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Introduction

Solitons are fascinating objects that appear in many fields of science,
from hydrodynamics to biology, mathematics, theoretical physics and
chemistry. Their existence is based on a nonlinear process, making them
intrinsically difficult to describe. It is hardly surprising, then, that the con-
cept has taken a long time to establish itself in all its generality: it is only
since the 1960s that the universal nature of solitonic structures has been
understood, beyond the various contexts in which they appear.

In this course, we will discuss a relatively recent field of research, based
on the use of coherent matter waves to generate and characterize solitons.
This field emerged around 25 years ago, with the possibility of manipulat-
ing and shaping Bose-Einstein condensates formed from laser-cooled and
trapped atoms. It has developed considerably since then, and we will be
presenting several remarkable achievements.

The date of birth of the scientific study of solitons is known1: in Au-
gust 1834, the Scottish engineer John Scott Russell (1808-1882), inspecting
the canal linking Edinburgh and Glasgow, observed the birth of a wave
generated by the sudden stop of a boat. He described the phenomenon as
follows:

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped – not so the mass of
water in the channel which it had put in motion; it accumulated round the prow
of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course along
the channel apparently without change of form or diminution of speed. I followed

1The historical aspects described here are mainly taken from Ablowitz & Segur (1981),
Drazin & Johnson (1989), Dauxois & Peyrard (2006) and Marin (2012). One can also consult
the comprehensive article by Darrigol (2003).

it on horseback, and overtook it still rolling on at a rate of some eight or nine miles
an hour, preserving its original figure some thirty feet long and a foot to a foot
and a half in height. Its height gradually diminished, and after a chase of one or
two miles I lost it in the windings of the channel. Such, in the month of August
1834, was my first chance interview with that singular and beautiful phenomenon
which I have called the Wave of Translation

The main characteristics of a soliton are identified: "large solitary eleva-
tion", "without diminution of speed", "preserving its original figure". Over the
next ten years, Russell devoted a great deal of time, both theoretically and
experimentally, to characterizing this "translation wave" (which he also
called the "large solitary wave"). He even went so far as to build a 10-
meter-long pond in his garden for measurements. Russell published all his
results in Russell (1844), but his work was met with skepticism from his
contemporaries, especially Airy and Stokes. The latter’s arguments were
in fact irrelevant, as they were based on a linear approach – the only one
known at the time – to wave propagation; yet the solitons observed by
Russell are intrinsically nonlinear. Unfortunately, Russell did not have the
right wave equation to answer these objections, so he abandoned his re-
search.

Towards the end of the 19th century, the Frenchman Boussinesq (1871),
the Englishman Rayleigh (1876), then the Dutchmen Korteweg and de
Vries (1895), understood the wave structure observed by Russell and es-
tablished its equation of motion2. For a relatively narrow channel of axis x
and for shallow water, this equation can be written (in reduced units and

2The genesis of the ideas around the KdV equation is described by Darrigol (2003) and by
De Jager (2006). See also R.K. Bullough’s contribution in Lakshmanan (1988).

7



in an appropriate reference frame):

ut = −uxxx − 6uux (1)

where u(x, t) represents the height of the water above its reference level3

The solitonic solution of this equation is

u(x, t) = − v/2

cosh2 [
√
v/2 (x− vt)]

v > 0 , (3)

i.e. a structure that propagates without deformation at speed v.

Once this solution was known, interest in this type of problem waned.
It was not until the early 1950s, with the work of Fermi, Pasta, Ulam and
Tsingou4 (Fermi, Pasta, et al. 1955) to see solitonic behavior emerge again.
This article actually describes the first digital experiment, as Fermi sought
to use the brand-new computer at his disposal, the MANIAC, to explore
physical phenomena. The initial idea was to solve the equations of motion
of 64 nonlinearly coupled oscillators, in order to demonstrate a thermaliza-
tion phenomenon. The conclusion of this work was non ambiguous5: The
results show very little, if any, tendency toward equipartition of energy among the
degrees of freedom.

What was going on? One had to wait another ten years for the work
of Zabusky & Kruskal (1965) to elucidate the paradox. These authors first
showed that the problem studied by Fermi and his collaborators boiled
down to solving the Kortewew – de Vries equation. They also understood
that the initial condition chosen by Fermi fragments into several solitons,
which collide with each other without deforming, before reproducing the
initial state almost identically. Zabusky & Kruskal (1965) introduced the
word "soliton"6 and wrote:

3In this course, we will use the notations :

ut ≡ ∂tu ≡
∂u

∂t
ux ≡ ∂xu ≡

∂u

∂x
uxxx ≡ ∂3xu ≡

∂3u

∂x3
. (2)

4The article (actually a classified report from Los Alamos) is signed by the first three au-
thors only, but it explicitly mentions that the work was done by the three signatories and
Mary Tsingou [see, for example, Dauxois (2008)].

5In fact, we now know that if Fermi and his collaborators had used a significantly stronger
nonlinearity, they would have reached a threshold where the dynamics of their system would
have become chaotic, leading to equipartition of energy.

6They first tried "solitron", but this word had already been pre-empted by a company.

In other words, solitons "pass through" one another without losing their iden-
tity. Here we have a nonlinear physical process in which interacting localized
pulses do not scatter irreversibly.

Since then, solitons have remained at the forefront of the scientific
scene, with considerable impact in a wide variety of fields. They can ap-
pear in any system governed by a nonlinear equation, and they result from
a competition between two terms, one tending to spread the solitonic object
in question, the other tending on the contrary to compress it. The nonlin-
ear nature of the problem links the size of the object to its amplitude, as
seen on the solution (3) of amplitude v and width ∼ 1/

√
v. These solitons

are found in particular in optics and hydrodynamics, with fruitful parallels
between the two fields.

As mentioned above, this series of lectures will focus on the physics of
solitons generated from matter waves in ultra-cold atomic gases. The nec-
essary nonlinearity will come from the interaction between atoms, which
we will describe using a mean-field approach, limiting ourselves to one-
dimensional systems for simplicity. The outline of this lecture series will
be as follows:

• The first two chapters will be devoted to the case of an attractive in-
teraction, for which the soliton consists of an aggregate of atoms, gen-
erally propagating on a dark background. In Chapter 1, we will estab-
lish the evolution laws of a soliton based on the nonlinear Schrödinger
equation. We will then generalize these laws to the case of several soli-
tons, and demonstrate the possibility of generating large-amplitude
"rogue waves" from an almost uniform wave (figure 1). Then, in chap-
ter 2, we will introduce an extremely powerful theoretical approach to
studying these solitons, called inversion scattering transform (IST), and
discuss the possibility of generating and analyzing "multi-solitons".

• Chapter 3 will be devoted to the case of repulsive interaction, which
allows the realization of dark solitons, i.e. density holes with the right
phase profile to obtain stable structures propagating at constant veloc-
ity. We will also tackle the tricky problem of defining the momentum
of a soliton, which we will link to the counterflow existing in the bath
on either side of the density hole.

• In Chapter 4, we turn to a broader class of solitons, called magnetic
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Figure 1. The Great Wave of Kanagawa, print by Katsushika Hokusai, 1831.
The connection with a rogue wave is explained by Cartwright & Nakamura (2009)
and Dudley, Sarano, et al. (2013).

solitons. We will see how these can be realized in a mixture of conden-
sates, and we will study a remarkable property of these magnetic soli-
tons: when subjected to a constant force, they do not undergo a uni-
formly accelerated motion as one would intuitively expect, but take on
an oscillatory motion, reminiscent of the Bloch oscillations of a quan-
tum particle in a spatially periodic lattice. We will analyze this phe-
nomenon and describe its very recent experimental demonstration.

On a subject as vast as solitons, this series of lectures can by no means
claim to be exhaustive. Our aim is to illustrate some salient properties of
these objects, linked to their robustness and the consequences of the inte-
grability of the underlying evolution equations. We refer readers wishing
to delve deeper into the subject to recent articles or books, such as Mal-
omed (2022), Dudley, Finot, et al. (2023), Suret, Randoux, et al. (2024) and
Malomed (2024) for multi-dimensional aspects.

Acknowledgements I am very grateful to Jérôme Beugnon, Guillaume
Brochier, Raphael Lopes, Sylvain Nascimbene and Franco Rabec for multi-
ple discussions on the subject and for proofreading a preliminary version
(in French) of these lecture notes.
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Chapter I

Bright solitons

The first chapter of this course is devoted to the simplest configuration
for the emergence of a solitonic structure for matter waves: a set of inter-
acting atoms forced to move along a straight line. The soliton then appears
as the ground state of the system, with the N atoms forming a bound state.
The spatial extension of this state results from a balance between attractive
interactions, which tend to reduce the size of the soliton as much as possi-
ble, and the kinetic energy linked to particle confinement, which tends on
the contrary to extend the atomic wave packet.

This structure is called a "bright soliton" because the atoms form a den-
sity peak located at an arbitrary position on the straight line along which
they can move. Outside this density peak, the probability of finding a par-
ticle is negligible. We will see that the wave function describing this state is
the solution of lowest energy for the nonlinear Schrödinger equation (also
known as the Gross–Pitaevskii equation) in the one-dimensional geometry.

Once we have understood this solitonic structure, we will turn our at-
tention to more complex structures than this simple bright soliton. In par-
ticular, we will show that solitons behave like particles when they interact
with each other, i.e. they emerge "unchanged" from a binary soliton-soliton
collision. We will also present structures that are non-stationary, but can
recur periodically over time (breathers).

The chapter ends with a model to explain the formation of soliton trains
in gases whose interactions are suddenly changed from repulsive to attrac-
tive. We will say a few words about the dynamics of an assembly of atoms

x

Figure I.1. A gas of particles forced to move along a straight line. Particles interact
with each other through a contact potential.

with energies well above the ground state, giving rise to a gas of solitons.
This dynamic provides a model to explain the existence of "rogue waves"
in hydrodynamics, i.e. waves with a very large amplitude that may emerge
in an otherwise nearly flat sea.

Many of the results shown in this chapter are related to the integrability
of the 1D nonlinear Schrödinger equation. Here, we will restrict ourselves
to pointing out these integrability signatures. We will return to this notion
in greater detail in Chapter II.

1 A bright soliton at rest

Most of this course will be devoted to effectively one-dimensional situ-
ations for quantum fluids. These are obtained by strongly confining the
fluid along two directions in space (noted here as y and z), so that the two
corresponding degrees of freedom can be considered frozen. On the other
hand, motion along the x direction is free, and this is what we will be fo-

11



CHAPITRE I. BRIGHT SOLITONS § 1. A bright soliton at rest

cusing on (figure I.1). We will come back in § 2-4 to the validity conditions
for this one-dimensional approach.

For the electromagnetic field, this one-dimensional situation is ob-
tained by sending light through a single-mode optical fiber. For atoms or
molecules, confinement in the y, z directions can be achieved with a strong
magnetic field gradient or by using light beams to create an optical lattice,
for example. In what follows, we will start from the case of a gas of atoms
to construct solitons, but the results obtained will also apply to the case of
light pulses propagating in a fiber.

1-1 The Gross–Pitaevskii energy functional

Throughout this course, we will assume that interactions between atoms
are binary, short-range and describable by a contact potential. For two
atoms located at x1 and x2, we will assume

V (x1, x2) = g δ(x1 − x2) (I.1)

where the real coefficient g characterizes the strength of the interactions.
The cases g < 0 and g > 0 correspond to attractive and repulsive interac-
tions, respectively. The 1D situation considered here is much simpler than
the three-dimensional case, where the contact interaction must be regular-
ized to avoid uncontrolled divergences (see courses 2020-21 and 2021-22).
Here, the Dirac distribution simply corresponds to the limit of a potential
well (g < 0) or a potential bump (g > 0), with a width small compared to all
the physical quantities of the problem (in particular the distance between
particles).

We assume in this paragraph that the quantum fluid is well described
by a classical field approach. The state of the fluid at an instant t is there-
fore characterized at a point x by a complex wave function ψ(x, t), normal-
ized by the total number of particles along the length accessible to the gas,
which we will assume here to be infinite:

∫ +∞

−∞
|ψ(x, t)|2 dx = N (I.2)

and corresponding to the spatial density at point x:

ρ(x, t) = |ψ(x, t)|2. (I.3)

The total energy of the gas is given by the Gross–Pitaevskii functional

E(1D)[ψ] =
ℏ2

2m

∫ ∣∣∣∣
∂ψ

∂x

∣∣∣∣
2

dx+
1

2

∫∫
ρ(x)V (x, x′) ρ(x′) dxdx′ (I.4)

where the first term corresponds to kinetic energy and the second to in-
teraction energy. This expression is simplified for contact interaction (I.1)
to

E(1D)[ψ] =
ℏ2

2m

∫ ∣∣∣∣
∂ψ

∂x

∣∣∣∣
2

dx+
g

2

∫
|ψ(x)|4 dx (I.5)

This energy functional corresponds to a mean-field description of the fluid,
where each particle evolves in a potential proportional to the local fluid
density ρ(x).

The equation of motion deduced from the energy functional (I.5) is the
nonlinear Schrödinger equation (or Gross–Pitaevskii equation):

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+ g|ψ|2ψ (I.6)

We will often use a dimensionless version of this equation. For this, let
us introduce a unit of length x0 and a unit of time t0 (which are arbitrary
at this stage)

x̃ =
x

x0
t̃ =

t

t0
. (I.7)

We link these units of length and time by

t0 =
2mx20
ℏ

(I.8)

and we simultaneously make the function change

u(x̃, t̃) =

√
x0
N
ψ(x, t) (I.9)

so that the norm of u is related to that of ψ by:
∫
|u(x̃, t̃)|2 dx̃ =

1

N

∫
|ψ(x, t)|2 dx. (I.10)

12



CHAPITRE I. BRIGHT SOLITONS § 1. A bright soliton at rest

The nonlinear Schrödinger equation is then written as

i
∂u

∂t̃
= −∂

2u

∂x̃2
+ 2G|u|2u with G =

Nmx0
ℏ2

g. (I.11)

At this stage, the length scale x0 is still arbitrary. In what follows, we will
choose it so that G = +1 for repulsive interactions (g > 0) and −1 for
attractive interactions (g < 0):

x0 =
ℏ2

Nm|g| (I.12)

with the associated time scale given the link (I.8) between t0 and x0:

t0 =
2ℏ3

N2mg2
. (I.13)

We will therefore write the equation for the evolution of the function u
in the form :

iut + uxx ± 2|u|2u = 0 (I.14)

where we have omitted the .̃ above the variables x and t to simplify the
writing and where we have adopted here the usual notation

ut =
∂u

∂t
uxx =

∂2u

∂x2
. (I.15)

The + sign in (I.14) corresponds to the attractive case g < 0 (called the
focusing case in nonlinear optics), on which we will concentrate in this
chapter. The − sign corresponds to the repulsive (defocusing) case, which
we will describe in chapter III, and gives rise to dark solitons.

This equation appears in many other physics problems, such as the
propagation of the envelope of a light pulse in an optical fiber, or deep-
water wave dynamics [see, for example, Dudley, Genty, et al. (2019) and
refs. in]. Note that in the case of a light pulse propagating in an optical
fiber, the roles of space and time variables are reversed: the variable t̃ in
the above equation represents the position along the fiber and the variable
x̃ is related to time (Dauxois & Peyrard 2006).

1-2 Some general properties

The nonlinear Schrödinger equation has a number of general properties,
independent of the chosen initial condition, which will play a crucial role
in what follows. These properties are well known for the usual (i.e. linear)
Schrödinger equation as a consequence of the Hermitian character of the
Hamiltonian, and they remain valid in the presence of the nonlinearity of
(I.6).

Conservation of the number of particles. The number of particles is
given by the squared norm of the function ψ(x, t), as indicated in (I.2). We
simply check that

dN

dt
=

∫
(∂tψ

∗)ψ +

∫
ψ∗ (∂tψ) (I.16)

vanishes. To do this, simply use the evolution equation (I.6) and its com-
plex conjugate, then perform integration by parts for the kinetic energy
term: ∫ (

∂2xψ
∗)ψ = −

∫
(∂xψ

∗) (∂xψ) =
∫
ψ∗ (∂2xψ

)
. (I.17)

We have assumed here that ψ is sufficiently regular and tends to 0 fast
enough at infinity for these manipulations to be legitimate.

Momentum conservation. The momentum associated with the wave
function ψ is obtained by taking the average of the momentum operator
p̂ = −iℏ∂x:

p = −iℏ
∫
ψ∗ (∂xψ) (I.18)

and we can check that
dp

dt
= 0. (I.19)

The cancellation of the kinetic energy term is ensured as above (as for the
linear Schrödinger equation), and the contribution of the interaction terms
is proportional to

∫
∂x|ψ|4, which cancels out assuming that ψ decreases

fast enough at infinity.
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CHAPITRE I. BRIGHT SOLITONS § 1. A bright soliton at rest

Energy conservation. This conservation is in fact assured insofar as the
evolution equation (I.6) is obtained from the energy functional (I.5). It can
also be checked directly by taking the derivative with respect to time of the
functional (I.5) and ensuring that all terms cancel out after the appropriate
integrations by parts.

Homothety. We can check that if ψ(x, t) is a solution to (I.6), then

ψκ(x, t) ≡ κψ
(
κx, κ2t

)
(I.20)

is also a solution of this equation for the same mass m and the same inter-
action parameter g, with each term of the nonlinear Schrödinger equation
multiplied by κ3. Note that ψ and ψκ correspond to different numbers of
particles:

∫
|ψ(x, t)|2 dx = N ⇒

∫
|ψκ(x, t)|2 dx = κN. (I.21)

1-3 Stationary solution: the fundamental soliton

For the moment, we will not attempt to give families of time-dependent
solutions to the equation (I.6) and we will restrict ourselves to stationary
solutions:

ψ(x, t) = ψ(x) e−iµt/ℏ (I.22)

satisfying the equation

− ℏ2

2m

d2ψ

dx2
+ g|ψ(x)|2ψ(x) = µψ(x). (I.23)

For a gas of atoms, the quantity µ corresponds to the chemical potential,
i.e. the energy required to add a particle to the system. We will check this
property a little further on.

In a box of size L → +∞ and for a finite number of particles N , the
equation (I.6) always has as its solution the constant function correspond-
ing to a density ρ = N/L→ 0, i.e. zero chemical potential. The energy (I.5)
associated with this uniform solution is also zero.

−15 −10 −5 0 5 10 15
0

0.5

1

x

u(x)

Figure I.2. Profile of the bright soliton given by equation (I.24).

In the attractive case we are interested in here, it is possible to find sta-
tionary solutions of (I.6) or (I.14) corresponding to negative µ andE. In the
dimensionless version (I.14), a possible solution is:

u(x, t) =
eit

coshx

∫
|u|2 dx = 2 (I.24)

with the chemical potential equal to−1. This function is plotted for t = 0 in
figure I.2. More generally, given the homothety property mentioned above,
we find the family of solutions

u(x, t) =
κ

cosh(κx)
eiκ

2t

∫
|u|2 dx = 2κ . (I.25)

Let us express the solution (I.25) with dimensioned variables, choosing
κ = 1/2 so that the link (I.10) between the norms of u and ψ results in

κ = 1/2 :

∫
|u|2 dx = 1 ⇒

∫
|ψ|2 dx = N. (I.26)

We then find

ψ(x, t) =
ψ0

cosh(x/2x0)
e−iµt/ℏ with x0 =

ℏ2

Nm|g| ψ0 =

√
N

4x0

(I.27)
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Figure I.3. Variation of total energy with wave packet size.

with the chemical potential :

µ = −3αN2 with α =
1

24

mg2

ℏ2
(I.28)

The energy of the Gross–Pitaevskii functional associated with this wave
function is E = Ekin + Eint with

Ekin = αN3 Eint = −2αN3 (I.29)

so that
E = −αN3 (I.30)

We then recover the relationship between the chemical potential and the
energy:

µ =
∂E

∂N
. (I.31)

The fact that the energy is negative indicates that we are dealing with a
bound state: the (negative) interaction energy is greater in absolute value
than the kinetic energy, and the N -particle system minimizes its energy by
forming a wave packet of size x0, inversely proportional to the number of
particles N . More precisely, for a wave packet of size ℓ, these two energies
vary as follows

Ekin = N
ℏ2

2mℓ2
Eint = −N2 |g|

ℓ
(I.32)

so that the total energy Ekin + Eint has the shape shown in figure I.3, with
a minimum for ℓ ∼ x0.

We have considered here the solution centered at x = 0, but as the
problem is invariant by translation, the function ψ(x − a), where a is any
distance, is also a solution for the same energy.

Note: norm of a soliton. For the wave function (I.27), we find as indi-
cated that

∫
|ψ(x)|2 dx = N . In the literature, this situation is frequently

referred to as the "N -norm soliton". In the usual sense of the norm of wave
functions, it is the square of the norm of ψ that is N and the wave func-
tion is of norm

√
N . One must therefore be careful to re-establish the true

normalization of the wave function in question, depending on the context.

1-4 The quantum version of the problem

Remarkably, certain physical quantities of a 1D assembly of quantum par-
ticles obeying Bose statistics and in contact interaction can be calculated
exactly, both in the repulsive and in the attractive case.

The system’s Hamiltonian can be written as

Ĥ =
∑

i

p̂2i
2m

+ g
∑

i<j

δ(x̂i − x̂j). (I.33)

In the repulsive case (g > 0), Lieb & Liniger (1963) determined the spec-
trum of the Hamiltonian and the corresponding eigenstates using Bethe’s
ansatz. In the attractive case of interest here, McGuire (1964) calculated
exactly the energy of the ground state:

E = −mg
2

24ℏ2
N(N2 − 1). (I.34)

The associated wave function is written, to within a normalization coeffi-
cient [Castin & Herzog (2001) and refs. in]:

Ψ(x1, · · · , xN ) = exp


−m|g|

2ℏ2
∑

i<j

|xi − xj |


 (I.35)
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BOSE–EINSTEIN CONDENSATES AND ATOM LASERS Symmetry breaking states
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So we suggest instead to consider the mean spatial density of the particles knowing that the center of
mass of the cloud has a position Z . In the exact formalism this gives after lengthy calculations:

ρ(z|Z) =

∫
dz1 . . .

∫
dzN

∣∣Ψ0(z1, . . . , zN)
∣∣2
(

N∑

j=1

δ(z − zj)

)
Lδ

(
Z − 1

N

N∑

n=1

zn

)

=
N

ξ

N−2∑

k=0

(N − 2)!

(N − k − 2)!

N !

(N + k)!
(−1)k(k + 1)exp

[
−(k + 1)

N

N − 1

|z − Z|
ξ

]
(116)

where ξ is the N -dependent length of the soliton (89), the integrals are taken in the range [−L/2,L/2] and
L → +∞; the factor L, compensating the one in the normalization factor of Ψ , ensures that the integral of
ρ(z|Z) over z is equal to N .
In the symmetry breaking point of view the definition of ρ(z|Z) is similar to equation (116); the factor

L cancels with the 1/L factor of equation (112). This leads to:

ρsb(z|Z) =

∫
dz0

∫
dz1 . . .

∫
dzN

(
N∏

k=1

|φz0(zk)|2
)(

N∑

j=1

δ(z − zj)

)
δ

(
Z − 1

N

N∑

n=1

zn

)

= N

∫
dz1 . . .

∫
dzN

(
N∏

k=1

|φ0(zk)|2
)

δ

(
Z − z + z1 − 1

N

N∑

n=1

zn

)
(117)

where we have made the change of variables zk → zk +z0 (which allows to integrate over z0), we recall that
φ0 is the solitonic wavefunction centered in z0 = 0 and we have replaced the sum over the indistinguishable
particles j byN times the contribution of particle j = 1. The multiple integral over the positions z1, . . . , zN

can be turned into a single integral over a wavevector q by using the identity δ(X) =
∫

dq/(2π) exp(iqX),
allowing a numerical calculation of ρsb(z|Z).
Does the approximate result (117) get close to the exact result for large N? We compare numerically in

figure 1 the exact density ρ(z|Z) to the symmetry breaking mean-field prediction ρsb(z|Z): modestly large
values of N give already good agreement between the two densities. This validates the symmetry breaking
approach for the considered gedanken experiment.

Figure 1. For the ground state of the one-dimensional attractive Bose gas, position dependence of the mean density of
particles, knowing that the center-of-mass of the gas is in Z = 0. Solid line: exact result ρ(z|Z = 0). Dashed line:

mean-field approximation ρsb(z|Z = 0). The position z is expressed in units of the ‘soliton’ radius ξ where ξ is given
in equation (89), and the linear density is in units of N/ξ. The number of particles is (a) N = 10 and (b) N = 45.

439

Figure I.4. Function ρ(z|Zcm = 0) giving the probability of finding a particle at
point z, knowing that the center-of-mass of the N particles is located at Z = 0.
Solid line: result obtained for theN -body wave function (I.35) of the ground state.
Dashed line: result obtained for the wave function ψ(x) of a soliton in the classical
field approach, breaking the translational invariance of the quantum problem. Left
(resp. right) panel: N = 10 (resp. N = 45).

In the limit of a number of atoms much larger than 1, the energy is very
close to that found using the functional (I.30), the relative difference being
of order 1/N2.

As far as the states are concerned, we immediately note a major differ-
ence between the soliton wave function, ψ(x) ∝ 1/ cosh(x/2x0) and the N -
body wave function (I.35): the former is localized in the vicinity of x = 0,
whereas the latter is completely delocalized, a natural consequence of the
translational invariance of the quantum many-body problem. To explore
this point further, Castin & Herzog (2001) have calculated, from the N -
body wave function, the probability of finding a particle at z, knowing the
position Zcm of the center-of-mass of the ensemble. This quantity is plot-
ted in figure I.4 for N = 10 and N = 45 particles. We can see that it is very
close to the classical field result obtained from ψ(x), the agreement being
all the better as N is larger.

The situation encountered here is an example of a very general problem,
where a broken-symmetry description of a system (here, the wavefunction
ψ(x) solution of the nonlinear Schrödinger equation) is compared with the
exact many-body wavefunction of the system (here, the state (I.35)), which

itself respects this symmetry. Another example of this issue is the deter-
mination of the relative phase of two condensates (Javanainen & Yoo 1996;
Castin & Dalibard 1997).

2 The bright soliton in motion

2-1 Soliton in uniform motion

The Schrödinger equation has a Galilean invariance that is not modified
by the addition of the nonlinear term in (I.6). Starting from a stationary
solution (I.22), we can generate a family of solutions corresponding to the
transition to a frame of reference in uniform translation with respect to the
initial frame of reference:

ψ(x, t) −→ ψ(x− vt, t) eim(vx−v2t/2)/ℏ. (I.36)

Each solution here corresponds to a soliton whose envelope (i.e. the
modulus of ψ) is moving at speed v, its total energy being the sum of its
internal energy (I.30) and the kinetic energy of the center of mass Nmv2/2.
The corresponding momentum is P = Nmv and the wave function is:

ψ(x, t) =
ψ0 eimvx/ℏ

cosh[(x− vt)/2x0]
e−it(µ+mv2/2)/ℏ. (I.37)

As shown by Dauxois & Peyrard (2006), this family of solitons corresponds
to the set of possible solutions of the nonlinear Schrödinger equation when
we impose the form

ψ(x, t) = A(x− vat) eiθ(x−vpt) (I.38)

where va and vp correspond to the propagation velocities for the amplitude
and the phase. Note that it is not possible to have a solution with a constant
profile, i.e. va = vp, unlike in the case of the Korteweg–de Vries and sine-
Gordon equations.
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2-2 Action of a force on a soliton

Galilean invariance is just a special case of a more general invariance of
the Schrödinger equation (linear or nonlinear). We can check that if the
function ψ(x, t) is a solution of

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+ g|ψ|2ψ , (I.39)

then the function ϕ(x, t) defined by

ϕ(x, t) = ψ[x− ξ(t)] exp
[
im

ℏ

(
ξ̇x− 1

2

∫ t

0

ξ̇2 dt

)]
(I.40)

is solution of

iℏ
∂ϕ

∂t
= − ℏ2

2m

∂2ϕ

∂x2
+ g|ϕ|2ϕ−mξ̈xϕ . (I.41)

Galilean invariance (I.36) corresponds to the case ξ(t) = vt with a veloc-
ity v independent of time, but the result (I.41), sometimes called extended
Galilean invariance (Greenberger 1979), can be used to deal with the transi-
tion to non-inertial reference frames, or to solve problems where particles
are subjected to a uniform force F , hence a potential V (x) = −Fx, knowing
the solution for F = 0.

Consider a soliton initially at rest with wave function ψ0/ cosh(x/2x0)
[cf. (I.27)]. From this result, we deduce that if we apply a force F = ma
that is uniform in space and constant in time, this soliton will undergo
a uniformly accelerated motion without any deformation of its envelope,
whatever the value of the force. Its wave function at time t is written:

ϕ(x, t) =
ψ0

cosh[(x− at2/2)/2x0]
e−it(µ−Fx+F 2t2/6m)/ℏ . (I.42)

This result is no longer valid if the force is not uniform. For example,
the application of an inverted harmonic potential V (x) = −mω2x2/2, cor-
responding to the force F = mω2x, can destabilize the soliton if the number
of atoms N does not reach a critical value (Carr & Castin 2002).

Figure I.5. Schematic diagram of the Khaykovich, Schreck, et al. (2002) experi-
ment that revealed a bright matter-wave soliton. Atoms are initially confined to
the intersection of two light beams, one horizontal (HB), the other vertical (VB).
The scattering length is controlled by a Fano–Feshbach resonance by adjusting the
magnetic field.

2-3 Observation of a single soliton

The prediction of the existence of solitons for the nonlinear Schrödinger
equation dates back to a paper by Hasegawa & Tappert (1973) on the prop-
agation of light in an optical fiber. This type of soliton was then demon-
strated experimentally by Mollenauer, Stolen, et al. (1980). See Dudley,
Finot, et al. (2023) for a recent review of the study of solitons in this non-
linear optics context.

The first observation of a bright soliton for matter waves was made by
Khaykovich, Schreck, et al. (2002). These authors started with a spherical
condensate containing ∼ 20 000 atoms of lithium (isotope 7, i.e. a boson).
These atoms were trapped at the intersection of two focused laser beams,
and the scattering length a was positive, of the order of 2 nanometers (fig-
ure I.5).

One of the two light beams is then slowly extinguished (200 ms),
preparing the atoms in a quasi-1D geometry, and the scattering length a
is changed by a Fano-Feshbach resonance (see lecture series 2020-21) to a
final value that is zero or negative. The cloud of atoms is then allowed to
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Figure I.6. Evolution of a cloud of atoms in the horizontal laser beam of figure I.5,
with the vertical beam switched off. The top line is obtained with a zero scattering
length (perfect gas), and the atom cloud is seen to spread out (σ represents the
width of the cloud). The bottom line is obtained with a negative scattering length
and corresponds to a soliton of around 6000 atoms. There is no detectable spread-
ing. The acceleration observed in both cases is due to an expelling force exerted by
a residual magnetic field gradient. Figure taken from Khaykovich, Schreck, et al.
(2002).

S. LEPOUTRE et al. PHYSICAL REVIEW A 94, 053626 (2016)

FIG. 1. Scattering length as a function of the magnetic field for
39K in the |F = 1,mF = −1⟩ state [32]. Inset: Zoom around the zero
crossing of the scattering length. The evaporation to Bose-Einstein
condensation takes place at 550 G (red bullet). The magnetic field
is then ramped in two steps to 507 G (violet triangle) and then to
501.3 G (green square), where the scattering length is −1.5 a0, in
order to produce bright solitons.

moving by about 1 mm along an hyperbolic trajectory because
of a 5-mm s−2 acceleration at the release point.

Images are taken by fluorescence imaging after the follow-
ing sequence. The optical trap is first switched off abruptly.
After 7 ms of expansion, the magnetic field is switched off.
At this time, the gas is already in a ballistic regime and is
sufficiently diluted to avoid losses while crossing the lower
field Feshbach resonances. An additional delay of 15 ms
permits the eddy currents to damp. The four horizontal beams
from the magneto-optical trap cooling laser, tuned to be on
resonance with the optical transitions, are then shined on
the atoms and their fluorescence signal is collected from
above during 100 µs and recorded with an EMCCD camera
(Andor iXon). The duration of the imaging pulse is chosen
to optimize the signal without introducing high blurring. The
overall resolution is then 15 µm, which exceeds the in situ
micrometer size of solitons as well as their size after 22-ms
expansion. Over the 250 ms of propagation, the longitudinal
sizes of the solitons are given by this resolution limit.

The initial atom number in our solitons is typically 6 × 103,
a number which is well below the initial condensate atom

FIG. 2. Density profiles of solitons as a function of time. Images
are separated by 20 ms and stack vertically. The acceleration at the
release point is 5 mm s−2.

number [41]. Actually, the atom number also decreases by an
additional 25% during the 250-ms propagation time. This is
a consequence of three-body losses whose rate increases with
the density when the scattering length is reduced toward zero
or negative values, and which will be studied in more details
below. Note that such important three-body losses lead to a
stabilization of the atom number in the solitons and we see no
significant difference in soliton atom number when the initial
atom number is decreased by a factor of two.

The calibration of the scattering lengths is based on the
measurement of the longitudinal expansion of a condensate
when varying the current flowing through the Feshbach
field coils. In practice, the zero crossing of the scattering
length is spotted when the longitudinal expansion of the gas
corresponds to the one of a condensate, interacting solely via
the dipole-dipole interaction (whose effect is small although
non-negligible in our case) [42]. We then rely on the scattering
model from [32], to deduce all magnetic field values and their
corresponding scattering length. The scattering lengths are
calibrated with an accuracy of 0.2 a0 in the region of interest,
i.e., close to the zero crossing.

We observe the nondispersive propagation of solitons
only in a relatively narrow region of scattering lengths. For
a ! −0.9(2) a0, the condensate expands because of the initial
confinement energy. For a " −2.15(20) a0, we observe a col-
lapse. With about 4.5 × 103 atoms this corresponds to a value
of the parameter N |a|/σρ = 0.45(10), where σρ =

√
!/mω⊥

is the radial harmonic oscillator length. Theoretically, the limit
of stability is N |a|/σρ = 0.627 in the absence of longitudinal
confining potential [43]. Our observed slightly smaller value
can be explained by important three-body losses during the
formation of the soliton and prior to its observation close to the
collapse (see below). Note that when we encounter a collapse,
we observe the disappearance of all condensed atoms. This is
in contrast with recent experiments done in three-dimensional
Bose gases trapped in a box potential [44].

We now study the losses as a function of the magnetic field
or equivalently as a function of the scattering length. We focus
our study in the region where the scattering length is varied
from 24 a0 to −2 a0. For a fixed value of the magnetic field,
we observe the decrease of the atom number as a function
of a waiting time at the end of the preparation sequence. A
typical decay curve is plotted in Fig. 3. We intentionally stop
our analysis after 3 s, such that most atoms remain in the
condensate and not to be confused by thermal atoms. On this
time scale, it is difficult to discriminate the nature of losses. We
have measured a 30-s one-body decay time, and such losses
are negligible. As we are not in the absolute ground state,
two-body relaxations are energetically allowed. Nevertheless,
they do not conserve the total spin and require dipole-dipole
interaction. Their rate is thus expected to be small as compared
to the three-body loss rate [45]. The atom decay curves are thus
experimentally fitted using the loss equation

Ṅ = −βN3 (1)

with constant β. We observe in Fig. 4 that the fitted β
coefficient strongly varies as a function of the dimensionless
parameter Na/σρ . As we explore only a small region in the
magnetic field, the variation of the loss rate is not likely to be
a consequence of a variation of the loss rate coefficient K3 but

053626-2

Figure I.7. Evolution of a soliton from N = 4500 to 6000 atoms of 39K with
a = −1.5 a0 where a0 is the Bohr radius. The soliton is stable as long as a >
−2.15 a0, above which the one-dimensional approach ceases to be valid (see § 2-4).
Figure taken from Lepoutre, Fouché, et al. (2016).

evolve in this configuration for an adjustable time, before its size is mea-
sured.

If the final scattering length is zero, the atom cloud behaves like a per-
fect gas, and we therefore expect it to spread out because of its initial ki-
netic energy. This is indeed what is observed in figure I.6, top. On the
other hand, for a negative scattering length, we observe a cloud that re-
mains constant in size: this is the soliton we are looking for. The number
of atoms in the soliton is N ≈ 6000.

In the Khaykovich, Schreck, et al. (2002) experiment, the atoms making
up the soliton are subjected to a force from a magnetic field gradient, which
accelerates the soliton. The authors checked that the soliton trajectory was
identical to that of a material point of the same mass and subjected to the
same force. A similar experiment was carried out by Lepoutre, Fouché,
et al. (2016), from which we have extracted figure I.7. It shows a soliton
formed by 6000 39K atoms evolving in a light trap providing strong radial
confinement, with longitudinal acceleration.
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Figure I.8. Quasi- 1D gas of x axis obtained by strong confinement in the y and
z directions.

2-4 The validity of the one-dimensional approach

The solitons we have just described are actually formed in our usual three-
dimensional space. In this section, we will briefly revisit the 3D description
of a Bose gas and explain under which conditions the 1D approach devel-
oped above is valid.

For a stationary Bose–Einstein condensate confined in a potential V (r)
and described by the mean-field approach, the Gross–Pitaevskii energy
functional is written:

E(3D)[Ψ] =

∫ [
ℏ2

2m
|∇Ψ|2 + V (r)|Ψ(r)|2 +

1

2
g(3D)|Ψ(r)|4

]
d3r (I.43)

where the interaction constant g(3D) is related to the scattering length a
characterizing low-energy collisions between two atoms:

g(3D) =
4πℏ2a
m

. (I.44)

The wave function Ψ(r) is assumed to be normalized by:
∫
|Ψ(r)|2 d3r = N. (I.45)

To obtain an effectively one-dimensional system along the x axis, we
apply a strongly confining potential in the two orthogonal directions y and
z (figure I.8). As an example, let us take a harmonic potential:

V (r) =
1

2
mω2(y2 + z2) (I.46)

whose energy levels are En = (n + 1)ℏω, n ∈ N. We assume that the
interaction energy between atoms is low enough for the gas wave function

to be written to a good approximation

Ψ(r) = χ0(y, z)ψ(x) (I.47)

where χ0 is the single-particle ground state of motion in the xy plane nor-
malized to 1, i.e. the Gaussian

χ0(y, z) =
e−(y2+z2)/2a2

oh

aoh
√
π

with aoh =

√
ℏ
mω

. (I.48)

We can then simply transfer the ansatz (I.47) into the 3D energy functional
written in (I.43) to arrive at

E(3D)[Ψ] = ℏω + E(1D)[ψ] (I.49)

with the link between the 1D and 3D coupling constants given by

g = g(3D)

∫
|χ0(y, z)|4 dy dz = 2ℏω a. (I.50)

This result calls for several comments:

• The use of the relation (I.44) linking g(3D) to the scattering length a
assumes that collisions retain their three-dimensional nature despite
confinement along the y and z directions. This assumption is only
correct if the extension aoh of the ground state along these directions
is much greater than the scattering length itself (or its absolute value),
which imposes:

|a| ≪ aoh. (I.51)

When this condition is not satisfied, the collision process must be de-
scribed by explicitly taking into account the transverse confinement
potential V (r) (Olshanii 1998).

