of the system is represented al-
most exactly by a matrix product state (MPS). This state is obtained by first
imposing a barrier at the center of the segment, so as to create a hole of
density very similar to that expected for a dark soliton. The central bar-
rier is then removed, a 7 phase is printed on one half of the segment, and
the evolution of the system is studied by numerically solving the N-body
Schrodinger equation.

The evolution of the average spatial density confirms the disappearance
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Figure I11.19. Left: evolution of the average spatial density for a N = 180 particle
quantum state initially reproducing a dark soliton. Right: histogram of N particle
position measurements for three realizations of the experiment at t = 25 (position
and time units: k= and h/p). Figure taken from Delande & Sacha (2014).

of the density hole after a time of the order of tens of h/u (figure III.19,
left). But each realization of the experiment leads to a marked hole in the
distribution of positions, with the position of this hole fluctuating from one
realization of the experiment to the next (figure III.19, right).

For a given realization, the center ¢ of the depletion can be determined
by fitting the density distribution with a solitonic profile, and all the den-
sity distributions can then be superimposed by translating them so that all
the centers are superimposed on one another. The result obtained for 10°
realizations is shown in figure II1.20. We can see that the profile averaged
in this way does not evolve and remains that of a perfectly dark soliton,
at least on the time scale considered in this work. This study also enabled
the authors to determine the time evolution of the distribution of the indi-
vidual centers ¢q. Delande & Sacha (2014) showed that the variance of this
distribution increases as ¢?, compatible with a ballistic propagation from
an initial velocity distribution.

This method of studying quantum solitons based on N-body correla-
tions has been generalized to other initial states, see for example Shamailov
& Brand (2019) and Syrwid (2021) and refs. in.
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Figure I11.20. Superposition of 10° position histograms, after recentering by the
fitted displacement q, for different evolution times. The profile obtained remains
virtually identical to that of a dark soliton. Figure taken from Delande & Sacha
(2014).

4 Transitions to other states

Up to now, we have assumed that the gas, confined in an elongated trap of
axis z, is well described by a 1D equation, i.e. that the transverse degrees of
freedom are frozen. This assumption is legitimate if the quantum of energy
hw corresponding to the excitation of these transverse degrees of freedom
is large in front of the other energy scales of the problem, in particular the
chemical potential 11 = gpo.

When (1 becomes comparable to or greater than /w,, the grey soliton
is no longer necessarily a stable object. As it propagates, its initially flat
surface can deform and the soliton transforms into other structures, such
as a vorticity ring with an axis aligned with that of the trap, or a solitonic
vortex.

4-1 The instability of the nodal plane

Muryshev, Heuvell, et al. (1999) have investigated the possibility of a nodal
plane instability for a dark soliton in a three-dimensional condensate. To
do this, they first considered a homogeneous gas filling the whole 3D space
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Figure I11.21. Dispersion relation of transverse excitations of a wave vector k of a
3D condensate with a nodal plane corresponding to a soliton. Figure adapted from
Muryshev, Heuwell, et al. (1999).

with the asymptotic spatial density py and with a node in the z = 0 plane,
i.e. a wave function v(x) = ,/po tanh(xx). The chemical potential is y =
gpo where g is now defined for a 3D gas (g = 4wh?a/m where a is the
scattering length). We still have the link between p and the speed of sound
p =mec? = h?k%/m and therefore k = mc/h.

Muryshev, Heuvell, et al. (1999) then used Bogoliubov’s method to find
the dispersion relation of waves propagating with a wave vector k perpen-
dicular to the z axis and located in the vicinity of the nodal plane z = 0.
They showed that for k¥ < x, these modes had an imaginary energy ¢, and
were therefore dynamically unstable (figure II1.21): it is not possible to in-
definitely maintain a soliton with a flat nodal surface in a homogeneous
3D gas. The most unstable mode corresponds to a wave vector k = x/v/2.

The same authors then considered the case of a gas in a harmonic trap
with rotational symmetry around the x axis and oscillation frequencies w,,
and w, (figure II1.22). The stability of the soliton prepared in the z = 0
plane then depends on two parameters: the ratios w, /w, and p/fw; .
Muryshev, Heuvell, et al. (1999) have shown that for a very elongated trap
(wi /wy > 1), it is enough to ensure that the chemical potential p remains
below ~ 2.4hw, for the planar nodal surface to remain stable. However,
when one switches to spherical or oblate traps (w, /w, < 1), the planar
nodal surface is destabilized, whatever the value of .
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Figure I11.22. Stable and instable zones of the nodal plane of a dark soliton in the
x = 0 plane, at the center of a harmonic trap with frequencies w, and w, . Figure
adapted from Muryshev, Heuvell, et al. (1999).

4-2 The different possible stationary states

The instability found by Muryshev, Heuvell, et al. (1999) indicates that the
nodal surface will deform, with exponential growth of certain imaginary-
frequency modes at short times. However, it provides no information on
the nature of the structures that will subsequently appear. This study was
the subject of numerous publications, both theoretical and experimental,
in the years following the observation of the first dark condensates. Theo-
retical publications include Brand & Reinhardt (2002) and Komineas & Pa-
panicolaou (2003). On the experimental side, ripple instability of the soli-
ton nodal plane was observed by Denschlag, Simsarian, et al. (2000), the
emergence of vorticity rings by Anderson, Haljan, et al. (2001) and Dutton,
Budde, et al. (2001), and more recently solitonic vortices by Becker, Sen-
gstock, et al. (2013) and Donadello, Serafini, et al. (2014) in Bose-Einstein
condensates and by Yefsah, Sommer, et al. (2013) and Ku, Ji, et al. (2014) in
a strongly interacting Fermi gas.

Figure II1.23, taken from the article by Mufioz Mateo & Brand (2014),
shows a series of stationary structures, obtained by a systematic search for
solutions of the nonlinear Schrodinger equation in a cylindrical geometry.
The authors also indicate the range of n/fw, values for which these struc-
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from Mufioz Mateo & Brand (2014).
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Figure I11.24. Equi-density surface and phase of a condensate containing a soli-
tonic vortex. Figure taken from Brand & Reinhardt (2002).

tures are observable.

This figure II1.23 shows the structures mentioned above. The solitonic
vortex (S5V) consists of a straight vortex line, perpendicular to the z axis of
the cylinder. Another representation of a solitonic vortex is shown in figure
III.24 for a condensate confined in an elongated 3D harmonic trap. The
phase winding around the vortex line is 27 (see Aftalion & Sandier (2023)
and Aftalion, Gravejat, et al. (2024) for a detailed mathematical analysis of
this structure in a two-dimensional band geometry).

In figure II1.23, the VR sign corresponds to a vortex ring, similar to a
smoke ring. Solutions corresponding to more complex configurations can
be formed, such as solitonic vortices of various directions, crossing each
other on the condensate axis, or double vortex rings, or even a combination
SV-VR, displaying the letter ®.

As we saw on figure II1.21 in the limit w, — 0, i.e. w, /w, — 400, these
structures can only appear if ;/hiw, > 2.4. When this is the case, we see
that the single solitonic vortex corresponds to the minimum-energy struc-
ture, but this does not tell us anything about the dynamics of the system to
reach this structure, as we will see in the next paragraph.
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Figure 111.25. Cascade of transitions observed in an unpolarized gas of spin 1/2
fermions close to the unitary limit, starting from a soliton with a nodal plane at
x = 0, passing through a vortex ring between 20 and 80 ms, then a solitonic
vortex from 100 ms. Imaging is performed on a thin slice between z and z + Jz.
Figure taken from Ku, Mukherjee, et al. (2016).

4-3 Observations on a superfluid Fermi gas

Here we describe an experiment carried out at MIT in Zwierlein’s group,
which demonstrated a cascade of transitions from the planar soliton to
the solitonic vortex (Ku, Mukherjee, et al. 2016). Unlike the setups de-
scribed above, the authors are not working here with a Bose-Einstein con-
densate, but with a Fermi gas in the unitary regime. This system can be de-
scribed approximately by a mean-field method, based on the Bogoliubov—
de Gennes formalism, so that the ideas developed in this chapter remain
relevant, subject to the modification of certain numerical parameters [see
Scott, Dalfovo, et al. (2011)].

The experiment corresponds to the following sequence:

e At the initial instant, the 7 phase jump is imparted to generate a zero-
velocity soliton in a gas of 1.4 x 106 °Li atoms, confined in an elongated
harmonic trap of frequencies 11 x 70 x 70 Hz. The gas contains equal
parts of two spin states and it is prepared in the vicinity of a Fano-
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Ji, et al. (2014) presented a model of the oscillation in good agreement
with these experimental observations.