• For the frozen transverse motion approximation to be correct, the en-
ergies involved in forming the soliton must be small compared with
the quantum ℏω. Otherwise, it is likely that a correct description of the
atomic motion will have to take into account the excited levels in the
potential V (y, z). A necessary condition is therefore

|µ| ≪ ℏω ⇒ N ≪ aoh
|a| (I.52)

which limits the number of atoms in the soliton.
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Figure I.9. Energy landscape of a soliton in a transverse harmonic trap as a func-
tion of longitudinal ℓx and transverse ℓ⊥ sizes, obtained by a variational ansatz
for the 3D energy functional of equation (I.43). The soliton represents a metastable
state, with the minimum energy state (E → −∞) corresponding to ℓx, ℓ⊥ → 0.
The abbreviations "cc" and "dc" stand for "collapse channel" and "dispersive
channel". Figure adapted from Parker, Cornish, et al. (2007).

• The soliton we have constructed is an essentially one-dimensional ob-
ject, with extension x0 along the x axis. For this construction to be
valid, its transverse size in the y and z directions must be very small
compared with x0, which imposes:

aoh ≪ x0 ⇒ N ≪ aoh
|a| . (I.53)

We recover the validity condition (I.52).

• Finally, it is important to note that we are interested here in the attrac-
tive case g < 0, i.e. a negative scattering length a according to (I.50),
which poses a problem of principle: A 3D gas of bosons with a nega-
tive scattering length tends to implode on itself. This result is easy to
understand: if we assume that the N particles occupy a ball of radius

R, the (negative) interaction energy varies as follows

Eint ∝ −|a|
N2

R3
(I.54)

which tends to minimizeR. The kinetic energy cost resulting from this
confinement varies as follows

Ekin ∝
N

R2
(I.55)

and it is not enough to compensate for this tendency to collapse when
R → 0. It follows that an attractive 1D gas is not actually a stable
system, but only metastable, i.e. a local minimum for the 3D energy
functional.

Carr & Castin (2002) studied this problem using a variational ap-
proach and showed that this local minimum is indeed present when
the validity condition (I.52) is satisfied. The result of a similar analysis
by Parker, Cornish, et al. (2007) is shown in figure I.9. A numerical
study of the energy landscape carried out by these authors shows that
the local minimum corresponding to the soliton exists only if

N |a|
aoh

< 0.675 (±0.005). (I.56)

See also the articles by Perez-Garcia, Michinel, et al. (1998) and Gam-
mal, Frederico, et al. (2001) on the analysis of this problem.

In conclusion, solitons obtained in a quasi-one-dimensional gas with
a negative scattering length are metastable objects. They are all the more
robust as the above inequalities are well verified, but it will still be possible
to lower the gas energy (towards −∞ in the mean-field approximation) by
making a cloud of size≪ aoh in all three directions of space.

3 Beyond the stationary soliton

The stationary soliton found in the first part of this chapter represents the
lowest-energy state of the system, at least when limited to strictly 1D mo-
tion. We now turn our attention to states of higher energy than this ground
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state, in which several solitons may co-exist, or other states, corresponding
to oscillating structures in time or space. In the next chapter, we will look
at other complex structures (high-order solitons), resulting from the inte-
grability of the problem considered here.

3-1 Soliton collisions

A remarkable property of bright solitons is that they emerge intact from a
collision between them. This property was discovered for the Korteweg–
de Vries equation by Zabusky & Kruskal (1965). We will see in the next
chapter that it can be explained by the integrable nature of the nonlinear
Schrödinger equation, and is a direct consequence of the IST approach (In-
verse Scattering Transform). This property is illustrated in figures I.10 and
I.11. The former shows a collision between solitons of the same mass, and
the latter a collision between solitons of different masses.

This fundamental characteristic of a system described by an integrable
nonlinear equation has been observed experimentally in many systems,
notably in hydrodynamics and optics [see, for example, Mitschke & Mol-
lenauer (1987) for the first demonstration in an optical fiber]. It can also
be shown that, although the solitons emerge from the collision unchanged,
there is an effective interaction between them, resulting from the interfer-
ence between the two wave packets, the attractive or repulsive nature of
which depends on their relative phase (Gordon 1983): two solitons of the
same phase attract each other, while two solitons whose phases differ by
π repel each other (see figure I.10). Figure I.12, taken from Copie, Suret, et
al. (2023), illustrates this phase sensitivity for the collision of two solitons
propagating in an optical fiber.

For matter waves, Nguyen, Dyke, et al. (2014) have provided an elegant
illustration of this collisional property using 7Li atoms. The principle of the
experiment is described on the left of figure I.13:

• A stable condensate is formed in an elongated harmonic trap by
choosing a positive scattering length (a = +140 a0).

• A potential barrier formed by a focused laser beam is switched on
around the center of the trap, cutting the cloud in two parts.

−20 −10 0 10 20
x

ρ(x)

−20 −10 0 10 20
x

ρ(x)

Figure I.10. Numerical solution of the nonlinear Schrödinger equation (I.14) for
an initial condition involving two solitons of opposite velocities, same mass (κ = 1
in (I.25)), and equal phases (left) or phases differing by π (right).
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Figure I.11. Numerical solution of the nonlinear Schrödinger equation (I.14) for
an initial condition with two solitons of opposite velocities and different masses,
corresponding to κ = 1 and κ = 4 in (I.25).

F. Copie, P. Suret and S. Randoux Optics Communications 545 (2023) 129647

Fig. 2. Spatiotemporal dynamics of the collision of two identical solitons, impact of the phase difference. (a-d) Numerical simulations of the 1D-NLSE for 4 remarkable
relative phase differences. (e–h) Corresponding experimental observations selected from a batch of 50 collisions. Vertical axis is shifted for direct comparison since collisions
actually occur after Ì3000 km of propagation. The color scale is common to all the presented results. Initial condition for the simulations is of the form  (t, z = 0) =˘
P0sech[(t * t0)_T0]e*i(�!_2)t +

˘
P0sech[(t + t0)_T0]e+i((�!_2)t+��), with P0 = 55.3mW, �2 = *22 ps2_km, � = 1.23W*1 km*1 , T0 =

˘�2_(�P0) Ì 18 ps,�!_(2⇡) = 8.62GHz, t0 = 168 ps.

all along their interaction. Note that numerical simulations do not take
account of dissipation that is present in experiment but we stress that
the counter-propagating Raman amplification limits the power loss over
the 500 km shown in Fig. 2(e–h) to less than 10% which barely affects
the dynamics with respect to the conservative case.

As exposed in the introduction, a remarkable feature of solitons is
that they emerge unaltered from their pairwise interaction although
their relative phase difference drastically impacts the exact dynamics
of the collision as confirmed by the experiments presented Fig. 2.
However, the collision is accompanied by a time shift that is solely
parametrized by the IST spectral parameters of the individual solitons
(amplitude and velocity).

Our experiments enable clear observation of the collision-induced
temporal shift as presented in Fig. 3. We first take the case of the
collision between balanced solitons (i.e. solitonic pulses with compa-
rable amplitudes) similar to those illustrated in Fig. 2 and focus on
the temporal shift experienced by one of the soliton. To do so, it is
convenient to operate a change of temporal reference frame to one that
travels at the group velocity of the soliton under consideration. That
way, the latter appears as following a straight vertical trajectory when
not interacting with other solitons. This operation is done numerically
a posteriori for ease of visualization and does not modify the physics
of the system. Fig. 3(b) shows the space–time dynamics of a collision
in the same conditions as in Fig. 2 but plotted in the reference frame
of the right (steady) soliton. The vertical dashed white line emphasizes
the trajectory of the soliton before collision. After collision with the left
(moving) soliton, it has clearly experienced a temporal shift towards
negative times of the order of the soliton’s width while retaining
almost perfectly its velocity close to zero after the interaction, thus
demonstrating that the observed collision is of elastic nature.

The temporal trace recorded Ì250 km after the collision is shown in
Fig. 3(a) in which the collision-induced shift is marked by the arrows.
The two pulses are well fitted by sech2 functions (dashed lines) whose
parameters still confirm their solitonic nature. Note that the signal
exhibits significant noise due to the rather small optical power detected
in single shot (we recall that less than 10% of the circulating power is
detected so the Ì50mW peak power indicated in Fig. 3(a) corresponds
effectively to pulses of less than Ì5mW peak power incident on the
photodiode). In this configuration, the moving soliton also experiences
a shift of almost the same magnitude but opposite sign (as visible in
the inset showing the same collision in the reference frame that travels
at the mean group velocity of the two pulses).

Fig. 3. Experimental observation of collision-induced soliton shift in (a–b) balanced
and (c–d) imbalanced configurations. The space–time diagrams are plotted in the
reference frame of the right soliton for clarity. (a, c) Temporal traces extracted from
the top of the space–time diagrams with sech2 fits superimposed. Vertical dashed white
lines in (b) and (d) highlight the linear trajectories of the soliton before collision. Insets
in (b) and (d) show the same collisions in the temporal reference frame that travels at
the mean group velocity of the two pulses.

4

Figure I.12. Collision of two solitons propagating in an optical fiber. Tracking
the collision is made possible by a recirculation loop that provides a "stroboscopic"
view of the solitons’ propagation. The relative velocity of the solitons is adjusted
using electro-optical amplitude and phase modulators to control the group velocity
of each soliton. Each sub-figure corresponds to a given value of relative phase.
For these fiber-optic experiments, time and space play opposite roles to the case of
quantum gases. Figure taken from Copie, Suret, et al. (2023).

• The scattering length is brought to a negative value a = −0.57 a0 to
transform these two clouds of atoms into bright solitons.

• The barrier is released and the solitons move towards the center of the
trap, where they collide.

Nguyen, Dyke, et al. (2014) use an imaging system based on phase con-
trast, enabling them to take several images of the same cloud. This is im-
portant because the relative phase of the solitons fluctuates from one real-
ization to the next, so not all images of the collision are identical. The two
sequences shown in figure I.13 correspond to a phase close to 0 for one and
close to π for the other.

3-2 Kuznetsov-Ma structure

The bright soliton we studied in § 1 is a stationary solution of the nonlinear
Schrödinger equation. Non-stationary solutions are of course possible, but
it is generally difficult to provide analytical forms for them.

There are, however, relatively simple expressions corresponding to lo-
calized structures in time and/or space (breathers). We will not go into de-
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Figure 1 | Schematic of the experiment and images of phase-dependent collisions. a, Schematic showing the process of soliton-pair formation. Beginning
with the bottom frame, the potential is shown as a black-dashed line with a condensate density profile shown in solid blue. After forming a condensate, the
barrier is turned on to split the condensate in two. The scattering length is ramped from a=+140a0 to a=−0.57a0 and pairs of solitons are formed. The
barrier is quickly turned off, and the solitons move towards the centre of the trap. b, Time evolution of a soliton pair (N/Nc=−0.53) after the barrier is
turned off. Solitons are accelerated towards the centre of the trap and collide at a quarter-period (τ=2π/ωz=32ms). The density peak appearing at the
centre-of-mass indicates that this is an in-phase ($φ≈0) collision. c, Similar to b, except the density node appearing at the centre-of-mass indicates an
out-of-phase ($φ≈π) collision.
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Figure 2 | Phase-dependent collisional dynamics. a, A collision between two solitons (N/Nc=−0.53) resulting in collapse. During the collision, the density
exceeds a critical value and becomes unstable against collapse. No remaining atoms are observed. b, A collision between two solitons (N/Nc=−0.53)
resulting in a merger. The remaining atom number after the collision is the same as that of a single soliton before the collision. c, Out-of-phase collisions
between two solitons after allowing them to oscillate for ten trap periods.

nonlinearity for repulsive condensates. For values ofN/Nc=−0.53,
we observe that in-phase collisions ($φ ≈ 0) sometimes result
in annihilation (Fig. 2a) or fusion of the soliton pair (Fig. 2b),
although more typically we observe partial collapses in which
the atom number and the oscillation amplitude are reduced after
multiple collisions. These effects can be understood as the result of
density-dependent inelastic collisions in which the system becomes
effectively 3D (refs 18–20). Similar effects have been observed
in nonlinear optics21. We find from the GPE simulations that

collisions with $φ=0 and N/Nc<−0.5 are unstable to collapse.
The observation that collisions with $φ ≈ 0 do not always lead
to collapse (for example, Fig. 1b) is consistent with the shot-to-
shot variation in N of ∼20% (Methods). For the same nonlinearity,
out-of-phase collisions ($φ ≈ π) are extremely robust against
collapse and survive many oscillations in the trap, as predicted
theoretically18,20,22. Although on the edge of integrability, we have
observed solitons with N/Nc=−0.53 and $φ=π to survive more
than 20 collisions (Fig. 2c).
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Figure I.13. Left: preparation sequence for a pair of solitons (read from bottom to
top). Middle and right: two different realizations of a collision between solitons
oscillating in a harmonic trap, obtained using phase-contrast imaging. They cor-
respond to a relative phase of 0 (middle) and π (right). Figure taken from Nguyen,
Dyke, et al. (2014).

tail on all of them here, but we will focus on the Kuznetsov-Ma "breathing
structure" (Kuznetsov 1977; Ma 1979). We refer readers interested in a gen-
eral discussion of these structures to the recent articles by Dudley, Genty,
et al. (2019), Akhmediev (2021) and Karjanto (2021).

The Kuznetsov-Ma solution centered at x = 0 is written for the dimen-
sionless version of the nonlinear Schrödinger equation1 :

ψν(x, t) =

[
ν2 cos(ρt) + iρ sin(ρt)

2 cos(ρt)− ρ
ν cosh(νx)

+ 1

]
e2it (I.57)

with ρ = ν
√
4 + ν2 and with a possible offset in time (t→ t− t0) and space

(x → x − x0). The result, plotted in figure I.14 for ν = 0.3, is spectacular:
for ν ≪ 1, the spatial density is almost uniform and very close to 1 most of
the time, but it periodically takes on a value close to 9 in x = 0.

1In practice, the study of this type of solution can be made difficult by the modulational
instability studied in § 4-2, which develops from noise on the preparation of the initial state.

Figure I.14. "Breathing structure" of Kuznetsov-Ma, whose analytical formula is
given in (I.57), plotted here for ν = 0.3.

This possibility of seeing successive appearances of density peaks much
larger than the mean value of this density constitutes a prototype of a rogue
wave, i.e. an event a priori very unlikely within the framework of a lin-
ear analysis, but made more frequent by the nonlinearity of the problem
(Shrira & Geogjaev 2010). We will come back to these rogue waves in sec-
tion § 4-4.

Akhmediev structure. There is also an analytical expression for a struc-
ture that is only significant around a given time (here t = 0) and spatially
periodic:

ψν(x, t) =

[
ν2 cosh(σt) + iσ sinh(σt)

2 cosh(σt)− σ
ν cos(νx)

− 1

]
e2it (I.58)

with σ = ν
√
4− ν2. The Kuznetsov-Ma and Akhmediev structures were

experimentally realized on light pulses propagating in an optical fiber by
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Kibler, Fatome, et al. (2012).

3-3 The Peregrine breather

It is interesting to consider the limiting case of the Kuznetsov-Ma structure
when ν → 0 [see Karjanto (2021) for a precise definition of this limit]. We
then find the structure proposed by Peregrine (1983):

ψ(x, t) =

[
1− 4(1 + 4it)

1 + 4x2 + 16t2

]
e2it (I.59)

The µ→ 0 limit has the effect of making the period of the recurrence of the
central peak tend towards infinity, so that all that remains is the emergence
of a single peak at t = 0. When t → ±∞, the wave function ψ(x, t) is
virtually flat and equal to 1 at every point in space, apart from one global
phase. However, in the vicinity of time t = 0, it is strongly peaked in x = 0,
with the value ψ(0, 0) = −3. The density at x = 0 and t = 0 is therefore 9
times greater than the quasi-uniform density at long times.

Observation of the Peregrine structure. The Peregrine structure was ob-
served in an optical fiber by Kibler, Fatome, et al. (2010). Here we describe
a very recent achievement in a cold atomic gas by Romero-Ros, Katsimiga,
et al. (2024). The experiment was carried out on a gas of N ≈ 130 000 87Rb
atoms confined in a highly elongated trap (frequencies 2.5× 250× 250Hz),
with an effective scattering length set to the negative value a = −2.41 a0 at
time t = 0 (we will come back to the method used to obtain a negative scat-
tering length for rubidium atoms in a moment). To initiate the formation
of the Peregrine structure, an auxiliary light beam is focused in the vicinity
of x = 0, where it creates a Gaussian-shaped potential well. At time t = 0
(figure I.16 a), there is a slight density surplus around this point.

The presence of this slight initial density bump is sufficient to generate
a much more significant local density maximum at a later instant, of the
order of 65 ms in the experiment (figure I.16). After this instant, the density
hump becomes much less significant. At long times, the profile measured
or calculated from this initial condition differs markedly from that of the
Peregrine structure, with three similar density maxima around t ∼ 90ms
(figure I.17).

Figure I.15. Peregrine breather, whose analytical formula is given in (I.59).

How to get a < 0 with 87Rb atoms? For a pair of rubidium atoms pre-
pared in a given Zeeman sub-level j of the ground electronic level, the
scattering length ajj is always positive and of the order of 100 a0. How-
ever, if we start with a bath of atoms prepared in one sublevel j and trans-
fer a small proportion of the atoms to another sublevel i, these atoms will
evolve under the effect:

• i− i interactions characterized by the scattering length aii;

• interactions mediated by the much denser bath, which can under cer-
tain conditions be modeled by the scattering length −a2ij/ajj .

Interactions between atoms in state i are then described by the effective
scattering length

aeffii = aii −
a2ij
ajj

(I.60)
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three-dimensions (3D) to quasi-one-dimension (1D) and its
impact on the resulting dynamics.
The aim of the present work is to overcome these major

obstacles and report the first experimental observation of
the PS in BECs. To do so, we leverage a number of crucial
ingredients. Adapting the earlier idea of a two-component
self-defocusing but immiscible setting consisting of a
majority and a minority component creates an effectively
self-focusing medium for the minority component [32,33].
This approach was utilized in two spatial dimensions to
produce the well-known Townes soliton [34] that prompted
the theoretical proposal of the PS realization [35].
We experimentally deploy a highly elongated trap

geometry with an initial (weak) potential well at the
condensate center. This well seeds the modulational insta-
bility of the minority component, providing a reproducible
focal point for the spontaneous reshaping of the associated
wave function into a PS, before eventually the modula-
tionally unstable dynamics takes over and leads to the
emergence of multiple peaks. Our numerical 3D and 1D
analysis of the setting corroborates the nature of our
experimental observations, while providing information
about the phase structure. Moreover, we provide experi-
mental evidence for the centrality of each of our above-
mentioned experimental ingredients, since the absence of
any one of them is detrimental to the PS formation.
Experimental results.—We experimentally demonstrate

the formation of the PS in a 87Rb BEC of N ≈ 9 × 105

atoms where all interatomic interactions are repulsive.
Initially, the atoms occupy the single hyperfine state
jF;mFi ¼ j1;−1i. The BEC is confined in a highly
elongated harmonic trap with frequencies ðωx;ωy;ωzÞ ¼
2π × ð2.5; 245; 258Þ Hz. The 100∶1 aspect ratio of the
optical trap ensures effectively 1D dynamics, leaving at
most collective excitations (i.e., absence of any nonlinear

structure) along the transverse direction observed in
experiment and confirmed numerically. An additional
attractive optical potential is present in the central part
of the BEC producing a small density hump in the center of
the cloud; see Supplemental Material (SM) [36] for further
details. This optical potential, characterized by waists
sx ≈ 13 μm and sy ≈ 25 μm and approximate depth of
97 nK, is radially uniform but has a Gaussian shape along
the long axis of the BEC. From this static initial condition
with chemical potential μ ≈ 97 nK [36], the dynamics is
initiated by rapidly transferring a small fraction (∼15%) of
the atoms to the j2; 0i state with a 55 μs microwave pulse,
and transferring the remaining atoms to the j1; 0i state in a
102 μs rf pulse. Both pulses are applied uniformly across
the whole BEC.
In the following, we focus on the dynamics of the j2; 0i

hyperfine state (minority component) for which an effective
self-focusing description applies. Snapshots of the corre-
sponding density distributions are presented both in
experiment and theory in Fig. 1. The experimental images
[Figs. 1(a)–1(h)] include an additional 9 ms of time of flight
to avoid image saturation of the high density peak. The
initially prepared Gaussian hump in the center of the BEC
is seen to evolve into a narrow, high peak flanked by
two clear dips on either side, after approximately 65 ms
[Figs. 1(c) and 1(g)]. These dips are a characteristic feature
of a PS and are related to the formation of a π phase jump of
the wave function in the peak region relative to the
surrounding BEC, leading to destructive interference at
the position of the dips (see also Fig. 3). Subsequently, the
peak height decreases, leading to the emergence of
side peaks and excitations on either side around 85 ms
[Figs. 1(d) and 1(h)]. We note that the observed timescales
are highly reproducible, indicating that the dynamics is a
well-defined consequence of the initial conditions prepared

FIG. 1. Comparison between (a)–(h) experimental and (i)–(p) numerical observations for the emergence of the PS. (a)–(d) Cross
sections of (e)–(h) showing single-shot absorption images after 10, 30, 65, and 85 ms of evolution, respectively, with an additional 9 ms
of free expansion for imaging. (i)–(l) Cross sections of (m)–(p) represent the density profiles obtained from the 3D mean-field
simulations under the experimental conditions. The vertical axis in the numerical images has been stretched for comparison with the
experiment.
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attractive optical potential is present in the central part
of the BEC producing a small density hump in the center of
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details. This optical potential, characterized by waists
sx ≈ 13 μm and sy ≈ 25 μm and approximate depth of
97 nK, is radially uniform but has a Gaussian shape along
the long axis of the BEC. From this static initial condition
with chemical potential μ ≈ 97 nK [36], the dynamics is
initiated by rapidly transferring a small fraction (∼15%) of
the atoms to the j2; 0i state with a 55 μs microwave pulse,
and transferring the remaining atoms to the j1; 0i state in a
102 μs rf pulse. Both pulses are applied uniformly across
the whole BEC.
In the following, we focus on the dynamics of the j2; 0i

hyperfine state (minority component) for which an effective
self-focusing description applies. Snapshots of the corre-
sponding density distributions are presented both in
experiment and theory in Fig. 1. The experimental images
[Figs. 1(a)–1(h)] include an additional 9 ms of time of flight
to avoid image saturation of the high density peak. The
initially prepared Gaussian hump in the center of the BEC
is seen to evolve into a narrow, high peak flanked by
two clear dips on either side, after approximately 65 ms
[Figs. 1(c) and 1(g)]. These dips are a characteristic feature
of a PS and are related to the formation of a π phase jump of
the wave function in the peak region relative to the
surrounding BEC, leading to destructive interference at
the position of the dips (see also Fig. 3). Subsequently, the
peak height decreases, leading to the emergence of
side peaks and excitations on either side around 85 ms
[Figs. 1(d) and 1(h)]. We note that the observed timescales
are highly reproducible, indicating that the dynamics is a
well-defined consequence of the initial conditions prepared

FIG. 1. Comparison between (a)–(h) experimental and (i)–(p) numerical observations for the emergence of the PS. (a)–(d) Cross
sections of (e)–(h) showing single-shot absorption images after 10, 30, 65, and 85 ms of evolution, respectively, with an additional 9 ms
of free expansion for imaging. (i)–(l) Cross sections of (m)–(p) represent the density profiles obtained from the 3D mean-field
simulations under the experimental conditions. The vertical axis in the numerical images has been stretched for comparison with the
experiment.
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Figure I.16. Observation of a structure close to the Peregrine breather in a 1D
condensate. The series of images correspond to times t = 10, 30, 65, 85ms after the
switch to a negative effective scattering length. Top series: experimental results,
bottom series: 3D simulation of the experiment. Figure taken from Romero-Ros,
Katsimiga, et al. (2024).
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Figure S5. (a) Time instant of the emergence of the Peregrine soliton
with respect to the width, sx , and depth, V0, of the Gaussian-well. (b)
Logarithm of the spatial difference, log10(1°§) [see Eq. (S3)], be-
tween the numerically obtained structure and the analytic Peregrine
solution in the (sx -V0) plane. (c) Evolution of the density of the mi-
nority component in the presence of a Gaussian well with V0 = 30 nK
and sx = 4.8 µm. White dashed lines mark the universal envelope of
the nonlinear stage of the modulational instability Eq. (S4). (d) Nu-
merically identified Peregrine soliton profile (solid blue line) com-
pared to the analytical solution (dashed red line) at t = 33.6 ms. (e)
Formation of three solitonic entities at t = 94.9 ms. Note the quali-
tative agreement of the 1D configurations with the ones observed by
the experiment and the 3D simulations shown in Fig. 1 of the main
text.

and ™P (x) is the analytical Peregrine solution obtained as de-
scribed in the main text [see the relevant discussion around
Fig. 3]. The integration limits are taken at the points where
the Peregrine wave function presents a phase jump of º, i.e.,
when |™P (x)|2 = 0, corresponding to x =±

p
3LP /2. If §= 1,

the core of the numerically identified entity is identical to that
of the analytical prediction.

It is found that both sx and V0 facilitate the control-
lable Peregrine nucleation. Particularly, a close inspection of
Fig. S5(a) reveals that by increasing sx of the Gaussian-well,
the Peregrine formation is delayed. Note here that the impact
of the width variation is more pronounced for shallower wells.

On the other hand, in Fig. S5(b) we depict the logarithm of
the spatial difference, log10(1°§). Below sx = 30 µm, the
deviation from the analytical Peregrine (2) is less than a 10%.
More specifically, we found that the optimal sx is around the
charateristic length scale of the Peregrine soliton, given by
Lp =

p
fl2/m|geff|P0 º 6.7 µm. Moreover, this value is in-

dependent of V0 > 30 nK, as depicted by the blue region in
Fig. S5(b). As sx ! 0 or sx ¿ Lp , we find that §< 0.9 and we
cannot attribute to the emergent peak structures a definitive
Peregrine character.

These results are in line with the experimental findings re-
ported in Fig. 1 of the main text. The spatiotemporal evolution
of the minority component in the presence of a Gaussian well
with V0 = 30 nK and sx = 4.8 µm is presented in Fig. S5(c).
Generation of the Peregrine soliton occurs at t = 33.6 ms
[see solid line in Fig. S5(d)]. The analytical Peregrine solu-
tion (2) is also provided for comparison showcasing an excel-
lent agreement. Notice here, that the triplet structure reported
by the experiment and captured by 3D mean-field simulations
emerges also in the 1D setting at t = 94.9 ms [Fig. S5(e)].

Finally, despite being outside of the main scope of the
present work, we remark that we came across the nonlin-
ear stage of modulational instability [3, 11, 12]. This phe-
nomenon appears in purely focusing media being charac-
terised by a universal envelope with boundaries [13–15]

x± =±2
p

°2geffP0t . (S4)

These are illustrated in Fig. S5(c) with white dashed lines. In

this expression, geff = g (1D)
22 °

≥
g (1D)

12

¥2
/g (1D)

11 < 0 is the effective
interaction strength of the respective single-component reduc-
tion [8, 16, 17] and P0 is the amplitude of the background.
The latter is also provided by the peak of the Peregrine soliton
[see e.g. Fig. S5(d) and the discussion in the main text around
Fig. 3].

In this regard, a key feature of the present work (in com-
parison to the earlier findings and proposal of Ref. [8]), is that
the usage of a Gaussian well triggers the modulational insta-
bility at earlier times of the dynamics. This, in turn, paves a
new way to study in a controlled environment, and more im-
portantly, in experimentally accessible time scales, the emer-
gence of such phenomena.
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Figure I.17. Comparison between the Peregrine breather profile (red dotted line)
and the density profile calculated under experimental conditions (blue solid line)
for t = 33.6ms (left) and t = 94.9ms (right). Figure taken from Romero-Ros,
Katsimiga, et al. (2024).

which is much smaller than each of the initial scattering lengths (since they
are all neighbors) and can be negative for a suitable choice of the i and j
sublevels (Bakkali-Hassani, Maury, et al. 2021; Bakkali-Hassani, Maury,
et al. 2023). This approach was used in the experiment by Romero-Ros,
Katsimiga, et al. (2024).

4 Dynamic instability and soliton train

In most experiments on bright solitons performed with atomic gases, the
starting point is not a small spherical cloud, as in the experiment of
Khaykovich, Schreck, et al. (2002) described above, but a very elongated
cloud. This cloud is prepared in the positive scattering length regime, and
the scattering length is suddenly brought to a negative value. One then
observes the formation of a train of solitons, as a result of a modulational
instability.

We will describe this observation of a soliton train in § 4-3. Before that,
we will look at the nature of this modulational instability, which was first
described in a hydrodynamic context by Benjamin & Feir (1967). We will
recover it from Bogoliubov dispersion relation, which characterizes the dy-
namics of a condensate subjected to small initial perturbations.
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4-1 The speed of sound in a uniform condensate

Let us first consider a condensate of uniform density ρ0 and determine the
value of the speed of sound in this medium. As this problem has been
dealt with in detail in previous lecture series (see, for example, the 2016
course, Chapter III, and the 2024 course, Chapter III), we will confine our-
selves here to its simplest version; we will not therefore discuss the differ-
ent regimes that may appear in addition to the phonons we are interested
in here.

The dynamics of the condensate is described by the Gross–Pitaevskii
equation

iℏ∂tψ = − ℏ2

2m
∂2xψ + g|ψ|2ψ (I.61)

where ψ(x, t) is a complex wave function. For g > 0, the minimum-energy
state of the condensate corresponds to

ψ(x, t) =
√
ρ0 e

−iµt/ℏ with µ = gρ0. (I.62)

The quantity µ represents the chemical potential, i.e. the energy required
to add a particle to the system. We characterize the deviation from equilib-
rium by two complex numbers U and V , and the parameter ϵ assumed to
be small in front of 1:

ψ(x, t) =
√
ρ0

{
1 + ϵ

[
U ei(kx−ωt) + V ∗ e−i(kx−ω∗t)

]}
e−iµt/ℏ. (I.63)

It is necessary to introduce simultaneously these two numbers U and V ,
amplitudes of the two plane waves of wave number ±k and frequency
+ω and −ω∗, because of the simultaneous presence of ψ and ψ∗ in the
evolution equation (I.61).

Let us look for the dispersion relation between k and ω. When we trans-
fer the form (I.63) into (I.61), we find at order zero in ϵ the relationship (I.62)
between µ and ρ0. At order 1 in ϵ, we find the system

{
(gρ0 + ϵk − ℏω)U + gρ0 V = 0
gρ0 U

∗ + (gρ0 + ϵk + ℏω∗)V ∗ = 0
(I.64)

where we set ϵk ≡ ℏ2k2/2m and we used µ = gρ0. Let us take the com-
plex conjugate of the second equation; we then obtain a linear system in
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Figure I.18. Bogoliubov dispersion relation (I.66) for g > 0. The dotted line
corresponds to the phonon limit, with the dispersion relation ω = ck, the speed of
sound c being given by c =

√
gρ0/m. We define ℏ2κ2/m = ℏω0 = gρ0.

(U, V ) which admits a non-zero solution if and only if the determinant of
the system cancels out:

∣∣∣∣
gρ0 + ϵk − ℏω gρ0
gρ0 gρ0 + ϵk + ℏω

∣∣∣∣ = 0 . (I.65)

This leads to the Bogoliubov dispersion relation

(ℏω)2 = ϵ2k + 2ϵkgρ0 , (I.66)

plotted in figure I.18 for g > 0 and in figure I.19 for g < 0.

For repulsive interactions (g > 0), the frequencies ω are all real: a small
initial disturbance will propagate without attenuating or amplifying. On
the other hand, for attractive interactions (g < 0), we find a range of k val-
ues for which ω2 is negative, i.e. pure imaginary ω. This can lead to an
exponential increase in the amplitude of the perturbation with time, stem-
ming from the e|ω|t term: this is the origin of the modulation instability.
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Figure I.19. Bogoliubov dispersion relation (I.66) for g < 0. The blue line cor-
responds to a pure imaginary ω frequency, the red line to real ω. The instability
zone extends between k = 0 and k = 2κ, with ℏ2κ2/m = ℏω0 = |g|ρ0. The point
of maximum instability is obtained for kinst =

√
2κ.

4-2 Modulational instability

As we saw in the previous paragraph, an attractive uniform gas (g < 0)
is unstable with respect to perturbations whose wavenumber k is such
that ϵk − 2|g|ρ < 0. If noise is initially present at all wavenumbers, the
wavenumber leading to the largest value of |ω| is expected to grow fastest
and become dominant after a certain time. This wave number k0 is such
that (see figure I.19):

ℏ2k2inst
2m

= |g|ρ0 kinst =
2
√
|a|ρ0
aoh

(I.67)

where we used the relationship between g and the 3D scattering length
given in (I.50).

The initially quasi-uniform gas will then break up into approximately
evenly-spaced particle packets with spatial period ℓinst = 2π/kinst. The
characteristic time for this instability to develop is 1/|ω(kinst)| = ℏ/|g|ρ0.
Each packet contains approximatelyNa = ρ0ℓinst atoms, which gives using

(I.67):

Na = π

√
ρ0a2oh
|a| . (I.68)

Each cluster of atoms will form a soliton, at least if the metastability con-
dition with respect to 3D collapse (I.56) is met. The peak density ρpeak of
each soliton (once a stationary regime has been reached) can be deduced
from the study carried out in § 1-3 and we find ρpeak = ρ0π

2/2. Given the
result obtained above for Na, the metastability condition is written:

Na|a|
aoh

≲ 0.7 ⇒ ρ0|a| ≲ 0.05. (I.69)

For a gas with a given initial density ρ0, prepared with a positive scattering
length, this condition limits the exploitable range for the transition to neg-
ative scattering lengths. A more detailed theoretical study of modulational
instability in quasi-1D atomic gases can be found in Salasnich, Parola, et al.
(2003) and Carr & Brand (2004).

4-3 Observation of a soliton train

The splitting of a gas of 1D bosons with a negative scattering length was
observed in the early 2000’s in Hulet’s group in Houston, then in Wieman’s
group in Boulder. This type of experiment has been taken up more recently
by several teams, the Houston team first (Nguyen, Luo, et al. 2017), then
by Everitt, Sooriyabandara, et al. (2017) and Mežnaršič, Arh, et al. (2019).

We show in figure I.20 the result obtained by Nguyen, Luo, et al. (2017)
on a gas of 7Li atoms prepared in an elongated trap (7 × 350 × 350Hz).
The gas is first prepared with a positive scattering length (+3 a0) before
being switched to the negative value a = −0.18 a0 by a ramp lasting 1 ms.
This group uses a phase-contrast optical detection method, which enables
several successive images to be taken of a sample without destroying it
(see also figure I.13). During the time explored in this figure (20 ms), the
total number of atoms is virtually constant (8×105). The number of solitons
formed,Ns ∼ 12, is in excellent agreement with the estimate obtained from
the total length of the condensate and the spatial period ℓ0 expected for the
modulational instability.
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Figure I.20. Formation of a soliton train in a 1D condensate of 7Li when the
scattering length is brought to the negative value a = −0.18 a0. Figure taken
from Nguyen, Luo, et al. (2017).

the central region as compared with the sides
of the condensate (fig. S2). According to (31), this
implies that the seed for MI is dominated by
noise, which may be technical, thermal, or quan-
tum in origin, rather than self-interference.
The loss of total atom number (Na) versus th is

plotted in Fig. 2A.We observe an initial plateau
where Na changes little, followed by a period of
rapid atom loss. The plateau and subsequent
atom loss are reminiscent of experiments ex-
ploring the collapse of an attractive condensate
of 85Rb atoms (41, 42). MI provides a simple
and intuitive explanation for this initial plateau.
When tr is fast compared with g–1, the dynamics
are initially frozen out. This time scale is in-
dicated by the arrows in Fig. 2A, calculated for
several values of af. As jaf j is increased, g–1 is
predicted to become smaller, in agreement with
the data. Solitons are formed for times longer
than g–1.
The universality of the MI time scale and of

atom loss becomes evident when th is rescaled
by g–1 (Fig. 2B). We find that the data collapse
onto a single curve, with the exception of af =
–2.5a0. Because tr = 1 ms > g–1 = 0.42 ms for
this scattering length, the plateau is notably ab-
sent. For all other scattering lengths, the onset of
atom loss begins shortly after thg = 1. We fit the
data (Fig. 2B) for th > g–1 to a power law decay,
where Na ¼ N0ðthgÞk with k = –0.35(1) (here,N0

is the total initial number of atoms and k is the
power law exponent).
Scaling laws within the system also provide us

with a simple yet surprisingly accurate estimate
of the number of solitons, Ns, formed by MI.
Assuming an initial condensate length of 2RTF,
where RTF is the Thomas-Fermi radius, we esti-
mate Ns ≃ 2RTF=ð2pxÞ from simple length-scale
arguments (27, 29). Because the dynamics of the
system are frozen for fast tr (as compared with
g–1), the initial conditions are entirely determined
by jaf j. MI produces a modulation of the density,
with the density of defects set by ð2pxÞ−1. In our
experiments, RTF is held constant, whereas x is
controlled by changing af. In Fig. 3A we plot Ns

versus af and find excellent agreement with this
simple model for jaf j < 1a0. For larger jaf j, Ns is
limited by primary collapses that arise when the
number of atoms for a single soliton exceeds the
critical number for collapse, Nc ¼ 0:67ar=jaf j,
where the factor of 0:67 accounts for the aspect
ratio of the trapping potential (16–18). Fur-
thermore, solitons are able to undergo primary
collapse during the quench for tr > g–1.
To examine whether primary collapses, or sec-

ondary collapses that arise from annihilations or
mergers, contribute to the observed decrease in
Na, we plot Ns versus th in Fig. 3B. We find that
for the two smallest jaf j, af = –0.18a0 and –0.42a0,
Ns remains constantwith increasing th, indicating
that neither primary nor secondary collapses have
occurred. The fact that Ns remains constant in-
dicates that the interactions between neighboring
solitons are dominantly repulsive, thus suppress-
ing secondary collapses. Ns decreases for larger
values of jaf j, indicating the effect of collapse. Be-
cause the collisional time scale is expected to be

Nguyen et al., Science 356, 422–426 (2017) 28 April 2017 3 of 4

Fig. 4. Soliton-train dynamics. (A) Multiple images of the same soliton train, for af = –0.18a0. Beginning
at th = 10 ms, a new image was taken every 2 ms. We infer dominantly repulsive interactions, although
occasional attractive collisions occur between neighbors. The reduction in the overall size of the train is
caused by a breathing mode excited by the quench, and a dipole oscillation is also evident. (B) Similar to
(A), starting with th = 40 ms.The effects of the breathing mode in its expansion phase are evident.

Fig. 3. Postquench evolution of soliton number and strength of nonlinearity. (A) Ns versus af. The
dashed line corresponds to a fit of the data to themodel (see text),where an overall scaling of 1.04(2) is the
only fit parameter. Data for jafj > 1a0 are omitted from the fit. We attribute the suppression in Ns for
jafj > 1a0 to primarycollapse, resulting in a reduction in the numberof solitons formed. (B)Ns versus th.Ns

does not change with th for the two smallest jafj, whereas for larger jafj, Ns decays with th. Dashed lines
correspond to the initial number of solitons. (C) D versus th.The initial value of D = Na/(NsNc) increases as
jafj is increased and is consistent with an expected

ffiffiffiffiffiffiffi
jafj

p
scaling.This trend continues up to D = 1, above

which the solitons are unstable against primary collapse. Error bars are the SD of themean of up to 30 shots.
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Figure I.21. Evolution of a train of solitons under the effect of the trap’s axial
confinement potential (breathing mode). The relative motion of the solitons indi-
cates a repulsive interaction between them. Figure taken from Nguyen, Luo, et al.
(2017).

Nguyen, Luo, et al. (2017) indicate that the onset of the instability is due
to noise present in the initial cloud, which may be of thermal or quantum
origin. This conclusion is based on the fact that the instability first starts in
the center of the gas, where the density ρ(x) and therefore the imaginary
part of the frequency |ω| are greatest.

Phase contrast imaging enables one to follow a given soliton train over a
wide time range. In this way, one can observe a breathing mode of the soli-
ton train in the axial harmonic potential. The fact that the solitons remain
relatively well separated from each other during this oscillation indicates
that two neighboring solitons interact repulsively, i.e. they have a phase
difference close to π. This phase distribution between adjacent solitons
emerges spontaneously from the development of modulational instability,

as shown numerically by Salasnich, Parola, et al. (2003).

4-4 A soliton gas

The notion of soliton gas was introduced to describe the behavior of a di-
lute assembly of bright solitons propagating in both directions of an infi-
nite line. A detailed review of the history of this concept and its connection
with integrable turbulence is presented in the recent review article by Suret,
Randoux, et al. (2024). Since this notion has not yet been implemented with
matter waves2, we will limit ourselves here to the description of numeri-
cal and observational work on light propagation in an optical fiber. This
work in optics is particularly important because its results can be directly
mapped onto observations of waves on the ocean surface, in particular of
rogue waves (Dudley, Genty, et al. 2019).

We will be relying here on two papers by Soto-Crespo, Devine, et al.
(2016) and Akhmediev, Soto-Crespo, et al. (2016). These authors have
solved the dimensionless nonlinear Schrödinger equation (I.14) with an
initial condition of the form

u(x, 0) =
1√
Q

[1 + µf(x)] (I.70)

where f(x) is a complex function, whose real and imaginary parts are in-
dependent random functions of zero mean value and variance 1, generated
from Gaussian distributions of equal correlation length Lc. The normaliza-
tion factorQ is adapted so that the spatial mean value of ρ(x, 0) = |u(x, 0)|2
remains equal to 1 for different choices of parameters µ and Lc. For each
choice of parameters, we calculate the quantity σ2 = ⟨ρ2⟩ − ⟨ρ⟩2 for the
incident field.

The authors solve the nonlinear Schrödinger equation (I.14) to obtain
u(x, t) and study the probability distribution function (PDF) for the den-
sity ρ(x, t). They give their results for three values of σ: 0.1, 0.5, 0.9, the
calculations being made with Lc = 0.76. This distribution first evolves and
then stabilizes after a time t ≳ 20. Figure I.22 shows the result obtained for
t = 100. For the smallest value of σ, we find to a good approximation the

2see nevertheless the recent work of Siovitz, Lannig, et al. (2023) and Mossman, Katsimiga,
et al. (2024) on multicomponent condensates.
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Figure I.22. Distribution law of the density ρ(x) at a given instant (t = 100) for
the three noises considered for the incident field. Figure taken from Soto-Crespo,
Devine, et al. (2016).

exponential law for the density ρ [i.e. a Rayleigh statistic for the amplitude
|u|] (Bromberg & Cao 2014):

P (ρ, 0) = e−ρ (I.71)

characteristic of a Gaussian field, as is the case with speckle in optics, for
example. On the other hand, as σ increases, large deviations become much
more important. For example for σ = 0.9, the probability of finding ρ = 16
at a point is 500 times greater than the value given by the exponential law,
while the mean ⟨ρ⟩ = 1 remains unchanged by construction. This is a
signature of the existence of rogue waves, which occur with a much greater
probability than might be assumed from the simple exponential law (I.71).

In the regime of strong fluctuations, the plot of the density versus time
reveals the predominant role of solitons with significant velocities, inces-
santly colliding with each other (figure I.23, right). On the other hand, for
weak fluctuations (figure I.23, left), Soto-Crespo, Devine, et al. (2016) show
that the dynamics is dominated by near-zero velocity solitons or quasi-
immobile structures of the breather type (Peregrine or Akhmediev), gener-
ated from the modulational instability described above. See recent articles
by Gelash, Agafontsev, et al. (2019) and Congy, El, et al. (2024) for a dis-
cussion of the link between these "integrable turbulence" dynamics and

Figure I.23. Variations of |u(x, t)| for the three values of σ considered in figure
I.22. Figure taken from Soto-Crespo, Devine, et al. (2016).

the spectrum obtained from the IST method (Inverse Scattering Transform),
which we will present in the next chapter.

The study of light propagation in an optical fiber has revealed a phe-
nomenology very similar to that just described. Since Solli, Ropers, et al.
(2007)’s initial observation, a great deal of work has been carried out on
rogue waves in optics and hydrodynamics, and we refer interested readers
to Dudley, Genty, et al. (2019)’s review article. In figure I.24 we show the
comparison between the intensity distribution of a random light field be-
fore and after traversing a nonlinear optical fiber (Walczak, Randoux, et al.
2015). This clearly shows the emergence of a very wide distribution tail,
with a considerably increased probability of extreme events. Shortly after-
wards, Suret, Koussaifi, et al. (2016) developed a "time microscope", to an-
alyze the structure of light pulses at the fiber output with 0.25picosecond
resolution, which enabled them to identify the respective roles of solitons
and Peregrine-like structures in the emergence of a wide distribution tail
[see also Kraych, Agafontsev, et al. (2019) for an experimental study in the
regime dominated by modulational instability]. The essential role of non-
linearity in the emergence of these rare events was highlighted in a 2D
experiment by Safari, Fickler, et al. (2017).
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experiment conceptually analogous to the water tank
experiment described in Ref. [20]. Using an original setup
to overcome bandwidth limitations of usual detectors, we
evidence strong distortions of the statistics of nonlinear
random light characterizing the occurrence of optical rogue
waves in integrable turbulence.
The response times of conventional detectors are usually

slower than the typical time scale characterizing power
fluctuations of incoherent optical waves (see Supplemental
Material, Sec. II [36]). Since the work of Solli et al.,
spectral filters are therefore often used to reveal extreme
events in time-domain experiments [5,10,16]. In addition to
these filtering techniques, shot-to-shot spectrum fluctua-
tions can be evidenced with a dispersive Fourier transform
measurement in experiments of pulsed supercontinuum
generation [5,37–39]. Performing an accurate and
well-calibrated measurement of the probability density
function (PDF) characterizing temporal power fluctuations
of random light is still a challenging task in the field of
nonlinear statistical optics.
We have developed an original setup that allows the

precise measurement of statistics of random light rapidly
fluctuating with time. Inspired by the time-resolved fluo-
rescence up-conversion experiments [40] and by the optical
sampling oscilloscope [41], the principle of our method is
based on asynchronous optical sampling [see Fig. 1(a)].
Our experimental setup is schematically shown in

Fig. 1(b). A “continuous wave” ytterbium fiber laser
(IPG-YLR series) emitting a linearly polarized partially
coherent wave at λS ¼ 1064 nm is used as a random light
source. This cw laser emits numerous (typically 104)
uncorrelated longitudinal modes. The partially coherent
wave under investigation is called the signal. Blue pulses
are generated at awavelength λ ¼ 457 nmby sum-frequency
generation (SFG) between the signal at λS ¼ 1064 nm and
short pump pulses having a central wavelength λP ¼
800 nm. SFG is achieved in a 5 × 5 × 8 mm BBO crystal.
Noncollinear type I phase matching is achieved with
an external angle of 10° between the pump and the
signal [42,43].
The 140-fs-long pump pulses are emitted by a mode-

locked Ti:sapphire laser (Coherent Cameleon ultra II) with
a repetition rate of 80 MHz. The maximum output power
of the fiber laser is much weaker than the peak power
(≃4.105 W) of the pump pulses. The pump pulses remain,
therefore, undepleted and the peak powers of SFG pulses
are proportional to the instantaneous optical powers
P ¼ Pðλs¼1064 nmÞ carried by the signal [42]. The SFG
pulses’ power [solid red line in Fig. 2(a)] can be seen as
periodic snapshots of the fluctuating optical power P
carried by the signal. We compute the PDF of P from
the statistical distribution of the peak powers of the SFG
pulses [red line in Fig. 2(b)].
The short blue pulses are observed by using a highly

sensitive photodiode (MenloSystem FPD310-FV) having a
gain of≃104 and a rise time of 0.7 ns. We record the output

of the photodiode with a fast oscilloscope (Lecroy
WaveRunner 104MXi-A, bandwidth 1 GHz, 10 GS=s).
We have carefully used the photodiode in a linear regime
without any saturation effect. The peak voltage is propor-
tional to the energy of the corresponding optical pulse.
A second photodiode is used to record pump pulses with a
high signal-to-noise ratio. This provides a synchronization
signal permitting us to identify the maxima of SFG pulses.
The normalized PDF of the signal is computed from an
ensemble of approximately 16 × 106 measurements of
SFG peak powers.
We first measure the PDF at the output of the laser. In all

experiments presented in this Letter, the mean output power
of the ytterbium laser is fixed at hPi ¼ 10 W. At this
operating point, the statistics of the partially coherent wave
follows the normal law. Indeed, as plotted in Fig. 2(b), the
PDF of the normalized power P=hPi is very close to the
exponential function [see Fig. 2(b)]. Assuming that the real

(a)

(b)

FIG. 1 (color online). Measurement of the statistics of random
light. (a) Principle. Optical sampling of the partially coherent
wave fluctuating with time (the signal) is achieved from SFG.
Blue pulses are generated at λ ¼ 457 nm from the interaction of
the signal with femtosecond pump pulses inside a χð2Þ crystal.
(b) Setup. The 140 fs pump pulses are emitted by mode-locked
laser at λp ¼ 800 nm. The partially coherent wave is emitted
by a ytterbium fiber laser at λs ¼ 1064 nm. Statistics of
partially coherent light is measured from the SFG process either
directly at the output of the laser or after propagation inside an
optical fiber.
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part and the imaginary parts are statistically independent,
this exponential distribution of power corresponds to a
Gaussian statistics of the field. It is important to note that
the black line in Fig. 2(b) is not a fitted exponential function,
but it represents the exact normalized PDF½P=hPi" ¼
expð−P=hPiÞ. To the best of our knowledge, the PDF
of so rapidly fluctuating optical signals has never been
quantitatively compared to the normalized exponential
distribution.
We now use the output of the laser as a random source

and we launch the partially coherent signal into an optical
fiber in the focusing regime. The fiber is a 15-m-long
highly nonlinear photonic crystal fiber (provided by
Draka France Company) having an anomalous dispersion
at 1064 nm. The fiber maintains the polarization of light,
and single transverse mode propagation is also achieved.
A random light wave with a mean power hPi ¼ 600 mW is
launched into the fiber.
Experiments have been carefully designed to be very

well described by the 1D NLSE. In particular, the signal
wavelength λs ¼ 1064 nm is far from the zero-dispersion
wavelength λ0 ≃ 970 nm. Moreover, the optical spectral
widths [see Fig. 2(c)] remain sufficiently narrow to neglect
stimulated Raman scattering and high-order dispersion
effects (see Supplemental Material [36]). The linear losses
experienced by optical fields in single pass in the fibers are
very negligible. These total losses are around 0.3% in the
fiber (loss coefficient of 8 dB=km).

The measurement of the statistics of the optical power
after propagation of the partially coherent field in the fiber
reveals the occurrence of numerous extreme events (RW).
The comparison between the initial PDF [see red line in
Fig. 2(d)] and the output PDF [see green curve in Fig. 2(d)]
shows an impressive change in the statistical distribution of
optical power. The initial field follows the normal law and
its PDF is an exponential function, whereas the output PDF
of optical power exhibits a strong heavy tail. The proba-
bility of occurrence of very high powers fluctuations
(more than 10 times greater than the mean power) is much
larger than the probability defined by the normal law. As an
example, a fluctuation with a power greater than 50 times
the mean power almost never occurs in the initial random
Gaussian field (one intense fluctuation every 1010 s),
whereas it occurs every 10−6 s at the output of the fiber.
We have performed numerical simulations of the 1D

NLSE

i
∂ψ
∂z ¼ β2

2

∂2ψ
∂t2 − γjψ j2ψ ; ð1Þ

with parameters corresponding to the experiments. At
λs ¼ 1064 nm, the group velocity dispersion coefficient
of the fiber is β2 ¼ −20 ps2=km. The effective Kerr
coefficient is γ ¼ 50 W−1 km−1.
Numerical simulations are performed by discretizing a

temporal window of 618 ps with a set of 8192 points and by
using a pseudospectral split-step-based method. Mean opti-
cal power spectra and PDFs are computed fromMonte Carlo
simulations performed over an ensemble of 4000 realizations
of the initial random process. Assuming stationary statistics,
the initial field is computed in the Fourier space for each
realization of the random initial condition with the random
phase procedure [30,44,45]: ~ψðωÞ ¼

ffiffiffiffiffiffiffiffiffiffi
nðωÞ

p
expðiϕωÞ,

where ϕω is a white delta-correlated random process.
From best-fit procedures applied to the laser optical spec-
trum experimentally recorded, we take an initial spectrum
nðωÞ ¼ n0sechðω=ΔωÞ with Δω ¼ 2π × 63 GHz.
Optical spectra [see circles in Fig. 2(c)] and PDFs [see

solid green line in Fig. 3(a)] computed from the numerical
integration of the 1D NLSE are in quantitative and
remarkable agreement with experiments. The comparison
between experiments and simulations proves that statistical
distributions found in experiments are very well described
by the integrable 1D NLSE.
Numerical simulations of 1D NLSE allow us to explore

the statistics of the wave system at long propagation
distances. This is not feasible in the experiment because
other effects, such as stimulated Raman scattering, may
play a non-negligible role and break the integrability of the
wave system. In the experiment, the nonlinear Kerr length
LNL ¼ 1=ðγP0Þ≃ 30 m and the linear dispersive length
LD ¼ 1=½β2ð2πΔν0Þ2"≃ 10 m, where Δν0 ¼ 340 GHz is
the full width at 1=e2 of the spectrum (see Supplemental

(a) (b)

(c) (d)
µ

FIG. 2 (color online). Experiments. (a) Pump pulses (black line)
and samples of fiber laser fluctuations (SFG pulses, red line).
(b) Statistics of fluctuations at the output of the fiber laser.
Probability density function (PDF) of normalized optical power
P=hPi (red line). The PDF is computed from SFG peak powers
plotted in (a). Normalized exponential distribution PDF½P=hPi" ¼
expð−P=hPiÞ (black line) (c),(d) Focusing propagation. Optical
power spectra (c) and PDFs (d) of the partially coherent wave at
the input (red line) and output (green line) of the fiber. Experiments
are plotted with solid lines [(c),(d)] and numerical simulations are
plotted with circles (c).
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Figure I.24. Top: device for sampling the intensity of a random light field at
regular intervals. Bottom: instantaneous power distribution at the input of the
nonlinear medium (red) and at the output (green). Figure taken from Walczak,
Randoux, et al. (2015).
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Chapter II

Bright soliton dynamics and the IST method

In the previous chapter, we started from the nonlinear Schrödinger
equation to obtain the shape of a bright soliton, an object that can be sta-
tionary or moving at constant speed. We put the soliton’s wave function
into the form ψ(x) = ψ0/ cosh(x/2x0), and established the link between the
soliton’s width x0 and the number of particles it contains.

We have also shown that solitons are robust objects: two bright solitons
emerge intact from a binary collision, whatever their masses and velocities.
In this chapter, we continue to explore the robustness of bright solitons. In
particular, we will consider imperfect preparation. This may result, for ex-
ample, from a width ill-suited to its number of atoms, or from an envelope
that does not have the canonical 1/ coshx form. We will see that, in these
cases, the wave packet evolves by oscillating and ejecting particles, even-
tually forming a stationary soliton, slightly smaller than the starting object,
but which is an exact solution of the nonlinear Schrödinger equation.

This robustness was behind the suggestion to use optical solitons for
fiber-optic telecommunications [see Haus & Wong (1996) for a review]. It
should be noted, however, that the implementation of this technique even-
tually came up against practical problems and this route did not meet with
the initially expected success (Hasegawa 2022; Dudley, Finot, et al. 2023).

In this chapter, we will first illustrate a few facets of this robustness,
before placing it in the general context of integrable systems. To this end,
we will introduce the inverse scattering transform (IST) method for the
case of the nonlinear Schrödinger equation. We will see that solitons are

associated with very specific eigenvalues of a spectral problem, and that
these eigenvalues remain constant over time: the robustness of solitons
follows immediately from this.

We conclude this chapter with the study of "multi-solitons", composite
solitons formed by the superposition of elementary solitons, which also
form stable structures but are less robust than basic solitons, and which
have recently been demonstrated with cold atomic gases.

1 Temporal evolution of a soliton

1-1 Eigenmodes of a soliton?

A bright soliton is a stationary wave packet that results from the balance
between two opposing phenomena: kinetic energy is minimized by taking
the largest possible wave packet; interaction energy, on the other hand, is
minimized by taking the most concentrated possible wave packet. If we
note ℓ the size of this wave packet, we have for these two contributions (to
numerical factors unimportant here):

Ekin = N
ℏ2

mℓ2
Eint = −N2 |g|

ℓ
(II.1)

so that the total energyEkin+Eint has the shape shown in figure II.1, with a
minimum for ℓ = x0 with x0 ≡ ℏ2/(Nm|g|), a result we had already found
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Figure II.1. Variation of total energy with wave packet size.

in the previous chapter.

This figure suggests that if we prepare the wave packet with a size close
to x0, we will be able to observe small oscillations of the soliton size, which
would correspond to a soliton eigenmode. This idea is stricto sensu incor-
rect, as we shall now explain.

To tackle the problem, we can use Bogoliubov’s method, which we in-
troduced in the previous chapter to study modulational instability. We are
interested in the evolution of a small perturbation of the initial condition
ψ0 by posing

ψ(x, t) =
{
ψ0(x) + ϵ

[
U(x)e−iωt + V (x)eiωt

]}
e−iµt/ℏ, (II.2)

where ψ0(x) here represents the wave function of the unperturbed soliton,
varying as 1/ cosh(x/2x0), with chemical potential µ = −mg2N2/(8ℏ2).
The quantity ℏω represents the energy to be supplied to the soliton to ex-
cite the eigenmode in question, the functions U(x) and V (x) characterize
the spatial structure of this mode and ϵ ≪ 1 is the perturbative develop-
ment parameter. We inject this expression for ψ(x, t) into the nonlinear
Schrödinger equation

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+ g|ψ|2ψ (II.3)

and we obtain at order 1 in ϵ a linear differential system for the functions

U(x) and V (x):

(µ+ ℏω)U =
[
− ℏ2

2m∂
2
x − 2|g|ψ2

0

]
U − |g|ψ2

0 V

(µ− ℏω)V =
[
− ℏ2

2m∂
2
x − 2|g|ψ2

0

]
V − |g|ψ2

0 U .
(II.4)

Solving this system (which we will not do here) shows that all these
eigenmodes (except two, see remark below) vary as e±ikx for |x| → +∞
with k ∈ R; they are therefore non-localized traveling waves (Kaup 1990;
Castin & Herzog 2001). The energy spectrum of these delocalized modes
is

ℏω =
ℏ2k2

2m
+ |µ| , (II.5)

which means that to excite them, we must first pay the energy |µ| to ex-
tract a particle from the soliton, then the kinetic energy ℏ2k2/2m to set this
particle in motion with the momentum ℏk. There is therefore no discrete
eigenmode, localized in the vicinity of the soliton and with energy ℏω less
than |µ|, which would correspond, for example, to an undamped oscilla-
tion of the soliton size around its equilibrium value x0.

Note 1. There are in fact two localized modes, of frequency ω = 0, which
correspond to the fact that we can, without paying energy, change the po-
sition or the phase of the soliton. These are the two Goldstone modes that
correspond to gauge invariance (for phase) and translational invariance
(for position). Their existence in no way invalidates our conclusion on the
absence of localized eigenmodes, which would correspond to undamped
oscillation of the soliton’s width.

Note 2. The absence of other localized modes, corresponding for exam-
ple to an oscillation of the soliton width, is a consequence of the integrable
nature of the nonlinear Schrödinger equation, as we will see in the follow-
ing sections. If we modify this evolution equation by adding terms that
break the integrability, then localized modes may appear, as discussed by
Kivshar, Pelinovsky, et al. (1998) and Pelinovsky, Kivshar, et al. (1998).
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Figure II.2. Damped oscillations of the central density ρ0(t) = |u(0, t)|2 of a
solitonic packet with the initial condition (II.10) for ϵ = 0.01. The dashed black
curves correspond to a decay of the oscillation envelope in 1/

√
t. Calculated on a

box of length 640 with discretization on 32768 points.

1-2 Damped oscillations

The absence of localized eigenmodes does not prevent oscillations of the
soliton amplitude and width from being observed for an appreciable pe-
riod of time. To convince ourselves of this, we can first turn to a numerical
simulation. Consider the nonlinear Schrödinger equation in its dimension-
less version1

iut + uxx + 2|u|2u = 0 (II.7)

a particular soliton of which is given by

u(x) =
1

coshx
, (II.8)

of mass M and energy E given by

M =

∫ +∞

−∞
|u|2 dx = 2 E =

∫ +∞

−∞

(
|∂xu|2 − |u|4

)
dx = −2

3
. (II.9)

1Recall the choice of length and time units that lead to this equation:

x0 =
ℏ2

Nm|g|
t0 =

2mx20
ℏ

. (II.6)

Figure II.2 shows the evolution of the central density associated with the
function u(x, t), taking as initial condition

u(x, 0) =

√
1 + ϵ

cosh [x(1 + ϵ)]
with ϵ≪ 1. (II.10)

So we still have a mass
∫
|u(x, 0)|2 dx = 2, but with a central density

slightly too large and a width slightly too small (by a factor of 1 + ϵ) to
correspond to the stationary soliton (II.8).

The time evolution of the central density reveals a damped oscillation,
with a decay in 1/

√
t and an asymptote very slightly below 1. The fact that

the excitation decays irreversibly is characteristic of coupling to a contin-
uum: if we had excited only one discrete mode, the oscillation would occur
at the frequency ω of that mode without damping. At long times, we find a
stationary soliton, with a mass slightly reduced compared with the initial
mass.

The interpretation of the result shown in figure II.2 is straightforward
within the framework of Bogoliubov’s analysis: non-localized modes are
excited by the choice ϵ ̸= 0 in (II.10) and the time evolution of these modes
corresponds to particle or radiation emission (depending on the nature of
the objects – matter or light – that are described). The period of oscillation
is, to a good approximation, 2πℏ/µ (2π for these reduced units), which
means that it is essentially modes at the bottom of the continuum (II.5) that
are excited2. On the other hand, we can understand the decay law in 1/

√
t

as follows. Let us decompose the initial state u(x, 0) onto the final solitonic
state, us(x), to which is added the small wave packet δu(x, 0) formed by
the Bogoliubov modes. Initially, this wave packet is localized at u(x, 0), but
we know that it will spread, since the Bogoliubov modes are not bound.
Its width will increase linearly with time and its central amplitude will
therefore decrease as 1/

√
t, since its norm must remain constant over time.

The decreasing oscillation of |u(0, t)|2 shown in figure II.2 demonstrates
the interference between us(x) and δu(0, t).

The calculation of the evaporated mass in this particular case is pre-
sented by Carr & Castin (2002), who show that it is a term of order 2 in ϵ,
so very small in relative value (∼ 10−4) for the example in figure II.2. We

2More precisely, it is the final value of the chemical potential that determines the frequency
of oscillation, as discussed by Sroyngoen & Anglin (2025).
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at the energy minimum which can be calculated analyti-
cally [13,20] or numerically [19]. For the fundamental
solution (order n ¼ 1) of the 1D GPE with an atom number
N, s-wave scattering length a, and radial trapping fre-
quency ωr, the size lz corresponds to the healing length at
the peak density of the soliton, i.e., lðn¼1Þ

z ¼ a2r=ðNjajÞ
[13,19]. Here, ar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωrÞ

p
is the radial harmonic

oscillator length. Small deviations of lz close to the energy
minimum lead to oscillations of the soliton size. We use
those oscillations resulting from an initial mismatch of lz to
experimentally measure the self-trapping frequency of the
soliton potential.
Our experimental starting point is a Bose-Einstein

condensate of 500–2000 cesium (Cs) atoms in the state
jF ¼ 3; mF ¼ 3i at scattering length of a ¼ þ7a0, where
a0 is Bohr’s radius. The BEC is levitated by a magnetic
field gradient, and it is confined by an optical dipole trap
formed by the horizontal and vertical laser beams LH and
LV [Fig. 1(a)]. An additional magnetic offset field allows us
to tune the scattering length by means of a broad magnetic
Feshbach resonance [21]. Details about our experimental
setup, the levitation scheme, and the removal of atoms can
be found in Refs. [15,22].

Our matter-wave solitons are confined to a quasi-1D
geometry with almost free propagation along the
horizontal direction and strong radial confinement of ωr ¼
2π × 95 Hz provided by laser beam LH. They are generated
with a quench of the scattering length towards attractive
interaction (ai → af), and by a reduction of the longi-
tudinal trap frequency (ωz;i → ωz;f). When changing a and
ωz independently, the quenches excite inward and outward
motions, respectively. Usually, it is desirable to minimize
the excitations of the soliton by matching the initial
Thomas-Fermi density profile of the BEC closely to the
density profile of the soliton [inset of Fig. 1(a)]. However,
we deliberately mismatch the quench parameters to create
breathing oscillations of the soliton in order to study its
self-trapping potential. Quenches with different parameters
are labeled by the symbols Q1–Q7 (see Ref. [15]).
Following an evolution time t in quasi-1D and after a
short period of 16 ms of expansion in free space, we take
absorption images to determine the density profile of the
atoms [Fig. 1(c)]. The cloud size lzðtÞ is determined by
fitting the function A(sechðz=BÞ)2 to the integrated
1D-density profiles with fit parameters A and B [15].
The response of the atomic cloud to the different quenches

is presented in Fig. 1(d). We first quench only the longi-
tudinal confinement by 25% to ωz;f ¼ 2π × 4.3ð2Þ Hz
(quench Q1 in Ref. [15]) while keeping the repulsive
interaction strength constant [Fig. 1(d), diamonds]. The
BEC starts an outwardsmotionwith an oscillation frequency
of 2π × 7.5ð1Þ Hz ≈

ffiffiffi
3

p
ωz;f as expected for a BEC in the

Thomas-Fermi regime [23,24]. In a secondmeasurement,we
additionally quench the interaction strengthaf to−5.4a0 and
increase ωz;i to match the initial size of the BEC to the
expected size of the soliton [Q2, Fig. 1(d), squares]. As a
result,we observe almost dispersionless solitonswith a linear
increase of the cloud size of 0.7ð3Þ μm=s [Fig. 1(d), green
line]. Finally, we deliberately mismatch the initial size of the
BEC by reducing ωz;i (Q3), and generate small-amplitude
oscillations of the soliton with a frequency ωsol of 2π ×
12.8ð4Þ Hz [Fig. 1(d), circles]. This breathing frequency
of the soliton is significantly larger than any breathing
frequency of a BEC or of noninteracting atoms, 2ωz;f ¼
2π × 8.6ð3Þ Hz.We observe no discernible oscillation in the
radial direction after the quenches.
In a second experiment, we demonstrate that the breath-

ing frequency ωsol depends on the interaction term Na in
the 1D GPE, a property typical of the nonlinear character of
the soliton. We choose to change N, since the initial
removal process is independent of the interaction quench,
and we can study ωsol without changing the quench
protocol [Q4, Fig. 2(a), circles]. The measured values of
ωsol decrease for lower N, and they approach the breathing
frequency 2ωz;f for noninteracting atoms in a harmonic trap
[Fig. 2(a), dashed line].
We compare our experimental data points to two

theoretical models. In a numerical simulation of the 1D

FIG. 1. Experimental setup and oscillation measurements.
(a) Sketch of the experimental setup. Inset: Density profiles
for a BEC (solid red line) and for a soliton (dashed blue line).
(b) Total energy of a soliton, a ¼ −5.2a0, ωr ¼ 2π × 95 Hz,
N ¼ 2000, with an external trap, ωz ¼ 2π × 5 Hz (dashed blue
line), and without external trap, ωz ¼ 0 Hz (solid red line).
(c) Absorption images after a free-expansion time of 16 ms [from
dataset with circles in (d)], integrated density profile for t ¼
60 ms (blue line) and fit (dashed red line). (d) Oscillations of a
quantum gas after the quench procedure. Blue diamonds, quench
of only ωz for a BEC (Q1); red circles, additional interaction
quench to create soliton (Q3); green squares, optimized quench
parameters to minimize breathing of the soliton (Q2). Uncertainty
intervals indicate %1 standard error.
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Figure II.3. Oscillations of the length of a cloud of cesium atoms confined in an
elongated harmonic trap. Blue dots: standard Bose-Einstein condensate regime
(repulsive interactions). The oscillation frequency is equal to ∼

√
3× the ax-

ial confinement frequency. Red dots: solitonic regime (attractive interactions).
The damped oscillation corresponds to an "eigenmode" of the soliton and is sim-
ilar to that shown in figure II.2. The green dots also correspond to the solitonic
regime, but the excitation of axial motion is negligible. Figure taken from Di Carli,
Colquhoun, et al. (2019).

will see later how the IST method can be used to calculate the mass of the
soliton reached at long times, by solving the eigenvalue problem of the Lax
operator L̂ for the initial condition u(x, 0).

1-3 Experimental study

Di Carli, Colquhoun, et al. (2019) have studied the variation over time of
the width of a soliton prepared in a highly elongated harmonic trap (fig-
ure II.3). The transverse frequencies of this trap are of the order of 100 Hz,
while the longitudinal frequency can be varied between 1 and 10 Hz. The
authors used cesium atoms initially forming a "standard" Bose-Einstein
condensate, with ∼ 2000 atoms in repulsive interaction. For this conden-
sate (blue dots in figure II.3), a "breathing" mode can be excited for which
the condensate length oscillates with a frequency equal to

√
3ωx, as theo-

retically expected (Menotti & Stringari 2002).

The authors then placed their gas in the vicinity of a Fano–Feshbach res-
onance to switch the scattering length from a positive value (∼ 7 a0 where
a0 represents the Bohr radius) to −5 a0. They then form a bright soliton

GPE, we use the ansatz in Eq. (1) to set the starting
conditions, and we determine the breathing frequency from
a spectral analysis of the time evolution of the wave
function [15] [Fig. 2(a), triangles]. In addition, we use
an analytical approximation for the breathing frequency
(red line) calculated with a Lagrangian variational analysis
at the energy minimum of the 3D GPE [13,15]. We find that
both models agree well with the trend of the measurements
of ωsol, although our experimental data points are system-
atically lower for large N than our theoretical predictions.
We speculate that this is due to nonharmonic contributions
to the energy of the soliton on the breathing oscillations for
finite oscillation amplitudes [Fig. 1(b)].
To determine the influence of the trapping potential, we

measure the variation of ωsol as we reduce the longitudinal
trapping frequency ωz;f (Q5). Two regimes of ωsol can be
identified in Fig. 2(b) for varying the values ofωz;f. For large
values ofωz;f, the trap dominates the breathing of the soliton
and ωsol increases like 2ωz;f. For small values of ωz;f, inter-
actions dominate the breathing of the soliton andωsol reaches
a constant value. This offset of the breathing frequency is a
result of the “self-trapping” potential of a free soliton.
Again, we compare the experimental results with our

theoretical model [Fig. 2(b), red line] and the numerical

simulations of the 1D GPE. The blue band in Fig. 2(b)
indicates the simulated frequencies for N ¼ 1300 to
N ¼ 1500. The simulation predicts a lower breathing
frequency for the free soliton than the analytical approxi-
mation, but all curves are within the uncertainly range of
the experimental data.
External trapping potentials can in principle alter the

soliton dynamics [7,25,26], causing, e.g., modulations of
the soliton’s tails due to residual nonautonomous terms of
the 1D GPE in a harmonic potential [27]. For the following
experiments, however, we employ trap frequencies that are
significantly smaller than the observed oscillation frequen-
cies of the soliton (2ωz < ωsol) to decouple the influence of
the trapping potential. In summary, for small-amplitude
oscillations we find good agreement of ωsol between
our experimental results and analytical and numerical
predictions based on the 1D GPE (and nonpolynomial
Schrödinger equation [15]).
Breathing oscillations of lz close to the equilibrium size

are not the only possible excitation modes of solitons. The
existence of higher-order solitons has been predicted in the
nonlinear Schrödinger equation [3], and has been observed
for optical solitons in silica-glass fibers [2,4]. A soliton of
order n can be interpreted as a bound state of n strongly
overlapping solitons [13]. By exploiting the equivalence of
the nonlinear Schrödinger equation and 1D GPE, similar
effects were later proposed for bright matter-wave solitons
[13,28], where it was suggested that nth-order solitons can
be generated by a rapid increase of the attractive interaction
strength by a factor n2. Similarly, our simulations of the 1D
GPE show that higher-order solitons can be created for an
increased initial size of the wave packet. An nth-order
soliton forms for a sech-shaped wave function with an
initial size lðnÞz that is the n2 multiple of the healing length
lð1Þz , i.e., lðnÞz ¼ n2lð1Þz [15].
Within the 1D GPE theory, both creation methods result

in the periodic development of multipeaked structures for
higher-order solitons [3,29]; e.g., they create a sharp central
peak with side wings for a second-order soliton [Fig. 3(a)]
and a double peak for a third-order soliton [15]. Sizes and
interaction quenches that do not fulfil the previous con-
ditions lead to a “shedding” of the atomic density in the z
direction. The wave packet oscillates and loses particles
until its size and shape match the next (lower n) higher-
order soliton [3]. For a second-order soliton, the predicted
oscillation period Tð2Þ is [13]

Tð2Þ ¼ 8π
ℏ
m
!

a2r
Njafj

"
2

: ð2Þ

Recently, excitation modes of higher order have also
been used as a test bed for various theoretical models
beyond GP theory. The fragmentation of solitons with an
increased initial width was predicted within the multi-
configurational time-dependent Hartree method for bosons

FIG. 2. Breathing frequency ωsol of the soliton. (a) Atom
number dependence (Q4). Red circles, experimental data; the
uncertainty bars for the atom number indicate the standard
deviation of N over the first 100 ms of each frequency
measurement. Blue triangles, simulation of the 1D GPE [15].
Red line, analytical approximation [13,15]. Dashed gray line,
oscillation frequency of a noninteracting gas, 2ωz;f . (b) Depend-
ence of ωsol on the trap frequency (Q5). Red circles, experimental
data points forN ≈ 1450. Blue area, simulation of the 1D GPE for
N ¼ 1300–1500. Red line, analytical approximation. Dashed
gray line, 2ωz;f .
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Figure II.4. Variation of the oscillation frequency of the soliton length with the
axial frequency of the trap confining the atoms. The limit of zero confinement
frequency corresponds to a free soliton. Colored area: result of a numerical solution
of the 1D nonlinear Schrödinger equation for a number of atoms between 1300 and
1500. The dashed line gives the prediction for an ideal gas. Figure taken from Di
Carli, Colquhoun, et al. (2019).

and observe a faster, damped oscillation of the cloud length (red dots in
figure II.3). This "mode" corresponds to the oscillation described above
(see figure II.2).

Di Carli, Colquhoun, et al. (2019) verified that the frequency associated
with damped oscillations of the soliton length became quasi-independent
of the trap’s axial frequency when this frequency was strongly reduced
(figure II.4). This limit therefore corresponds to an intrinsic characteristic
of the soliton. The experimental results are in good agreement with theo-
retical predictions based on the numerical solution of the one-dimensional
nonlinear Schrödinger equation (shaded area in figure II.4).

1-4 Case of a (relatively) large initial deviation

The emergence of a stationary soliton at long times is not restricted to the
case where the initial condition is close to a solitonic wave function. We
show in figures II.5 and II.6 the evolution of an initially triangular wave
function under the effect of the dimensionless equation (II.7). We can see
that, at the cost of losing around 1% of the particles, the wave function
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evolves towards a solitonic solution κ/ cosh(κx). The missing particles are
"radiated" and thus form a background of asymptotically zero density in
the limit of a box of infinite length L. For these calculations, we have taken
L = 640.

2 The IST method

The IST method, which stands for inverse scattering transform, was ini-
tiated by Gardner, Greene, et al. (1967) to solve the KdV equation. It was
then generalized to other nonlinear equations by several authors, in partic-
ular by Zakharov & Shabat (1972) for the nonlinear Schrödinger equation
of interest here. We will present it schematically in the version proposed
by Lax (1968). We will restrict ourselves here to the case where the wave
function u(x, t) tends to 0 at infinity [see, for example, Shrira & Geogjaev
(2010), Roberti, El, et al. (2021) and refs. in for nonzero boundary con-
ditions, which correspond to the cases of the Kuznetsov–Ma, Akhmediev
and Peregrine structures, for example].

The IST method is an extremely powerful technique for tackling many
integrable nonlinear problems. It has been the subject of several reference
books, such as Ablowitz & Segur (1981), Novikov, Manakov, et al. (1984),
Drazin & Johnson (1989), Zakharov (1991), and Korepin, Korepin, et al.
(1997). One can also consult Dauxois & Peyrard (2006) for a remarkably
clear presentation in the case of the KdV equation.