(um)

time (s)

Figure I11.26. Oscillation of a solitonic vortex in an unpolarized gas of spin 1/2
fermions close to the unitary limit. Figure taken from Ku, [i, et al. (2014).

Feshbach resonance for the interaction between these two states® (uni-
tary regime).

¢ In the first few milliseconds, a nodal plane appears at the center of the
trap, characteristic of the soliton.

¢ This plane deforms rapidly, revealing its instability. The fastest-
growing mode is the one whose wavelength is equal to the Thomas-
Fermi diameter.

¢ After ~ 20ms, one no longer observes the nodal plane of the soliton
on a cross-section of the soliton in the zy plane, but simply two dark
points. This corresponds to a vortex ring, with axis «.

* Around 80ms, a structure reminiscent of the ® shape of figure II1.23 is
revealed by a tomographic analysis of the gas.

e After ~ 100ms, a solitonic vortex is observed that persists for a long
time. This solitonic vortex oscillates in the superfluid with a very long
period compared to 27 /w, (figure II1.26). In the experiment, the two
transverse frequencies w, and w, are not strictly equal, and the vortex
axis aligns along the axis corresponding to the higher frequency. Ku,

6Remember that in this low-temperature domain, two fermions in the same spin state do
not interact with each other
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Chapter IV

Magnetic solitons and Bloch oscillations

The first chapters of this course were devoted to the solitons that can
be generated in a one-component fluid. Depending on the attractive or
repulsive nature of the interactions in this fluid, we found bright or dark
solitons.

This final chapter is devoted to a brief overview of more complex soli-
tonic structures that can be generated in mixtures of Bose-Einstein conden-
sates. This is an extremely rich field, and there is no question of covering
it exhaustively. We will concentrate here on a type of soliton that appears
in a ferromagnetic material and can be reproduced almost identically in a
binary condensate mixture.

More specifically, we will study the case of a slightly immiscible mix-
ture, for which the solitons that appear are equivalent to those of an "easy-
axis" ferromagnet. We will also describe the demonstration of a phe-
nomenon predicted for magnetic solitons a long time ago, and recently
observed with a mixture of condensates: the Bloch oscillation of a soliton
subjected to a constant force.

For lack of space, we will not describe other types of structure that
appear in two-component mixtures, such as dark-bright solitons (Busch
& Anglin 2001; Becker, Stellmer, et al. 2008; Hamner, Chang, et al. 2011;
Danaila, Khamehchi, et al. 2016; Katsimiga, Mistakidis, et al. 2020; Meng,
Luo, et al. 2025) or structures obtained from three-component mixtures
(Bersano, Gokhroo, et al. 2018; Lannig, Schmied, et al. 2020; Yu & Blakie
2022; Siovitz, Lannig, et al. 2023). We refer interested readers to the re-
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cent article by Mossman, Katsimiga, et al. (2024), which provides a fairly
comprehensive review of work in this field.

1 The ferromagnetic chain

1-1 The relevant energy scales

In this section, we will develop a simple model of a one-dimensional chain
of magnetic moments p; (j € Z), all with the same modulus 4 (figure IV.1).
This chain can be seen as a line extracted from a ferromagnetic crystal, a
one-dimensional approximation that is valid for a whole class of materials
(see, for example, Mikeska & Steiner (1991) and Dauxois & Peyrard (2006)
and refs. in). We now write the equation of motion of a magnetic moment
p; under the effect of the three dominant terms:

* Each magnetic moment interacts with its neighbors. This is essentially
an exchange interaction!, which we will model by

IS g (Iv.1)
J

1We neglect here the dipole-dipole interaction of magnetic origin, which is much weaker
than the exchange interaction, which is of electrostatic origin.



CHAPITRE IV. MAGNETIC SOLITONS AND BLOCH OSCILLATIONS

§1. The ferromagnetic chain

/I
“r w

Figure IV.1. One-dimensional chain of magnetic moments, all with the same mod-
ulus .

The constant J, called the exchange integral, is chosen to be positive
so that the magnetic moments minimize their energy by aligning with
each other, as expected for a ferromagnetic material. This interaction
is isotropic: the common direction chosen by the magnetic moments
to minimize this energy is random if this interaction is the only one
present. In its quantum version, (IV.1) is the Heisenberg Hamiltonian.

¢ The second term in the energy is a small correction to the previous
term, resulting from the fact that 3D ferromagnetic crystals are gen-
erally not perfectly isotropic. An important class concerns uniaxial
materials for which one axis (noted here as z) leads to a different in-
teraction from that for the other two axes (z and y). To take this effect
into account, we add the energy?:

—7 > (Iv:2)
J

If J* > 0, the anisotropic interaction favors the emergence of a mag-
netization along the z axis (in positive or negative directions) and we
then speak of a easy-axis material. If J’ < 0, the system minimizes its
energy with magnetization in the zy plane, and is referred to as an
easy-plane material.

¢ The chain can be placed in an external magnetic field leading to the

2We have adopted here the modeling of Kosevich, Ivanov, et al. (1990). We will see later
[cf. (IV.13)] that the contribution of this term is limited to its lowest order, for which we can
replace p; 14 by p; (Dauxois & Peyrard 2006).
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Figure IV.2. The precession motion of the magnetic moment p; under the effect of
the local magnetic field B ; according to the equation of motion (IV.8).

energy
_ Z“j - Boxt - (IV.3)

J
Like the term (IV.2) proportional to .J/, the presence of this external
field breaks the invariance by rotation. If J’ plays a negligible role,

then the preferred direction of magnetization is that of the external
field.

1-2 Dynamics of a magnetic moment

Let us consider a magnetic moment u; and study its equation of motion.
We know that a angular momentum is associated with this magnetic mo-
ment. We denote this angular momentum s;, and the link between p; and
s; is provided by the gyromagnetic ratio 7:

By =78 (IV.4)
The evolution of the angular momentum s; is
ds j
— =T IV.5
dt J ( )

where I'; is the torque acting on this moment. For the magnetic moment
1, this torque is written as
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where B; is the effective magnetic field at site j, deduced from the three
interaction terms (IV.1,IV.2,IV.3) described above:

Bj=J(pj_1+pj1) +J (Ng‘z_)1 +N§i—)1) Z + Bext

(Iv.7)
where 2 denotes the unit vector aligned along z. By multiplying the two
members of the equation (IV.5) by the gyromagnetic ratio v, we obtain the
desired equation of motion (see figure IV.2):

dp
—j:’yuijj.

b (IV.8)

The evolution equation of each p j is coupled to that of its neighbors, which
makes solving this system tricky. To make progress, we are going to move
to a continuous limit to transform this discrete differential system into a
partial differential equation.

Note. We have adopted a classical approach here, but a quantum treat-
ment leads to an identical result. We start from the Heisenberg equation
for angular momentum 3;:

ds; -

ih—= = [s;, H]

= (IV.9)

and consider the terms in the Hamiltonian that are not commuting with 3;:

IV (31 +851) -8 — Y (551)1 + SEZ—)l) 8% — yBex - 35, (IV.10)
We use the canonical commutation relations for angular momentum
(8@, 5] = ih 3() and we reach, for the operators 3; or f1;, a result iden-
tical to (IV.7-1V.8). For a 1/2 spin chain, this model is exactly solvable by a

Bethe ansatz [Des Cloizeaux & Gaudin (1966) and refs. in], as is the classi-
cal moment chain considered above.

1-3 Switching to a continuous description

We are now going to look at the situation, realistic in practice, where the
orientation of any magnetic moment p; is close to those of its neighbors
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;1. Variations in magnetization orientation are possible, but on a length
scale much greater than the spatial period of the chain, which we will de-
note by a.

We now turn to a continuous description of the chain of magnetic mo-
ments>:
(Ivi1)

py(t) — p(z;,t) with z; = ja

and establish the equation of motion of p(z,t) deduced from (IV.8). To
do this, let us take up one by one the three contributions to the field Bg
involved in this equation of motion:

* The first contribution is J(p;_; + p;1) which we develop up to order
2in a:

0’u

922

(1) + p(xi) = 2p()) + a’ 55 + O(a?). (Iv.12)
The zero-order term 2u(z;), although dominant, has a zero effect on
the evolution equation as it intervenes in (IV.8) via p(x;) x p(x;) = 0.

This is why it is essential to push the above development to order 2.

¢ For the term related to the anisotropy J’ of the material, we can restrict
ourselves to the zero order term in a:
p (@) + P (w50) = 20 (2) + O(a®), (IV.13)

Since J' < J, there is no inconsistency in limiting our expansion to
this order while pushing the expansion (IV.12) to order 2 in a.

* The external field term remains unchanged.