2-1 A reminder: Eigenstates decomposition

In simplified terms, we can think of the IST method as a generalization of
the eigenmode decomposition for solving the evolution of a linear system.
Let us start by recalling the principle of this decomposition. We are given
an evolution equation, for example the (linear) Schrödinger equation for a
function ψ(x, t) describing the evolution of a particle in a potential V (x):

iℏ ∂tψ = Ĥψ with Ĥ =
p̂2

2m
+ V (x) (II.11)
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Figure II.5. Evolution of an initial triangular wave function. The number of
atoms Ns is defined as

∫ +a

−a
|u(x, t)|2 dx with the (somewhat arbitrary) choice

a = 20. The calculation is performed on a segment of length L = 640 with
discretization on 32 768 points.
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Figure II.6. Evolution of an initial triangular wave function (see figure II.5).
From top to bottom, times are t = 0, 2.5, 5, · · · , 12.5.

Starting from a arbitrary initial condition ψ(x, 0), it is not always easy to
find the function at a later time t by numerical integration. But we can get
round this difficulty by proceeding in three steps:

• We solve the eigenvalue problem for Ĥ :

Ĥϕλ = Eλ ϕλ. (II.12)

The eigenvalues Eλ can be discrete, corresponding to bound states in
the potential V (x), or they can be part of a continuum, corresponding
to scattering states.

• The initial state ψ(x, 0) is decomposed onto the eigenbasis {ϕλ(x)}:

ψ(x, 0) =
∑

j

cλj
ϕλj

(x) +

∫
cλ ϕλ(x) dλ. (II.13)

where we have explicitly separated the contributions of the discrete
and continuous parts of the spectrum of Ĥ .

• We obtain the wave function at any time using:

ψ(x, t) =
∑

j

cλj
ϕλj

(x) e−iλjt/ℏ +

∫
cλ ϕλ(x) e

−iλt/ℏ dλ. (II.14)

If we want to determine the evolution of several initial conditions
ψ(x, 0), the first step only needs to be performed once, and the problem
then boils down to determining the coefficients {cλ} for each of the initial
conditions considered.

2-2 The Lax pair of operators

Let us consider the nonlinear Schrödinger equation in its dimensionless
form for attractive interactions:

iut + uxx + 2|u|2u = 0 (II.15)

and start from an initial condition u(x, 0) localized in space. The princi-
ple of the IST method is to replace the study of the nonlinear evolution of

36



CHAPITRE II. BRIGHT SOLITON DYNAMICS AND THE IST METHOD § 2. The IST method

Direct Inverse

u(x, 0) u(x, t)

Scattering data

{aλ(0), bλ(0)}
{λj(0), cj(0)}

Scattering data

{aλ(t), bλ(t)}
{λj(t), cj(t)}

Figure II.7. Principle of the IST method. We replace the (numerical) calculation
of the nonlinear evolution (red arrow) by three (a priori) easier, linear steps (green
arrows).

u(x, t) by a linear evolution in a different space, this evolution itself be-
ing treated as described in the previous paragraph (§ 2-1). This principle is
summarized in figure II.7.

In Lax’s method (Lax 1968), which implements this general idea, we as-
sociate a pair of linear operators L̂ and Â with the function u(x, t) solution
of the nonlinear equation under study. The operators L̂ and Â involve the
function u and its spatial derivatives; they therefore implicitly depend on
time, since u(x, t) itself depends on time, but they do not involve ∂t. The
link between the equation verified by u and the pair {L̂, Â} is as follows:

u(x, t) solution of (II.15) ⇔ dL̂

dt
= [Â, L̂]. (II.16)

For a given integrable nonlinear equation, there is no uniqueness of the
pair of Lax operators. In the case we are interested in here (eq. II.15), these
operators act in the two-component spinor space (Zakharov & Shabat 1972)

Φ(x) =

(
ϕa(x)
ϕb(x)

)
ϕa,b(x) ∈ C (II.17)

and a possible choice is

L̂ = i

(
∂x u
u∗ −∂x

)
Â = i

(
2∂2x + |u|2 ux + 2u∂x
u∗x + 2u∗∂x −2∂2x − |u|2

)
(II.18)

With this choice, we find:

dL̂

dt
= i

(
0 ut
u∗t 0

)
(II.19)

and

[Â, L̂] =

(
0 −uxx − 2|u|2u

u∗xx + 2|u|2u∗ 0

)
(II.20)

hence the equivalence given in (II.16).

Note that Â can also be written as a trinomial in L̂, with coefficients that
depend on x, but which do not involve the ∂x operator:

Â = −2i
(
1 0
0 −1

)
L̂2 + 2

(
0 −u
u∗ 0

)
L̂ + i

(
|u|2 −ux
−u∗x −|u|2

)
. (II.21)

This form is useful for formulating the Lax problem in a slightly different
way (see appendix on the AKNS method).

The repulsive case. In the case of repulsive interactions, for which the
nonlinear Schrödinger equation is iut + uxx − 2|u|2u = 0, a possible Lax
pair (L̂, Â) is:

L̂ = i

(
∂x −u
u∗ −∂x

)
Â = i

(
2∂2x − |u|2 −ux − 2u∂x
u∗x + 2u∗∂x −2∂2x + |u|2

)
. (II.22)

Note that in this case, the operator L̂ is Hermitian and its spectrum consists
solely of real numbers.

As we shall now see, the spectrum of L̂ given in (II.18) for the attractive
case is not restricted to the real numbers, and this increase in the spectrum
compared with the repulsive case is precisely due to the possibility of gen-
erating bright solitons, i.e. localized solutions u(x, t) that do not deform
nor expand with time.
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2-3 Scattering data associated with L̂

Once equivalence (II.16) has been established, we can replace the evolution
under the effect of the nonlinear Schrödinger equation by the evolution of
spinors under the effect of the linear operators Â and L̂ according to the
scheme shown in figure II.7. More precisely, let us consider the eigenvalue
problem for the operator L̂ at a given time t:

L̂Φ = λΦ with Φ(x, t) =

(
ϕa(x, t)
ϕb(x, t)

)
(II.23)

or its more explicit version:

i∂xϕa + iuϕb = λϕa (II.24)

−i∂xϕb + iu∗ϕa = λϕb (II.25)

This system is close to an eigenvalue problem for a one-dimensional
Schrödinger (or rather Dirac) equation, with the function u(x) playing the
role of a localized potential. In particular, outside the zone where u(x)
takes on significant values, this eigenvalue problem reduces to the solu-
tion of

∂xϕa = −iλϕa ∂xϕb = iλϕb (II.26)

which gives at lowest order in u(x):

x→ ±∞ : ϕa ∝ e−iλx ϕb ∝ eiλx. (II.27)

The analogy with the Schrödinger equation is not perfect, as L̂ is not
self-adjoint and its eigenvalues λ can be complex. Furthermore, the func-
tion u(x) that acts as a potential can also be complex. However, some gen-
eral characteristics remain:

• At a given time t, the spectrum of L̂ consists of a continuum plus a set
of discrete eigenvalues λ1, . . . , λn .

• The continuous part of the spectrum corresponds to scattering states,
propagating as e±iλx to infinity. It corresponds to values of λ covering
all real numbers. For each value of λ ∈ R, the solutions of the system
(II.24-II.25) form a space of dimension 2.
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u(x)

Figure II.8. The scattering states, eigenstates of the operator L̂, associated to a
real eigenvalue λ. The corresponding scattering data are the two coefficients aλ
and bλ.

• Discrete eigenvalues are associated with eigenfunctions Φ that are lo-
calized where the function u(x) itself takes significant values. To en-
sure localization, λ must have a nonzero imaginary part, λ = ξ + iη
with ξ and η real, to ensure that Φ decays as e−|ηx| at infinity. Note
that the existence of these bound states does not depend on the sign (or
phase) of the "potential" u(x). More precisely, if (ϕa, ϕb)T is a bound
state in the potential u(x) for the eigenvalue λ, then (ϕa,−ϕb)T will be
a bound state in the potential −u(x) for the same eigenvalue.

It is important to stress right away that we will not need to know the
exact form of the eigenfunctions Φ(x) to carry out the IST program. This
method relies solely on the spectrum of eigenvalues and on the asymptotic
behavior of the eigenfunctions at ±∞.

More precisely, at a given point in time, for example the initial time
t = 0, we will associate the function u(x, 0) with a set of scattering data,
such as the reflection coefficient associated with the "potential" u(x, 0) and
the behavior of the bound states in this "potential". We will then show that
the time evolution of these scattering data is remarkably simple.

For the continuous part of the spectrum (real λ), we define the coeffi-
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Figure II.9. Blue curve: A bound state, eigenstate of the operator L̂ with eigen-
value λj = ξj + iηj , with here ξj = 0, ηj > 0. The corresponding scattering data
are the eigenvalue λj and the coefficient cj .

cients aλ and bλ characterizing the scattering states as (figure II.8)

x→ −∞ : Φλ(x) ∼
(
1
0

)
e−iλx (II.28)

x→ +∞ : Φλ(x) ∼ aλ
(
1
0

)
e−iλx + bλ

(
0
1

)
e+iλx (II.29)

For the discrete part of the spectrum, in addition to knowing the eigenval-
ues λj = ξj + iηj , an important quantity is the ratio of the amplitudes on
either side of where the u function is located (figure II.9):

x→ −∞ : Φj(x) ∼
(
1
0

)
eηjxe−iξjx (II.30)

x→ +∞ : Φj(x) ∼ cj
(
0
1

)
e−ηjxeiξjx (II.31)

We have favored eigenfunctions proportional to the spinor (1, 0)T when
x→ −∞ [cf. (II.28) and (II.30)], which for bound states imposes a positive
imaginary part for the eigenvalue λ. Eigenvalues with negative imaginary
parts can also be obtained by considering the spinor Φ̄ conjugate to Φ:

Φ =

(
ϕa
ϕb

)
Φ̄ =

(
ϕ∗b
−ϕ∗a

)
. (II.32)

Indeed, if the spinor Φ is an eigenstate of L̂ for the eigenvalue λ, the spinor
Φ̄ is an eigenstate of L̂ for the eigenvalue λ∗. In what follows, we will re-
strict ourselves to describing the spectrum in the upper complex half-plane
(including the real axis), with the λ↔ λ∗ symmetry implicitly assumed.

For a given function u(x, t), the spectrum of L̂ is therefore formed by:

• the set of real axes for scattering states,

• discrete eigenvalues outside the real axis, conjugated two by two, cor-
responding to localized states.

The first part of the program in figure II.7 therefore consists in associat-
ing these scattering data with the initial function u(x, 0):

u(x, 0) −→ scattering data: {aλ(0), bλ(0)}, {λj(0), cj(0)} (II.33)

2-4 The evolution of scattering data

A central point of the integrability criterion, linked to the existence of a
pair of Lax operators, lies in the simplicity of the evolution over time of the
scattering data.

Let us start by introducing the evolution operator Û(t) between 0 and t
defined by

dÛ
dt

= Â(t) Û(t) with Û(0) = 1̂. (II.34)

Note that unlike in quantum physics, where the role of Â is played by
a Hermitian Hamiltonian and the evolution operator is therefore unitary,
this property is not generally verified by the operator Û introduced here.
However, this absence of the unitarity property will not be a hindrance in
what follows.

The inverse operator Û−1 obeys the evolution equation:

dÛ−1

dt
= −Û−1(t)Â(t) (II.35)

as can be seen by calculating Û(t + dt) Û−1(t + dt) as a function of
Û(t) Û−1(t) to order 1 in dt.
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Once this evolution operator has been introduced, we can integrate the
evolution equation for the operator L̂:

dL̂

dt
= [Â(t), L̂(t)] ⇔ L̂(t) = Û(t)L̂(0)Û−1(t). (II.36)

Let us recast this relationship as

L̂(t) Û(t) = Û(t) L̂(0) (II.37)

and let it act on an eigenstate Φj(0) of the operator L̂(0) at the initial time,
associated with the eigenvalue λj(0):

L̂(t)
[
Û(t)Φj(0)

]
= λj(0)

[
Û(t)Φj(0)

]
. (II.38)

We deduce that the eigenvalue λj(0) at the initial time remains an eigen-
value over time and that the associated eigenvector is

Φj(t) = Û(t)Φj(0) ⇔ dΦj

dt
= Â(t)Φj(t). (II.39)

The discrete part of the spectrum is therefore invariant during time evo-
lution. We will see later that this discrete part is associated with solitons,
and this invariance is therefore a signature of soliton robustness during
evolution.

The evolution of the other scattering data can be deduced directly from
the above. In the asymptotic region x → ±∞, the function u(x, t) takes on
negligible values so that the operator Â there is given by [cf. (II.21)]:

x→ ±∞ : Â ≈ −2i
(
1 0
0 −1

)
L̂2 (II.40)

which gives, when we make it act on an eigenstate of L̂ and take into ac-
count (II.39):

dϕa
dt

= −2iλ2ϕa
dϕb
dt

= 2iλ2ϕb. (II.41)

The system (II.28-II.29) becomes at time t

x→ −∞ : Φλ(x, t) ∼
(
e−2iλ2t

0

)
e−iλx (II.42)

x→ +∞ : Φλ(x, t) ∼ aλ
(
e−2iλ2t

0

)
e−iλx + bλ

(
0

e2iλ
2t

)
e+iλx.(II.43)

Multiplying this set of equations by e2iλ
2t, we derive for the continuous

part of the spectrum (scattering states, λ real):

aλ(t) = aλ(0) bλ(t) = bλ(0) e
4iλ2t (II.44)

For the discrete part (bound states, λ with a non-zero imaginary part),
an identical reasoning yields:

λj(t) = λj(0) cj(t) = cj(0) e
4iλ2

j t. (II.45)

We have therefore completed the second part of the program in figure
II.7:

{aλ(0), bλ(0)}, {λj(0), cj(0)} −→ {aλ(t), bλ(t)}, {λj(t), cj(t)}. (II.46)

2-5 Inversion of scattering data

The third and final part of the program in figure II.7 consists in invert-
ing the scattering data: knowing the {aλ(t), bλ(t)}, {λj(t), cj(t)} at time t,
can we reconstruct the "potential" associated with them, i.e., the function
u(x, t)? This inversion is indeed possible, even if it can be numerically dif-
ficult to put into practice. Fortunately, even if we do not completely per-
form this last step, we can still deduce a number of interesting properties
by considering the formal structure of the inversion process for scattering
data.

Knowing the scattering data, we introduce the intermediate function
defined at a given time t:

F (x, t) =
1

2π

∫ +∞

−∞

bλ(t)

aλ(t)
eiλx dλ +

N∑

j=1

cj(t) e
iλjx . (II.47)

This function involves an integral over the continuous spectrum of the op-
erator L̂, with λ ranging from−∞ to +∞, as well as a sum over all discrete
eigenvalues, of non-zero and positive imaginary part.

Once we know F (x, t), we look for the solutions K1 and K2 of the pair
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of integral equations (Marchenko equations)

0 = −K∗
1 (x, y) +

∫ +∞

x

K2(x, s)F (y + s) ds + F (x+ y) (II.48)

0 = K∗
2 (x, y) +

∫ +∞

x

K1(x, s)F (y + s) ds (II.49)

where the dependence on t, which plays the role of a constant parameter in
these two equations, is omitted for the different functionsK1,K2 and F . In
the general case, this resolution is the step requiring the greatest numerical
effort, but it remains a linear operation. Once this has been done, we obtain
the function u(x, t) as the solution to the original nonlinear equation:

u(x, t) = 2K1(x, x, t) and
∫ +∞

x

|u(x, t)|2 dx = −2K2(x, x, t).

(II.50)

We will not go into the justification of this procedure here, but refer the
reader to the seminal articles by Zakharov & Shabat (1972) and Ablowitz,
Kaup, et al. (1974). Let us simply point out that it is based on the analysis
of the large λ behavior of the solutions of the initial eigenvalue problem
L̂Φ = λΦ, with the unknown function u(x, t) appearing as the coefficient
of the λ−1 term in the development of the eigenfunctions Φ.

Note. A notable simplification occurs for functions u(x) such that the re-
flection coefficient b(λ) cancels out for all values of λ, since only the discrete
sum over the bound states in (II.47) then remains. It is in fact this case that
we will discuss first in what follows, as it corresponds to the case of "pure"
solitons.

3 The fundamental soliton

3-1 The fundamental soliton at rest

As a first example of the IST method, let us look at the fundamental soliton
at rest. We take as our initial function

u(x, 0) =
1

coshx
(II.51)
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Figure II.10. Eigenfunction Φ1 = (ϕa, ϕb)
T of the operator L̂ associated with the

eigenvalue λ1 = i/2 for the choice u(x) = 1/ cosh(x).

for which we know it corresponds to an immobile soliton:

u(x, t) =
eit

coshx
. (II.52)

Let us check that we can recover this result using the IST method by ex-
plicitly determining the scattering data, i.e. the reflection coefficients b(λ)
for the scattering states and the spectrum of bound states.

The calculation of the reflection coefficient b(λ) involves the use of hy-
pergeometric functions. The result is that for the choice (II.51), the re-
flection coefficient b(λ) cancels for all scattering states (Satsuma & Yajima
1974):

choice (II.51): b(λ) = 0 ∀λ ∈ R (II.53)

Consequently, only the discrete part of the spectrum of L̂ contributes in
this case to the function F (x) defined in (II.47).

Let us consider now this discrete part. Solving the eigenvalue equation

L̂Φ = λΦ ⇔





∂xϕa +
ϕb

coshx
=−iλϕa

∂xϕb −
ϕa

coshx
= iλϕb

(II.54)

also involves the use of hypergeometric functions. The result is that there
is a single eigenvalue in the upper half of the complex plane 3 outside the

3We remind that the eigenvalues of the discrete spectrum appear in pairs (λj , λ
∗
j ). There

is therefore also the eigenvalue −i/2 in the lower complex plane.
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Figure II.11. Spectrum of the operator L̂ in the upper complex half-plane for
the function u(x) = 1/ coshx, i.e. a soliton at rest of mass 2. The spectrum is
composed of the real axis and the point λ1 = i/2.

real axis (Satsuma & Yajima 1974):

λ1 = i/2 Φ1(x) =

(
ex/2/(1 + e2x)

e−x/2/(1 + e−2x)

)
(II.55)

so that c1(0) = 1. These two components of the spinor Φ are plotted in fig-
ure II.10. The evolution of scattering data given in (II.45) therefore reduces
to:

λ1(t) =
i

2
c1(t) = e−it. (II.56)

and the function F (x) reads at time t:

F (x, t) = e−it e−x/2. (II.57)

This single eigenvalue in the upper complex half-plane (figure II.11) is the
signature of the soliton chosen in (II.52), as we will now show.

For this function F (x), solving the system (II.48-II.49) is very simple
because we can look for solutions in the form

Kj(x, y, t) = Lj(x, t) e
−y/2 j = 1, 2. (II.58)

This system can then be written

0 = −L∗
1 + e−it−xL2 + e−it−x/2

0 = L∗
2 + e−it−xL1

(II.59)

and its solution is

L1(x, t) =
eit−x/2

1 + e−2x
L2(x, t) = −

e−3x/2

1 + e−2x
. (II.60)

We can then use the general solution (II.50) and check that we recover the
exact result that is already known (II.52). Of course, using all the formalism
of the IST method for the simple case of the fundamental soliton at rest
seems disproportionate, but it does allow us to check that the formalism
we have presented is indeed under control. Furthermore, we will soon see
how to use this same formalism to find much less obvious solutions.

3-2 Variants around the soliton at rest

Soliton displaced from x = 0. Choosing the initial function u(x, 0) =
1/ cosh(x − x0) does not change the coefficients b(λ), which remain zero,
nor the discrete eigenvalue λ1 = i/2. We find the same system as in (II.54)
after changing the variable x → x − x0, which has the effect of modifying
the value of c1(0), which becomes

c1(0) = ex0 (II.61)

Solving (II.48-II.49) is done as in the case x0 = 0 and leads to:

L1(x, t) =
eite−x/2ex0

1 + e−2(x−x0)
L2(x, t) = −

e−3x/2e2x0

1 + e−2(x−x0)
(II.62)

We then deduce the solution of the Schrödinger equation at time t: u(x, t) =
eit/ cosh(x− x0).

Soliton of different mass. The soliton considered in (II.51) has a mass
equal to 2: ∫

|u(x, 0)|2 dx = 2. (II.63)

Of course, other stationary solitons are also of interest:

u(x, 0) =
κ

cosh(κx)
(II.64)

42



CHAPITRE II. BRIGHT SOLITON DYNAMICS AND THE IST METHOD § 3. The fundamental soliton

with a mass and an energy given by:

M =

∫
|u(x, 0)|2 dx = 2κ E =

∫ (
|∂xu|2 − |u|4

)
dx = −2

3
κ3. (II.65)

The above treatment remains valid whatever the value of κ. More precisely,
(i) all reflection coefficients remain zero and (ii) the system (II.54) is solved
identically by changing the variable x′ = κx, indicating that the eigenvalue
associated with the soliton is now:

λ1 = iκ/2. (II.66)

It therefore remains purely imaginary and at time t we find

u(x, t) =
κ

cosh(κx)
eiκ

2t . (II.67)

Soliton of different phase. If we change the phase of the initial condition
(II.51) by taking u(x, 0) = eiφ/ cosh(x), we can easily see that we find the
same system as in (II.54), with the substitution ϕb → ϕb e

−iφ. The reflec-
tion coefficients b(λ) are always zero, and we keep the same single pure
imaginary eigenvalue λ1 = i/2 in the upper complex half-plane. The only
change concerns the coefficient c1(0), which becomes:

c1(0) = e−iφ. (II.68)

The function F (x) then also acquires the phase e−iφ, with the resolu-
tion of (II.48-II.49) remaining unchanged. We finally arrive at u(x, t) =
e−i(t+φ)/ cosh(x), as expected.

Comparing (II.61) and (II.68) is instructive: changing the coefficient
c1(0), other things being equal, allows us to account for a phase change
or a translation of the initial function u(x, 0) depending on whether we
modify the phase or the modulus of c1.

3-3 The fundamental soliton in motion

Still in a one-soliton scheme, we can also take as our initial condition

u(x, 0) =
eikx

coshx
. (II.69)

We saw in the previous chapter that it represents a soliton whose envelope
propagates at velocity 2k. Let us check that we can recover this result using
the IST method.

The eigenvalue equation (II.23) still admits one and only one solution
for λ in the upper complex half-plane, but this eigenvalue now has a non-
zero real part (figure II.12):

λ1 = (i− k)/2 Φ1(x) =

(
e−iλ1x/(1 + e2x)
e+iλ1x/(1 + e−2x)

)
(II.70)

from which we deduce

c1(0) = 1 c1(t) = ei(k
2−1)te2kt F (x, t) = c1(t)e

−x/2e−ikx/2. (II.71)

Solving the integral system (II.48-II.49) at a given time t can still be done
by posing

Kj(x, y, t) = Lj(x, t) e
(−1+ik)y/2 (II.72)

and we find

L1(x, t) =
ei(1−k2)t e(ik−1)x/2 e2kt

1 + e−2(x−vt)
with v = 2k (II.73)

and finally

u(x, t) = 2K1(x, x, t) =
eikx ei(1−k2)t

cosh(x− vt) . (II.74)

Summarizing the previous two paragraphs, the fundamental soliton
problem

u(x, 0) =
κ eikx

cosh(κx)
−→ u(x, t) =

κ eikx

cosh[κ(x− 2kt)]
ei(κ

2−k2)t (II.75)

is characterized at any time t by :

• a null reflection coefficient b(λ) for all real λ, i.e. for all scattering states
resulting from the resolution of L̂Φ = λΦ ;

• a single eigenvalue λ in the upper complex half-plane, and thus a sin-
gle bound state:

λ1 =
1

2
(iκ− k). (II.76)
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Figure II.12. Spectrum of the operator L̂ in the upper complex half-plane for a
soliton of mass 2κ and velocity 2k. This spectrum is composed of the real axis and
the point λ1 = (−k + iκ)/2.

This bound state is associated with the soliton, the imaginary part κ of
the eigenvalue characterizes the mass of the soliton (M = 2κ) and the
real part k characterizes the velocity of its envelope (v = 2k).

Summary. The results we have just obtained give a broader view of the
robustness of the soliton discussed in § 1. Let us first consider a function
u(x, 0) having exactly the form required to form a soliton. We know that
the spectrum of L̂ will be composed of the set of real numbers and a pair
of conjugate non-real eigenvalues. We also know that the reflection coeffi-
cients bλ will all be zero.

Now let us suppose that we slightly distort this initial condition u(x, 0).
The nature of the spectrum will remain unchanged: it will always be com-
posed of the real axis (scattering states) and a single pair of eigenvalues off
the real axis (a bound state in the "potential" associated with u(x, 0)). On
the other hand, the bλ coefficients will probably become non-zero.

However, we know that the pair of non-real eigenvalues corresponds
to a soliton. The imaginary part may differ from that of the desired soliton,
which means that the number of particles will not be exactly that targeted,
and the real part may also be different, corresponding to a velocity that is
also slightly different from that desired. But the soliton will still be there!

The fact that the bλ coefficients are nonzero indicates that the delocalized
states will be populated, a necessary counterpart since the soliton will not
have the initially expected number of atoms at long times.

If we modify the initial condition more drastically, the pair of complex
eigenvalues may merge with the real axis and disappear: this means that
we have not put in enough particles (given the initial size) to prevent the
wave packet from expanding under the effect of kinetic energy. All the
particles will disperse and no localized, stable collective structure will have
been formed.

If the initial wave function is significantly different from the one ini-
tially targeted, other pairs of non-real eigenvalues may also appear. In this
case, several solitons will be generated, a situation to which we will return
in the next paragraph.

In any case, the first stage of the IST method, i.e. the diagonalization of
the operator L̂, can be seen as a "soliton detector", providing quantitative
information on the final state that will be reached after evaporation of all
surplus particles, by giving the number of solitons, their masses and their
velocities.

4 Higher-order solitons

In this paragraph, we are interested in the situation where we have pre-
pared an initial function u(x, 0) and where the diagonalization of the cor-
responding operator L̂

L̂ = i

(
∂x u(x, 0)

u∗(x, 0) −∂x

)
(II.77)

leads (in addition to the real axis) to several eigenvalues {λj , j = 1, . . . , n}
in the upper complex half-plane, and of course their complex conjugates in
the lower half-plane.
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x

u(x)

Figure II.13. Function u(x) obtained by taking the sum of envelopes of funda-
mental solitons well separated from each other.

4-1 N solitons of different velocities

In this paragraph, we assume that the function u(x, 0) is made up of nwave
packets well separated from each other (figure II.13),

u(x, 0) =

n∑

j=1

uj(x) (II.78)

where each function uj corresponds exactly to a soliton located in xj , with
mass Mj and velocity vj .

Let us take a look at the eigenvalue problem for L̂ and consider the scat-
tering states first. We know that each of the "potentials" uj(x), taken alone,
leads to a reflection coefficient bλ that is strictly zero. If the envelopes of the
functions uj are well separated, the interferences between these different
scattering centers can be neglected, leading to a zero reflection coefficient
for each value of λ. In optical terms, a stack of surfaces, each with an anti-
reflective coating, forms itself a non-reflective system.

We deduce from the general result (II.44) that the coefficients bλ will re-
main zero over time, even if the solitons momentarily come into contact
with each other. Therefore only discrete states will contribute to the func-
tion F (x) given in (II.47) and the determination of u(x, t) at any instant will
not involve scattering states. In physical terms, we know from the outset
that no particles will be evaporated during soliton collisions.

Let us now consider the bound states in the "potential" u(x, 0). By con-
struction, each uj(x) gives rise to a bound state localized in the vicinity of
xj , associated with the eigenvalue λj of L̂. Assuming that the "potentials"
uj(x) are very far apart, the diagonalization of L̂will lead to n bound states
very close to the bound states of each individual "potential" uj . In a stan-
dard quantum formulation, this amounts to neglecting the tunnel coupling
between potential wells arbitrarily far apart.

We also know that the spectrum {λj} will remain constant [cf. (II.45)].
Once all the solitons have crossed, we will have the same eigenvalues λj
as at the input. Remember that the real part of λj determines the mass of
soliton j, and the imaginary part determines its velocity.

The general result (II.44-II.45) for the evolution of scattering data is
therefore extremely powerful, since it allows us to account for the stability
of solitons during a collision, whatever their number, masses and veloci-
ties. Solving the integral system (II.48-II.49) is only necessary if we wish
to know the exact position of each soliton at a given instant t, this position
resulting from the attractive or repulsive character of the interactions be-
tween solitons, itself dependent on their relative phase, and therefore on
the coefficients cj [cf. (II.68-II.61)].

4-2 Multi-solitons (or composite solitons)

In the previous paragraph, we assumed that there was an initial instant at
which the n solitons were well separated from each other. We will now
consider the opposite situation, where the solitons are initially superim-
posed on each other with the same velocity, which we will choose to be
zero.

To further simplify the discussion, we will assume that the function u
reads at initial time

u(x, 0) =
A

coshx
, (II.79)

corresponding to the following mass and energy:

M =

∫
|u|2 dx = 2A2 E =

∫ (
|∂xu|2 − |u|4

)
dx = −2

3
A2(2A2 − 1).

(II.80)
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If we take A = 1, we recover the fundamental soliton studied in the previ-
ous section (§ 3). The question we wish to address concerns the evolution
of the system for any value of A. To this end, we will use the results of
Satsuma & Yajima (1974).

The eigenvalue problem for L̂ is solved by eliminating the function ϕb
from the differential system (II.24-II.25) to obtain a second-order differen-
tial equation for the function ϕa only. This equation can be solved exactly
and its solution can be written in terms of a hypergeometric function. The
important result here concerns the discrete spectrum of L̂, which we have
seen to be a "soliton detector". This spectrum is plotted as a function of A
on figure II.14 and has a very simple expression:

• For A ≤ 1/2, there are no eigenvalues outside the real axis. There is
therefore no soliton, and the initial wave packet will spread out indef-
initely over time.

• For A ∈]1/2, 3/2], there is one and only one eigenvalue in the upper
complex half-plane, and therefore only one soliton:

λ1 = i

(
A− 1

2

)
(II.81)

We return to the situation shown in figure II.2 and discussed at the
end of section 3: apart from the A = 1 case, which constitutes the
fundamental soliton (λ1 = i/2), particles or radiation are emitted to
asymptotically reach a soliton at rest, of massMs = 2κwith λ1 = iκ/2,
i.e. κ = 2A−1 andMs = 2(2A−1). The difference between the starting
mass M = 2A2 and that of the soliton is ∆M = M −Ms = 2(A− 1)2.
This is a strictly positive quantity, except for A = 1 since the initial
state is then the fundamental soliton, as already mentioned.

When A tends towards the lower limit A = 1/2, the mass of the fi-
nal soliton tends towards 0, corresponding to a wave packet of very
low amplitude and large width. When A tends towards the upper
limit A = 3/2, the mass of the soliton formed tends towards Ms = 4,
whereas the initial mass is M = 9/2. The radiated mass is therefore
1/2, the final solitonic wave packet κ/ cosh(κx) having a height greater
than the initial height (2 instead of 3/2) and a narrower width.

• ForA ∈]3/2, 5/2], there are two discrete eigenvalues in the upper com-
plex half-plane:

λ1 = i

(
A− 1

2

)
λ2 = i

(
A− 3

2

)
(II.82)

We thus find a situation with two superimposed fundamental solitons,
each at rest since the real part of these eigenvalues is zero. We will call
this structure a "bi-soliton" and come back to it a little later to show
that it gives rise to an oscillating structure (breather).

• More generally, for A ∈]n − 1/2, , n + 1/2], there are n discrete eigen-
values in the upper complex half-plane:

λ1 = i

(
A− 1

2

)
, . . . , λn = i

(
A− n+

1

2

)
. (II.83)

This structure corresponds to a multi-soliton, i.e. n superimposed fun-
damental solitons, all with zero velocity.

The reflection coefficients bλ that characterize the continuous spectrum
(real λ) also have a remarkable expression (Satsuma & Yajima 1974):

bλ = i
sin(πA)

cosh(πλ)
. (II.84)

In particular, for integer values of A, i.e. A chosen at the center of the seg-
ments we have just identified, the reflection coefficients bλ cancel out for all
values of k. At these points, the continuous spectrum does not contribute
to the expression of the function F (x) defined in (II.47). Nor does it play a
part in solving the system (II.48-II.49) that provides the function u(x, t) at
all times. For these integer values of A, no particles or radiation are emit-
ted by the system during its evolution: all particles remain in the form of a
multi-soliton.

This absence of evaporation can be verified for integer values A = n by
comparing the initial massMini = 2A2 = 2n2 [cf. (II.80)] and the total mass
ofA = n individual solitons associated with eigenvalues λj = i(n−j+1/2)
[cf. (II.64-II.66)]. The amplitudes κj = 2|λj | of these n solitons are the odd
numbers 1, 3, . . . , (2n− 1) and the total mass is equal to

Mtot = 2

n∑

j=1

(2j − 1) = 2n2. (II.85)
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Figure II.14. Discrete eigenvalues of the operator L̂ for the choice u(x) =
A/ coshx.

The equality between the initial mass and the total mass of the n funda-
mental solitons confirms the absence of evaporation in the case where A is
an integer.

4-3 Experimental observations

These multi-solitons were observed shortly after their prediction for light
pulses propagating in optical fibers (Mollenauer, Stolen, et al. 1980). Here,
we focus on their (much more recent) demonstration with matter waves by
Di Carli, Colquhoun, et al. (2019) and Luo, Jin, et al. (2020).

Figure II.15 shows a series of results obtained by Luo, Jin, et al. (2020).
The authors started with a fundamental soliton realized with N = 50, 000
7Li atoms strongly confined along two axes (ω⊥/2π = 300Hz), with much
weaker confinement in the third direction, noted here z (ωz/2π = 1Hz).
At a given instant, they suddenly modify the strength g of the interactions
by changing the scattering length using a Fano–Feshbach resonance. The
change corresponds to g → A2g with A = 1.9(3) for the top of the figure,
and A = 2.6(4) for the bottom. We can check that this is equivalent to
preparing the wave packet A/ coshx for the nonlinear Schrödinger equa-
tion in reduced coordinates that we have used in this chapter.

In the case A = 1.9 ≈ 2, we obtain a composite object made up of the
two elementary solitons of amplitudes 1 and 3, associated with eigenvalues
i/2 and 3i/2. The two coefficients c1(t) and c2(t) used to calculate the func-
tion F (x) vary as e4iλ

2
j t [cf. (II.45) and (II.47)], giving the beat frequency

ωB = 4( 94 − 1
4 ) = 8 in reduced units. We therefore expect to observe a

periodic oscillation in the width of the wave packet and its central density
at the frequency ωB = 8, or ωB = ω⊥N2(a/2aoh)

2 in dimensioned units
where a denotes the scattering length after change.

Experimental data are in excellent agreement with this prediction. Sat-
suma & Yajima (1974) give the expression of the function u(x, t) for this
bi-soliton. We will not write it here as it is rather complicated, but we give
the evolution of the central density ρ0(t) = |u(0, t)|2:

ρ0(t) =
8

5 + 3 cos(ωBt)
ρ0(0) (II.86)

which leads to a variation of a factor of 4 over time. This prediction cor-
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dissociation of the breather into constituent solitons may
occur due to narrow potential barriers [8,26,27]. Perhaps
most interestingly, beyond mean-field effects, due to
quantum interference, may result in splitting [28–31],
dissociation [32,33], relaxation [34,35], or the complete
lack of breathing following the quench [36]. In prior
theoretical work, we evaluated the affect of quantum
fluctuations on the relative velocity of the two components
of a two-soliton breather using both the exact Bethe-ansatz
method, appropriate for small number of atomsN [32], and,
in the limit of large N, the Bogoliubov approach [33]. We
found that quantum fluctuations can produce the macro-
effect of breather dissociation over a large range of N, thus
providing the motivation of the present study to create and
characterize matter-wave breathers.
In this Letter, we report the creation and characterization

of a two-soliton breather in a BEC of 7Li atoms, and for the
first time, the experimental creation of a three-soliton
breather in a BEC. We systematically study the breathing
frequency as a function of deviations from a truly 1D
system, the strength of the nonlinearity, and the quench
ratio, and compare with 1D GPE simulations. We observe
the characteristic dynamics of the three-soliton breather,
including density splitting and recombination, using min-
imally destructive sequential imaging.
Our method for preparing an ultracold 7Li gas has been

described previously [37,38]. The atoms are optically
pumped into the jf ¼ 1; mF ¼ 1i state, where the s-wave
scattering length a can be controlled by a broad Feshbach
resonance with a zero crossing near 544 G [39]. We
describe our method for calibrating aðBÞ in [40]. The
atoms are confined in a cylindrically symmetric, cigar-
shaped potential formed by a single-beam optical dipole
trap with a 1=e2 Gaussian radius of 44 μm. In combination
with axial magnetic curvature, the overall harmonic
frequency along the axial (z) direction, ωz, is tunable
between ð2πÞ1.12 and ð2πÞ11.50 Hz. The radial trap
frequency is ωr ¼ ð2πÞ297 Hz, corresponding to an
aspect ratio, λ ¼ ωr=ωz, that is between 26 and 265.
First, we create a BEC by direct evaporative cooling in the
optical dipole trap with ωz ¼ ð2πÞ11.50 Hz and with a
tuned to 140 a0, where a0 is the Bohr radius. Following
evaporation, we ramp a from 140 a0 to 0.1 a0 in 1 s.
During this stage, ωz is kept large in order to limit the axial
extent of the repulsive BEC, thus, ensuring that only a
single soliton is formed when the interaction is changed
from repulsive to attractive. Next, a is ramped from 0.1 a0
to ai < 0 in 1 s, while simultaneously reducing ωz. This
creates a single soliton with approximately N ¼ 5 × 104

atoms, with minimal excitations. The scattering length is
then quenched from ai to af ¼ A2ai in 1 ms, where
jafj > jaij, and A2 is the quench ratio. We use polarization
phase-contrast imaging (PPCI) [38,45] to take in situ
images of the column density after a variable hold time th
following the quench.

Figure 1 shows the breathing dynamics of a two-soliton
breather. After the quench, the wave function contracts
toward the center and forms a large density peak at the half
period, followed by expansion back to the initial profile,
thus, completing a full breathing period, as shown in
Fig. 1(a). The axial density nðzÞ is obtained by integrating
the column density along the remaining radial coordinate
perpendicular to the imaging axis. The central density n0 of
the breather is measured by fitting the axial density to a
Gaussian function nðzÞ ¼ n0 exp ½−ðz=lzÞ2%, where n0 and
the Gaussian radius lz are the fitting parameters. Although
nðzÞ is not strictly a Gaussian, the n0 found in this way is a
good approximation of its true value.
To determine the frequency of anNs-soliton breather, the

central density n0 is measured as a function of th, and is fit
to the corresponding analytical solution of the NLSE for
two-soliton breathers, which for A2 ¼ 4, is [4]

n0ðthÞ ¼
α

5þ 3 cos ðωBth þ ϕÞ
; ð1Þ

where the breather frequency ωB, phase ϕ, and overall
amplitude α are fitted parameters. The solid line in Fig. 1(b)
shows Eq. (1) using the extracted parameters.