We then arrive at the evolution equation for the vector field p(x,t) (Lan-
dau & Lifshitz 1935):
p

with B = Jazg? + 2J1P2 + Bey .

a—”:fyuxB

o (IV.14)

3As in the previous chapters, we use the variable = to identify the spatial position. It is
important to note that the corresponding direction is a priori decorrelated from the x, y, z axes
defining the magnetic moment Hamiltonian.
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As we did for the nonlinear Schrodinger equation, we can simplify this
equation by writing it in a dimensionless form:

2
OMm _ ixb owith b= 4 wm®z ¢ b,
0x2

V.1
5 (IV.15)

where the vector field m(Z,t) is of modulus 1 at any point (|/m(z,t)| = 1),
and where the following time and length scales have been introduced:

t T 1

t=— = ith tg= ——— = V.16
to ! Zo b 0 2yplJ| o= 20| ( )

and B
Doy = —2b V.17
ext 2/1‘J/| ( )

In equation (IV.15), the + sign corresponds to the easy-axis case (J' > 0) and
the — sign to the easy-plane case (J' < 0). Note that the natural length scale
xg is very large compared with the spatial period a of the chain, since we
have assumed that J > |J'|. Structures of characteristic size of the order
of 1 in reduced units can therefore be correctly described by this contin-
uous approach, as they extend over many sites of the discrete chain. In
what follows, we will omit the symbol ~ on the variables = and ¢ to lighten
the notations, the context indicating whether to adopt the reduced or the
physical units.

Angular representation around the z axis. Since the vector fields p(z, t)
or m(z,t) have a constant modulus, they can be parameterized by the two
angles in spherical coordinates 6(z, t) and p(z,t) (see figure IV.3) :

m® +im® =ging ¥ m®) = cos#. (IV.18)
The evolution equation (IV.15) is rewritten for these two angles (Kosevich,
Ivanov, et al. 1990):

0, =
Yt =

—20,p, cosl — g, sind

0
_ 2 T
cosf (o3 £1) + Sin 0

(IV.19)
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z

Figure IV.3. Parameterization of p(x,t) by the two angles (x,t) and p(x,t).

where we have taken bex = 0 to simplify. We will see later how these
two equations appear identically for the description of a binary condensate
mixture in the regime where the three interaction constants g;; (i,j = 1,2)
are close to each other (Manakov regime). This makes it possible to study
the physics of magnetic solitons using quantum fluids.

1-4 Lagrangian approach

The equations of motion for the two fields 6(z,t) and ¢(z,t) can be
obtained from a Lagrangian approach, with the Lagrangian density
L[0,04,0., 0,01, ¢z given by:

L="Len—V (IV.20)

with (Kosevich, Ivanov, et al. 1990):

Lein = —%(1 — cos 0)ps V= i (02 + (2 £1)sin®0] . (IV.21)
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To do this, we use the Euler-Lagrange equation for the field ¢:

oL _ 0 (LN 0 (oL
00  O0x \ 00, ot \ 00,

and its analog for the field .

(IV.22)

We define the "mass" M (or rather the polarization in this context)
which is a conserved quantity:

1 [t
M = f/ (1 —cosf) du,

: (IV.23)

— 00

where we assume that § — 0 at infinity for the integral to be convergent
(this will be the case for the solutions considered in this chapter). More-
over, time and space invariances imply the conservation of the system'’s
energy E and momentum P, with

1 [tee

B o= . / [0 + (¢2 1) sin® 0] da (IV.24)
1 oo

P = 5/ (1 —cosf) p, dz. (IV.25)

Note. In the case where the anisotropy characterized by .J’ is absent, we
can also write a system of coupled equations for § and ¢. We arrive at
a system similar to that written above, but without the +1 (Lakshmanan,
Ruijgrok, et al. 1976) term. The length and time scales (IV.16) must be mod-
ified accordingly.

1-5 Link with the nonlinear Schrodinger equation

It is possible to establish a formal link, called gauge equivalence, between
the Landau-Lifshitz equation and the nonlinear Schrédinger equation for
a one-component gas. This link was first proposed regardless of the sign
of J' by Nakamura & Sasada (1982), but the proof in the case J’ < 0 (easy-
plane) was criticized by Kundu & Pshaev (1983). On the other hand, in
the case J' > 0 (easy-axis), gauge equivalence with the attractive nonlinear
Schrodinger equation is valid.
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We will not go into this general connection here, but it is possible to
show how the attractive nonlinear Schrodinger equation emerges in a sim-
ple limiting case of the Landau-Lifshitz equation. Let us place ourselves in
the case J' > 0 (easy-axis) and assume that the direction of magnetization

is at all points close to u, i.e. the polar angle ¢ close to 0:
Im® ], jm®| <« m® ~ 1. (IV.26)

We will also restrict ourselves to solutions with a large spatial scale com-
pared to the natural scale xy, i.e.

9*m(e) om/() N
oz | < ‘ o | < m™, a=uay. (IV.27)

Now let us introduce the complex quantity :
b= (m@’) + im(y)) oit (IV.28)

whose evolution equation deduced from (IV.15) is
Y (p =)+
1a_¢<b —1>—m b
Assuming that no external field is applied, we have
2 z
po - Pm
)

with b = (b<r>+ib<y))eit. (IV.29)

+m® ~m® (IV.30)

where we have neglected the second derivative because its contribution
to (IV.29) would have been negligible once multiplied by . Let us also
perform an expansion to order 2 included in v for m(*):

2
b 1 — % . (IV.31)

The quantity b(*) is multiplied by m(*) ~ 1 in (IV.29), so the second deriva-
tive must be kept at this level of the calculation:

2?(m®) +imW)) ,
e

b+ = 507 (IV.32)
so that we arrive at:
5} 02 1
R (1v33)

i.e. the attractive nonlinear Schrédinger equation.
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Link with the sine-Gordon equation. The Landau Lifshitz equation ad-
mits another important limit, the sine-Gordon equation, also much stud-
ied in the context of solitons, as it gives rise to topological solitons. We
place ourselves in the opposite situation to the previous paragraph, choos-
ing J' < 0 (easy-plane). The energy-minimizing macroscopic polarization
is then oriented in the zy plane.

We also assume that a weak external field is applied along the x axis,
bext = bpx with b <« 1. The presence of this field leads us to add the
terms by sin ¢ and by cot 0 cos ¢ to the two equations of the system (IV.19).
Restricting ourselves, as in the previous paragraph, to solutions varying
slowly on the scale of z(, and taking |# — 7| < 1, we can simplify the
system (IV.19) and obtain:

L% -

Pt
We eliminate the variable ¢ by taking the derivative with respect to time of
the second equation, ¢ ~ —0; sin § ~ —6;, which finally gives:

—Pzz + bO Sin(p

cos 6 (IV-34)

[ 1t — Prw + bosing =0 (IV.35)

We will not comment further on this limit here, and refer readers to the
detailed discussion in Dauxois & Peyrard (2006), as well as Schweigler,
Kasper, et al. (2017) and Wybo, Bastianello, et al. (2023) for realizations in
the context of ultra-cold atom gases.

2 A binary mixture of condensates

2-1 Coupled Gross-Pitaevskii equations

We now consider a mixture of two Bose gases at zero temperature, which
we assume to be well described in the Gross—Pitaevskii approach by the
macroscopic wave functions 1 (r) and 2 (7). For simplicity, we will as-
sume that the atoms of both gases have the same mass m, which corre-
sponds to the case of two fluids of the same atomic species, prepared in
two different internal states.
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Figure IV.4. Two possible configurations depending on whether a mixture is mis-
cible (left) or immiscible (right).

We will assume that the interactions can be described by a contact po-
tential, with the three couplings ¢11, g22 and g12. The first two describe
intra-species interactions and the third describes inter-species interaction.
The Gross—Pitaevskii energy functional is then written in dimension D:

h2
Blyr,da] = o (Ve +[Veal?) dPr
5 [l + 20 pr(r)palr) + g )] @

with p; = [|¢;|%, j = 1,2. In what follows, we will assume that all coef-
ficients g;; are positive to avoid any risk of one of the fluids collapsing.
We will not consider the case where a coherent coupling is set up between
the two condensates. Such a coupling would be taken into account by an
additional term [ ¢}ts + 1591 [see for example Qu, Tylutki, et al. (2017)].