(a)

(b)

FIG. 1. (a) Experimental images of a two-soliton breather. The
values of the parameters are ai ¼ −0.15ð2Þa0, af ¼ −0.54ð3Þa0,
N ¼ 5.4ð4Þ × 104, Nc ¼ 5.2ð3Þ × 104, ωr ¼ ð2πÞ297ð1Þ Hz,
and ωz ¼ ð2πÞ1.12ð2Þ Hz, so that N=Nc ¼ 1.0ð1Þ, λ ¼ 265ð5Þ,
and A2 ¼ 3.6ð6Þ. Uncertainties are discussed in Ref. [40]. Each
image is a separate realization of the experiment, and the center of
the image is adjusted to remove shot-to-shot variation in the
center of mass. The color scale represents the column density in
this image, as well as in Figs. 2(c) and 3(a). (b) Each data point is
the result of fitting the axial density nðzÞ to find its central density
n0 for each of five images, and averaging the result. The solid line
is a fit to Eq. (1), with fitting parameters ωB ¼ ð2πÞ39.4ð6Þ Hz,
and ϕ ¼ ð2πÞ0.17ð1Þ. Error bars in n0 are the standard error of
the mean. The uncertainty in ωB is the fitting uncertainty.
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They are found to be N1 ¼ ð2A − 1ÞN=A2 and N2 ¼
ð2A − 3ÞN=A2. When A ≠ 2, the number of atoms in the
two solitons, N1 þ N2, is less than the total number of
atoms N, with the remaining atoms radiated away [4].
In principle, a measurement of N vs A2 could reveal the
efficiency of the quench, but the radiated loss fraction is
predicted to be less than N=10 and was not resolved in our
experiment.
A change in A2 modifies the chemical potentials of the

constituent solitons and, therefore, the breather frequency.
The measured ωB vs the quench ratio A2 is shown in
Fig. 2(d), where the dashed red line and shaded region
again correspond to the 1D GPE simulation, including
uncertainties in N=Nc. The dependence of ωB on A for the
two-soliton breather with no axial potential can be evalu-
ated as the soliton chemical potential difference,

ωB;1DðAÞ ¼
16ðA − 1Þ

A4
ωB;1DðA ¼ 2Þ; ð4Þ

which is shown by the solid green curve in Fig. 2(d).
We also excited a three-soliton breather by quenching by

a factor of A2 ¼ 7.1. The results are given in Fig. 3(a),
where a series of sequential images using PPCI are
displayed for a single realization of the experiment. The
Ns ¼ 3 breather displays more complex dynamics than
does the Ns ¼ 2 breather as it contains more than one
frequency component. A superposition of two solitons can
exhibit shape oscillations, but it cannot undergo a transition
between single- and double-peak shapes, which requires a
superposition of no fewer than three solitons. The breather
frequencies are the differences between the chemical
potentials, μ, of the constituent fundamental solitons.
Since μ ∝ ðN=NcÞ2, and the number ratio of the Ns ¼ 3
breather is 1∶3∶5 [4], the ratio of μ values is 1∶9∶25, giving
frequency ratios of 8∶16∶24. Identifying the smallest
frequency as ωB, we have the three frequencies: ωB,
2ωB, and 3ωB, appropriate for A2 ¼ 9.

To analyze the three-soliton breather quantitatively, we
fit the integrated 1D density for each th to either a single- or
double-Gaussian function depending on whether the cen-
tral density is a local maximum or minimum, respectively.
We extracted the central density n0ðthÞ from the fit, and
plotted it against th, as shown by the discrete points in
Fig. 3(b). For three-soliton breathers, n0ðthÞ is fitted to the
exact three-soliton breather solution of the NLSE for A2 ¼
9 obtained from the general theory [4,52],

n0ðthÞ ¼ α

!
1þ

32½3þ 5 cos ðωBth þ ϕÞ& sin2 1
2 ðωBth þ ϕÞ

55þ 18 cos ðωBth þ ϕÞ þ 45 cos 2ðωBth þ ϕÞ þ 10 cos 3ðωBth þ ϕÞ

"
; ð5Þ

with fitting parameters ωB, ϕ, and α. The result is ωB ¼
ð2πÞ10.6ð1Þ Hz and ϕ ¼ ð2πÞ0.11ð1Þ. The solid line in
Fig. 3(b) is Eq. (5) using these values. Equation (5) pertains
to the specific case of A2 ¼ 9, where the quench produces a
pure three-soliton breather with no radiation. We find that
Eq. (5) is a good approximation to the central density of a
three-soliton breather even when A2 is close to, but not
exactly equal to 9. This result is consistent with exact
theory [4] in which a breather composed of three funda-
mental solitons is created for 6.25 < A2 < 12.25.

In conclusion, we have observed the two- and three-
soliton breathers in a BEC by quenching the atomic
interaction using a zero crossing of a Feshbach resonance
in 7Li. We have shown that, by reducing the axial confine-
ment, the breather frequency approaches the 1D limit and is
well described by the 1D NLSE. Like fundamental bright
matter-wave solitons, higher-order solitons undergo col-
lapse for a nonlinearity that is too strong. Collapse arises
when the soliton is brought close to the 3D boundary, but
notably, the collapse threshold for breathers is higher than it

(a)

(b)

FIG. 3. (a) Experimental images of a three-soliton breather
produced by A2 ¼ 7ð2Þ. A series of phase-contrast images were
taken at 5 ms intervals after the quench in a single realization of
the experiment. The center of each image is adjusted to
remove the center-of-mass variation between the images.
Parameters for this data are λ ¼ 265ð5Þ, ai ¼ −0.08ð2Þa0, and
af ¼ −0.57ð3Þa0, and for the initial image (th ¼ 0),
N=Nc ¼ 1.0ð1Þ. Uncertainties are discussed in Ref. [40]. In each
subsequent image, N is reduced by 3% due to spontaneous
emission by the probe. (b) The closed circles are n0 extracted
from the column density images shown in (a). The solid line is a
fit of the data to Eq. (5), giving ωB ¼ ð2πÞ10.6ð2Þ Hz and
ϕ ¼ ð2πÞ0.11ð1Þ.
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Figure II.15. Oscillations of a bi-soliton (top) and a tri-soliton (bottom) formed
with lithium atoms in a harmonic trap. Figures taken from Luo, Jin, et al. (2020).

responds to the black curve shown in figure II.15 (with a shift in the time
origin).

The data in the lower part of figure II.15 show the realization of a tri-
soliton, i.e. an object composed of the three fundamental solitons of am-
plitudes 1, 3 and 5. Here too, the time evolution of the central density is a
periodic function. It involves the "Bohr frequencies" ωij = 4|λ2i − λ2j | and
the experimental results are in good agreement with the predictions of the
IST method.

4-4 Can a multi-soliton be decomposed?

A multi-soliton obtained by taking A = n ∈ N∗ for the initial wave packet
u(x, 0) = A/ coshx is a stable object. It results from the (nonlinear) com-
bination of elementary solitons uj(x) = κj/ cosh(κjx) with amplitudes
κj = 1, 3, · · · , 2n− 1, and its width and central density evolve periodically
over time. However, this multi-soliton is not a bound state of n elementary
solitons. To prove this point, we can just compare the energy of the initial
wave packet [cf (II.80)]:

Eini = −
2

3
n2(2n2 − 1) (II.87)

and the sum of the energies of the n constituents:

Etot = −
n∑

j=1

2

3
κ3j . (II.88)

The sum of the cubes of the first n odd numbers is precisely n2(2n2 − 1),
hence the equality between the two energies.

To decompose a multi-soliton into its elementary constituents, it is
therefore sufficient in principle to introduce an element that breaks the
integrability of the evolution equation. This is precisely what has been
studied numerically by Marchukov, Malomed, et al. (2019). These authors
calculated the behavior of a bi-soliton when a potential barrier in the form
of a slightly off-center Dirac distribution is gradually applied to the sys-
tem. A typical result is shown in figure II.16. It can be seen that, after
the initial bi-soliton has oscillated for around 10 periods, its two compo-
nents have separated, with one going to the left of the barrier and the other
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where A is an arbitrary real amplitude, which also determines
the oscillation period, T = π/(2A2), and x0 is the initial
displacement of the breather’s center from the point where the
narrow potential barrier (or well) is placed. In the simulations
reported below, we set the rise time in Eq. (3) to be τ = T ,
although other values of τ yield very similar results.

The breather given by Eq. (4) may be considered as a
nonlinear superposition of two fundamental solitons with
amplitudes

A1 = 3A, A2 = A, (5)

and zero velocities. On the other hand, solitons moving with
velocities c1,2 are represented by solutions

ψsol(x, t ) = A1,2 sech[A1,2(x − c1,2t )]

× exp[i(A2
1,2 − c2

1,2)t/2] (6)

(overlap between them may be neglected provided that
|c1 − c2|t ≫ A−1

1,2). Note that the integral norm of the breather,

∫ +∞

−∞
|ψbr (x, t )|2dx = 8A, (7)

is exactly equal to the summary norm of two solitons (6),

N (1)
sol + N (2)

sol ≡ 2A1 + 2A2 ≡ 8A. (8)

At t = 0, the breather in Eq. (4) takes the simplest shape,

ψbr (x, 0) = 2A sech[A(x − x0)], (9)

which is used as the initial condition in simulations reported
below. In a more general setting, one can use the input given
by Eq. (4) at t = t0 ̸= 0. Additional simulations demonstrate
that variation of t0 does not essentially modify systematic
results presented below for t0 = 0.

As mentioned above, our goal is to investigate the fission
of the breather into fragments, which will be mapped in the
parameter plane of (ε, x0), for both ε > 0 and ε < 0, i.e., in
the cases of the δ-like potential barrier and well. We find a
certain threshold value of x(crit)

0 (ε > 0) such that at |x| > x(crit)
0

the breather does not split but bounces back as a whole from
the potential barrier. In the next section, we demonstrate an
analytical estimate for x(crit)

0 and then produce its numerically
found values. Note that x0 = 0 is a special situation that leads
to a spontaneous-symmetry-breaking problem, in the form
of spontaneous selection of the directions in which the two
major fragments, which are close to solitons (6), move after
completion of the fission. In numerical calculations, the
symmetry-broken outcome may be determined by a weak
random perturbation, if it is added to the input, simulating
the real physical noise, either environmental or quantum.
Numerical noise, induced by truncation error, leads to the
symmetry breaking too, although its characteristics may differ
from those of the physical noise. In this work, we demonstrate
that even a tiny shift of the input, such as |x0| = 0.0002, leads
to the apparent symmetry breaking and fission of the breather,
although the fission initiated by very small |x0| develops
slowly; see Figs. 1(a) and 1(b).
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FIG. 1. Snapshots of direct simulations of splitting of input (9)
under the action of the the linear potential barrier with ε = 0.2
in Eq. (1), and different values of shift x0: (a) x0 = −0.0002,
(b) x0 = 0.0002, (c) x0 = −0.2, (d) x0 = 0.2, and (e) x0 = 1.3. The
snapshots are displayed at times indicated in the panels. The blue
solid lines represent profiles of |&(x)| at the respective moments of
time, while the red dashed line is the shape of the splitting barrier.
Panels (a) and (b) demonstrate that even an extremely small shift of
the initial position of the input from the central point leads to strong
(although slowly developing) breaking of the spatial symmetry and
fission of the breather.

B. The nonlinear barrier

It is also possible to consider the nonlinear potential bar-
rier, based on equation

i
∂&

∂t
= −1

2
∂2&

∂x2
−

[
1 − ε1√

πa
f (t ) exp

(
− x2

a2

)]
|&|2&,

(10)

where ε1 is the strength of the nonlinear potential. A perma-
nent localized nonlinear potential was considered in Ref. [41]
for splitting of an incident fundamental soliton but not of a
breather. The experimental realization of the nonlinear barrier
in an atomic BEC was proposed in Ref. [41], assuming that
a narrow laser beam is applied in a narrow region, reversing
the local interaction between atoms from attractive to strongly
repulsive.

III. NUMERICAL METHODS
AND ANALYTICAL ESTIMATES

The evolution of the breather under the action of the
splitting potential was simulated in the framework of Eq. (1)
with g = 1, using input (9), in which the remaining scaling
invariance makes it possible to fix A ≡ 1, while keeping ε

063623-3

Figure II.16. Evolution of a bi-soliton when a potential barrier V (x, t) =
ϵf(t)δ(x) is applied to the system. The barrier is slightly off-center with respect
to the bi-soliton. The two components are then ejected on either side of the barrier.
The time T represents the oscillation period of the bi-soliton. Figure taken from
Marchukov, Malomed, et al. (2019).

to the right. One can check that the fission products are independent of
the details of the barrier, i.e. its final height or decentering: the fragments
are the fundamental constituents of the soliton, and the barrier is merely a
"catalyst" for revealing them.

A similar result is obtained when a multi-soliton is sent over a potential
barrier, with some elementary constituents being reflected while others are
transmitted (Dunjko & Olshanii 2015).

Appendix: the AKNS approach

An equivalent version of the formulation adopted in this chapter is to
switch from manipulating linear operators, such as L̂ and Â, to simple 2×2
matrices functions of x, which we will denote Û and V̂ (Ablowitz, Kaup,
et al. 1974). The price to pay is the introduction of an additional parameter
λ, which was an eigenvalue of L̂ in this chapter’s treatment.

To present this approach for the nonlinear Schrödinger equation, let us

rewrite the system (II.24-II.25) in the form

∂xΦ = ÛΦ (II.89)

with4

Û = Û0 + λÛ1 Û0 =

(
0 −u
u∗ 0

)
Û1 =

(
−i 0
0 i

)
. (II.90)

Similarly, the combination of the evolution equation deduced from (II.34)

Φ(t) = Û(t)Φ(0) (II.91)

and the development (II.21) of Â into powers of λ leads to the equation

∂tΦ = V̂ Φ (II.92)

with
V̂ = V̂0 + λV̂1 + λ2V̂2 (II.93)

and

V̂0 = i

(
|u|2 −ux
−u∗x −|u|2

)
V̂1 = 2Û0 V̂2 = 2Û1 (II.94)

In this point of view, λ is a time-independent parameter and the nonlin-
ear Schrödinger equation is recovered by imposing that the two equations
∂xΦ = ÛΦ and ∂tΦ = V̂ Φ are compatible with each other whatever λ. This
compatibility condition can be deduced from

∂t (∂xΦ) = ∂x (∂tΦ) (II.95)

or (
∂tÛ − ∂xV̂ + [Û , V̂ ]

)
Φ = 0. (II.96)

Remember that in this point of view, Û and V̂ are only functions of x (not
operators). At any point where Φ does not cancel, we must therefore im-
pose that the matrix acting on Φ is zero. We can check, for example by
identifying the terms involving each power of λ, that this condition is sat-
isfied if and only if u(x, t) obeys the nonlinear Schrödinger equation:

∀λ : ∂tÛ − ∂xV̂ + [Û , V̂ ] = 0 ⇔ iut + uxx + 2|u|2u = 0. (II.97)

4Do not confuse this matrix Û with the evolution operator Û introduced above!
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The pair of matrices (Û , V̂ ) is also called the Lax pair for this nonlinear
equation.

The equation (II.96) is called zero curvature condition because it corre-
sponds to the cancellation of the curvature tensor Fµ,ν = [∂µ−Aµ, ∂ν−Aν ].
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Chapter III

Gray solitons

The first two chapters of this course were devoted to the study of con-
densates with attractive interactions, for which the soliton is the funda-
mental state of the system, at least in a one-dimensional geometry. We now
turn to the case of repulsive interactions, still in a 1D or quasi-1D geometry.
The solitonic structure then appears as a local depletion in a condensate of
uniform or slowly varying density in space (Tsuzuki 1971). The depletion
can be total, in which case we speak of a dark (or black) soliton, or partial,
which is called a grey soliton. To a certain extent, these solitons can be seen
as the 1D cousins of the vortices appearing in two- or three-dimensional
quantum fluids.

The fact that grey solitons are generated in fluids which occupy a large
region of space raises interesting questions about their theoretical descrip-
tion. The search for their dispersion relation, which links their energy and
their momentum, is a tricky problem that we will tackle in two different
geometries, that of a gas arranged on an infinite straight line and that of a
gas on a ring.

Other interesting problems arise when the gas density is not uniform,
but varies slowly in space. The soliton then behaves like a quasi-particle,
whose equation of motion we will establish and compare with experimen-
tal observations. Finally, we will address the new questions that arise when
we take into account the transverse extension of the gas, with the possibil-
ity of a grey soliton evolving into a vortex ring or a solitonic vortex.

For lack of space, we will not go through the IST approach here. Let

us simply mention that IST applies to the nonlinear Schrödinger equa-
tion in the repulsive case as well as in the attractive case explored in the
previous chapter. On this subject, see the article by Del Vecchio Del Vec-
chio, Bastianello, et al. (2020) and its references: this article makes the link
between the IST approach and generalized hydrodynamics for quantum
1D Bose gases1, and shows how this type of system can be described in
terms of a generalized Gibbs ensemble. The recent work of Bastianello,
Tikan, et al. (2025) describes an implementation of this generalized Gibbs
set concept on a photonic platform. In addition, see Saha & Dubessy (2025)
for a study of integrable turbulence with a soliton gas, also using the IST
method. We will not go into the subject of grey solitons in periodic lattices
either, and refer readers interested in these problems to the review article
by Frantzeskakis (2010).

1 The wave function of a grey soliton

1-1 The speed of sound in a uniform condensate

The solitons we will be considering in this chapter propagate in a conden-
sate of uniform density ρ0 and we will see that their speed is limited by the
speed of sound waves in this condensate. In the first chapter of this lecture

1The seminar by Jérôme Dubail on Friday March 28 was devoted to a description of this
generalized hydrodynamic approach
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series, we explained how to calculate this speed of sound. Let us take a
brief look at the principle behind this calculation.

The dynamics of the condensate is described by the Gross–Pitaevskii
equation

iℏ ∂tψ = − ℏ2

2m
∂2xψ + g|ψ|2ψ (III.1)

where ψ(x, t) is a complex wave function. For repulsive interactions (g >
0), the ground state of the condensate corresponds to

ψ(x, t) =
√
ρ0 e

−iµt/ℏ with µ = gρ0. (III.2)

We characterize the deviation from equilibrium by two complex numbers
U and V of order 1 and a parameter ε≪ 1:

ψ(x, t) =
√
ρ0

{
1 + ε

[
U ei(kx−ωt) + V ∗ e−i(kx−ωt)

]}
e−iµt/ℏ. (III.3)

The dispersion relation linking k to ω is obtained by injecting this form
for ψ(x, t) into the Schrödinger equation and restricting ourselves to order
1 included in ε:

(ℏω)2 = 2ϵkgρ0 + ϵ2k with ϵk ≡
ℏ2k2

2m
, (III.4)

which corresponds to the Bogoliubov dispersion relation.

We are interested here in the "phononic" limit of small k (long wave-
length), so we can neglect the contribution of ϵ2k and keep only (ℏω)2 =
2ϵkgρ0, which gives

ω = ck with c =
√
gρ0/m (III.5)

Validity of the mean-field approach. Throughout this chapter, we will
be using a macroscopic wavefunction ψ(x, t) to describe the 1D gas. This
approach is valid as long as quantum fluctuations play a negligible role,
which is the case when the Lieb–Liniger parameter γ verifies:

γ ≡ gm

ℏ2ρ0
≪ 1. (III.6)
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Figure III.1. Wave function ψ(x) ∝ tanh(κx) in the vicinity of a wall. The
density ρ(x) = |ψ(x)|2 becomes close to its asymptotic value ρ0 for a distance
from the wall of the order of the healing length ξ = 1/(κ

√
2).

1-2 The healing length

Before considering the case of a soliton, let us look at a 1D condensate in
the presence of a wall located at x = 0, so that the fluid can only occupy
the x ≥ 0 part of space. We must therefore find the ground state of the
fluid by imposing the wave function to cancel out on contact with the wall:
ψ(0) = 0.

We can verify that the lowest-energy stationary solution is the wave
function

ψ(x, t) =
√
ρ0 tanh(κx) e−iµt/ℏ (III.7)

with
ℏ2κ2

m
= µ = mc2 = gρ0 (III.8)

The wall thus creates a density hole over a typical length of the order of
1/κ (figure III.1). Traditionally, the healing length ξ is defined as

ξ ≡ ℏ√
2mgρ0

(III.9)

52



CHAPITRE III. GRAY SOLITONS § 1. The wave function of a grey soliton

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

κx

ψ(x)/
√
ρ0

Figure III.2. Wave function ψ(x, 0) of a dark soliton centered in x = 0 [cf. eq.
(III.10)].

i.e. ξ = 1/(κ
√
2). Note that the condition (III.6) on the Lieb-Lininger pa-

rameter reads ρξ ≫ 1: there must be many atoms over the healing length ξ
for the mean-field approximation to be valid.

1-3 Dark soliton (at rest)

The construction of a dark soliton in a condensate with repulsive interac-
tions is straightforward once we know the result of the previous paragraph
concerning the influence of a wall (figure III.2). We take the wave function

ψ(x, t) =
√
ρ0 tanh(κx) e−iµt/ℏ (III.10)

over all accessible space, i.e. for x from −∞ to +∞. This is not the
ground state of the system, which is given by the uniform wave function

√
ρ0 e

−iµt/ℏ, but it is a steady state solution of the Gross-Pitaevskii equa-
tion. We can, of course, translate the position of the node of the soliton and
replace the variable x by x− x0, with x0 arbitrary, in the expression of ψ.

The density associated with this wave function is written as

ρ(x) = ρ0 tanh
2(κx) = ρ0 −

ρ0

cosh2(κx)
. (III.11)

Its structure is therefore symmetrical with that of the bright solitons stud-
ied in the previous chapters, for which we had ρbright(x) = ρ0/ cosh

2(κx).
The phase is discontinuous in x = 0, with a phase jump of ±π at this point
corresponding to the change in sign of ψ(x). Density and phase are plotted
in figure III.3.

For the dimensionless version of the nonlinear Schrödinger equation in
the repulsive case, iut+uxx−2|u|2u = 0, the wave function corresponding
to the dark soliton is

u(x, t) = tanhx e−2it (III.12)

1-4 The grey soliton (in motion)

In the case of bright solitons, we can pass from a soliton at rest to a soliton
moving at speed v by a simple change of Galilean reference frame. The
situation is different for a dark soliton, as the fluid that fills the entire space
and in which the soliton is imprinted is at rest only in a particular reference
frame.

We can nevertheless construct a solution to the Gross-Pitaevskii equa-
tion that corresponds to a soliton in motion, but its expression is a little
more complicated than that of a soliton at rest. First, let us point out that
the speed of a moving soliton cannot exceed the speed of sound: |v| < c.
Under these conditions, it is useful to introduce the angle α ∈]− π/2, π/2[
such that

α = arcsin(v/c) : ⇒ sinα =
v

c
cosα =

√
1− v2

c2
, (III.13)

the sign of α being the same as that of the velocity v. With this parameteri-
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Figure III.3. Density and phase of a dark soliton centered in x = 0. The phase
choice corresponds to t = 0 in (III.10).

zation, the solution we are looking for is written:

ψ(x, t) =
√
ρ0 {cosα tanh [κv (x− vt)] + i sinα} e−iµt/ℏ (III.14)

with

κv = κ

√
1− v2

c2
. (III.15)

where κ is still defined by (III.8) and µ = gρ0.

The density profile ρ(x, t) = |ψ(x, t)|2 moves without deformation at
speed v. For simplicity’s sake, consider the time t = 0. We see that the
density is minimal in x = 0, but no longer cancels out, unlike in the case of

the soliton at rest:

ρ(x, 0) = ρ0
[
cos2 α tanh2(κvx) + sin2 α

]

(III.16)

= ρ0

[
1− cos2 α

cosh2(κvx)

]
. (III.17)

The minimum density is ρ0 × v2

c2 : the closer the soliton’s velocity to the
speed of sound, the smaller the density hole. The number of atoms con-
tributing to the soliton is calculated from :

Ns =

∫ +∞

−∞

[
|ψ(x, t)|2 − 1

]
dx (III.18)

and we find:

Ns(µ, v) = −2
ℏ

g
√
m

(
µ−mv2

)1/2
(III.19)

also written as

Ns(µ, v) = −2
√
2 ρ0ξ

(
1− v2

c2

)1/2

. (III.20)

This number is negative, as the atoms are missing due to the density hole
at the soliton. The corresponding density profile is plotted in figure III.4
(top) for v = ±c/2.

For a non-zero v velocity, the phase profile shows no discontinuity (fig-
ure III.4, bottom). Again, let us take t = 0 in (III.14) and first choose v > 0.
We find that

• When x→ +∞, the wave function (III.14) tends towards ρ0 eiα and its
phase ϕ(x) therefore tends towards the value α, which is between 0
and π/2 for v > 0.

• At x = 0, the wave function is i
√
ρ0 sinα. It is therefore pure imaginary

and has phase +π/2 since sinα > 0.

• When x → −∞, the wave function (III.14) tends towards −ρ0 e−iα =
ρ0e

i(π−α) and its phase ϕ(x) tends towards the value π − α, between
π/2 and π.
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Figure III.4. Density and phase profiles for a grey soliton, here with v = ±c/2.
We have chosen the phase convention ϕ(0) = ±π/2.

Across the soliton and for v > 0, the phase variation of the wave func-
tion ∆ϕ = ϕ(+∞) − ϕ(−∞) corresponds to the arc of circle from π − α to
α, represented in figure III.5, top:

v > 0 : ∆ϕ = α− (π − α) = −2 arccos(v/c) (III.21)

where we used the fact that for x between −1 and 1, arcsinx + arccosx =
π/2.

Now let us take a negative velocity v (but smaller than c in absolute
value), for which α is between −π/2 and 0.

• For x → ∞, we again find the value ϕ(+∞) = α for the phase of the
wave function ρ0eiα.

• For x = 0, the wave function i
√
ρ0 sinα has phase−π/2 since sinα < 0.

• For x→ −∞, the wave function−ρ0 e−iα can be written ρ0e−i(π+α), or
ϕ(−∞) = −π − α if we choose this phase in the interval ]− π,−π/2[.

1−1
0

x+ ≈ +∞

x = 0

x− ≈ −∞

α α

∆ϕ = −π + 2α

v/c

1−1 0

x+ ≈ +∞

x = 0

x− ≈ −∞

α α

∆ϕ = π + 2α

v/c

Figure III.5. Top: phase variation, here equal to the polar angle, for a grey soliton
with velocity v > 0. By convention, we have assumed a phase of π/2 at the
soliton’s center, which amounts to positing t = 0 in (III.14). Bottom: ditto for
v < 0. In both figures, we set α = arcsin(v/c) as in (III.13), with α > 0 for the
top figure and α < 0 for the bottom.

55



CHAPITRE III. GRAY SOLITONS § 2. Energy and momentum of a grey soliton

−1 −0.5 0 0.5 1

−1

0

1

v/c

∆
ϕ
/
π

Figure III.6. Relationship between the velocity v and the phase difference ∆ϕ
across a moving soliton [Eqs. (III.21)-(III.22].

When we go from x = −∞ to +∞, we describe the arc of a circle going
from −π − α to α, represented in figure III.5, bottom:

v < 0 : ∆ϕ = α− (−π − α) = 2π − 2 arccos(v/c) (III.22)

With the phase convention adopted in (III.21)-(III.22), the phase variation
∆ϕ tends towards 0 when the soliton velocity tends towards ±c. It is dis-
continuous when v crosses the point of zero velocity: it tends towards ∓π
when v → 0± (figure III.6).

Finally, let us note that in the v → ±c limit, the soliton wave function
(III.14) continuously approaches that of a uniform condensate: the number
of missing atoms (III.19) tends towards 0, and the density and phase pro-
files become quasi-constant. This point will serve as a basis in the following
paragraph for defining integration constants for velocity-dependent func-
tions.

2 Energy and momentum of a grey soliton

2-1 Using the Gross-Pitaevskii functional

We now wish to calculate the energy required to go from a uniform con-
densate between x = −∞ and x = +∞, with density ρ0, to a condensate
with a grey soliton of velocity v and the same asymptotic density ρ0. It
should be noted at the outset that these two situations do not correspond
to the same number of atoms, since the second is deduced from the first
by digging a density hole in it. However, they do correspond to the same
chemical potential µ = gρ0.

We should therefore consider the energy functional best suited to a com-
parison in terms of chemical potential rather than number of atoms, i.e. the
grand-potential (also known as Landau’s free energy)

E′[ψ] = E[ψ]− µN [ψ] (III.23)

where E[ψ] is the Gross–Pitaevskii energy functional we have already
used:

E[ψ] =
ℏ2

2m

∫
|∂xψ|2 dx+

g

2

∫
|ψ|4 dx (III.24)

and

N [ψ] =

∫
|ψ|2 dx. (III.25)

Since the density ρ(x) = |ψ(x)|2 does not tend to 0 at infinity, some of
the integrals written above are not convergent. However, the difference
between solitonic and uniform solutions does converge. Using ψ0 =

√
ρ
0

and µ = gρ0, we find:

Es(µ, v) = {E[ψ]− µN [ψ]} − {E[ψ0]− µN [ψ0]}

=

{
ℏ2

2m

∫
|∂xψ|2 +

g

2

∫
|ψ|4 − µ

∫
|ψ|2

}
−

{
g

2

∫
ρ20 − µ

∫
ρ0

}

=
ℏ2

2m

∫
|∂xψ|2 dx+

g

2

∫ (
|ψ|2 − ρ0

)2
dx (III.26)

which is indeed a convergent quantity.
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We have written this free energy Es, a function of chemical potential
and soliton velocity, for a condensate of uniform density outside the soli-
ton. However, this expression can be generalized to situations where the
bath density ρ0 (and therefore µ = gρ0) varies with position, provided this
variation remains small on the length scale κ−1 associated with the soliton
(cf. § 3-1).

Calculating Es(µ, v) from the wave function (III.14) poses no major dif-
ficulties. We use the integral

∫ +∞

−∞

dx

cosh4 x
=

4

3
(III.27)

and we arrive at

Es(µ, v) =
4

3

ℏ
g
√
m

(
µ−mv2

)3/2
(III.28)

Note the simple relationship between this energy and the number of atoms
Ns < 0 calculated in (III.19):

Es = −
mg2

6ℏ2
N3

s (III.29)

which is similar (except for a numerical factor) to that found for a bright
soliton in Chapter 1.

Note that the number of atoms Ns can be found from the relation

Ns = −
(
∂Es

∂µ

)

v

(III.30)

See Pitaevskii (2016) for an in-depth discussion of this relationship, ap-
plied to more complex situations, in particular those involving quantum
gas mixtures.

2-2 Local momentum vs. total momentum

In the first chapter of this lecture series, we indicated that for any wave
function ψ(x, t) solution of the Gross–Pitaevskii equation, the momentum

defined by

P [ψ] = −iℏ
∫
ψ∗ (∂xψ) dx (III.31)

is a constant of motion.

For the solitons we have considered here, the wave function ψ(x) varies
significantly around the soliton node. We can give ourselves two points x−
and x+ located on either side of this node, at a sufficiently large distance
(several κ−1

v ) for the density to have resumed its asymptotic value ρ0. It is
then tempting to write P ≈ Ploc with

Ploc = −iℏ
∫ x+

x−

ψ∗ (∂xψ) dx, (III.32)

where "loc" stands for local. This quantity is zero for the uniform wave
function ψ0 =

√
ρ
0

and its value for the wave function (III.14) describing a
grey soliton is:

Ploc(ρ0, v) = −2ℏρ0
v

c

(
1− v2

c2

)1/2

(III.33)

This momentum Ploc is plotted as a red dashed line on figure III.7. It can-
cels out when v → ±c, since in this limit we recover the wave function of a
uniform condensate. It also cancels out at v = 0.

This local momentum can be written as a function of the number of
missing atoms Ns calculated in (III.19):

Ploc = Nsmv (III.34)

which corresponds to the expected momentum for a hole of Ns missing
particles, moving at speed v.

There is another way of calculating the momentum of a system, in the
Lagrangian sense of the term, when we know the relationship between its
energy and its velocity. We will call this momentum total, as opposed to the
local momentum defined above. This total momentum is also called the
canonical momentum and is the conjugate variable of velocity. The starting
point is the relation

v =

(
∂Es

∂P

)

µ

(III.35)
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Figure III.7. Local momentum Ploc (red dashed curve) and total momentum P
(blue solid curve) for a grey soliton as a function of its velocity v.

where the derivative is taken holding constant the other intensive param-
eters, in this case the chemical potential µ or equivalently the asymptotic
density ρ0. This relationship is inverted to express P as a function of v and
µ.

with µ constant : dP =
dEs

v
=

(
∂Es

∂v

)

µ

dv

v
(III.36)

which gives for a positive speed

v > 0 : P (µ, c)− P (µ, v) =
∫ c

v

(
∂Es

∂v

)

µ

dv′

v′
(III.37)

The momentum P (µ, c) will be taken to be zero, since the soliton wave
function tends towards that of a uniform condensate when |v| → c. We
then find

v > 0 : P (µ, v) = Ploc(µ, v) + 2ℏρ0 arccos(v/c) (III.38)
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Figure III.8. Dispersion relation of a grey soliton: variation of energy E with
momentum P . Units are P0 = 2πℏρ0 and E0 =

(
ℏ2gρ30/m

)1/2.

The same reasoning can be used for a negative velocity v:

v < 0 : P (µ, v)− P (µ,−c) =
∫ v

−c

(
∂Es

∂v

)

µ

dv′

v′
(III.39)

which gives, after setting P (µ,−c) = 0 by continuity:

v < 0 : P (µ, v) = Ploc(µ, v) + 2ℏρ0 [arccos(v/c)− π] (III.40)

We can combine the two results (III.38,III.40) in the form

P (µ, v) = Ploc(µ, v)− ℏρ0 ∆ϕ (III.41)

where ∆ϕ ≡ ϕ(+∞) − ϕ(−∞) represents the phase difference on either
side of the soliton [see (III.21-III.22)].

The variation of the total momentum with soliton velocity is plotted in
figure III.7 as a solid line (blue curve). It cancels out by construction at
v = ±c. It is discontinuous in v = 0:

v → 0± : P (µ, v)→ ±πℏρ0. (III.42)

Similarly, we have plotted in figure III.8 the dispersion relation E(P ) for P
varying between the two extreme values found above, ±πℏρ0.
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Figure III.9. A solitonic wavefunction "prepared" starting from a uniform con-
densate, by removing Ns particles in the vicinity of x = 0 and imparting the
expected phase profile between x− and x+. The preparation is local, in the sense
that it has no effect on the fluid beyond the distance L.

2-3 Why two momenta? The case of a straight line

It is, of course, surprising to find two different results for the momentum,
depending on whether it is calculated directly from the gradient of the
wave function or using a Lagrangian approach, based on the relationship
between energy and velocity.

This difference can be explained by considering how to prepare a soli-
ton in a real experiment. Starting with a uniform condensate of density ρ0,
we need to act on it to remove Ns atoms and "imprint" the desired den-
sity and phase profiles to prepare a soliton of velocity v, for example in the
vicinity of the origin x = 0. But such an imprint cannot simultaneously
affect all points on the x axis, which is assumed here to be infinite. It will
concern a finite region of the axis, say between −L and L, with the rest
of the wave function remaining unchanged as shown in figure III.9. The

result is a density and phase profile like those shown in the figure. The
soliton itself is concentrated in the x− < x < x+ zone, with |x±| of the
order of a few κ−1

v , and the |x±| < |x| < L zone is one of uniform density
ρ0, in which the phase connects smoothly to 0 beyond x = ±L.

It is easy to see, then, that the assumption we made when moving
from (III.31) to (III.32), namely that ψ(x) does not vary outside the inter-
val [x−, x+], is incorrect in this case. More precisely, let us evaluate the
momentum to be supplied to the condensate to go from the uniform state
to the profile shown in figure III.9. Let us start with the integral

∆Psupplied = −iℏ
∫ +∞

−∞
ψ∗ (∂xψ) dx (III.43)

and separate the x axis into several regions:

• The parts |x| < |x±| are areas where the density and phase of the
soliton vary significantly, and this variation is identical to that of the
soliton considered in the previous section. The result for the integral∫ x+

x−
is therefore the same as that found for Ploc in (III.33).

• The zones |x±| < |x| < L are zones of uniform density and slowly
varying ϕ(x) phase. Their contribution to the integral is

ℏρ0

[∫ x−

−L

∂xϕ+

∫ +L

x+

∂xϕ

]
= ℏρ0 [ϕ(x−)− ϕ(−L) + ϕ(+L)− ϕ(x+)]

(III.44)
The ϕ(±L) values are equal by construction, since the starting con-
densate, of uniform phase, has not been affected at these points. The
quantity ϕ(x+) − ϕ(x−) corresponds to the phase difference ∆ϕ be-
tween the two sides of the soliton [cf. (III.21-III.22)].

• The parts |x| > L do not contribute since the wave function has not
been affected in these areas.

The momentum to be supplied to the system to go from a uniform con-
densate to the wave function represented in figure III.9 is therefore:

∆Psupplied = Ploc − ℏρ0 ∆ϕ + 0. (III.45)
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Figure III.10. Two phase profiles leading to a dark soliton (zero velocity) at x =
0. The total momentum transferred during the preparation is +πℏρ0 for the top
profile and −πℏρ0 for the bottom profile.

This expression coincides with the total momentum expression given in
(III.41). This is the Lagrangian expression to use when dealing with mo-
mentum exchange problems in the infinite gas in the presence of a soliton.

Note the rather unusual situation that arises for a soliton at rest. In this
case, the two phase impressions shown in figure III.10 lead to the same
result, i.e. the π phase jump at the density hole. However, the momenta
supplied to the system are different: +πℏρ0 for the top choice and −πℏρ0
for the bottom choice.

2-4 Why two momenta? The case of a ring

Another way of approaching the problem, which leads to an equivalent
result, is to place the gas on a ring, which means choosing periodic bound-
ary conditions for the wave function ψ(x), posing ψ(−L/2) = ψ(L/2) for

a ring of perimeter L. This produces a phase profile of the type shown in
figure III.11.

Calculating the momentum2 required to prepare the fluid in this state is
carried out in a similar way to that used above for an infinite straight line.
Starting from

∆Psupplied = −iℏ
∫ +L/2

−L/2

ψ∗ (∂xψ) dx, (III.46)

we can cut the integral into three pieces:

• The part |x| < |x±| gives the result Ploc found in (III.33).