The equation for the evolution of ; and 2 can be deduced from the
energy functional given above:

. h?

hOpi = =5 —V*Pi + (gipi + 9i305) i (IV.36)
with i,7 = 1,2 and j # i. Each fluid thus evolves under the effect of its
own mean field as well as that created by the other component. For each
fluid, we have the continuity equation:

. h .
atpj + V. (pj’Uj) =0 with pj’Uj = Elm (’(/Jj ij) (IV37)

since there is no transfer of matter from one fluid to the other.
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Miscibility criterion. We will briefly recall the nature of the mixture —
miscible or immiscible — according to the values of the coefficients g;;.
Our reasoning will be based solely on the interaction energies involved in
E[t)1,12] and will neglect kinetic energy terms. Our result applies equally
well to a mixture of classical fluids, insofar as surface effects are negligible
compared with volume effects.

Let us denote N; and IV, the number of particles in each fluid and con-

sider the two situations shown in figure IV.4 :

¢ The two fluids occupy the entire volume V" available to form a homo-
geneous mixture, so the interaction energy is equal to

1
Ehom = o (911 N7 + 2912 N1 N3 + g2o N3 ) . (IV.38)

¢ The two fluids are spatially separated and occupy volumes V; and V5
with V' = V; + V,, which leads to the interaction energy:

g11NE
Esep = L

922 N3

o o (IV.39)

In the second case, the volumes V; and V5 adjust (under the constraint
Vi + V3 = V) to minimize energy. This happens for

N-
Vlzvmﬁ\/l@NQ Vo=V -V, (IV.40)
which leads to
Egep = % (911NF + 2y/g11022 N1 N2 + 922N3 ) . (IVA1)
Comparing (IV.38) and (IV.41) gives the desired result:
| miscible mixture & g12 < /711 922 (IV.42)

2-2 Manakov regime

Generally speaking, the description of two coupled quantum fluids re-
quires two complex fields, 11 and 12, or equivalently four real fields, the
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two densities p; » and the two phases ¢ » with ¢); =, /p; '?i. The state of

the system is then described by the spinor
()= ()
o VP2 e¥2 )
We consider in the following the situation where all three coefficients g;;

are positve and close to each other?, a situation called the Manakov regime.
To simplify calculations, we will assume more precisely that

(IV.43)

g11 = g22 (Iv.44)

and introduce the difference

gs=g12—9g  with |gi| <y, (IV.45)

the subscript "s" referring to spin excitations, as we will see in a moment.
With this assumption, the miscible and immiscible regimes found in (IV.42)
correspond to g; < 0 and g, > 0 respectively.

In practice, the equality g;1 = g¢22 can be realized for atomic species
whose ground electronic level has angular momentum F' = 1, as is the
case for “Li, 23Na, %K, 4'K, 8"Rb. All we need to do is work with the
two states |F' = 1,mp = =£1), and the equality g11 = go2 then results
from rotational symmetry. For 8Rb, the assumption |g;| < g is very well
verified: g, /g ~ 1072.

In this situation, decoupling occurs between two types of excitation of
the binary system (Kamchatnov, Kartashov, et al. 2014; Qu, Pitaevskii, et
al. 2016; Congy, Kamchatnov, et al. 2016):

¢ Low-energy excitations take place at constant total density p; + po;
they involve only the polarization p; — p2 and the coupling coefficient
9s-

¢ High-energy excitations, on the other hand, are associated with a mod-
ulation of the total density p; + p2 and involve the coupling g.

4This regime is very different from the one studied in Course 2021-22, IV.3, where we
considered a mixture with g11, g22 > 0, and the third parameter g12 chosen to be negative
and close to —,/g11 g22. This situation gives rise to quantum droplets in a 3D geometry and
bright solitons in a quasi-1D geometry, as shown experimentally by Cheiney, Cabrera, et al.
(2018).
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Figure IV.5. Spatial variation of densities p1(x) and pz(x) with constant total
density condition py(z,t) + p2(x,t) = po.

In the following, we will consider a one-dimensional problem, focus on
low-energy excitations, and approximate

P1 (LC, t) + P2 (fE, t) = po (IV46)

where py is a constant, at any point « and any time ¢ (figure IV.5). The sum
of the two continuity equations (IV.37) then leads to

0,J =0 with  J = p1v1 + povs . (Iv.47)
The total current of particles is therefore uniform in space.

In this constant-density regime, the spinor parameterization describing
the gas is reduced to three real fields 6(z, t), ®(z,t) and ¢(z, t):

() = vmee ()

where ¢ and ¢ denote the overall phase and relative phase of the two com-
ponents respectively:

(IV.48)

®(z,t) = p1(z,1) + p2(z,t) p(x,t) = p2(z,t) — p1(z,t) (IV.49)
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The fluid velocities v; defined in (IV.37) are given by

h
V2 = — (®m+§px)

v =g (s — ¢©z) 5 (IV.50)
so that the relationship 9,J = 0 becomes:
Oz (P, — cosbp,) = 0. (IV.51)

This relationship, a direct consequence of the assumption of constant total
density, partially links the global phase ®, the relative phase ¢ and the
mixing angle 6. It integrates to give

D, — cos 0 p, = 2k(1) \ (IV.52)

where £ is at this stage an arbitrary function of time.

In the following, we will consider situations where component 2 is lo-
cated in a reduced area of space compared to the extension of component 1,
which we will call a "bath". In this case, far from the minority component,
we have 0 ~ 0 and therefore

muvq

1
(D — —
(P — ¥2) -

area such that ps =~ 0 : k=~ 5

(IV.53)
The quantity % thus represents the bath wave number in zones where this
bath is essentially pure.

2-3 Bath at rest: the magnetic chain regained

In this paragraph, we consider the case where the bath is immobile, for
example because it is confined to a segment, with an infinite barrier at each
end. In this case, we can set k() = 0 at any instant ¢ and eliminate the
phase @ in favor of ¢ thanks to :

’ Bath at rest: d, =cosb g, (Iv.54)

As long as we restrict ourselves to low-energy excitations and assume
a constant density, the state of the binary mixture is described by the two
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fields 6(x,t) and ¢(z,t). Rewriting the equations (IV.36) in terms of § and
p gives

2
%Ht = —20,p,c080 — Py, sinb
. - _ 0 o2
R P cos (9"1 T e ) siné
Let us choose the unit of length z( such that
R
Ty = —— (IV.56)
V 2m|gs|p0
and the associated tg unit of time
2ma? h
to = = (IV.57)
ho lgsleo

which gives the same system as that found for the magnetic chain in (IV.19):

0, =
Yt =

where + now refers to the immiscible case and — to the miscible case.

—20,p, cos6 — @, sin 6

0
. 2 TT
cos (o7 £1) + |

(IV.58)

For a bath at rest and with the assumption of a constant total density,
there is therefore a perfect correspondence between the equations of mo-
tion of a chain of magnetic moments and those of a binary mixture of con-
densates with:

"easy-axis" ferromagnet < immiscible mixture

"easy-plane" ferromagnet < miscible mixture.

In particular, the Lagrangian approach presented in §1-4 remains un-
changed (Congy, Kamchatnov, et al. 2016).

We thus recover the three conserved quantities mentioned above, start-
ing with the mass (IV.23), written here as No/poxo, i.e. the population of
the minority component (in reduced units):

(IV.59)

Bath at rest: Ny = % /(1 —cos @) dz
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where the integral is taken over the entire length of the bath, but where
only regions where ), takes significant values actually contribute. The
expressions (IV.24) and (IV.25) for the energy and for the momentum are
also unchanged, the corresponding units being”:

h
Energy unit: £y = 7 Po%o Momentum unit: Py = hpg.  (IV.60)
0
In physical units
1 2 2, LY. o
Bath at rest: Erest = ZEOxO 0: 4+ (o5 £ o sin“ 4| dx| (IV.61)
0

The expression (IV.25) for the momentum can also be simplified consider-
ably by using the relation ®, = ¢, cos # which leads to

hipo

Bath at rest: 5

Prest = /(gpm —®,) de = —hpo / p1.dr  (IV.62)

or, returning to physical units:

Bath at rest: (IV.63)

Prest = —hpo lp1(24) — 1 ()] |

where x4 are located on either side of the zone where 1), takes significant
values, and where the bath phase ¢; can vary (see figure IV.6, top).

Note. The reader might be concerned about the discontinuity that ap-
pears in (IV.58) at the miscible-unmiscible transition. The important point
to note is that the length scale x, diverges at this point. For a finite sample
size L, this length scale loses its interest if 9 > L and it is better to work
with the dimensioned system of equations (IV.55), which is not singular in
the limit |gs| — 0.

2-4 Unconstrained bath

We now consider a gas that can move freely on a ring, with periodic bound-
ary conditions for the wave functions v, and . In this case, there is no

5Note that these units involve the dimensionless quantity pozo, so it is not possible to
restore the correct units by just a dimensional analysis. The choice made here ensures Eg =
Pyvg, where the unit of velocity vg is given by vg = xg/to.
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reason to assume that the bath is at rest at all times, especially when an
external force is applied to the system, as will be the case in §4. The special
relationship (IV.54) must therefore be replaced by the more general one
written in (IV.52). Still assuming a constant total density equal to py, we
now find for the evolution of the fields 6 and ¢:

975 =
Yt =
where the wavenumber £ is expressed in units of 1/z¢. We will see later
that k is directly proportional to the momentum of the system [eq. (IV.73)]

and is therefore independent of time as long as no external force is acting
on either fluid.

—20,p, cos0 — . sin 6 — 2k6,,

—cosf (goi + 1) + s(?;xe —2kp,

(IV.64)

Again, these equations can be obtained from a Lagrangian approach,
now involving the three fields ¢, ®, ¢ and their first derivatives with re-
spect to time and space. This Lagrangian is calculated from the one gov-
erning the evolution of the two coupled nonlinear Schrodinger equations:

e h?
Lnis= Y <1h1/’j¢j¢ - %Wmﬁ - g¢j4> — grz|tn P |ip2]?. (IV.65)

j=1,2

We inject the form (IV.48) of the spinor (11, ¢2) and find

L= Lyin —V (IV.66)
with .
Lein = 5 (¢ cos ) — dy) (IV.67)
and ) . .
V= 1 (02 + 2 +®2) — §<I>xg0w cosf + 1 sin? 6. (IV.68)

The Lagrange equation for ® provides the general link (IV.52) between @,
w and 6, and those for 6 and ¢ lead to (IV.64).

Here again, we find three conserved quantities:

¢ The number of atoms in the minority component

Unconstrained bath: Ny = %o / (1 —cosf) dz (IV.69)
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which takes on the same value whether the bath is in free motion or
forced to remain at rest as in §2-3.

¢ Energy (in physical units):

Unconstrained bath:

4 0

1 1
Eune. = 7EOIO/ |:912p + ((Pi + 72) Sin2 0+ 4:1152 dx
xr

(IV.70)
In comparison with the case of the bath at rest (IV.61), for a ring of
length L we note the addition of the term

21.2
onoLk'Q = h?k

poL (IV.71)
m

which simply corresponds to the kinetic energy of poL atoms moving
at speed hik/m.

¢ The momentum (in physical units):

ho

Punc. = 2

/ (P, — g cos0) da (IV.72)

Exploiting the link (IV.52) between ®, and ¢,, this momentum can
also be written for a ring of length L:

’ Unconstrained bath: Pune. = hkpoL ‘ (Iv.73)

Link between P, and Py,... The difference (IV.71) between the energy
of the "bath at rest" and "unconstrained bath" cases can be understood sim-
ply in terms of the bath’s kinetic energy. On the other hand, the difference
between the momenta (IV.63) for the bath at rest and (IV.73) for the bath
moving freely on a ring deserves comment.

Figure IV.6 shows a phase profile of the bath in each case. We will not
describe here what happens in the shaded area where the minority compo-
nent is present, as this will be the subject of the next section for the special
case of a soliton. We simply assume that the mixing of the two components
produces the same phase difference Ay = ¢1(x+) — 1 (x_) on either side
of this zone, whether the bath is at rest on a segment or free in a ring. We
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Figure IV.6. Possible profiles for the phase o1 (z) of the bath. The minority com-
ponent 2 is assumed to be located in the shaded area, and its presence results in a
phase variation Ay between points x_ and x .. Top: Confinement on a segment,
imposing an immobile bath and therefore a uniform phase ¢, outside the shaded
zone. Middle and bottom: case of a bath freely moving on a ring, with periodic
boundary conditions 1 (L/2) = ¥1(—L/2), so p1(L/2) = ¢1(—L/2) + 27n
with n € Z. We have taken n = 0 for the middle figure (no phase winding) and
n = 1 for the bottom figure.
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also assume that the extension of the shaded area is very small compared
to the total length L of the bath.

In the case of the bath at rest, we saw in (IV.63) that the momentum is
simply equal to —hpoAyp; (figure IV.6, top). In the case of the bath moving
freely on a ring, the bath wave function +; must be mono-valued, which
requires the phase to take the same value (modulo 27) in £L/2. Let us first
consider the case without phase winding (figure IV.6, middle): when we
traverse the bath from point = to point z_ (i.e. without passing through
the shaded area), we have a phase gradient, and therefore a wavenumber,
given by k = —Ay; /L. The result (IV.73) Pyy.. = hkpoL is therefore rewrit-
ten Pyne. = —hpoAyp1, which coincides with the case of a bath at rest. If a
phase winding is present in the ring, the phase difference between = and
z_ is equal to —A¢p; + 2nm with n € Z (figure IV.6, low for n = 1), which
provides the general relationship between P,est and Pyne.:

Punc. = Prest. + 1 27Tﬁpo. (IV74)

3 The magnetic soliton

The realization of magnetic solitons from condensate mixtures is a subject
that has been explored by several groups over the last ten years, both the-
oretically and experimentally®. These studies initially focused on the mis-
cible case, corresponding to the easy-plane case for the magnetic chain. See
Qu, Pitaevskii, et al. (2016), Ivanov, Kamchatnov, et al. (2017), Qu, Tylutki,
et al. (2017), and Pitaevskii (2019) for the theory and Farolfi, Trypogeor-
gos, et al. (2020) and Chai, Lao, et al. (2020) for the first two experimental
realizations.

In what follows, we will focus on the immiscible case, i.e. the easy-axis
case for the ferromagnetic equivalent. More precisely, we consider a finite
number of atoms of species 2 immersed in a long bath formed by species
1. In this section, we will be investigating the shape this cloud of parti-
cles 2 must take if it is to move at a constant speed v without undergoing

6"Real" magnetic solitons in solid materials have been observed for many years, in con-
nection with interfaces between two zones of different magnetization. See Kosevich, Ivanov,
et al. (1990) for historical references, and Togawa, Koyama, et al. (2012) and Caretta, Oh, et al.
(2020) for recent achievements.
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deformation, which is the definition of a soliton.

3-1 General structure of the solution

We are interested in a state of the mixture such that the fluid is composed
exclusively of particles of type 1 when & — £o0. This imposes:

T — Foo: # — 0 mod 27. (IV.75)

We impose no constraint between the bath phase on either side of the soli-
ton, which amounts to placing ourselves on an (arbitrarily long) segment.

We consider here the case of a bath at rest’, and look for the solitonic
solutions of the system (IV.58) in the form of

{ 0(x,t) = 0(x — vt)

oz, t) = Qt + ¢(z — vt) (IV.76)

A soliton is thus characterized by two parameters, its velocity v and the
parameter Q2. We shall see later that it is essential to introduce this sec-
ond parameter 2 to obtain interesting solutions®. A similar constraint had
arisen for bright solitons, for which the phase of the wave function did not
evolve with the same argument = — vt as its modulus.

When we inject this solution structure into the equations of motion
(IV.58), we obtain the following differential system for one-variable func-
tions # and ¢ (Long & Bishop 1979):

—vl’ =

Q—vd =

—20'¢' cos 6 — ¢ sin 6

— cosd [(¢,)2 . 1] . 9" (IV.77)

sin 6

Recall that to obtain this system, we expressed position and time in units
of zy and ¢, defined as (IV.56-1V.57), with velocity in units of o /tg. We will
now solve this system in the special case v = 0, and then move on to a
soliton of any velocity.

"The case of a bath with wave number k and velocity v, = hk/m, described by the equa-
tions (IV.64), can be deduced by replacing v by v — v, in the following.

8The article by Chai, You, et al. (2022) implicitly posits = 0 and finds only a subset of
the solitonic solutions discussed here.
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3-2 The magnetic soliton at rest

For a soliton with zero velocity, the first equation of (IV.77) gives

a4 (¢ sin® @) = 0. (IV.78)
dx

As 0 tends to 0 at infinity, we deduce that ¢’ = 0 except at a point z,
where sinf = 0 and where we can have ¢/(z) proportional to the Dirac
distribution 6(z — z). The ¢ phase is therefore uniform, with a possible
discontinuity at a point where § = 0 or # = 7 (total depletion of one or
other of the components):

Point x5 where sin[f(z)] =0: é(x) = ¢o + 01V (x — x5) (IV.79)
where Y (z) represents the Heaviside function.
The second equation of (IV.77) then becomes:
1
0" = Qsin6 + 5 sin(20) . (IV.80)

Solving this differential equation is relatively technical, so we will con-
fine ourselves to indicating the main conclusions for solutions centered at
x = 0 (the problem is translation-invariant):

¢ The parameter {2 must be such that

v
¢ When this condition is verified, the solution is written:
pa(z) . 50 2 +20
= — = Iv.82
0o T e ay || cosh(2kz) ( )
with
k=vV1+Q (IV.83)
This solution is maximal at © = 0 and decreases exponentially fast at
infinity.
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Figure IV.7. Graphical solution of the relationship between the parameter Q2 and
the number of atoms Ny in the minority component. The two blue dotted lines
correspond to the number of atoms in the minority component Ny = Na/pozo =
1 and Ny = 5. The corresponding profiles are plotted in figure IV.8 and IV.9,
respectively. For Ny = 1, the solutions are Q ~ —0.78 (solid red) and Q ~ 3.68
(dotted red). For Ny = 5, the solutions are Q ~ —2.66 10~2 (solid red) and
Q ~ 2.73 1072 (dotted red).