• The two parts |x±| < |x| < L/2 correspond to zones of uniform
density, and contribute to ∆psupplied because of the phase gradient re-
quired to maintain periodic boundary conditions. For the contribution
of these two zones, we find:

ℏρ0

[∫ x−

−L/2

∂xϕ+

∫ L/2

x+

∂xϕ

]
= ℏρ0 [ϕ(x−)− ϕ(−L/2) + ϕ(L/2)− ϕ(x+)]

= ℏρ0 (−∆ϕ+ 2nπ) (III.47)

where ∆ϕ = ϕ(x+)−ϕ(x−) and where n ∈ Z stands for the winding of
the phase. Indeed periodic boundary conditions eiϕ(L/2) = eiϕ(−L/2)

entail that ϕ(−L/2) = ϕ(L/2) + 2nπ.

The sum of these contributions shows that the momentum to be supplied
is

P = Ploc − ℏρ0∆ϕ + n 2πℏρ0 n ∈ Z (III.48)

The current flowing in the ring outside the soliton region is called the back-
flow current. It carries the momentum

Pbf = −ℏρ0∆ϕ + n 2πℏρ0 (III.49)

which is of the same order of magnitude as the local soliton momentum,
at least for small values of n (see figure III.7 where these two momentums
are plotted). The velocity vbf of the backflow current can be deduced from

2In this ring geometry, it would be more appropriate to speak of angular momentum.
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Figure III.11. Dark soliton on a closed ring. The two contributions to the total
momentum result from (i) the current between x− and x+ corresponding to Ploc,
(ii) the phase gradient over the rest of the ring x+ → ±L/2→ x−. The two phase
profiles shown here correspond to a winding number n = 0 and n = 1 in (III.47).

the above, using the fact that in the uniform density part ρ0, the velocity is
equal to ℏ

m∂xϕ, which gives in the limit |x±| ≪ L:

vbf =
ℏ
mL

(−∆ϕ+ 2nπ) . (III.50)

The variation of the phase change ∆ϕ with the soliton velocity is plotted in
figure III.6. Let us mention that Carr, Clark, et al. (2000) have searched for
all stationary solutions of the Gross–Pitaevskii 1D equation in a ring, i.e. so-
lutions such that the velocity of the backflow current exactly compensates
for the natural velocity of the grey soliton.

Note. Even if the momentum associated with the backflow current is sig-
nificant, its energy cancels out at the thermodynamic limit L→ +∞ at con-
stant ρ0. As the phase difference ∆ϕ is distributed over the entire perimeter
of the ring (outside the small arc x−, x+), the velocity associated with it in
the zone of uniform density is ∼ ℏ

mL∆ϕ, which leads to the kinetic energy
for the N = ρ0L particles concerned:

1

2
mNv2 ∼ ℏ2ρ0

2mL
(∆ϕ)2 (III.51)

which decreases as 1/L at the thermodynamic limit. The same applies to
the velocity derived from the quantized component n 2πℏρ0, at least for
small values of the integer n. We deduce that the dispersion relation E(P )
of a grey soliton in a ring at the thermodynamic limit is a periodic function
of momentum, since we can add the quantum 2πℏρ0 toP without changing
the energy. The dispersion relation shown in figure III.8 can therefore be
extended to give the one shown in figure III.12.

2-5 Effective soliton mass

We define the effective mass Ms of the soliton by

1

Ms
=

(
∂2Es

∂P 2

)

µ

(III.52)

or
1

Ms
=

(
∂v

∂P

)

µ

since v =

(
∂Es

∂P

)

µ

. (III.53)
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Figure III.12. Dispersion relation of a grey soliton in a ring of radius R → ∞:
variation of energy E with momentum P . The units are P0 = 2πℏρ0 and E0 =(
ℏ2gρ30/m

)1/2.

Using Es(µ, P ) = Es[µ, v(µ, P )], we also have
(
∂Es

∂P

)

µ

=

(
∂Es

∂v

)

µ

(
∂v

∂P

)

µ

⇒ v =

(
∂Es

∂v

)

µ

1

Ms
, (III.54)

which allows this effective mass to be put into the form:

Ms =
1

v

(
∂Es

∂v

)

µ

. (III.55)

Using the explicit form Es(µ, v) given in (III.28) and the expression (III.19)
for Ns, we then find:

Ms = 2mNs (III.56)

this mass being negative since Ns is negative.

The origin of the factor 2 in the above relationship is explained by the
existence of the backflow current. For simplicity’s sake, let us consider
a gas with a soliton of zero initial velocity, and look for the momentum
that needs to be applied to this gas to set the soliton in motion at velocity
δv ≪ c. The initial local momentum calculated from (III.33) is zero and the
final local momentum is δPloc ≈ −2ℏρ0 δv/c. The initial momentum due to
the backflow current Pbf = πℏρ0 and its final value, deduced from (III.21)

and (III.49), is Pcc ≈ (π − 2 δv/c)ℏρ0, i.e. a change δPcc ≈ −2ℏρ0 δv/c. We
therefore find that setting the soliton in motion requires the total momen-
tum

δP = δPloc + δPbf with δPloc ≈ δPbf ≈ −2ℏρ0
δv

c
. (III.57)

The effective mass, deduced fromMs = δP/δv, therefore contains two con-
tributions which are found to be equal in the case of zero initial velocity:
Ms ≈ −4ℏρ0/c to be compared with the number of atoms associated with
the soliton deduced from (III.19): mNs ≈ −2ℏρ0/c. In other words, the
effective mass takes into account the fact that, in order to set the soliton in
motion, it is necessary to count not only the momentum linked to the de-
pletion motion, but also the change in momentum of the backflow current,
both contributions being equal for a soliton initially at rest.

3 Gray soliton dynamics

3-1 The soliton seen as a quasi-particle

Consider a condensate at equilibrium in a potential V (x), with chemical
potential µ0. Let us further assume that a dark soliton profile has been im-
printed in the vicinity of a point x in the condensate, and that the density
of the condensate varies only slightly over the characteristic soliton length
scale κ−1

v , evaluated for the local density ρ(x). In practice, this condition is
satisfied if the condensate is in the Thomas-Fermi regime, discussed below.
We can then treat the soliton as a quasiparticle and study its motion in the
local density approximation. This approach is justified in detail by Kono-
top & Pitaevskii (2004) [see also Brazhnyi & Konotop (2003), Theocharis,
Schmelcher, et al. (2005), and Brazhnyi, Konotop, et al. (2006)].

In this approach, we use the chemical potential at the soliton position

µ(x) = µ0 − V (x) (III.58)

to deduce its energy E(x, v) as a function of its position x and velocity v.
This energy is equal to the free energy calculated above for a soliton in a
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uniform condensate [cf. (III.28)].

E(x, v) ≡ Es[µ(x), v] =
4ℏ

3g
√
m

[
µ(x)−mv2

]3/2
(III.59)

and the soliton’s equation of motion can be obtained directly by writing
that E(x, v) is a constant of motion as the soliton’s position x and velocity
v change over time. We then write:

0 =
dE
dt

=

(
∂Es

∂µ

)

v

dµ

dx

dx

dt
+

(
∂Es

∂v

)

µ

dv

dt
. (III.60)

A simple calculation using the explicit relation (III.28) giving Es as a func-
tion of µ and v then leads to:

2m
dv

dt
= f(x) (III.61)

where the force f(x) derives from the potential V (x):

f(x) = −dV

dx
=

dµ

dx
. (III.62)

So it is as if the soliton were a particle of mass 2m feeling the same force as
the atoms in the condensate.

In general, the relation (III.60) expressing the conservation of energy
Es[µ− V (x), v] is written as3

0 = −Nsf(x)v +Msv
dv

dt
⇒ Ms

dv

dt
= Nsf(x) (III.63)

with the relationships already mentioned in (III.30) and (III.55):

Ns = −
(
∂Es

∂µ

)

v

Msv = −
(
∂Es

∂v

)

µ

, (III.64)

3We can also work with the variables (µ, P ) rather than (µ, v). We then have

0 = −N ′
sf(x)v + v

dP

dt
⇒

dP

dt
= N ′

sf(x)

with

N ′
s = −

(
∂Es

∂µ

)
P

v =

(
∂Es

∂P

)
µ

.

in accordance with (III.61) after multiplication of both equation members
by Ns and the relationship Ms = 2mNs found in (III.56). This form can be
interpreted as the equation of motion of an object of negative mass Ms un-
der the effect of the "collective" force Nsf , with Ns also negative. From this
point of view, the fact that the soliton is accelerated in the same direction as
the atoms in the condensate results from the compensation between these
two negative signs.

Remarkably, the soliton’s motion occurs without any change of shape,
even if the bath is not of constant density. To demonstrate this, we can first
note that the relationship between the energy and the number of missing
atoms, E = −mg2

6ℏ2 N
3
s , implies that Ns is constant since E is. More precisely,

the profile of the density hole itself remains unchanged, as can be seen from
the wave function (III.14). The position-dependent part, i.e. the real part of
the brace, can be written:

1√
g

(
µ−mv2

)1/2
tanh

[√
m

ℏ
(
µ−mv2

)1/2
x(t)

]
(III.65)

so that the amplitude and width of this density hole remain constant, since
µ−mv2 is independent of time. Only the position of the soliton x and the
amplitude v

c

√
ρ of the imaginary part of the brace, i.e. the residual density

at the center of the soliton, vary with time.

Figure III.13 shows the numerical calculation of the evolution of a soli-
ton initially at rest, i.e. dark, prepared at the center of a condensate con-
fined in a segment and subjected to a constant force f , i.e. a linear potential
V (x) = −fx. The total number of atoms is sufficiently large for the spa-
tial profile of the condensate to be given as a good approximation by the
Thomas-Fermi approximation4:

gρ(x) + V (x) = µ0 ⇒ ρ(x) =
µ0

g
+
fx

g
(III.66)

The condensate state is prepared by performing an imaginary-time evolu-
tion of the Gross-Pitaevskii equation, with the constraint ψ(x) = 0 at the

4This approximation amounts to neglecting the kinetic energy term in the Gross–Pitaevskii
equation giving the equilibrium form of the condensate:

−
ℏ2

2m
∂2xψ +

[
g|ψ(x)|2 + V (x)

]
ψ(x) = µ0 ψ(x).
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Figure III.13. Evolution of a dark soliton under the effect of a force directed to the
right. The motion of the soliton center is in excellent agreement with x = ft2/4m,
i.e. an acceleration a = f/2m (calculated with a grid of 8192 points).

center of the segment. This constraint is then removed for the real-time
evolution shown in figure III.13 and we see that the soliton moves in the
direction of the force with a uniformly accelerated motion, and an acceler-
ation equal to f/2m as expected from (III.61).

3-2 Oscillation in a harmonic trap

The results of the previous paragraph, obtained for a uniform force, can be
generalized to any type of potential V (x) provided that the approximation
allowing the soliton to be treated as a quasiparticle is valid. A remarkable
situation is obtained for harmonic confinement along the x axis: V (x) =
mω2x2/2 (Busch & Anglin 2000). In this case, the force f(x) is equal to
−mω2x, so the equation of motion (III.61) is written:

d2x

dt2
+
ω2

2
x = 0 (III.67)

which indicates that the soliton oscillates with frequency ω/
√
2.
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Re
Z q1L

q2L
dx!2iu!

j "x#≠txjx2q 1 ≠x$x 0u!
j 2 u!0

j x 2 2i"p 2 ȳ#u!
jx%& !

Re
Z q1L

q2L
dx!2u!

j "x#J "x, et# 2 ≠x$f0u!
j 2 u!0

j f 2 2i"p 2 ȳ#u!
jf%& ! 0 . (8)

Here the crucial final equality follows from the fact that the
two sides of the preceding equation vary on different time
scales, and so must separately equal zero. (Since the first
line is linear in x , which must be fast, a nonzero constant is
not allowed.) This is the great strength of the combination
of boundary layer and multiple time scale analysis, that it
allows us to obtain the motion of a short-scale defect in a
long-scale background, by solving only time-independent
equations.
Equation (8) gives us four constraints, which since all

four uj"x# may be obtained explicitly, can be evaluated.
In addition, we require that our soliton c match smoothly
into the background flow as jx 2 qj ! L, and this intro-
duces constraints from (4) as well. Together these con-
straints fix the hitherto unknown "p, and also relate r, u, y
at x ! q 2 L to their values at x ! q 1 L. We illustrate
the procedure with the simplest but most important con-
straint, the one involving u1"x# ! sech2k"x 2 q#. Since
u1"6L# and u0

1"6L# are exponentially negligible, we dis-
card terms of this order in (8). We can then extend the
limits of integration to infinity and shift the integration
dummy variable x 2 q ! y, to obtain

k
Z `

2`
dy$k"V 0"q# 1 "̄y#y tanhky 1 "p 2 "̄y%sech2ky !

2 "p 1 V 0"q# 2 "̄y ! 0 .

(9)

This is the equation of motion, accurate to O "e#, for a
dark soliton in an otherwise hydrodynamic condensate in
an inhomogeneous potential. We will examine it in some
simple limits, before discussing the conditions obtained
from the other uj , and from requiring (4) as jx 2 qj ! L.
With y ! 0, Eq. (9) implies

q̈ ! 2
1
2

V 0"q# . (10)

In a harmonic trap, this implies oscillation of the soliton
with frequency 1'

p
2 times that of the dipole mode of the

condensate (the trap frequency) [14]. This result can also
be obtained for small oscillations by solving the Bogoliu-
bov equations for a motionless soliton in a trap, using a
simpler, time-independent version of the “boundary layer”
approach that led to (9) [12]. We have confirmed this
frequency to rather more than the expected accuracy in
numerical simulations [15] of harmonic traps over a wide
range of condensate densities and oscillation amplitudes;
we have also confirmed that the center of mass is de-
coupled and oscillates at the trap frequency. Equation (10)
also holds for arbitrary potentials, however, as long as they

vary slowly on the healing length scale. We have therefore
further confirmed the good accuracy of our equation of
motion by solving Eq. (1) numerically over a wide range
of parameters and for various potentials; a generic example
is shown in Fig. 1. Since with lasers one can generate
microwells or barriers in a trap, it should be possible to
realize similar potentials experimentally.
We now consider a stationary background flow, such

as in an inhomogeneous toroidal trap holding a persistent
current. In general, the system is quite complicated, but in
the limit where both the inhomogeneous potential V and
the average kinetic energy y2

0 are small compared to the
chemical potential, we have r "! 1 2 V , y "! y0$1 1 V %,
which with ≠ty ! 0 implies the easily solvable equation

q̈ ! V 0"q# $y0 "q 2 1%'2 . (11)

Despite the "q term, Eq. (11) is not dissipative: it may
be derived variationally from the Lagrangian "2'y2

0# "1 2
y0 "q# $ln"1 2 y0 "q# 2 1% 2 V , and the energy "q ≠L

≠ "q 2 L is
conserved.
A simple example of the generally still more complex

case where r and y are time dependent is a soliton moving
in a harmonic trap of frequency V in which the collective
dipole mode has also been excited:

q̈ ! 2
V2

2
$q 1 Q cosV"t 2 t0#% , (12)

where Q is the dipole amplitude. As required by the
Ehrenfest theorem for a condensate in a harmonic trap, the

FIG. 1. Density jcj2 for a dark soliton oscillating through a
static Thomas-Fermi cloud at U ! 300, with potential V !
0.1x"x 2 2# 1 1.1sech2x shown in dots. Initially q ! 22.18.
Equation (10) thus predicts the time between turning points
(where jcj2 ! p2 ! 0 at the minimum) to be T'2 ! 11.5; the
error of about 4% is indeed O "e#.

2300

Figure III.14. Motion of a soliton in a 1D condensate confined in a (nearly)
harmonic potential of frequency ω (the authors have added a slight potential bump
near the center). The number of atoms is sufficiently large for the equilibrium form
of the condensate (apart from the soliton) to be well described by the Thomas-Fermi
approximation. The frequency of the oscillating motion is close to ω/

√
2. Figure

taken from Busch & Anglin (2000).

This prediction is verified numerically (see figure III.14) and remains
valid even if the amplitude of the soliton’s oscillation is not small com-
pared to the size of the condensate. The turning points of the soliton’s
oscillating motion (where its velocity cancels out) correspond to complete
depletion. The soliton’s oscillation can be superimposed on an oscillation
of the condensate’s center of mass in the harmonic trap.

The simplicity of the equation of motion (III.67) can be deceptive. It is
only valid in an ideal system, i.e. a perfectly condensed gas described by
the Gross-Pitaevskii equation, i.e. at zero temperature. If the temperature
is non-zero, energy dissipation towards already populated phonon modes
may occur. More precisely, for an ordinary oscillator, energy dissipation
has the effect of driving the oscillator towards the center of the trap with
zero velocity (we are neglecting quantum effects here). But for our soliton,
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the energy (III.28) is written:

Es(x, v) =
4

3

ℏ
g
√
m

(
µ0 −

1

2
mω2x2 −mv2

)2

. (III.68)

In a 3D gas, for which the Gross-Pitaevskii equation is not integrable, a dis-
sipative mechanism linked to phonon scattering can irreversibly increase
the quantity 1

2mω
2x2+mv2, thus accelerating the soliton towards the edge

of the condensate, which then makes it disappear. This is a thermodynamic
instability, which translates into the existence of excitations with negative
energy. Muryshev, Shlyapnikov, et al. (2002) show that the typical lifetime
of the soliton then decreases as 1/T in the regime where the temperature T
is greater than µ0/kB.

Another type of instability, called dynamic instability (like that encoun-
tered in Chapter 1), results in the existence of excitations with complex en-
ergy, leading to an exponential growth of seeds coming from initial noise.
This type of instability is absent in the strictly 1D case studied here. On
the other hand, for a soliton in an elongated 3D trap, dynamic instability
can arise when the chemical potential µ0 becomes comparable to or greater
than the characteristic energy of the transverse confinement ℏω⊥. We will
come back to this in § 4.

Quantum treatment of soliton motion. In this chapter, we have used a
classical field equation, the Gross-Pitaevskii equation, to treat the motion
of a grey soliton. These solitons can be found also in the quantum treat-
ment of a 1D gas, and they then appear as wave packets formed from type
II Lieb excitations [see articles by Wadkin-Snaith & Gangardt (2012) and
Del Vecchio Del Vecchio, Bastianello, et al. (2020) and their references]. In
this quantum treatment, solitons acquire a finite lifetime, even in a strictly
1D geometry and at zero temperature, as soon as they evolve in a bath of
variable density ρ(x) (this is enough to break the integrability of the prob-
lem). Moving solitons radiate phonons in a process formally analogous to
the electromagnetic radiation of an accelerated charged particle. Wadkin-
Snaith & Gangardt (2012) evaluate the corresponding lifetime, which re-
mains large in front of the oscillation period as long as the amplitude of
the soliton’s motion remains significantly smaller than the extension of the
condensate.

VOLUME 83, NUMBER 25 P HY S I CA L R EV I EW LE T T ER S 20 DECEMBER 1999

FIG. 1. Density distribution (a) and phase distribution (b) of a
dark soliton state with Df ! p. The density minimum has a
width !l0. The scheme for the generation of dark solitons by
phase imprinting is shown in (c), where le is the width of the
potential edge.

(axial) soliton energy to the radial degrees of freedom and
leads to the undulation of the DS plane, and ultimately
to the destruction of the soliton. This instability is
essentially suppressed for solitons in cigar-shaped traps
with a strong radial confinement [9], such as in our
experiment [15].
As can be seen from Eq. (1), the local phase of the dark

soliton wave function varies only in the vicinity of the DS
plane, x " xk , and is constant in the outer regions, with
a phase difference Df between the parts left and right to
the DS plane (see, e.g., Fig. 1b).
To generate dark solitons we apply the method of phase

imprinting [13], which allows one also to create vortices
and other textures in BEC’s. We apply a homogeneous
potential Uint, generated by the dipole potential of a
far detuned laser beam, to one-half of the condensate
wave function (Fig. 1c). The potential is pulsed on for
a time tp , such that the wave function locally acquires
an additional phase factor e2iDf, with Df ! Uinttp#h̄ !
p . The pulse duration is chosen to be short compared to
the correlation time of the condensate, tc ! h̄#m, where
m is the chemical potential. This ensures that the effect
of the light pulse is mainly a change of the phase of the
BEC, whereas changes of the density during this time can
be neglected. Note, however, that due to the imprinted
phase, at larger times one expects an adjustment of the
phase and density distribution in the condensate. This
will lead to the formation of a dark soliton and also to
additional structures as discussed below.
In our experimental setup (see [16]), condensates con-

taining typically 1.5 3 105 atoms in the (F ! 2, mF !
12) state, with less than 10% of the atoms being in the
thermal cloud, are produced every 20 s. The fundamen-
tal frequencies of our static magnetic trap are vx ! 2p 3
14 Hz and v! ! 2p 3 425 Hz along the axial and radial
directions, respectively. The condensates are cigar-shaped
with the long axis (x axis) oriented horizontally.
For the phase imprinting potential Uint, a blue detuned,

far off resonant laser field (l ! 532 nm) of intensity
I " 20 W#mm2 pulsed for a time tp ! 20 ms results in

a phase shift Df of the order of p [17]. Spontaneous
processes can be totally neglected. A high quality optical
system is used to image an intensity profile to the
BEC, nearly corresponding to a step function with a
width of the edge, le, smaller than 3 mm (see Fig. 1c).
The corresponding potential gradient leads to a force
transferring momentum locally to the wave function and
supporting the creation of a density minimum at the
position of the DS plane for the dark soliton. Note that
also the velocity of the soliton depends on le (see Fig. 3c).
After applying the dipole potential we let the atoms

evolve within the magnetic trap for a variable time tev .
We then release the BEC from the trap (switched off
within 200 ms) and take an absorption image of the
density distribution after a time of flight tTOF ! 4 ms
(reducing the density in order to get a good signal-to-noise
ratio in the images).
In a series of measurements we have studied the

creation and successive dynamics of dark solitons as a
function of the evolution time and the imprinted phase.
Figure 2 shows density profiles of the atomic clouds for
different evolution times in the magnetic trap, tev . The
potential Uint has been applied to the part of the BEC
with x , 0. For this measurement the potential strength
was estimated to correspond to a phase shift of !p .
For short evolution times the density profile of the

BEC shows a pronounced minimum (contrast about 40%).
After a time of typically tev " 1.5 ms a second minimum
appears. Both minima (contrast about 20% each) travel
in opposite directions and in general with different veloci-
ties. Figure 3a shows the evolution of these two minima
in comparison to theoretical results obtained numerically
from the 3D Gross-Pitaevskii equation.
One of the most important results of this work is

that both structures move with velocities which are
smaller than the speed of sound (cs " 3.7 mm#s for
our parameters) and depend on the applied phase shift.
Therefore, the observed structures are different from
sound waves in a condensate as first observed at MIT [18].
We identify the minimum moving slowly in the negative
x direction to be the DS plane of a dark soliton.
We have performed a series of measurements with

different parameter sets for le and the product of laser

FIG. 2. Absorption images of BEC’s with kink-wise struc-
tures propagating in the direction of the long condensate
axis, for different evolution times in the magnetic trap, tev .
(Df ! p, N " 1.5 3 105, and tTOF ! 4 ms).
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FIG. 3. (a) Position of the experimentally observed density
minima versus evolution time in the magnetic trap for Df !
0.5p. The dashed lines show results from the 3D simulation
for N ! 5 3 104, le ! 3 mm, and Df ! 2p"3. (b) and (c)
show the dependence of yk"cs on the imprinted phase (for
le ! 3 mm) and on le (for Df ! p) obtained numerically in
quasi-1D simulations (see [16]) (with N ! 1.5 3 105).

intensity and imprinting time. The velocity of the dark
soliton could thereby be varied between yk ! 2.0 mm"s
(Fig. 3a) and yk ! 3.0 mm"s. For fixed le, the velocity
yk decreases with increasing Df. An increase of Df !
p"2 by a factor of 1.5 results in decreasing yk by 10%, in
agreement with theoretical results (see Figs. 3b and 3c).
For the significantly reduced imprinted phase we did not
observe any dark soliton structures. For higher imprinted
phase values more complex structures with several density
minima were observed.
In addition to the dark soliton, the dipole potential

creates a density wave traveling in the positive x direction
with a velocity close to cs. After opening the trap, a
complex dynamics results in the appearance of a second
minimum behind the density wave as explained below.
To understand the generation of dark solitons and their

behavior in the initial stages of the evolution we have per-
formed numerical simulations of the 3D Gross-Pitaevskii
equation. Computing time limitations have restricted our
studies to atom numbers below 5 3 104. The simulations
describe well the case T ! 0, but ignore the effects of ther-
modynamic instability. The latter was analyzed by using
a generalization of the theory of Ref. [10].
Our theoretical findings are summarized as follows:
(1) The results of the simulations agree well with the ex-

perimental observations. After applying a phase changing
potential, a dark soliton moves in the negative x direction
(Fig. 4a). The generation of the soliton by the phase im-
printing method is accompanied by a density wave mov-
ing in the opposite direction. The maximum of the density
wave travels with a velocity!cs, independently of the val-
ues of Df and le. A characteristic time for the creation of
the soliton is of the order of l0"cs and in our case it does
not exceed fractions of ms. Note that after this time the
soliton-related phase slip in the wave function is affected
by a complex dynamics of the soliton generation and will
be different from the imprinted Df.
(2) For a fixed le, the increase of Df from p to

2p , 3p, . . ., leads to the creation of double, triple, etc.,

FIG. 4. Evolution of the density distribution obtained numeri-
cally from the 3D simulations for N ! 104 and Df ! 2p"3.
(a) Evolution inside the magnetic trap for different tev ; the dark
soliton is marked by an arrow. (b) After tTOF ! 4 ms, a second
density minimum is observed behind the density wave.

solitons. BEC’s with several dark solitons were also
observed experimentally and are currently investigated in
detail.
(3) The initial soliton velocity decreases as le ! 0

(Fig. 3c). As observed experimentally, typical soliton ve-
locities (for le , 3 mm) are smaller than cs and grow
with the number of atoms. Velocities of the accompa-
nying density waves are close to cs. These waves move
away from the center of the trap, broaden, and eventually
vanish (Fig. 4). This is in contrast to solitons which are
expected to oscillate in the trap, retaining their width and
absolute depth. However, the observation of these oscil-
lations would require longer lifetimes of the solitons (lim-
ited by dissipation to !10 ms; see below). Within this
time scale we find no signatures of dynamical instability
and reveal only a moderate change (,10%) of the soliton
velocity, in agreement with our experiments.
(4) The situation changes after opening the trap

and allowing the condensate to ballistically expand in
the radial direction. The simulation shows that the
soliton velocity drops down rapidly, while its width
grows. To understand this aspect we have used a scaling
approach, similar to that of [19,20], for the radial bal-
listic expansion of an infinitely elongated condensate
containing a moving kink. This approach (valid for
v21

! # tTOF # m"h̄v2
!) predicts a soliton velocity

yk#tTOF$ % yk#tev $ ln#2v!tTOF$"v!tTOF, where yk#tev$
is the soliton velocity at tev just before switching off the
trap. This result agrees very well with both experimental
data and numerical simulations for a finite size BEC.
Moreover, in a short time tTOF & v21

! after switching off
the trap, the density develops a second minimum located
between the density wave and the dark soliton. This
minimum has a width and depth comparable to those of
the dark soliton (see Fig. 4b). Its position regarded as a
function of tev moves with a constant velocity similar to
that of the soliton. The creation of this second minimum
is a coherent phenomenon and can be attributed to a
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Figure III.15. Left: principle of the phase impression of a soliton on an elongated
condensate. Right: numerical solution of the Gross-Pitaevskii equation, showing
the creation of a density wave leaving behind a depleted zone of low velocity, corre-
sponding to a grey soliton with ∆ϕ = 2π/3. The evolution times are (from bottom
to top): 0, 1, 3, 5 ms. Figure taken from Burger, Bongs, et al. (1999).

3-3 Experimental observations

The first grey solitons in Bose-Einstein condensates were produced exper-
imentally by Burger, Bongs, et al. (1999) and Denschlag, Simsarian, et al.
(2000). In both experiments, the soliton is produced by phase printing.
One half of the condensate is illuminated by a non-resonant laser beam for
a short time τ (figure III.15, left). The illuminated part acquires a phase
ϕ proportional to the light intensity and duration τ , which is adjusted to
ϕ ∼ π. At the boundary between light and dark, the strong phase gradient
induces a current that sets a density wave in motion (figure III.15, right).
This movement leaves behind a density hole corresponding (roughly) to
the desired soliton.

In these early experiments and those that immediately followed, such
as Anderson, Haljan, et al. (2001) and Ginsberg, Brand, et al. (2005), the
soliton’s lifetime was short, less than ten milliseconds. This was due both
to dynamic instabilities of the soliton when the trap shape was too far from
the ideal 1D situation, and to thermodynamic instabilities when the ther-
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Dark-soliton dynamics in Bose-Einstein condensates at finite temperature
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The dynamics of a dark soliton in an elongated Bose-Einstein condensate is studied at finite temperatures. In
addition to accurately reproducing all stages of the decay of the soliton observed in the experiment of Burger
et al. #Phys. Rev. Lett. 83, 5198 !1999"$, our numerical simulations reveal the existence of an experimentally
accessible parameter regime for which phase-imprinted dark solitons can execute at least one full axial oscil-
lation prior to their decay. The dependence of the decay time scale on temperature and initial soliton depth is
analyzed and the role of interatomic collisions quantified.
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INTRODUCTION

Bose-Einstein condensates !BECs" in ultracold gases pro-
vide an ideal test ground for nonlinear physics. At tempera-
tures close to absolute zero, the condensate can be accurately
described by the Gross-Pitaevskii !GP" equation #1$, which
has the form of a nonlinear Schrödinger equation where the
nonlinear term arises from interactions between atoms. A
similar equation appears in nonlinear optics, where it is
known to support soliton solutions #2$.

Both bright and dark solitons have also been observed in
BEC experiments. Bright solitons can be formed when the
atomic interactions are attractive #3–5$, whereas “gap” bright
solitons have been created experimentally in repulsive con-
densates in optical lattices #6$. Repulsive condensates in har-
monic traps, however, can only support dark solitons, which
correspond to propagating one-dimensional localized minima
in the density. Dark solitons have been generated experimen-
tally #7–10$, and their temperature properties have been stud-
ied theoretically in both three-dimensional geometries, where
they exhibit dynamical instabilities #10–12$, as well as in one
dimension #13,14$.

Zero-temperature mean-field theory predicts undamped
soliton oscillations in the presence of axial harmonic trap-
ping; the amplitude of such oscillations is anticipated to in-
crease in realistic dissipative systems. However, dark-soliton
experiments performed to date #7,8$ have observed no such
oscillations, with the soliton never reemerging after reaching
the edge of the trap. This feature has been modeled by con-
sidering the reflection of excitations from a soliton in a uni-
form condensate #15,16$, with the related effect of quantum
fluctuations studied in #17$.

The aim of this Rapid Communication is twofold. First,
we perform detailed three-dimensional simulations of the ex-
periment of Burger et al. #7$, including all stages from phase
imprinting to expansion imaging, thus directly predicting the
profile of the decaying soliton in the presence of a thermal
cloud !Fig. 1, bottom images". This reveals excellent agree-
ment with the experiment and is in stark contrast to the zero-
temperature dynamics !Fig. 1, top images", highlighting the
limitations of the GP equation in this context. Second, and
most importantly, this Rapid Communication investigates the
possibility of observing dark-soliton oscillations in realistic
experiments. We find that the soliton oscillates in the axial

direction, but with an amplitude that increases in time !con-
sistent with a decrease in the soliton energy", and eventually
approaches the half-length of the condensate. We perform
detailed investigations of this decay for different tempera-
tures and initial soliton depths, and separately assess the role
of mean-field coupling and binary collisions between the at-
oms. Our conclusions are verified for solitons generated by
the usual phase-imprinting technique, thus identifying the
optimum conditions for the experimental observation of such
oscillations.

THEORY

Our simulations are based on the formalism of Zaremba,
Nikuni, and Griffin #18$, where the dynamics of the conden-
sate and the thermal cloud are described by the coupled
equations

i!
!"

!t
= %−

!2"2

2m
+ V + gnc + 2gñ − iR&" , !1"

FIG. 1. Evolution of a dark soliton at T=0 !top" and 0.5Tc
!bottom", for the experimental parameters of Ref. #7$. In each simu-
lation we initially imprint a phase on the condensate, and then allow
it to evolve for the time shown before releasing it from the trap.
Plotted are condensate column densities after a subsequent expan-
sion of t=4 ms.
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Figure III.16. Simulation of Burger, Bongs, et al. (1999)’s experiment, showing
the effect of a thermodynamic instability when T = Tc/2. Figure taken from
Jackson, Proukakis, et al. (2007).

mal fraction of the gas was not negligible compared with the condensed
fraction.

Concerning this second type of instability, the simulation carried out
by Jackson, Proukakis, et al. (2007) for the parameters of the experiment
ofBurger, Bongs, et al. (1999) and shown in figure III.16 is enlightening:
while at zero temperature, the soliton oscillates as expected in the trap, it
misses its first turning point if the temperature exceeds 0.5Tc (where Tc is
the critical Bose–Einstein condensation temperature) and disappears at the
edge of the condensate.

Since 2008, very low-temperature experiments with soliton lifetimes in
excess of one second have been performed, enabling one to demonstrate
the soliton dynamics described by (III.61) (Becker, Stellmer, et al. 2008;
Weller, Ronzheimer, et al. 2008). Figure 2 shows the evolution of a soliton
prepared by phase printing, performing a complete oscillation in a conden-
sate confined in a harmonic trap with longitudinal frequency νx = 5.9Hz.
The measured frequency of the oscillation is 3.8(1)Hz, in good agreement
with the νx/

√
2 prediction.

ARTICLES

of the condensate. The appropriate equation of motion for small
soliton velocities q̇ in a BEC that can be described by the Thomas–
Fermi approximation is given by16,19

m q̈(t) = �1

2

@V (z)

@z
. (2)

The ratio of the negative soliton mass to the likewise negative
Thomas–Fermi density potential of the BEC, Ms/VTF(z), is
precisely twice the ratio of atomic mass to external potential
m/V (z). Therefore, the soliton behaves like a classical particle
with mass 2m. This implies a soliton oscillation frequency of
! = !z/

p
2 for harmonic trapping. The same result is obtained in

the Thomas–Fermi regime in a harmonic trap using a local density
approximation where the speed of sound c̄ is replaced by its local
value c̄(z). Derived in this way, it has been shown that the equation
of motion holds for almost arbitrary soliton velocities23.

Figure 2a shows the time evolution of a dark soliton created
by the aforementioned phase imprinting method. Absorption
images were taken after a time-of-flight of 11.5 ms to enable
the condensate and soliton to expand because the soliton size
ls ⇡ ⇠̄ ⇡ 0.8 µm in the trap is beyond optical resolution. The
soliton clearly propagates axially along the condensate with an
initial velocity of q̇ = 0.56 mm s�1 = 0.56 c̄s, indicating a relative
soliton depth of ns = 0.68 n0. We were able to detect nearly pure
dark solitons after times as long as 2.8 s in single experimental
realizations (Fig. 1e), surpassing lifetimes of dark solitons in any
former experimental realization by more than a factor of 200.
Fluctuations in the soliton position due to small preparation
errors however prevent the observation of soliton oscillations for
evolution times ⌧evol � 250 ms. The extraordinary long lifetimes
facilitate the first observation of an oscillation of a dark soliton in a
trapped BEC. An oscillation frequency of ⌦ = 2⇡⇥ (3.8±0.1) Hz
has been recorded and could be followed for more than one period.
Owing to the shallowness of our dipole trap, the atoms experience a
full gaussian potential, which is less steep than harmonic leading to
a larger amplitude-dependent oscillation period for the soliton. We
have calculated the soliton oscillation frequency using equation (2)
for a gaussian potential created by a laser beam with a waist
of 125 µm with the observed soliton amplitude of Zs = 33 µm
and find an oscillation frequency of ⌦ = 2⇡⇥ 4.0 Hz. This is in
good agreement with our experimental data. We also checked the
validity of this model by calculating the frequency for shallower
and therefore faster solitons and find very good agreement with
experimental data. Furthermore, the observed amplitude enables
a consistency check of the soliton depth. At the turning point
of the soliton motion Zs, the constant soliton depth equals the
Thomas–Fermi density nTF(Zs) of the condensate and interrupts
the superfluid flow of atoms. At this point, the soliton starts to move
in the opposite direction. Given the measured initial speed of the
soliton and the observed density distribution of the condensate, Zs

can be calculated to be 36 µm and is in very good agreement with
the measured value.

Another feature extracted from Fig. 2a is a density wave that
travels in the opposite direction at a velocity equal to the speed of
sound. The occurrence of such a density wave has been investigated
theoretically and experimentally8 and has been attributed to the
method of soliton generation through phase imprinting while
leaving the instantaneous density distribution unchanged. The
density waves die out after approximately 50 ms, leaving a flat BEC
with only one soliton excitation.

Calculating the dimensionality parameter � = n0g/h̄!? = 3.7
and comparing this value with the critical ratio �c given by
Muryshev et al.20, we find our soliton to be right on the edge of
the region of dynamical stability. This is confirmed regarding the
observed soliton lifetimes.
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Figure 2 Dark-soliton oscillations in a trapped BEC. a, A set of absorption images
showing the soliton position at various times after phase imprinting. The soliton
propagates to the right and is reflected off the edge of the condensate after
t⇡ 80ms. The corresponding evolution time for each image is given in units of the
oscillation period T. b, Results of a numerical calculation solving the 1D
Gross–Pitaevskii equation corresponding to our parameters in units of T.
Experimentally observed features such as density modulations caused by a density
wave on the left side of the condensate as well as the development of a tiny second
soliton are reproduced. c, Axial positions of the soliton (dark blue dots) with respect
to the centre of mass and normalized to the width of the condensate. The oscillation
frequency is⌦ = 2⇡⇥ (3.8±0.1) Hz. The position of a second tiny soliton (light
blue dots) as well as a sinusoidal fit (blue line) to the position of the soliton are
shown. Each data point was obtained from a different experimental run. The scatter
is due to small fluctuations in the preparation process. Errors in extracting the
soliton’s position from the individual images are typically less than 0.02 and are
therefore not plotted.

We have carried out numerical simulations of the 1D GPE
showing that the phase imprinting method cannot create single
perfect dark solitons but always creates density waves that
carry away part of the imprinted phase gradient. Moreover, the
occurrence of a second small soliton can be extracted from the
simulations as shown in Fig. 2b.