¢ The number of particles Ny in the minority component is given by
(IV.59) and we find

(IV.84)

2+Q0+2
Ny = pozo In (++H)

]

We show in figure IV.7 the principle of a graphical solution of this
equation, allowing us to find the value(s) of € corresponding to a
given number N; of particles in the minority component. For each
N;, we find two values of €2, one negative between 2 = —1 and
Q = 0 (continuous branch), the other positive (dotted branch). There
are therefore two possible expressions for a soliton at rest for each
value of N,. The energy of these solutions calculated using (IV.61)
is E' = 2x = 2v/1 4 Q. The solution obtained for {2 < 0 therefore has a
lower energy than that corresponding to 2 > 0.
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Figure IV.8. The two density profiles of the minority component for Na/poxo = 1
for a zero-velocity magnetic soliton.

Small numbers No. In the case where No/pozg < 1, the two solutions
obtained are very different from each other, as shown in figure IV.8. One
of the solutions (solid red line on this figure) corresponds to 2 ~ —1, for
which (IV.82) simplifies to

paf) K (IV.85)

Po cosh?(kx)

with k = 14+ Q <« 1. We find the characteristic structure of a bright
soliton of low amplitude, with a width large in front of z¢. This type of
solution was to be expected, as we had found in §1-5 that the Landau-
Lishiftz equation reduces to the nonlinear Schrodinger equation in the
regime where 6 remains close to 0, i.e. the low-depletion regime.

The other solution for the same value of N, (dotted red line in the fig-
ure) corresponds to 2 > 1, and therefore x > 1. It is much narrower, with
complete depletion of component 1. Note that the emergence of a narrow
structure is necessarily associated with high kinetic energy; the assump-
tion of separation of the energy scales linked to spin and total density ex-
citations must therefore be carefully re-examined for this type of solution:
the spin structure that appears here costs a lot of energy and may couple
with a density excitation.
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Figure IV.9. The two density profiles of the minority component for No/poxo = 5
for a zero-velocity magnetic soliton.

Large numbers N;. In the case where Na/pozo > 1, the values 2 found
by solving (IV.84) are close to {2 = 0 and opposite to each other. They lead
to very similar spatial profiles:

p2(x) 1
Po 1+ % cosh(2z) ’

(IV.86)

shown with solid and dotted lines in figure IV.9 for Ny/poxo = 5. These
profiles are ~ flat and close to 1 on a segment of length In(4/|2|) ~ N2/pozo
centered on = 0. They decrease towards 0 on the length scale z( since
k =~ 1 in this case. This structure corresponds to a spin domain in the
ferromagnetic case, or a quasi-pure bubble of condensate 2 of density po,
immersed in condensate 1.

Possible phase jumps. We indicated in (IV.79) the possibility of a jump
of the phase ¢ (of unknown amplitude at this stage) at a point x5 where
sin[f(zs)] = 0, i.e,, where § = 0 or § = 7. Let us briefly revisit this point
for the two categories of solutions considered, and see what it means for
the phases of the two condensates. First, let us note that the solution given
in (IV.82) for sin(0/2) never cancels out, whatever the sign of Q. This rules
out finding a point x where §(z) = 0. A possible zero of sin[f(x)] must
therefore correspond to #(x) = , i.e. a point z for which sin[f(z)/2] = 1
corresponding to the total depletion of the bath.
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We can see from (IV.82) that the condition sin(6/2) = 1 is indeed ful-
filled at x = 0 for the solutions with {2 > 0. The phases ¢ and ¢ can
therefore be discontinuous at this point. The phases ¢ and ¢ of the two
condensates can then be deduced from (IV.49-1V.52)

D1 = —sin?(0/2) dp Dpipa = c0s2(0/2) Do . (Iv.87)

At a point z; where 0(z,) = 7, the discontinuity of ¢ is transferred (up to
a =+ sign) to the bath phase ;. More precisely, if we return to the wave
function of the bath ¢ (), it can be written (up a global phase) as

VQ sinh(kz)
[1+Q COShQ(H.Z‘)] 2

Q>0,v=0:

Y1(x) = V/po (IV.88)

thus a phase jump of &7 in 2 = 0. On the other hand, there is no phase dis-
continuity for the wave function of the minority component at this point.

On the other hand, solutions corresponding to {2 < 0 never reach the
value 1, so the bath depletion is never total for them. We deduce that the
phase ¢(z) is uniform throughout space for these solutions, and the same
applies to the individual phases of the two condensates ¢; and 3. From
(IV.82), we find for the bath wave function (still up to a global phase):

V]9 cosh(kz)

N<0,v=0: V1(x) = /po 73 (IV.89)
1+ 19 sinhg(nx)]
and for the wave function of the minority component
1 1QNY/2
N<0,v=0: Ya(x) = /po (1= 12D (IV.90)

[1 4|9 sinh®(kz)] vz

3-3 Experimental realization of a soliton at rest

The Collége de France group recently carried out an experiment in which
a magnetic soliton at rest was produced and characterized in a two-
component mixture (figure IV.10). The starting point is a flat-bottom box-
shaped optical trap along the z axis with a length L, = 60 ym. The other
degrees of freedom are tightly confined, with width L, = 3 um and thick-
ness L, ~ 0.3pm. A uniform condensed gas of N; ~ 20000 rubidium
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Figure IV.10. Magnetic soliton in a two-component mixture.

p2(x)

atoms (i.e. pg = 370 atoms/pm) is prepared at very low temperature. Spin
dynamics are frozen along the y and z directions, so that the gas is initially
described to a good approximation by the one-dimensional wave function
Y(x) = \/po. Atoms are prepared in the electronic ground state and in the
hyperfine sublevel |F = 1,mp = —1).

Using a transition involving an infrared photon of wavelength ~
790nm and a microwave photon, we transfer a fraction of the atoms from
|FF = 1,mp = —1) to |FF = 1,mp = +1). The infrared beam is spatially
shaped by a system of micro-mirrors so that the  dependence of the trans-
ferred fraction reproduces the function sin?(0/2) given in (IV.82). During
the transfer, the total density remains equal to py at any point x. Further-
more, we aim for a solution 2 < 0 so that the wave functions ; » have a
uniform phase: there is therefore no manipulation required to obtain the
right phase profile, unlike in experiments with dark solitons.

In practice, we are interested in situations of low depletion, where the
density of the minority component varies approximately as 1/ cosh?(kz)
[cf. (IV.85)]. This simple profile is "printed” by choosing a given value of
K, in this case k™! = 5.5 um. The number of atoms transferred is varied
by changing the intensity of the light beam. We then measure whether the
resulting structure contracts, expands or remains stationary. In the latter
case, we deduce that we have reached the conditions for the formation of a
zero-velocity magnetic soliton with Q ~ —0.91. The length scale x is equal
to 1.61 um in this particular case.
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Figure IV.11. a,b: Visualization of the density ps(x) of the minority component
of a magnetic soliton. The density po of the majority component (not visible here)
is 370 atoms/um. c,d: Expansion of the wave packet 15 as a function of the atom
number No. The magnetic soliton state is reached for No = 370. Figure taken
from Franco Rabec’s thesis (see also Rabec, Chauveau, et al. (2024) ).

A typical result is shown in figure IV.11. For the value chosen for &,
the number of atoms ensuring stationarity is Ny = 370. This yields the
interaction parameter of the experiment g, = h x 0.06 Hz-pum; this result is
in good agreement with what we expected, given the 3D scattering lengths
and the geometry of the trap confining the atoms. We will return to the
magnetic soliton thus produced in section 4, to study Bloch oscillations
under the effect of a constant force.
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3-4 The magnetic soliton in motion

We now turn to the solution of the system (IV.77) for any velocity v. As the
corresponding calculations are fairly lengthy, we will simply give the main
results here. The angle 0 is given by

p2(x) .ot 27
=sin® - = VIl
Po 2 24 Q4+ vVQ? +v?cosh(2kz) ( )
with
k=+1+Q—-0v2/4 (Iv.92)

which generalizes the result (IV.82-IV.83) to the case v # 0. The phase ¢ is
no longer uniform and it is given by:

1 20 — v? 4+ 2/Q2 + 0?2
tan [ ¢(x) + zzv | = vt tv tanh(kx) (IV.93)
2 2Kkv
The number of atoms of the minority species 2 in this structure is:
< 2+0Q
cosh Ny = ———— V.94
SRV PRy ( )

where we have set Ny = Na/poxo.

To gain some intuition from these complicated equations, it is interest-
ing to represent the state of the soliton in the plane (v, () (figure IV.12).
First, we note that the definition of  in (IV.92) puts a constraint on the do-
main of the accessible plane. As the argument of the square root must be
positive, we must choose the pair (v, 2) such that

2

0> -1+,

0 (IV.95)

which represents a domain bounded by a parabola of axis z. The condition
> —1found in (IV.81) corresponds to the special case v = 0 of this general
condition.

In the plane (v, Q2), the curves corresponding to constant N, are ellipses,
with their vertices located inv = 0, 2 < Oandinv = 0, Q > 0. These
vertices correspond to the two solutions identified earlier for v = 0, and
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Figure IV.12. Red curve: ellipse representing the possible states of a magnetic
soliton in the (v, Q) plane for a fixed number of tilde Ny particles (here tildeNy =
1.7). The colored area corresponds to the (v, Y) parameters for which there is no
solution. As tildeNs increases, the ellipse contracts around the point (0, 0).

we can now see that these particular solutions are linked by a continuum
of solutions corresponding to non-zero velocity. The question, open at this
stage, is to find a way to set the soliton in motion and make it travel along
this ellipse. In the next section, we will show how this is possible.

The energy of the soliton is always given by the simple relation £ =
2k. From this result, we find that the momentum P deduced from the
canonical relation

OF
is related to the velocity by
oo S0E (IV.97)
sinh Ny
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This last relationship allows us to write the energy as

sin?(P/2)

E(N,, P) = 2tanh(N,/2) + 4 a
(N, P) (N2/2) sinh Ny

(IV.98)

In this particular case of the magnetic soliton, we can verify the general
relationship P = —hpg Ap; given in (IV.63), linking the momentum P and
the phase variation of the bath Ay; around the zone where component 2
is localized.

The fact that energy and velocity are periodic functions of momentum
is remarkable. This will play an essential role in the next section, where we
will study the motion of the magnetic soliton under the effect of a force.
In mathematical terms, this periodicity is explained by the fact that the
momentum is proportional to the phase variation of the bath Ay, and
that a phase is generally defined modulo 2.

Here we have used the fact that the momentum P and the velocity v
are conjugate quantities. Since the energy (IV.98) depends on the two in-
dependent variables P and N,, a natural question is to find the variable
conjugate to Ny. A straightforward calculation yields

( o8 ) __q, (IV.99)
ON> /) p

which shows that € plays (up to a minus sign) the role of a chemical po-
tential, i.e. the energy required to modify the number of particles N, by
one unit, at constant momentum.

A reminder on units. Position and time are expressed here in units of z
and tg given in (IV.56-IV.57). The unit of velocity is z¢/to, the unit of energy
is % poxo and the unit of momentum is fipy. We have set No = Na/poxo.
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4 Bloch oscillations of a magnetic soliton

4-1 "Usual" Bloch oscillations

The phenomenon of Bloch oscillations is one of the most spectacular man-
ifestations of quantum physics for a single particle. Provided this particle
is placed in a suitable environment, the action of an external force f, uni-
form and constant in time, does not lead to a uniformly accelerated motion,
but to an oscillating motion. We have encountered and studied this phe-
nomenon in detail in previous courses (see in particular the lecture series
2012-13), so we will just briefly introduce it here.

The environment that gives rise to the phenomenon of Bloch oscilla-
tions is a periodic potential in space, which we will denote V' (z), limiting
ourselves to a one-dimensional problem for the sake of simplicity. Let a be
the spatial period of the potential, V' (x + a) = V(z). The temporal period
of the Bloch oscillation is then

2mh

= (IV.100)

B

The explanation of this phenomenon lies in the structure of the disper-
sion relation that links the particle’s energy F to its momentum, or rather
quasi-momentum, noted here as p. In the periodic potential V(x) and in
the absence of the external force f, this dispersion relation is composed of
energy bands E,, (p) with periodicity 2nh/a:

E, (p—i— 27;h) =E,(p).

The eigenstates | ¢y, ,) of the Hamiltonian are also periodic in p, apart from
phase factors of no importance here. A momentum domain of width
27h/a, for example [—nh/a, +mh/al, is called a Brillouin zone.

(IV.101)

Let us assume, for example, that the particle is prepared in the lowest
energy band, n = 0, in the form of a wave packet obtained by superimpos-
ing a continuum of quasi-momentum values:

(e = 0)) = / (1) 6o} dp (IV102)
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Now let us apply the additional force f: each quasi-momentum p will
evolve according to p = f. Let us further assume that this force f is suf-
ficiently weak that during its motion, the particle remains in the lower
band n = 0. After the time ¢p, the quasi-momentum of each eigenstate
involved in the integral (IV.102) has increased by the quantity 27//a, and
this quasi-momentum has therefore described the entire Brillouin zone. We
deduce that the particle’s state has returned to its initial value (apart from
one global phase). In particular, the average particle position is back to its
initial value.

This phenomenon was first demonstrated for electrons in superlattices
(Feldmann, Leo, et al. 1992), then for atoms in standing light waves (Ben
Dahan, Peik, et al. 1996; Wilkinson, Bharucha, et al. 1996). The essential in-
gredient is the periodic variation of physical observables (energy, velocity,
position, etc.) with momentum. The response of the momentum to a force
(p = f) then immediately implies an oscillating motion for the physical
object involved.

4-2 Force on a magnetic soliton

Let us now consider a magnetic soliton initially at rest. This soliton is com-
posed with N, atoms immersed in a bath of type 1 particles, with asymp-
totic density pi1(z) = po. Suppose we apply a force f to each particle of
type 2, without affecting the particles of type 1. If the force is sufficiently
weak, the soliton will (at least at short times) be accelerated as a whole:
particles 2 will start moving in the direction of the force, and the hole they
create in the bath of particles 1 will follow this motion. If this were not the
case, we would generate an excitation of the total density of the mixture,
which we have seen is costly in terms of energy because it is proportional
tog.

Assuming that the fluid mixture can continue to be described as a mag-
netic soliton that retains its integrity under the action of the force f, the
canonical momentum of the system varies as follows

dP

(IV.103)

This relationship is deduced from the conservation of total energy in the
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presence of the potential U(z) associated with the force f (f = —dU/dz):
Eior = E(N2, P) + NoU(zs) (IV.104)

where E(Ny, P) is given in (IV.98) and z, represents the position of the
center of the soliton. Since N, remains constant, we find

§, U dz,

dFE}ot oF dP
_ _(9E\ dP V1
RRT (ap 5, dt *do dt (1v-105)
which leads to, using the soliton velocity v = % = (g—f;) o
dP - dP -
0=vs - Mafo = S =Rf. (IV.106)

The uniformly accelerated motion of the soliton will last as long as the
corresponding velocity v, expressed in reduced units z/ty, is smaller than
1. In this regime we have [cf (IV.97-IV.98)]:

v

P ~ ~ p?
E‘(]\/vg7 P) ~ Eo(NQ) +

(IV.107)
Meff Qmeff

with the effective mass

Meft = %sinh Ny. (IV.108)

Once out of this regime, we must return to the complete dispersion rela-
tion E(N,, P) to determine the soliton’s motion. As this dispersion relation
is periodic in P with the period 27 in reduced units, i.e., 27fipy in physical
units, we deduce that the soliton will have an oscillating motion with the
time period

_ 2mhpo
- F

as initially predicted by Kosevich, Gann, et al. (1998) and Kosevich (2001).
We thus find typical Bloch oscillation dynamics, even though no under-
lying periodic structure is present in this system (Gangardt & Kamenev
2009; Schecter, Gangardyt, et al. 2012). The correspondence between the tra-
ditional result (IV.100) and that found for a magnetic soliton is as follows:

tp (IV.109)

a < p'

F o BN (IV.110)
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Figure IV.13. Bloch oscillations of a magnetic soliton prepared as shown in figure
IV.11. The bath of particles 1 is present, but not visible in this series of images,
as the light beam used to image the system is not resonant with atoms in the |1)
state. Figure taken from Rabec, Chauveau, et al. (2024).