The crucial feature to the observed long lifetimes of dark
solitons seems to be the very low temperature of our samples.
The critical temperature for Bose–Einstein condensation for
our experimental parameters is (67 ± 5) nK. Estimating that a
thermal fraction of at least 10% could have been detected in
absorption imaging—which was not the case—an upper limit for
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Figure III.17. a) Oscillations of a grey soliton in a condensate of 50 000 87Rb
atoms, confined in a trap of frequencies 5.9× 85× 133Hz. The chemical potential
µ0 is of the order of h× 400Hz, placing this system at the frontier of the dynamic
stability zone with respect to the transverse motion. The phase impression time
is 40µs, which is very short compared with other time scales in the problem. b)
Numerical solution of the 1D Gross-Pitaevskii equation. c) Position of the main
soliton (dark dots) and a secondary soliton (light dots) as a function of time. Data
fitting leads to a soliton oscillation frequency of 3.8(1)Hz. Figure taken from
Becker, Stellmer, et al. (2008).
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3-4 Collision between two grey solitons

The 1D nonlinear Schrödinger equation is integrable in both the attractive
(g < 0) and repulsive (g > 0) cases. We explained in previous chapters that
for the attractive case, this means that the collision between two bright
solitons is elastic: both solitons emerge from the collision unchanged, with
the same number of atoms and the same velocity as on entry. The only
control parameter is their relative phase, which determines whether the
effective interaction between solitons is attractive or repulsive.

In the repulsive case of interest here, integrability again means that the
collision between two grey solitons is elastic, with both solitons emerg-
ing with a depletion (and hence a velocity) identical to their initial deple-
tion. Note that the phase is now fixed, as it is given by the extended con-
densate. It is therefore no longer a control parameter, and one can show
that the interaction between solitons is always repulsive5 for the nonlinear
Schrödinger equation [see for example Kivshar & Królikowski (1995) and
refs. in].

Elastic collisions between grey solitons have been observed by several
groups. Here we describe the experiment by Weller, Ronzheimer, et al.
(2008), which led to the spectacular images shown in figure III.18. The
two solitons were created by a collision between two condensates sharing
the same phase. To achieve this, the authors used an elongated trap with
a central barrier, i.e. a double potential well. The height of the barrier,
created with a focused light beam, was adjusted to maintain the coherence
of the whole gas, while creating a significant density hole in the center.
When the barrier is switched off, the two condensates came into contact
with each other and a pair of solitons was created (Reinhardt & Clark 1997).

In the experiment by Weller, Ronzheimer, et al. (2008), the sample con-
tains around N = 1500 atoms and the two clouds are initially separated by
5 micrometers. The temperature is∼ 10nK, well below the critical temper-
ature (110 nK), which ensures that the solitons have a long lifetime. Soli-
tons oscillate in the trap at a frequency close to ω/

√
2. Every half-period,

they collide with each other at the center of the trap (experimental resolu-
tion is insufficient to observe the repulsive nature of soliton interaction).

5For non-local particle interactions, i.e. beyond the Gross-Pitaevskii equation, one can
observe an attraction between grey solitons (Dreischuh, Neshev, et al. 2006).

(! ¼ 1064 nm) and a one dimensional optical lattice (! ¼
843 nm). The first beam of the dipole trap has a Gaussian
waist of 5 "m and results in a strong transverse and weak
longitudinal confinement. The second beam orthogonally
crosses the first one and has an elliptic shape (60 "m"
230 "m waist) leading to an extra adjustable confinement
only in the longitudinal direction of the trap. We start our
experiments with a transverse frequency of the total har-
monic trap of #? ¼ 408 Hz and a longitudinal one of #z ¼
63 Hz. The barrier height of the optical lattice is chosen to

be approximately 1 kHz and the lattice spacing is 5:7 "m.
This results in a double well potential with a well distance
of 5:4 "m.
In order to start with a well-defined phase between the

two condensates, the barrier height is chosen to be low
enough such that thermal phase fluctuations are negligible
for the measured temperature of T # 10 nK [28] (the
critical temperature for condensation is Tc # 110 nK)
and high enough so that high contrast solitons are formed.
The solitons are created by switching off the optical lattice
and merging the two condensates in the remaining har-
monic potential. After the switching off, the trap frequen-
cies are ramped to the parameters of interest (#z, #?). The
distance between the formed solitons is adjusted by choos-
ing different sets of final frequencies and different atom
numbers. For each parameter set, the ramping time is
empirically optimized to minimize the excitation of the
quadrupole mode [e.g., from ð#z;#?Þ ¼ ð63 Hz; 408 HzÞ
to (53 Hz, 890 Hz) within 10 ms for N ¼ 1700 atoms, or to
(58 Hz, 408 Hz) within 3 ms for N ¼ 950]. The atomic
density after a certain evolution time in the harmonic trap
is obtained using standard absorption imaging with an
optical resolution of approximately 1 "m. We use a short
time of flight between 0.6 and 0.9 ms to enhance the
contrast.
In our experiment, the initial distance D ¼ 5:4 "m

between the two colliding condensates is well within the
regime where the interaction energy exceeds the kinetic
energy and thus the formation of dark solitons is expected
due to nonlinear interference. This regime is reached ifD is

smaller than the critical distance Dc ¼ $ð6 N@as
#zm

Þ1=3 ¼
25:8 "m with as being the s-wave scattering length, #z

the longitudinal trap frequency and m the atomic mass
[22]. The formation of dark solitons for our experimental
parameters is confirmed by 3D GPE simulations as shown
in Fig. 1. Including the optical and time resolution, the
experimentally observed density profile evolution is well
reproduced. A dominant pair of solitons oscillates close to
the center of the cloud and we can also distinguish addi-
tional pairs of solitons with much lower contrast. In the
following, we focus on the dynamics of the dominant
central pair and show that its oscillation frequency is
well described within a two soliton approximation.
We experimentally investigate the oscillation frequency

of the dominant soliton pair for different trap parameters
and different intersoliton distances. A typical data set con-
sists of 50 time steps and 10 pictures per time step. The
numerical simulations predict that the solitons do not cross
each other at the collision points [see inset of Fig. 3(c)], but
our finite resolution does not allow us to distinguish
whether this is actually the case in the experiment. In order
to extract the oscillation frequency of the solitons, we fit
the time evolution of the intersoliton distance as shown in
the inset of Fig. 2. The obtained frequency is divided by
two in order to compare it to the oscillation frequency
expected for a single trapped soliton. The shot to shot

FIG. 1. Observation of the time evolution of dark solitons in a
harmonic trap. The dominant soliton pair is indicated by arrows.
(a) Experimental observation of the dynamics of the longitudinal
atomic density. Each longitudinal density profile (vertical lines),
corresponding to a given evolution time, is deduced from typi-
cally 10 experimental realizations. The obtained absorption
images of the condensate at each time step are averaged and
integrated over their transverse direction. The number of atoms
in the shown case is N ¼ 1700 and the trapping frequencies are
ð#z;#?Þ ¼ ð53 Hz; 890 HzÞ. (b) Result of the numerical integra-
tion of the 3D GPE taking into account the full preparation
process of the solitons. (c) Same as (b), taking into account the
finite spatial (1 "m) as well as temporal resolution (1 ms) of the
experiment. The loss of contrast due to the convolution process
explains the experimentally observed fading out of the solitons
with time.
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Figure III.18. Top: experimental observation of the time evolution of two dark
solitons in a harmonic trap, with an elastic collision at each half-period of the oscil-
lation. Middle: numerical simulation of the experiment. Bottom: same numerical
simulation, taking into account the experiment’s temporal and spatial resolution.
Figure taken from Weller, Ronzheimer, et al. (2008).
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3-5 Does a quantum soliton stay dark?

The Gross-Pitaevskii equation is a classical field equation for which a soli-
ton represents a stationary state. A much-debated question concerns the
quantum version of the problem: does an initially dark soliton stay dark,
or is it destabilized by quantum fluctuations?

When one analyzes these fluctuations using Bogoliubov’s method and
calculate the average spatial density, one finds that the density hole cor-
responding to the soliton fills up due to the contribution of particles from
the non-condensed fraction (Dziarmaga 2004). However, this filling of the
one-body density function may well mask the following phenomenon: the
soliton remains completely dark, but its center moves randomly from one
realization of the experiment to another, so that the average of the density
profiles sees its depletion reduced.

To predict unambiguously whether a given measurement of a soliton’s
density profile corresponds to full depletion, one needs to calculate the sys-
tem’s N -body correlation function. Equivalently, one can simulate the suc-
cessive detection of the positions of N particles during a given run of the
experiment; to do this, after each detection, that of particle j for example,
one needs to project the state vector onto the subspace Ej corresponding to
the measurement result xj , then move on to the detection of the position of
particle j + 1. One then constructs a set {x1, x2, . . . , xN} of positions and
one can check whether this set of positions is compatible with a completely
dark soliton.

This procedure has been implemented by several authors, starting from
different initialN -body states. Here we present the results obtained by De-
lande & Sacha (2014) who started from the N -body quantum state of a 1D
gas of N = 180 bosons in repulsive interaction, confined on a segment
with open boundary conditions. The state of the system is represented al-
most exactly by a matrix product state (MPS). This state is obtained by first
imposing a barrier at the center of the segment, so as to create a hole of
density very similar to that expected for a dark soliton. The central bar-
rier is then removed, a π phase is printed on one half of the segment, and
the evolution of the system is studied by numerically solving the N -body
Schrödinger equation.

The evolution of the average spatial density confirms the disappearance

density, corresponding to the stationary dark soliton, is not
zero at the soliton position because there are particles which
occupy the anomalous mode. In the thermodynamic limit
ω → 0 but Nω ¼ const, the number of particles in the
anomalous mode diverges like 1=ω which indicates break-
down of the Bogoliubov approach [12]. This limit also
shows that the stationary dark soliton state in the homo-
geneous case cannot be described by the Bogoliubov
theory.
The dark soliton is not the ground state of the system

and, therefore, cannot be obtained by cooling an atomic
gas. In order to prepare a dark soliton, a phase imprinting
method is used in experiments [4,5,8,9]. Starting with an
atomic gas in the ground state, half of the cloud acquires a
phase π after a short interaction with a laser radiation. This
phase difference leads quickly to the formation of a dark
soliton. In the ideal situation, all atoms are prepared in the
same single particle state (1). Such a perfect condensate is
not an eigenstate of the system: during the many-body time
evolution, the localization of the soliton at its initial
position is progressively lost, with growing occupation
of the translation mode and a progressive depletion of the
condensate. The Bogoliubov approach may represent
accurately the initial evolution but breaks down when
the soliton delocalization becomes comparable to the
healing length ξ.
In order to describe the soliton delocalization, we

perform quasiexact many-body numerical simulations. In
the following, ξ is chosen as the unit of length and the
chemical potential as the energy unit. We considerN ¼ 180
atoms in a box of length L ¼ 40 with open boundary
conditions and g0 ¼ 0.2, so that the background density is
ρ ¼ 5. The corresponding parameter for the Lieb-Liniger
model [24] is γ ¼ 0.04, indicating the weakly interacting
regime. Space is discretized on a grid with Δx ¼ 0.2, so
that the many-body Hamiltonian in the second-quantization
formalism is a Bose-Hubbard Hamiltonian with tunneling
amplitude 1=ð2Δx2Þ and interaction energy g0=Δx
[19,20,29,30] [31]. An N-body state of the system can
be represented by a matrix product state (MPS)

jψi ¼
X

α1;…;αM−1
i1 ;…;iM

Γ½1%;i1
1α1

λ½1%α1Γ
½2%;i2
α1α2…Γ½M%;iM

αM−11 ji1;…; iMi; (2)

where ji1;…; iMi is a Fock state with definite numbers of
atoms in each of M sites of the discrete space, Γ½l%;il are
tensors and λ½l% vectors. If the sites are only slightly
entangled, λ½l%αl¼1;2… are rapidly decaying numbers and a
cutoff χ can be introduced in the sum over Greek indices.
Moreover, the maximal occupation of the sites can be
restricted to il ≤ Nmax < N since it is unlikely that all the
bosons occupy a single site. The time evolving block
decimation (TEBD) algorithm [32–34], which describes
how the Γ½l% and λ½l% evolve in time according to the Bose-
Hubbard Hamiltonian, is used in order to find the ground

state of the system and describe the dynamics. Our tests
show that the cutoff values χ ¼ 500 and Nmax ¼ 9 are
sufficient to obtain fully converged results for the temporal
dynamics. Following Refs. [19,20,35], we choose, as initial
state, the ground state of the system in the presence of a
Gaussian barrier VðxÞ ¼ V0e−x

2=σ20 located at the center of
the box. For V0 ¼ 18 and σ0 ¼ 0.2, the one-body density
profile is nearly identical to the density profile of the dark
soliton described by Eq. (1). At t ¼ 0 the barrier is turned
off and the phase imprinting is applied, with an external
potential Vphðx; tÞ ¼ πΘðxÞδðtÞ, where Θ is the Heaviside
step function and δ a Dirac pulse. This simply reduces to
the transformation Γ½l%;il

αl−1αl → ð−1ÞilΓ½l%;il
αl−1αl for the sites

with x > 0.
In Fig. 1, the evolution of the single particle density is

presented. Initially, the density follows the prediction of the
Bogoliubov approach, with a progressive filling of the
soliton notch. At longer time, the notch is almost com-
pletely filled (more than 80% at t ¼ 25) and the density
tends to be uniform, leading to an apparent disappearance
of the dark soliton.
In order to gain information on single experimental

outcomes, one has to simulate the density measurement
in an experiment, that is, the measurement of the positions
of all particles. In an ideal situation it reduces to the
choice of a single Fock state ji1;…; iMi according to the
probability density jhi1;…; iMjψij2. This nontrivial task
can be performed in a sequential manner in the MPS
representation [30].
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FIG. 1. Temporal evolution of a dark soliton in a box. The
soliton is prepared by starting from the ground state in the
presence of a barrier located in the middle of the box which
creates a large density hole. At t ¼ 0 the barrier is turned off and a
phase is imprinted. The subsequent dynamics is computed using a
quasiexact many-body TEBD algorithm. Different panels show
the one-body density at increasing times. At short time, the
soliton notch emits density waves (visible as small modulations
of the otherwise flat background) and is progressively filled at
longer times. The density notch also spatially spreads producing
an almost uniform density. In this figure and the following ones, x
is in units of the healing length ξ.
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040402-2 In Fig. 2, we present three examples of a single
experimental outcome corresponding to t ¼ 25, where
the one-body density is almost flat. The fluctuations on
the number of particles on each site are important: the
average number of particles on each site is one for our
parameters which makes the detection of the soliton
position a bit challenging [36]. By summing over three
consecutive sites, i.e., a length 0.6 (cf. the full soliton size
≈2), “shot noise” is reduced, making the soliton position
more visible. Clearly, each individual outcome displays a
dark soliton located at a different random position. These
positions can be quantitatively determined by fitting the
soliton profile jϕ0ðx − qÞj2 to the data, where q is the fitted
parameter. Once q is determined, we can shift the density so
that the new position of the soliton corresponds to x ¼ 0. If
many results of density simulations, related to the same
many-body state, are prepared in this way, we are able to
obtain the average profile around the minimum. Such a
profile, corresponding to 50 realizations is shown in
Fig. 3(a). It very clearly shows the emergence of a density
notch around the soliton position. When a much larger
number of independent realizations is used, the statistical
noise becomes negligible, and the density profile almost
perfectly matches the mean-field density jϕ0ðxÞj2. It is
crucial to note that the density profiles are the same at
different t, see Figs. 3(b)–3(e). This means that, even at

long time t ¼ 25where the single particle density is almost
uniform, the underlying dark soliton is still present and its
shape is unaffected, although its position q fluctuates in
different realizations of the measurement. This is a clear
signature of the quantum behavior of the soliton position.
The simulation of the density measurements involves
particle correlations of a very high order and cannot be
predicted on the basis of the second order correlation
function [21,22].
The slight differences between the average soliton shape

and jϕ0ðxÞj2, hardly visible in Fig. 3, are due to the finite
particle number. The squared overlap between two perfect
condensates with slightly different soliton positions, Δq ¼
jq1 − q2j drops like exp½−2NnotchðΔqÞ2=ð3ξ2Þ% [18]. Thus,
if Δq < ξ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Nnotch

p
, the condensates are not distinguishable

and, in particular, have the same overlaps with any Fock
state ji1;…; iMi. It means also that the uncertainty of the
determination of the soliton position is of the order of
ξ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Nnotch

p
. For our parameters the uncertainty Δq ≈ 0.3

and is responsible for the deviation of the average soliton
profile from the mean field shape.
Simulation of the density measurement also allows us to

obtain the probability density of the soliton position, i.e.,
how often the soliton localizes at a given position. These
densities are shown in Fig. 4. In the course of evolution, the
histograms become wider and are very well approximated
by Gaussian distributions. The variance of the distributions
grows like t2 [10,11], see Fig. 4(b). Thus, the evolution of
the probability density resembles the spreading of a free
particle Gaussian wave packet.
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FIG. 2 (color online). (a) shows the almost uniform one-body
density at time t ¼ 25, while (b)–(d) display the histograms
resulting from 3 independent quantum measurements of the
positions of all particles. All the measurements are for the same
many-body state. Each measurement observes the density notch
associated with the dark soliton at a well defined position, but this
position fluctuates randomly for each measurement. Each histo-
gram can be well fitted by a mean field dark soliton profile (red
thick curve), with “shot noise” fluctuations associated with the
quantum measurement. Although the one-body density is almost
uniform and does not display the existence of the dark soliton, a
complete measurement of particle positions reveals its existence.
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FIG. 3 (color online). Average density profile with respect to
the soliton position q. (a) Results from the averaging over 50
independent measurements of the same many-body state at time
t ¼ 25. Shot noise is still present, but the density notch of the
dark soliton clearly emerges. (b)–(e) are obtained by a massive
averaging over 105 independent measurements at various times.
The shape does not change during the time propagation and is in
excellent agreement with the mean field prediction jϕ0ðxÞj2,
Eq. (1) (blue dashed curve). The dark soliton structure persists for
very long times, even if the soliton position is delocalized over a
large range.
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Figure III.19. Left: evolution of the average spatial density for aN = 180 particle
quantum state initially reproducing a dark soliton. Right: histogram of N particle
position measurements for three realizations of the experiment at t = 25 (position
and time units: κ−1 and ℏ/µ). Figure taken from Delande & Sacha (2014).

of the density hole after a time of the order of tens of ℏ/µ (figure III.19,
left). But each realization of the experiment leads to a marked hole in the
distribution of positions, with the position of this hole fluctuating from one
realization of the experiment to the next (figure III.19, right).

For a given realization, the center q of the depletion can be determined
by fitting the density distribution with a solitonic profile, and all the den-
sity distributions can then be superimposed by translating them so that all
the centers are superimposed on one another. The result obtained for 105

realizations is shown in figure III.20. We can see that the profile averaged
in this way does not evolve and remains that of a perfectly dark soliton,
at least on the time scale considered in this work. This study also enabled
the authors to determine the time evolution of the distribution of the indi-
vidual centers q. Delande & Sacha (2014) showed that the variance of this
distribution increases as t2, compatible with a ballistic propagation from
an initial velocity distribution.

This method of studying quantum solitons based on N -body correla-
tions has been generalized to other initial states, see for example Shamailov
& Brand (2019) and Syrwid (2021) and refs. in.
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In Fig. 2, we present three examples of a single
experimental outcome corresponding to t ¼ 25, where
the one-body density is almost flat. The fluctuations on
the number of particles on each site are important: the
average number of particles on each site is one for our
parameters which makes the detection of the soliton
position a bit challenging [36]. By summing over three
consecutive sites, i.e., a length 0.6 (cf. the full soliton size
≈2), “shot noise” is reduced, making the soliton position
more visible. Clearly, each individual outcome displays a
dark soliton located at a different random position. These
positions can be quantitatively determined by fitting the
soliton profile jϕ0ðx − qÞj2 to the data, where q is the fitted
parameter. Once q is determined, we can shift the density so
that the new position of the soliton corresponds to x ¼ 0. If
many results of density simulations, related to the same
many-body state, are prepared in this way, we are able to
obtain the average profile around the minimum. Such a
profile, corresponding to 50 realizations is shown in
Fig. 3(a). It very clearly shows the emergence of a density
notch around the soliton position. When a much larger
number of independent realizations is used, the statistical
noise becomes negligible, and the density profile almost
perfectly matches the mean-field density jϕ0ðxÞj2. It is
crucial to note that the density profiles are the same at
different t, see Figs. 3(b)–3(e). This means that, even at

long time t ¼ 25where the single particle density is almost
uniform, the underlying dark soliton is still present and its
shape is unaffected, although its position q fluctuates in
different realizations of the measurement. This is a clear
signature of the quantum behavior of the soliton position.
The simulation of the density measurements involves
particle correlations of a very high order and cannot be
predicted on the basis of the second order correlation
function [21,22].
The slight differences between the average soliton shape

and jϕ0ðxÞj2, hardly visible in Fig. 3, are due to the finite
particle number. The squared overlap between two perfect
condensates with slightly different soliton positions, Δq ¼
jq1 − q2j drops like exp½−2NnotchðΔqÞ2=ð3ξ2Þ% [18]. Thus,
if Δq < ξ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Nnotch

p
, the condensates are not distinguishable

and, in particular, have the same overlaps with any Fock
state ji1;…; iMi. It means also that the uncertainty of the
determination of the soliton position is of the order of
ξ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Nnotch

p
. For our parameters the uncertainty Δq ≈ 0.3

and is responsible for the deviation of the average soliton
profile from the mean field shape.
Simulation of the density measurement also allows us to

obtain the probability density of the soliton position, i.e.,
how often the soliton localizes at a given position. These
densities are shown in Fig. 4. In the course of evolution, the
histograms become wider and are very well approximated
by Gaussian distributions. The variance of the distributions
grows like t2 [10,11], see Fig. 4(b). Thus, the evolution of
the probability density resembles the spreading of a free
particle Gaussian wave packet.
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FIG. 2 (color online). (a) shows the almost uniform one-body
density at time t ¼ 25, while (b)–(d) display the histograms
resulting from 3 independent quantum measurements of the
positions of all particles. All the measurements are for the same
many-body state. Each measurement observes the density notch
associated with the dark soliton at a well defined position, but this
position fluctuates randomly for each measurement. Each histo-
gram can be well fitted by a mean field dark soliton profile (red
thick curve), with “shot noise” fluctuations associated with the
quantum measurement. Although the one-body density is almost
uniform and does not display the existence of the dark soliton, a
complete measurement of particle positions reveals its existence.
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FIG. 3 (color online). Average density profile with respect to
the soliton position q. (a) Results from the averaging over 50
independent measurements of the same many-body state at time
t ¼ 25. Shot noise is still present, but the density notch of the
dark soliton clearly emerges. (b)–(e) are obtained by a massive
averaging over 105 independent measurements at various times.
The shape does not change during the time propagation and is in
excellent agreement with the mean field prediction jϕ0ðxÞj2,
Eq. (1) (blue dashed curve). The dark soliton structure persists for
very long times, even if the soliton position is delocalized over a
large range.
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Figure III.20. Superposition of 105 position histograms, after recentering by the
fitted displacement q, for different evolution times. The profile obtained remains
virtually identical to that of a dark soliton. Figure taken from Delande & Sacha
(2014).

4 Transitions to other states

Up to now, we have assumed that the gas, confined in an elongated trap of
axis x, is well described by a 1D equation, i.e. that the transverse degrees of
freedom are frozen. This assumption is legitimate if the quantum of energy
ℏω⊥ corresponding to the excitation of these transverse degrees of freedom
is large in front of the other energy scales of the problem, in particular the
chemical potential µ = gρ0.

When µ becomes comparable to or greater than ℏω⊥, the grey soliton
is no longer necessarily a stable object. As it propagates, its initially flat
surface can deform and the soliton transforms into other structures, such
as a vorticity ring with an axis aligned with that of the trap, or a solitonic
vortex.

4-1 The instability of the nodal plane

Muryshev, Heuvell, et al. (1999) have investigated the possibility of a nodal
plane instability for a dark soliton in a three-dimensional condensate. To
do this, they first considered a homogeneous gas filling the whole 3D space

Figure III.21. Dispersion relation of transverse excitations of a wave vector k of a
3D condensate with a nodal plane corresponding to a soliton. Figure adapted from
Muryshev, Heuvell, et al. (1999).

with the asymptotic spatial density ρ0 and with a node in the x = 0 plane,
i.e. a wave function ψ(x) =

√
ρ0 tanh(κx). The chemical potential is µ =

gρ0 where g is now defined for a 3D gas (g = 4πℏ2a/m where a is the
scattering length). We still have the link between µ and the speed of sound
µ = mc2 = ℏ2κ2/m and therefore κ = mc/ℏ.

Muryshev, Heuvell, et al. (1999) then used Bogoliubov’s method to find
the dispersion relation of waves propagating with a wave vector k perpen-
dicular to the x axis and located in the vicinity of the nodal plane x = 0.
They showed that for k < κ, these modes had an imaginary energy ϵk, and
were therefore dynamically unstable (figure III.21): it is not possible to in-
definitely maintain a soliton with a flat nodal surface in a homogeneous
3D gas. The most unstable mode corresponds to a wave vector k = κ/

√
2.

The same authors then considered the case of a gas in a harmonic trap
with rotational symmetry around the x axis and oscillation frequencies ωx

and ω⊥ (figure III.22). The stability of the soliton prepared in the x = 0
plane then depends on two parameters: the ratios ω⊥/ωx and µ/ℏω⊥.
Muryshev, Heuvell, et al. (1999) have shown that for a very elongated trap
(ω⊥/ωx ≫ 1), it is enough to ensure that the chemical potential µ remains
below ∼ 2.4ℏω⊥ for the planar nodal surface to remain stable. However,
when one switches to spherical or oblate traps (ω⊥/ωx ≲ 1), the planar
nodal surface is destabilized, whatever the value of µ.
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Figure III.22. Stable and instable zones of the nodal plane of a dark soliton in the
x = 0 plane, at the center of a harmonic trap with frequencies ωx and ω⊥. Figure
adapted from Muryshev, Heuvell, et al. (1999).

4-2 The different possible stationary states

The instability found by Muryshev, Heuvell, et al. (1999) indicates that the
nodal surface will deform, with exponential growth of certain imaginary-
frequency modes at short times. However, it provides no information on
the nature of the structures that will subsequently appear. This study was
the subject of numerous publications, both theoretical and experimental,
in the years following the observation of the first dark condensates. Theo-
retical publications include Brand & Reinhardt (2002) and Komineas & Pa-
panicolaou (2003). On the experimental side, ripple instability of the soli-
ton nodal plane was observed by Denschlag, Simsarian, et al. (2000), the
emergence of vorticity rings by Anderson, Haljan, et al. (2001) and Dutton,
Budde, et al. (2001), and more recently solitonic vortices by Becker, Sen-
gstock, et al. (2013) and Donadello, Serafini, et al. (2014) in Bose-Einstein
condensates and by Yefsah, Sommer, et al. (2013) and Ku, Ji, et al. (2014) in
a strongly interacting Fermi gas.

Figure III.23, taken from the article by Muñoz Mateo & Brand (2014),
shows a series of stationary structures, obtained by a systematic search for
solutions of the nonlinear Schrödinger equation in a cylindrical geometry.
The authors also indicate the range of µ/ℏω⊥ values for which these struc-

condition [Eq. (10)] is modified to read μB
ffiffiffiffiffiffiffiffi
−2λ

p
¼

ðnx þ 1
2Þℏωx þ ðny þ 1

2Þℏωy. The corresponding harmonic
oscillator eigenfunctions are given by the well-known
Hermite functions and thus the symmetry of the correspond-
ing Chladni solitons changes. For small anisotropies, we
expect a continuous transition from Laguerre to Hermite
shapes as is shown by Ince polynomials [51].
Chladni solitons.—We have numerically determined

the solitary wave solutions originating from the bifurcation
points of Fig. 3 up to μB ¼ 10ℏω⊥ using a Newton-
Raphson scheme for the Gross-Pitaevskii equation. The
results are summarized in Fig. 4, where the free excitation
energies Fpl ¼ Epl − μBNpl − ðE0 − μBN0Þ are measured
relative to the ground state ϕ0 of Eq. (11) [52]. For every
tuple of quantum numbers (p; l) we obtain solitary wave
solutions with symmetry and degeneracy consistent with
the solutions of Eq. (9), which is maintained for μB above
the bifurcation point. That is, Chladni solitons involving

vortex rings have a discrete twofold degeneracy while all
solitons involving radial vortex lines have a continuous
degeneracy corresponding to azimuthal rotation.
In addition to the previously known dark soliton (kink),

solitonic vortex (0,1), and vortex ring (2,0), more complex
Chladni solitons comprise spoke wheels (0; l) consisting
of l>1 intersecting radial vortex lines, multiple nested vortex
rings (p; 0), and theΦ-type soliton (1,1),which is the simplest
solitonwith intersecting vortex ring(s) and radial line(s). Note
that Chladni solitons originating from near-degenerate bifur-
cation points, e.g., the 2SV cross (0,2) and vortex ring (1,0),
are almost degenerate also for larger μB and their small
energy difference is not resolved at the scale of Fig. 4.
The same is true for the higher near-degenerate branches.
Our numerical simulations indicate that Chladni solitons

with intersecting vortex lines could be observed in cigar-
shaped BECs. Although the solitonic vortex (0,1) is the
only dynamically stable Chladni soliton for μB beyond the
first bifurcation point of Eq. (10), the expected lifetimes of
the 2pþ l > 1 Chladni solitons are comparable to those of
the already observed vortex rings. Detailed stability studies
will be published elsewhere [53]. Complex Chladni sol-
itons can be prepared in an atomic BEC by appropriately
seeding the snaking instability of a dark soliton. For this
purpose, the previously determined wave function ψ ¼
ψ0 þ iδψ at the bifurcation point, should be an excellent
initial configuration, since the infinitesimal part δψ devel-
ops into a dynamically unstable mode leading to the desired
complex soliton for μB larger than the critical value at
bifurcation [16]. As a first step we propose to prepare a zero
velocity dark-bright soliton in a two-component BEC [54]
as in Refs. [9,55], where the nodal plane of a kink in
component j1i is filled with a phase-coherent atomic BEC
of a second hyperfine component j2i. In a second step, the
bright component j2i (or a small part of it) is transferred to
state j1i with the appropriate phase pattern of the solution
δψ ¼ χu of Eqs. (6) and (9), shifted by π=2 compared to the
kink solution. This could be realized following Ref. [56] by
transferring the phase pattern of a focused axial Laguerre-
Gaussian laser beam using a two-photon Raman transition.
Finally, any remaining j2i atoms are removed [9].

We are grateful to Michael Bromley and Xiaoquan Yu
for useful discussions.
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FIG. 4 (color online). Free excitation energy Fpl of stationary
solitary waves vs chemical potential in a cylindrically trapped BEC
(central panel). The full (red) line corresponds to the dark soliton
[see insets in Fig. (3)] and lineswith symbols correspond toChladni
solitons (p; l) that originated from the bifurcation points of Fig. 3.
Units of the transverse harmonic trap and axial density n1 are used
as shown. The insets show density isocontours at 5% of maximum
density for the different Chladni solitons with μB ¼ 10ℏω⊥.
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Figure III.23. Different possible stationary solutions of a condensate confined in
a transverse harmonic trap of frequency ω⊥, as a function of the ratio µ/ℏω⊥. The
iso-density surface corresponding to ρ(r) = ρmax/20 is shown here. Figure taken
from Muñoz Mateo & Brand (2014).

70



CHAPITRE III. GRAY SOLITONS § 4. Transitions to other states

employing the famous Bogoliubov equations !19", which can
be derived from a linear-response expansion of the time-
dependent NLSE !20". In the units of Eq. #1$ these equations
read

Lu j#r$!gvB!%#r$"2v j#r$"& ju j#r$, #2$

Lv j#r$!gvB!%*#r$"2u j#r$"!& jv j#r$, #3$

with L"!'2#V(r)#2gvB!%(r)!2!( , and ( is the chemi-
cal potential of the stationary wave function %(r,t)
"exp(!i(t)%(r). The solutions of the Bogoliubov equation
with eigenvalues & j and eigenvectors (u j ,v j) have the fol-
lowing interpretation in terms of small-amplitude motion
around a stationary solution of the NLSE !16": Small posi-
tive & j at positive ‘‘norm’’ ) j"*(!u j!2!!v j!2)dr describe
small oscillations around the stationary state with increasing
energy. Solutions with negative eigenvalues & j and positive
) j are called anomalous modes. They indicate a continuous
transformation of the stationary state to a state of lower en-
ergy. Anomalous modes exist for the trapped vortex as well
as for dark solitons in 1D and merely express the thermody-
namic instability of these excitations. Complex or purely
imaginary eigenvalues & j , however, indicate a dynamical in-
stability. They further imply ) j"0 !16,21".
Figure 3 shows the purely imaginary and anomalous ei-

genvalues of the Bogoliubov equation for a stationary band
soliton in a rectangular box of dimension b$16+̄ as a func-
tion of the box width b,L t at constant density. For narrow
traps with b,%5.5+̄ , we find one anomalous but no complex
eigenvalues, like for 1D solitons. Additionally, the soliton
wave function shows no appreciable decay in real-time

propagation seeded with noise #see insets$. Also collisions of
noisy gray solitons show the robust, particlelike behavior
expected from 1D soliton theory !18". For trap widths 5.5+̄
,%b,%9.5+̄ , one purely imaginary eigenvalue exists in the Bo-
goliubov spectrum. According to the numerical results, the
emergence of this imaginary eigenvalue coincides with the
emergence of the SV as a symmetry-breaking stationary state
of lower energy than the corresponding band soliton. In-
creasing the box width, a second and eventually a third
imaginary eigenvalue appears. The stability of the stationary
soliton was probed using real-time propagation seeded with
0.01% white noise !22". While there is no appreciable decay
in tight confinement, we clearly find that the soliton instabil-
ity is associated with the formation of one, two, and three
vortices in the regimes where one, two, and three imaginary
eigenvalues are present as shown in the insets of Fig. 3. The
eigenvectors u j , localized within about one healing length
from the nodal line of the soliton, also support this result
!18". The patterns shown in Fig. 3 are by no means stationary
but rather form transient states followed by incomplete re-
currences of the nodal line and eventual further decay where
vortices move to the edge of the trap and vorticity is de-
stroyed. The complicated dynamical patterns showing a mix-
ture of decay and strong mode coupling are certainly due to
energy conservation in the NLSE and to the small scale of
the trap used in the simulation where radiated phonons lin-
ger. We expect further stabilization of the vortex patterns in
longer traps where energy released in the decay process can
distribute itself over a larger area. The observed decay pat-
terns vary depending on the exact form of the initial pertur-
bation by noise. In contrast to the soliton, the stationary SV
shows an entirely real Bogoliubov spectrum with one
anomalous mode also shown in Fig. 3. Further, real-time
propagation of perturbed SVs shows no appreciable de-

FIG. 4. #Color$ SV in a 3D elongated harmonic trap generated
by decay of a perturbed stationary soliton state. Shown is the sur-
face of constant density #at 0.16 of the maximum density$ and a
color-coded plot of the phase in the horizontal plane intersecting the
trap center. The transverse confinement L t /+,7.7 was computed by
the maximum value of the line integral *C+(r)!1ds taken along the
transverse dimension, which is more appropriate for measuring the
transverse confinement of inhomogeneous condensates than the box
width !13". For details of the simulation see text.

FIG. 3. Bogoliubov spectrum of the stationary soliton in a 2D
box as a function of the box width at constant average density. The
insets relating to box widths of b"7 +̄ , 12+̄ , and 16+̄ show density
plots of transient patterns in the decay of the perturbed soliton state
#see text$ after real-time propagation for t"26, 31, and 26 in the
units of Eq. #1$, respectively. The perturbed soliton at b"5 +̄ , on the
contrary, shows no appreciable decay after 100 time units. The
imaginary modes are marked according to the nature of the eigen-
vector u leading to single-vortex (!), double-vortex (!), or triple-
vortex (") decay. The anomalous modes of the nodal-plane state
($) and stationary single-svortex state (!) are also indicated.
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Figure III.24. Equi-density surface and phase of a condensate containing a soli-
tonic vortex. Figure taken from Brand & Reinhardt (2002).

tures are observable.

This figure III.23 shows the structures mentioned above. The solitonic
vortex (SV) consists of a straight vortex line, perpendicular to the x axis of
the cylinder. Another representation of a solitonic vortex is shown in figure
III.24 for a condensate confined in an elongated 3D harmonic trap. The
phase winding around the vortex line is 2π (see Aftalion & Sandier (2023)
and Aftalion, Gravejat, et al. (2024) for a detailed mathematical analysis of
this structure in a two-dimensional band geometry).

In figure III.23, the VR sign corresponds to a vortex ring, similar to a
smoke ring. Solutions corresponding to more complex configurations can
be formed, such as solitonic vortices of various directions, crossing each
other on the condensate axis, or double vortex rings, or even a combination
SV-VR, displaying the letter Φ.

As we saw on figure III.21 in the limit ωx → 0, i.e. ω⊥/ωx → +∞, these
structures can only appear if µ/ℏω⊥ ≳ 2.4. When this is the case, we see
that the single solitonic vortex corresponds to the minimum-energy struc-
ture, but this does not tell us anything about the dynamics of the system to
reach this structure, as we will see in the next paragraph.

Figure III.25. Cascade of transitions observed in an unpolarized gas of spin 1/2
fermions close to the unitary limit, starting from a soliton with a nodal plane at
x = 0, passing through a vortex ring between 20 and 80 ms, then a solitonic
vortex from 100 ms. Imaging is performed on a thin slice between z and z + δz.
Figure taken from Ku, Mukherjee, et al. (2016).

4-3 Observations on a superfluid Fermi gas

Here we describe an experiment carried out at MIT in Zwierlein’s group,
which demonstrated a cascade of transitions from the planar soliton to
the solitonic vortex (Ku, Mukherjee, et al. 2016). Unlike the setups de-
scribed above, the authors are not working here with a Bose-Einstein con-
densate, but with a Fermi gas in the unitary regime. This system can be de-
scribed approximately by a mean-field method, based on the Bogoliubov–
de Gennes formalism, so that the ideas developed in this chapter remain
relevant, subject to the modification of certain numerical parameters [see
Scott, Dalfovo, et al. (2011)].

The experiment corresponds to the following sequence:

• At the initial instant, the π phase jump is imparted to generate a zero-
velocity soliton in a gas of 1.4×106 6Li atoms, confined in an elongated
harmonic trap of frequencies 11 × 70 × 70Hz. The gas contains equal
parts of two spin states and it is prepared in the vicinity of a Fano-
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Figure III.26. Oscillation of a solitonic vortex in an unpolarized gas of spin 1/2
fermions close to the unitary limit. Figure taken from Ku, Ji, et al. (2014).

Feshbach resonance for the interaction between these two states6 (uni-
tary regime).

• In the first few milliseconds, a nodal plane appears at the center of the
trap, characteristic of the soliton.

• This plane deforms rapidly, revealing its instability. The fastest-
growing mode is the one whose wavelength is equal to the Thomas-
Fermi diameter.

• After ∼ 20ms, one no longer observes the nodal plane of the soliton
on a cross-section of the soliton in the xy plane, but simply two dark
points. This corresponds to a vortex ring, with axis x.