It is important to note that we are dealing here with a collective phe-
nomenon: the period is a function of Ny f and not of f alone. In other
words, the soliton’s oscillation is not the superposition of individual mo-
tions of type 2 particles each subjected to the force f, but it corresponds to
the dynamics of a "mesoscopic" object (for Ny > 1) subjected to the force
F = N,f.

For the graphical representation in the plane (v, 2), this oscillating mo-
tion is equivalent to travelling along the ellipse of figure IV.12 in the coun-
terclockwise direction. The two turning points of the motion, at which the
soliton’s velocity cancels out, correspond to the two states of the soliton at
rest found in §3-2 [see also Zhao, Wang, et al. (2020) for a description in
terms of effective mass whose sign depends on time].

4-3 Observation of Bloch oscillations

The magnetic soliton whose preparation we described in §3-3 can be set
in motion by a magnetic field gradient, since the two sublevels involved,
1) = |F = 1,m = —1) and |2) = |F = 1,m = +1) experience opposing
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Figure IV.14. Variation of the period measured for Bloch oscillations as a function
of Ny and the force f = ppb'.

forces in this gradient. In practice, we prepare the cloud in the state |1)
in the presence of the gradient b’, chosen to be sufficiently small that the
equilibrium density p; remains practically uniform. We use ¥’ = 1G/m,
which corresponds to an energy difference AU between the two ends of the
segment of the order of a nanokelvin, well below the chemical potential of
the gas. The force f introduced earlier is equal to the difference in forces
felt by the atoms on the states |1) and |2), corresponding to f = pupb’ where
(g is the Bohr magneton.

The period of Bloch oscillations is a few hundred milliseconds, which
is very long compared to the time it takes a sound wave to travel from one
end of the sample to the other (ten milliseconds). The assumption made in
(IV.52) of a zero current J is therefore legitimate: the phonons generated
by the soliton’s motion make several round trips between the ends of the
tube and the soliton itself in a period ¢ ; this ensures that the phase of the
bath of particles 1 can be considered uniform on either side of the soliton.

An example of oscillations is shown in figure IV.13. The measured pe-
riod is in excellent agreement with the prediction (figure IV.109).

Using atom interferometry, we can study the state of the bath at the
turning points of the motion. At initial times as well as after an integer
number of oscillations, the bath is expected to have a uniform phase [cf. eq.
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Figure IV.15. Study of the phase of the bath of particles |1) at the turning points
of the Bloch oscillation. The segment of atoms containing the soliton is made to
interfere with a test segment of uniform phase.

(IV.89)], which corresponds to the lower point of the ellipse in figure IV.12.
On the other hand, after one half of the oscillation period (or 3/2, 5/2,...),
the bath phase is expected to have a jump of £ at the soliton center, which
corresponds to the upper point of the ellipse in figure IV.12 [cf. eq. (IV.88)].

These predictions concerning the bath phase can be checked by prepar-
ing a second segment, parallel to the first one, for which all atoms are in
state |1). This second segment is then used as a phase reference. At a given
time, the confinement of the two segments is released. The atoms expand
ballistically and the interference between the two segments is observed.
When the segment with the soliton is associated with a uniform phase for
the wave function 1 (), the interference fringes are expected to be recti-
linear. On the other hand, when %, (x) has a phase jump of =, the fringes
are expected to exhibit a dislocation at the soliton position. This is indeed
what we observe experimentally (see figure IV.15).

This experimental result presents a strong analogy with that of a
Josephson junction subjected to a potential difference V' constant over time
(Bresolin, Roy, et al. 2023). Denoting ¢ the phase difference of the super-
conductor on either side of the junction, the behavior of this junction is
governed by the following two equations:

I = I.sing (Iv.111)
de qV
- = = v.i112
dt h ( )

where I is the current flowing through the junction and I is the junction’s
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characteristic current. These equations lead to a sinusoidal current I(t).

I(t) = I, sin(wt) with w = ¢V/h. (IV.113)
The correspondence with the soliton oscillation is made by the following

identification:

I s v (IV.114)
¢ < P/hpy=p1(z-) —p1(24) (IV115)
gV «— Naf/po (Iv.116)

Equations (IV.111) and (IV.112) are equivalent to (IV.97) and (IV.103) respec-
tively, which we rewrite here in physical units:

2 o

v = v.sin(P/h with v, = — — IV.117
(P/hpo) sinh NV, to ( )
dP
— = Nof. V.11
== N (Iv118)

4-4 The origin of the periodicity of £(P)

As mentioned above, the origin of the Bloch oscillation phenomenon lies
in the periodicity of the dispersion relation E(P), from which we deduce
the periodicity v(P) since v = 0E/OP. If the momentum evolves linearly
in time under the effect of a constant and uniform external force F, with
P = F, the energy, velocity and position of the system under study will be
oscillating functions of time.

The periodicity of E(P) (or rather E,¢ (P) in what follows) with period
2mhpy is in fact a general property of a 1D gas. To show this, we will follow
a line of reasoning due to Bloch (1973) and Bloch (1974) [see also Haldane
(1981)]. Consider a set of IV particles of mass m on a ring of perimeter
L, which amounts to imposing periodic boundary conditions on the wave
function ¥(z1,--- ,zn). Let us separate the N position variables into a
center-of-mass variable

1
X:f(x1+...+xN)

¥ (IV.119)
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and N — 1 relative variables &1, -+ ,&y_1 that we will not have to define
explicitly. The Hamiltonian is written as

2

- P N N .
H=— ® 1rel + 1Com ® Hrel

Ivi2
517 (IV.120)

where M = Nm denotes the total mass, P = > p; is the total momentum,
and H,. contains the kinetic terms related to the relative momenta as well
as the effect of interactions between particles, which depend only on the
position differences z; — x;. We can then search for the eigenfunctions of
H in the form

Up(zy, - ,an) =X D, (6, Ena) (IV.121)

where P is a possible eigenvalue of the total momentum operator P and
where

H.a®p = Eia(P) ®p . (IV.122)
The total energy associated with ¥ p is therefore
P2
onf T Era(P) . (IV.123)

At this point, it may come as a surprise to see P appear in the eigen-
value equation (IV.122) for the Hamiltonian H,o: the latter depends only
on the relative variables ¢; and we might naively have expected a complete
decoupling between the degree of freedom of the center of mass and the
relative variables. In fact, this complete decoupling does not occur, due to
the constraints of the periodic boundary conditions adopted here. To ex-
plain this point, we will make these constraints explicit by exploiting two
types of transformations.

* If we perform the translation x; — x; + L for each particle, the relative
coordinates are unchanged and X — X + L. Since the wave function
T » must remain unchanged, we deduce that e!"%/" = 1, i.e.

P =2mnh/L with n € Z. (IV.124)

This is the usual quantization relation for the momentum of a particle
(here, the center of mass) in a box of size L.

93

¢ If we perform the translation z; — x;+ L for just one of the IV particles,
the prefactor e'”X/" is multiplied by e’*/N" = ¢iP/hro with py = N/L.
As for the relative variables, they are modified in a way that we will
not specify explicitly, but which we can write as §; — . Since ¥p
must remain unchanged in this translation, we deduce that the func-
tion of the relative variables is modified according to:

Pp(§hs &) =TT Rp (G, ) (IV.125)

Here we explicitly see that a value of P obeying the quantization condi-
tion (IV.124) generally leads to a change of the boundary conditions of the
function ®p. This is precisely why the eigenfunctions ®p of the relative
motion and the associated eigenvalues E..(P) depend on the momentum

of the center of mass.

However, if we choose P such that e7i//##0 = 1, ie. P multiple of
27hpo, then the eigenfunctions satisfy the same boundary conditions as
those for P = 0. Since the relative Hamiltonian H, rel does not depend on P,
we deduce that its spectrum for P = 2whyp is the same as that for P = 0.

Furthermore, in the thermodynamic limit N — oo, L — oo with
po = N/L constant, the mass M = Nm tends towards infinity so that the
kinetic energy of the center of mass P?/2M also tends towards 0 when
P = 27hpy. In particular, this provides the desired periodicity for the
ground-state energy of the system, which is what interests us here for the
magnetic soliton.

In the Bloch oscillation experiment we described earlier, the magnetic
soliton can be seen as a mesoscopic impurity that enables us to inject mo-
mentum into the bath in a controlled manner via the force F, and thus
probe the general periodicity of E(P) that we have just explained. Another
experiment exploiting this same periodicity is described in Meinert, Knap,
et al. (2017), where the impurity is then microscopic since it is composed
of a single atom, of a different nature to that of the bath (see also Grusdt,
Shashi, et al. (2014), Petkovi¢ & Ristivojevic (2016), and Will & Fleischhauer
(2023)).
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