• Around 80 ms, a structure reminiscent of the Φ shape of figure III.23 is
revealed by a tomographic analysis of the gas.

• After ∼ 100ms, a solitonic vortex is observed that persists for a long
time. This solitonic vortex oscillates in the superfluid with a very long
period compared to 2π/ωx (figure III.26). In the experiment, the two
transverse frequencies ωy and ωz are not strictly equal, and the vortex
axis aligns along the axis corresponding to the higher frequency. Ku,

6Remember that in this low-temperature domain, two fermions in the same spin state do
not interact with each other

Ji, et al. (2014) presented a model of the oscillation in good agreement
with these experimental observations.
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Chapter IV

Magnetic solitons and Bloch oscillations

The first chapters of this course were devoted to the solitons that can
be generated in a one-component fluid. Depending on the attractive or
repulsive nature of the interactions in this fluid, we found bright or dark
solitons.

This final chapter is devoted to a brief overview of more complex soli-
tonic structures that can be generated in mixtures of Bose-Einstein conden-
sates. This is an extremely rich field, and there is no question of covering
it exhaustively. We will concentrate here on a type of soliton that appears
in a ferromagnetic material and can be reproduced almost identically in a
binary condensate mixture.

More specifically, we will study the case of a slightly immiscible mix-
ture, for which the solitons that appear are equivalent to those of an "easy-
axis" ferromagnet. We will also describe the demonstration of a phe-
nomenon predicted for magnetic solitons a long time ago, and recently
observed with a mixture of condensates: the Bloch oscillation of a soliton
subjected to a constant force.

For lack of space, we will not describe other types of structure that
appear in two-component mixtures, such as dark-bright solitons (Busch
& Anglin 2001; Becker, Stellmer, et al. 2008; Hamner, Chang, et al. 2011;
Danaila, Khamehchi, et al. 2016; Katsimiga, Mistakidis, et al. 2020; Meng,
Luo, et al. 2025) or structures obtained from three-component mixtures
(Bersano, Gokhroo, et al. 2018; Lannig, Schmied, et al. 2020; Yu & Blakie
2022; Siovitz, Lannig, et al. 2023). We refer interested readers to the re-

cent article by Mossman, Katsimiga, et al. (2024), which provides a fairly
comprehensive review of work in this field.

1 The ferromagnetic chain

1-1 The relevant energy scales

In this section, we will develop a simple model of a one-dimensional chain
of magnetic moments µj (j ∈ Z), all with the same modulus µ (figure IV.1).
This chain can be seen as a line extracted from a ferromagnetic crystal, a
one-dimensional approximation that is valid for a whole class of materials
(see, for example, Mikeska & Steiner (1991) and Dauxois & Peyrard (2006)
and refs. in). We now write the equation of motion of a magnetic moment
µj under the effect of the three dominant terms:

• Each magnetic moment interacts with its neighbors. This is essentially
an exchange interaction1, which we will model by

−J
∑

j

µj · µj+1 . (IV.1)

1We neglect here the dipole-dipole interaction of magnetic origin, which is much weaker
than the exchange interaction, which is of electrostatic origin.
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CHAPITRE IV. MAGNETIC SOLITONS AND BLOCH OSCILLATIONS § 1. The ferromagnetic chain

x

Figure IV.1. One-dimensional chain of magnetic moments, all with the same mod-
ulus µ.

The constant J , called the exchange integral, is chosen to be positive
so that the magnetic moments minimize their energy by aligning with
each other, as expected for a ferromagnetic material. This interaction
is isotropic: the common direction chosen by the magnetic moments
to minimize this energy is random if this interaction is the only one
present. In its quantum version, (IV.1) is the Heisenberg Hamiltonian.

• The second term in the energy is a small correction to the previous
term, resulting from the fact that 3D ferromagnetic crystals are gen-
erally not perfectly isotropic. An important class concerns uniaxial
materials for which one axis (noted here as z) leads to a different in-
teraction from that for the other two axes (x and y). To take this effect
into account, we add the energy2:

−J ′ ∑

j

µ
(z)
j µ

(z)
j+1 . (IV.2)

If J ′ > 0, the anisotropic interaction favors the emergence of a mag-
netization along the z axis (in positive or negative directions) and we
then speak of a easy-axis material. If J ′ < 0, the system minimizes its
energy with magnetization in the xy plane, and is referred to as an
easy-plane material.

• The chain can be placed in an external magnetic field leading to the

2We have adopted here the modeling of Kosevich, Ivanov, et al. (1990). We will see later
[cf. (IV.13)] that the contribution of this term is limited to its lowest order, for which we can
replace µj+1 by µj (Dauxois & Peyrard 2006).

Figure IV.2. The precession motion of the magnetic moment µj under the effect of
the local magnetic field Bj according to the equation of motion (IV.8).

energy
−
∑

j

µj ·Bext . (IV.3)

Like the term (IV.2) proportional to J ′, the presence of this external
field breaks the invariance by rotation. If J ′ plays a negligible role,
then the preferred direction of magnetization is that of the external
field.

1-2 Dynamics of a magnetic moment

Let us consider a magnetic moment µj and study its equation of motion.
We know that a angular momentum is associated with this magnetic mo-
ment. We denote this angular momentum sj , and the link between µj and
sj is provided by the gyromagnetic ratio γ:

µj = γsj . (IV.4)

The evolution of the angular momentum sj is

dsj
dt

= Γj (IV.5)

where Γj is the torque acting on this moment. For the magnetic moment
µj , this torque is written as

Γj = µj ×Bj , (IV.6)
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where Bj is the effective magnetic field at site j, deduced from the three
interaction terms (IV.1,IV.2,IV.3) described above:

Bj = J
(
µj−1 + µj+1

)
+ J ′

(
µ
(z)
j−1 + µ

(z)
j+1

)
ẑ +Bext (IV.7)

where ẑ denotes the unit vector aligned along z. By multiplying the two
members of the equation (IV.5) by the gyromagnetic ratio γ, we obtain the
desired equation of motion (see figure IV.2):

dµj

dt
= γ µj ×Bj . (IV.8)

The evolution equation of each µj is coupled to that of its neighbors, which
makes solving this system tricky. To make progress, we are going to move
to a continuous limit to transform this discrete differential system into a
partial differential equation.

Note. We have adopted a classical approach here, but a quantum treat-
ment leads to an identical result. We start from the Heisenberg equation
for angular momentum ŝj :

iℏ
dŝj
dt

= [ŝj , Ĥ] (IV.9)

and consider the terms in the Hamiltonian that are not commuting with ŝj :

−Jγ2 (ŝj+1 + ŝj−1) · ŝj − J ′γ2
(
ŝ
(z)
j+1 + ŝ

(z)
j−1

)
ŝ
(z)
j − γBext · ŝj . (IV.10)

We use the canonical commutation relations for angular momentum
[ŝ(x), ŝ(y)] = iℏ ŝ(z) and we reach, for the operators ŝj or µ̂j , a result iden-
tical to (IV.7-IV.8). For a 1/2 spin chain, this model is exactly solvable by a
Bethe ansatz [Des Cloizeaux & Gaudin (1966) and refs. in], as is the classi-
cal moment chain considered above.

1-3 Switching to a continuous description

We are now going to look at the situation, realistic in practice, where the
orientation of any magnetic moment µj is close to those of its neighbors

µj±1. Variations in magnetization orientation are possible, but on a length
scale much greater than the spatial period of the chain, which we will de-
note by a.

We now turn to a continuous description of the chain of magnetic mo-
ments3:

µj(t) −→ µ(xj , t) with xj = ja (IV.11)

and establish the equation of motion of µ(x, t) deduced from (IV.8). To
do this, let us take up one by one the three contributions to the field Beff

involved in this equation of motion:

• The first contribution is J(µj−1+µj+1) which we develop up to order
2 in a:

µ(xj−1) + µ(xj+1) = 2µ(xj) + a2
∂2µ

∂x2
+O(a4). (IV.12)

The zero-order term 2µ(xj), although dominant, has a zero effect on
the evolution equation as it intervenes in (IV.8) via µ(xj)× µ(xj) = 0.
This is why it is essential to push the above development to order 2.

• For the term related to the anisotropy J ′ of the material, we can restrict
ourselves to the zero order term in a:

µ(z)(xj−1) + µ(z)(xj+1) = 2µ(z)(xj) +O(a2). (IV.13)

Since J ′ ≪ J , there is no inconsistency in limiting our expansion to
this order while pushing the expansion (IV.12) to order 2 in a.

• The external field term remains unchanged.

We then arrive at the evolution equation for the vector field µ(x, t) (Lan-
dau & Lifshitz 1935):

∂µ

∂t
= γ µ×B with B = Ja2

∂2µ

∂x2
+ 2J ′µ(z)ẑ + Bext . (IV.14)

3As in the previous chapters, we use the variable x to identify the spatial position. It is
important to note that the corresponding direction is a priori decorrelated from the x, y, z axes
defining the magnetic moment Hamiltonian.
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As we did for the nonlinear Schrödinger equation, we can simplify this
equation by writing it in a dimensionless form:

∂m

∂t̃
= m× b with b =

∂2m

∂x̃2
± m(z)ẑ + bext (IV.15)

where the vector field m(x̃, t̃) is of modulus 1 at any point (|m(x̃, t̃)| = 1),
and where the following time and length scales have been introduced:

t̃ =
t

t0
x̃ =

x

x0
with t0 =

1

2γµ|J ′| x0 = a

√
J

2|J ′| (IV.16)

and

bext =
Bext

2µ|J ′| . (IV.17)

In equation (IV.15), the + sign corresponds to the easy-axis case (J ′ > 0) and
the − sign to the easy-plane case (J ′ < 0). Note that the natural length scale
x0 is very large compared with the spatial period a of the chain, since we
have assumed that J ≫ |J ′|. Structures of characteristic size of the order
of 1 in reduced units can therefore be correctly described by this contin-
uous approach, as they extend over many sites of the discrete chain. In
what follows, we will omit the symbol .̃ on the variables x and t to lighten
the notations, the context indicating whether to adopt the reduced or the
physical units.

Angular representation around the z axis. Since the vector fields µ(x, t)
or m(x, t) have a constant modulus, they can be parameterized by the two
angles in spherical coordinates θ(x, t) and φ(x, t) (see figure IV.3) :

m(x) + im(y) = sin θ eiφ m(z) = cos θ. (IV.18)

The evolution equation (IV.15) is rewritten for these two angles (Kosevich,
Ivanov, et al. 1990):

{
θt = −2θxφx cos θ − φxx sin θ

φt = − cos θ
(
φ2
x ± 1

)
+

θxx
sin θ

(IV.19)

Figure IV.3. Parameterization of µ(x, t) by the two angles θ(x, t) and φ(x, t).

where we have taken bext = 0 to simplify. We will see later how these
two equations appear identically for the description of a binary condensate
mixture in the regime where the three interaction constants gij (i, j = 1, 2)
are close to each other (Manakov regime). This makes it possible to study
the physics of magnetic solitons using quantum fluids.

1-4 Lagrangian approach

The equations of motion for the two fields θ(x, t) and φ(x, t) can be
obtained from a Lagrangian approach, with the Lagrangian density
L[θ, θt, θx, φ, φt, φx] given by:

L = Lcin − V (IV.20)

with (Kosevich, Ivanov, et al. 1990):

Lcin = −1

2
(1− cos θ)φt V =

1

4

[
θ2x + (φ2

x ± 1) sin2 θ
]
. (IV.21)
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To do this, we use the Euler-Lagrange equation for the field θ:

∂L
∂θ

=
∂

∂x

(
∂L
∂θx

)
+
∂

∂t

(
∂L
∂θt

)
(IV.22)

and its analog for the field φ.

We define the "mass" M (or rather the polarization in this context)
which is a conserved quantity:

M =
1

2

∫ +∞

−∞
(1− cos θ) dx, (IV.23)

where we assume that θ → 0 at infinity for the integral to be convergent
(this will be the case for the solutions considered in this chapter). More-
over, time and space invariances imply the conservation of the system’s
energy E and momentum P , with

E =
1

4

∫ +∞

−∞

[
θ2x +

(
ϕ2x ± 1

)
sin2 θ

]
dx (IV.24)

P =
1

2

∫ +∞

−∞
(1− cos θ)φx dx. (IV.25)

Note. In the case where the anisotropy characterized by J ′ is absent, we
can also write a system of coupled equations for θ and φ. We arrive at
a system similar to that written above, but without the ±1 (Lakshmanan,
Ruijgrok, et al. 1976) term. The length and time scales (IV.16) must be mod-
ified accordingly.

1-5 Link with the nonlinear Schrödinger equation

It is possible to establish a formal link, called gauge equivalence, between
the Landau-Lifshitz equation and the nonlinear Schrödinger equation for
a one-component gas. This link was first proposed regardless of the sign
of J ′ by Nakamura & Sasada (1982), but the proof in the case J ′ < 0 (easy-
plane) was criticized by Kundu & Pshaev (1983). On the other hand, in
the case J ′ > 0 (easy-axis), gauge equivalence with the attractive nonlinear
Schrödinger equation is valid.

We will not go into this general connection here, but it is possible to
show how the attractive nonlinear Schrödinger equation emerges in a sim-
ple limiting case of the Landau–Lifshitz equation. Let us place ourselves in
the case J ′ > 0 (easy-axis) and assume that the direction of magnetization
is at all points close to uz , i.e. the polar angle θ close to 0:

|m(x)|, |m(y)| ≪ m(z) ≈ 1. (IV.26)

We will also restrict ourselves to solutions with a large spatial scale com-
pared to the natural scale x0, i.e.

∣∣∣∣
∂2m(α)

∂x2

∣∣∣∣≪
∣∣∣∣
∂m(α)

∂x

∣∣∣∣≪ |m(α)|, α = x, y. (IV.27)

Now let us introduce the complex quantity :

ψ =
(
m(x) + im(y)

)
eit (IV.28)

whose evolution equation deduced from (IV.15) is

i
∂ψ

∂t
= ψ

(
b(z) − 1

)
−m(z)b(+) with b(+) =

(
b(x) + ib(y)

)
eit. (IV.29)

Assuming that no external field is applied, we have

b(z) =
∂2m(z)

∂x2
+m(z) ≈ m(z) (IV.30)

where we have neglected the second derivative because its contribution
to (IV.29) would have been negligible once multiplied by ψ. Let us also
perform an expansion to order 2 included in ψ for m(z):

b(z) ≈ 1− |ψ|
2

2
. (IV.31)

The quantity b(+) is multiplied by m(z) ≈ 1 in (IV.29), so the second deriva-
tive must be kept at this level of the calculation:

b(+) =
∂2(m(x) + im(y))

∂x2
eit (IV.32)

so that we arrive at:
∂ψ

∂t
≈ −∂

2ψ

∂x2
− 1

2
|ψ|2ψ , (IV.33)

i.e. the attractive nonlinear Schrödinger equation.
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Link with the sine–Gordon equation. The Landau Lifshitz equation ad-
mits another important limit, the sine–Gordon equation, also much stud-
ied in the context of solitons, as it gives rise to topological solitons. We
place ourselves in the opposite situation to the previous paragraph, choos-
ing J ′ < 0 (easy-plane). The energy-minimizing macroscopic polarization
is then oriented in the xy plane.

We also assume that a weak external field is applied along the x axis,
bext = b0 x̂ with b ≪ 1. The presence of this field leads us to add the
terms b0 sinφ and b0 cot θ cosφ to the two equations of the system (IV.19).
Restricting ourselves, as in the previous paragraph, to solutions varying
slowly on the scale of x0, and taking |θ − π

2 | ≪ 1, we can simplify the
system (IV.19) and obtain:

{
θt ≈ −φxx + b0 sinφ
φt ≈ cos θ

(IV.34)

We eliminate the variable θ by taking the derivative with respect to time of
the second equation, φtt ≈ −θt sin θ ≈ −θt, which finally gives:

φtt − φxx + b0 sinφ = 0 (IV.35)

We will not comment further on this limit here, and refer readers to the
detailed discussion in Dauxois & Peyrard (2006), as well as Schweigler,
Kasper, et al. (2017) and Wybo, Bastianello, et al. (2023) for realizations in
the context of ultra-cold atom gases.

2 A binary mixture of condensates

2-1 Coupled Gross-Pitaevskii equations

We now consider a mixture of two Bose gases at zero temperature, which
we assume to be well described in the Gross–Pitaevskii approach by the
macroscopic wave functions ψ1(r) and ψ2(r). For simplicity, we will as-
sume that the atoms of both gases have the same mass m, which corre-
sponds to the case of two fluids of the same atomic species, prepared in
two different internal states.

Figure IV.4. Two possible configurations depending on whether a mixture is mis-
cible (left) or immiscible (right).

We will assume that the interactions can be described by a contact po-
tential, with the three couplings g11, g22 and g12. The first two describe
intra-species interactions and the third describes inter-species interaction.
The Gross–Pitaevskii energy functional is then written in dimension D:

E[ψ1, ψ2] =
ℏ2

2m

∫ (
|∇ψ1|2 + |∇ψ2|2

)
dDr

+
1

2

∫ [
g11 ρ

2
1(r) + 2g12 ρ1(r)ρ2(r) + g22 ρ

2
2(r)

]
dDr

with ρj = |ψj |2, j = 1, 2. In what follows, we will assume that all coef-
ficients gij are positive to avoid any risk of one of the fluids collapsing.
We will not consider the case where a coherent coupling is set up between
the two condensates. Such a coupling would be taken into account by an
additional term

∫
ψ∗
1ψ2 + ψ∗

2ψ1 [see for example Qu, Tylutki, et al. (2017)].

The equation for the evolution of ψ1 and ψ2 can be deduced from the
energy functional given above:

iℏ ∂tψi = −
ℏ2

2m
∇2ψi + (giiρi + gijρj)ψi (IV.36)

with i, j = 1, 2 and j ̸= i. Each fluid thus evolves under the effect of its
own mean field as well as that created by the other component. For each
fluid, we have the continuity equation:

∂tρj +∇ · (ρjvj) = 0 with ρjvj =
ℏ
m
Im

(
ψ∗
j∇ψj

)
(IV.37)

since there is no transfer of matter from one fluid to the other.
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Miscibility criterion. We will briefly recall the nature of the mixture –
miscible or immiscible – according to the values of the coefficients gij .
Our reasoning will be based solely on the interaction energies involved in
E[ψ1, ψ2] and will neglect kinetic energy terms. Our result applies equally
well to a mixture of classical fluids, insofar as surface effects are negligible
compared with volume effects.

Let us denote N1 and N2 the number of particles in each fluid and con-
sider the two situations shown in figure IV.4 :

• The two fluids occupy the entire volume V available to form a homo-
geneous mixture, so the interaction energy is equal to

Ehom =
1

2V

(
g11N

2
1 + 2g12N1N2 + g22N

2
2

)
. (IV.38)

• The two fluids are spatially separated and occupy volumes V1 and V2
with V = V1 + V2, which leads to the interaction energy:

Esep =
g11N

2
1

2V1
+
g22N

2
2

2V2
. (IV.39)

In the second case, the volumes V1 and V2 adjust (under the constraint
V1 + V2 = V ) to minimize energy. This happens for

V1 = V

√
g11N1√

g11N1 +
√
g22N2

V2 = V − V1 , (IV.40)

which leads to

Esep =
1

2V

(
g11N

2
1 + 2

√
g11g22N1N2 + g22N

2
2

)
. (IV.41)

Comparing (IV.38) and (IV.41) gives the desired result:

miscible mixture ⇔ g12 <
√
g11 g22 (IV.42)

2-2 Manakov regime

Generally speaking, the description of two coupled quantum fluids re-
quires two complex fields, ψ1 and ψ2, or equivalently four real fields, the

two densities ρ1,2 and the two phases φ1,2 with ψj =
√
ρj e

iφj . The state of
the system is then described by the spinor

(
ψ1

ψ2

)
=

(√
ρ1 eiφ1

√
ρ2 eiφ2

)
. (IV.43)

We consider in the following the situation where all three coefficients gij
are positve and close to each other4, a situation called the Manakov regime.
To simplify calculations, we will assume more precisely that

g11 = g22 (IV.44)

and introduce the difference

gs = g12 − g with |gs| ≪ g, (IV.45)

the subscript "s" referring to spin excitations, as we will see in a moment.
With this assumption, the miscible and immiscible regimes found in (IV.42)
correspond to gs < 0 and gs > 0 respectively.

In practice, the equality g11 = g22 can be realized for atomic species
whose ground electronic level has angular momentum F = 1, as is the
case for 7Li, 23Na, 39K, 41K, 87Rb. All we need to do is work with the
two states |F = 1,mF = ±1⟩, and the equality g11 = g22 then results
from rotational symmetry. For 87Rb, the assumption |gs| ≪ g is very well
verified: gs/g ∼ 10−2.

In this situation, decoupling occurs between two types of excitation of
the binary system (Kamchatnov, Kartashov, et al. 2014; Qu, Pitaevskii, et
al. 2016; Congy, Kamchatnov, et al. 2016):

• Low-energy excitations take place at constant total density ρ1 + ρ2;
they involve only the polarization ρ1− ρ2 and the coupling coefficient
gs.

• High-energy excitations, on the other hand, are associated with a mod-
ulation of the total density ρ1 + ρ2 and involve the coupling g.

4This regime is very different from the one studied in Course 2021-22, IV.3, where we
considered a mixture with g11, g22 > 0, and the third parameter g12 chosen to be negative
and close to −√

g11 g22. This situation gives rise to quantum droplets in a 3D geometry and
bright solitons in a quasi-1D geometry, as shown experimentally by Cheiney, Cabrera, et al.
(2018).
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Figure IV.5. Spatial variation of densities ρ1(x) and ρ2(x) with constant total
density condition ρ1(x, t) + ρ2(x, t) = ρ0.

In the following, we will consider a one-dimensional problem, focus on
low-energy excitations, and approximate

ρ1(x, t) + ρ2(x, t) = ρ0 (IV.46)

where ρ0 is a constant, at any point x and any time t (figure IV.5). The sum
of the two continuity equations (IV.37) then leads to

∂xJ = 0 with J = ρ1v1 + ρ2v2 . (IV.47)

The total current of particles is therefore uniform in space.

In this constant-density regime, the spinor parameterization describing
the gas is reduced to three real fields θ(x, t), Φ(x, t) and φ(x, t):

(
ψ1

ψ2

)
=
√
ρ0 eiΦ/2

(
cos(θ/2) e−iφ/2

sin(θ/2) e+iφ/2

)
(IV.48)

where Φ and φ denote the overall phase and relative phase of the two com-
ponents respectively:

Φ(x, t) = φ1(x, t) + φ2(x, t) φ(x, t) = φ2(x, t)− φ1(x, t) (IV.49)

The fluid velocities vj defined in (IV.37) are given by

v1 =
ℏ
2m

(Φx − φx) v2 =
ℏ
2m

(Φx + φx) (IV.50)

so that the relationship ∂xJ = 0 becomes:

∂x (Φx − cos θφx) = 0. (IV.51)

This relationship, a direct consequence of the assumption of constant total
density, partially links the global phase Φ, the relative phase φ and the
mixing angle θ. It integrates to give

Φx − cos θ φx = 2k(t) (IV.52)

where k is at this stage an arbitrary function of time.

In the following, we will consider situations where component 2 is lo-
cated in a reduced area of space compared to the extension of component 1,
which we will call a "bath". In this case, far from the minority component,
we have θ ≈ 0 and therefore

area such that ρ2 ≈ 0 : k ≈ 1

2
(Φx − φx) =

mv1
ℏ

. (IV.53)

The quantity k thus represents the bath wave number in zones where this
bath is essentially pure.

2-3 Bath at rest: the magnetic chain regained

In this paragraph, we consider the case where the bath is immobile, for
example because it is confined to a segment, with an infinite barrier at each
end. In this case, we can set k(t) = 0 at any instant t and eliminate the
phase Φ in favor of φ thanks to :

Bath at rest: Φx = cos θ φx (IV.54)

As long as we restrict ourselves to low-energy excitations and assume
a constant density, the state of the binary mixture is described by the two
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fields θ(x, t) and φ(x, t). Rewriting the equations (IV.36) in terms of θ and
φ gives 




2m

ℏ
θt = −2θxφx cos θ − φxx sin θ

2m

ℏ
φt = − cos θ

(
φ2
x +

2mgsρ0
ℏ2

)
+

θxx
sin θ

(IV.55)

Let us choose the unit of length x0 such that

x0 =
ℏ√

2m|gs|ρ0
(IV.56)

and the associated t0 unit of time

t0 =
2mx20
ℏ

=
ℏ
|gs|ρ0

(IV.57)

which gives the same system as that found for the magnetic chain in (IV.19):
{

θt = −2θxφx cos θ − φxx sin θ

φt = − cos θ
(
φ2
x ± 1

)
+

θxx
sin θ

(IV.58)

where + now refers to the immiscible case and − to the miscible case.

For a bath at rest and with the assumption of a constant total density,
there is therefore a perfect correspondence between the equations of mo-
tion of a chain of magnetic moments and those of a binary mixture of con-
densates with:

"easy-axis" ferromagnet ⇔ immiscible mixture

"easy-plane" ferromagnet ⇔ miscible mixture.

In particular, the Lagrangian approach presented in § 1-4 remains un-
changed (Congy, Kamchatnov, et al. 2016).

We thus recover the three conserved quantities mentioned above, start-
ing with the mass (IV.23), written here as N2/ρ0x0, i.e. the population of
the minority component (in reduced units):

Bath at rest: N2 =
ρ0
2

∫
(1− cos θ) dx (IV.59)

where the integral is taken over the entire length of the bath, but where
only regions where ψ2 takes significant values actually contribute. The
expressions (IV.24) and (IV.25) for the energy and for the momentum are
also unchanged, the corresponding units being5:

Energy unit: E0 =
ℏ
t0
ρ0x0 Momentum unit: P0 = ℏρ0. (IV.60)

In physical units

Bath at rest: Erest =
1

4
E0x0

∫ [
θ2x +

(
ϕ2x ±

1

x20

)
sin2 θ

]
dx (IV.61)

The expression (IV.25) for the momentum can also be simplified consider-
ably by using the relation Φx = φx cos θ which leads to

Bath at rest: Prest =
ℏρ0
2

∫
(φx − Φx) dx = −ℏρ0

∫
φ1,x dx (IV.62)

or, returning to physical units:

Bath at rest: Prest = −ℏρ0 [φ1(x+)− φ1(x−)] (IV.63)

where x± are located on either side of the zone where ψ2 takes significant
values, and where the bath phase φ1 can vary (see figure IV.6, top).

Note. The reader might be concerned about the discontinuity that ap-
pears in (IV.58) at the miscible-unmiscible transition. The important point
to note is that the length scale x0 diverges at this point. For a finite sample
size L, this length scale loses its interest if x0 > L and it is better to work
with the dimensioned system of equations (IV.55), which is not singular in
the limit |gs| → 0.

2-4 Unconstrained bath

We now consider a gas that can move freely on a ring, with periodic bound-
ary conditions for the wave functions ψ1 and ψ2. In this case, there is no

5Note that these units involve the dimensionless quantity ρ0x0, so it is not possible to
restore the correct units by just a dimensional analysis. The choice made here ensures E0 =
P0v0, where the unit of velocity v0 is given by v0 = x0/t0.
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reason to assume that the bath is at rest at all times, especially when an
external force is applied to the system, as will be the case in § 4. The special
relationship (IV.54) must therefore be replaced by the more general one
written in (IV.52). Still assuming a constant total density equal to ρ0, we
now find for the evolution of the fields θ and φ:

{
θt = −2θxφx cos θ − φxx sin θ − 2kθx

φt = − cos θ
(
φ2
x ± 1

)
+

θxx
sin θ

− 2kφx
(IV.64)

where the wavenumber k is expressed in units of 1/x0. We will see later
that k is directly proportional to the momentum of the system [eq. (IV.73)]
and is therefore independent of time as long as no external force is acting
on either fluid.

Again, these equations can be obtained from a Lagrangian approach,
now involving the three fields θ,Φ, φ and their first derivatives with re-
spect to time and space. This Lagrangian is calculated from the one gov-
erning the evolution of the two coupled nonlinear Schrödinger equations:

LNLS =
∑

j=1,2

(
iℏψ∗

jψj,t −
ℏ2

2m
|ψj,x|2 −

g

2
|ψj |4

)
− g12|ψ1|2|ψ2|2. (IV.65)

We inject the form (IV.48) of the spinor (ψ1, ψ2) and find

L = Lkin − V (IV.66)

with
Lcin =

1

2
(φt cos θ − Φt) (IV.67)

and
V =

1

4

(
θ2x + φ2

x +Φ2
x

)
− 1

2
Φxφx cos θ ±

1

4
sin2 θ. (IV.68)

The Lagrange equation for Φ provides the general link (IV.52) between Φ,
φ and θ, and those for θ and φ lead to (IV.64).

Here again, we find three conserved quantities:

• The number of atoms in the minority component

Unconstrained bath: N2 =
ρ0
2

∫
(1− cos θ) dx (IV.69)

which takes on the same value whether the bath is in free motion or
forced to remain at rest as in § 2-3.

• Energy (in physical units):

Unconstrained bath: Eunc. =
1

4
E0x0

∫ [
θ2x + (φ2

x ±
1

x20
) sin2 θ + 4k2

]
dx

(IV.70)
In comparison with the case of the bath at rest (IV.61), for a ring of
length L we note the addition of the term

E0x0Lk
2 =

ℏ2k2

2m
ρ0L (IV.71)

which simply corresponds to the kinetic energy of ρ0L atoms moving
at speed ℏk/m.

• The momentum (in physical units):

Punc. =
ℏρ0
2

∫
(Φx − φx cos θ) dx (IV.72)

Exploiting the link (IV.52) between Φx and φx, this momentum can
also be written for a ring of length L:

Unconstrained bath: Punc. = ℏkρ0L (IV.73)

Link between Prest and Punc.. The difference (IV.71) between the energy
of the "bath at rest" and "unconstrained bath" cases can be understood sim-
ply in terms of the bath’s kinetic energy. On the other hand, the difference
between the momenta (IV.63) for the bath at rest and (IV.73) for the bath
moving freely on a ring deserves comment.

Figure IV.6 shows a phase profile of the bath in each case. We will not
describe here what happens in the shaded area where the minority compo-
nent is present, as this will be the subject of the next section for the special
case of a soliton. We simply assume that the mixing of the two components
produces the same phase difference ∆φ1 = φ1(x+)−φ1(x−) on either side
of this zone, whether the bath is at rest on a segment or free in a ring. We
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Figure IV.6. Possible profiles for the phase φ1(x) of the bath. The minority com-
ponent 2 is assumed to be located in the shaded area, and its presence results in a
phase variation ∆φ1 between points x− and x+. Top: Confinement on a segment,
imposing an immobile bath and therefore a uniform phase φ1 outside the shaded
zone. Middle and bottom: case of a bath freely moving on a ring, with periodic
boundary conditions ψ1(L/2) = ψ1(−L/2), so φ1(L/2) = φ1(−L/2) + 2πn
with n ∈ Z. We have taken n = 0 for the middle figure (no phase winding) and
n = 1 for the bottom figure.

also assume that the extension of the shaded area is very small compared
to the total length L of the bath.

In the case of the bath at rest, we saw in (IV.63) that the momentum is
simply equal to −ℏρ0∆φ1 (figure IV.6, top). In the case of the bath moving
freely on a ring, the bath wave function ψ1 must be mono-valued, which
requires the phase to take the same value (modulo 2π) in±L/2. Let us first
consider the case without phase winding (figure IV.6, middle): when we
traverse the bath from point x+ to point x− (i.e. without passing through
the shaded area), we have a phase gradient, and therefore a wavenumber,
given by k = −∆φ1/L. The result (IV.73) Punc. = ℏkρ0L is therefore rewrit-
ten Punc. = −ℏρ0∆φ1, which coincides with the case of a bath at rest. If a
phase winding is present in the ring, the phase difference between x+ and
x− is equal to −∆φ1 + 2nπ with n ∈ Z (figure IV.6, low for n = 1), which
provides the general relationship between Prest and Punc.:

Punc. = Prest. + n 2πℏρ0. (IV.74)

3 The magnetic soliton

The realization of magnetic solitons from condensate mixtures is a subject
that has been explored by several groups over the last ten years, both the-
oretically and experimentally6. These studies initially focused on the mis-
cible case, corresponding to the easy-plane case for the magnetic chain. See
Qu, Pitaevskii, et al. (2016), Ivanov, Kamchatnov, et al. (2017), Qu, Tylutki,
et al. (2017), and Pitaevskii (2019) for the theory and Farolfi, Trypogeor-
gos, et al. (2020) and Chai, Lao, et al. (2020) for the first two experimental
realizations.

In what follows, we will focus on the immiscible case, i.e. the easy-axis
case for the ferromagnetic equivalent. More precisely, we consider a finite
number of atoms of species 2 immersed in a long bath formed by species
1. In this section, we will be investigating the shape this cloud of parti-
cles 2 must take if it is to move at a constant speed v without undergoing

6"Real" magnetic solitons in solid materials have been observed for many years, in con-
nection with interfaces between two zones of different magnetization. See Kosevich, Ivanov,
et al. (1990) for historical references, and Togawa, Koyama, et al. (2012) and Caretta, Oh, et al.
(2020) for recent achievements.
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deformation, which is the definition of a soliton.

3-1 General structure of the solution

We are interested in a state of the mixture such that the fluid is composed
exclusively of particles of type 1 when x→ ±∞. This imposes:

x→ ±∞ : θ → 0 mod 2π. (IV.75)

We impose no constraint between the bath phase on either side of the soli-
ton, which amounts to placing ourselves on an (arbitrarily long) segment.

We consider here the case of a bath at rest7, and look for the solitonic
solutions of the system (IV.58) in the form of

{
θ(x, t) = θ(x− vt)
φ(x, t) = Ωt+ ϕ(x− vt) (IV.76)

A soliton is thus characterized by two parameters, its velocity v and the
parameter Ω. We shall see later that it is essential to introduce this sec-
ond parameter Ω to obtain interesting solutions8. A similar constraint had
arisen for bright solitons, for which the phase of the wave function did not
evolve with the same argument x− vt as its modulus.

When we inject this solution structure into the equations of motion
(IV.58), we obtain the following differential system for one-variable func-
tions θ and ϕ (Long & Bishop 1979):




−vθ′ = −2θ′ϕ′ cos θ − ϕ′′ sin θ
Ω− vϕ′ = − cos θ

[
(ϕ′)2 + 1

]
+

θ′′

sin θ

(IV.77)

Recall that to obtain this system, we expressed position and time in units
of x0 and t0 defined as (IV.56-IV.57), with velocity in units of x0/t0. We will
now solve this system in the special case v = 0, and then move on to a
soliton of any velocity.

7The case of a bath with wave number k and velocity vb = ℏk/m, described by the equa-
tions (IV.64), can be deduced by replacing v by v − vb in the following.

8The article by Chai, You, et al. (2022) implicitly posits Ω = 0 and finds only a subset of
the solitonic solutions discussed here.

3-2 The magnetic soliton at rest

For a soliton with zero velocity, the first equation of (IV.77) gives

d

dx

(
ϕ′ sin2 θ

)
= 0. (IV.78)

As θ tends to 0 at infinity, we deduce that ϕ′ = 0 except at a point xs
where sin θ = 0 and where we can have ϕ′(x) proportional to the Dirac
distribution δ(x − xs). The ϕ phase is therefore uniform, with a possible
discontinuity at a point where θ = 0 or θ = π (total depletion of one or
other of the components):

Point xs where sin[θ(x)] = 0 : ϕ(x) = ϕ0 + ϕ1Y (x− xs) (IV.79)

where Y (x) represents the Heaviside function.

The second equation of (IV.77) then becomes:

θ′′ = Ωsin θ +
1

2
sin(2θ) . (IV.80)

Solving this differential equation is relatively technical, so we will con-
fine ourselves to indicating the main conclusions for solutions centered at
x = 0 (the problem is translation-invariant):

• The parameter Ω must be such that

Ω > −1 (IV.81)

• When this condition is verified, the solution is written:

ρ2(x)

ρ0
= sin2

θ

2
=

2 + 2Ω

2 + Ω + |Ω| cosh(2κx) (IV.82)

with
κ =
√
1 + Ω (IV.83)

This solution is maximal at x = 0 and decreases exponentially fast at
infinity.
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Figure IV.7. Graphical solution of the relationship between the parameter Ω and
the number of atoms N2 in the minority component. The two blue dotted lines
correspond to the number of atoms in the minority component Ñ2 ≡ N2/ρ0x0 =
1 and Ñ2 = 5. The corresponding profiles are plotted in figure IV.8 and IV.9,
respectively. For Ñ2 = 1, the solutions are Ω ≈ −0.78 (solid red) and Ω ≈ 3.68
(dotted red). For Ñ2 = 5, the solutions are Ω ≈ −2.66 10−2 (solid red) and
Ω ≈ 2.73 10−2 (dotted red).

• The number of particles N2 in the minority component is given by
(IV.59) and we find

N2 = ρ0x0 ln

(
2 + Ω + 2κ

|Ω|

)
(IV.84)

We show in figure IV.7 the principle of a graphical solution of this
equation, allowing us to find the value(s) of Ω corresponding to a
given number N2 of particles in the minority component. For each
N2, we find two values of Ω, one negative between Ω = −1 and
Ω = 0 (continuous branch), the other positive (dotted branch). There
are therefore two possible expressions for a soliton at rest for each
value of N2. The energy of these solutions calculated using (IV.61)
is E = 2κ = 2

√
1 + Ω. The solution obtained for Ω < 0 therefore has a

lower energy than that corresponding to Ω > 0.

−4 −2 0 2 4
0

0.5

1

x

ρ2(x)
ρ0

Figure IV.8. The two density profiles of the minority component for N2/ρ0x0 = 1
for a zero-velocity magnetic soliton.

Small numbers N2. In the case where N2/ρ0x0 ≲ 1, the two solutions
obtained are very different from each other, as shown in figure IV.8. One
of the solutions (solid red line on this figure) corresponds to Ω ≈ −1, for
which (IV.82) simplifies to

ρ2(x)

ρ0
≈ κ2

cosh2(κx)
(IV.85)

with κ =
√
1 + Ω ≪ 1. We find the characteristic structure of a bright

soliton of low amplitude, with a width large in front of x0. This type of
solution was to be expected, as we had found in § 1-5 that the Landau–
Lishiftz equation reduces to the nonlinear Schrödinger equation in the
regime where θ remains close to 0, i.e. the low-depletion regime.

The other solution for the same value of N2 (dotted red line in the fig-
ure) corresponds to Ω≫ 1, and therefore κ≫ 1. It is much narrower, with
complete depletion of component 1. Note that the emergence of a narrow
structure is necessarily associated with high kinetic energy; the assump-
tion of separation of the energy scales linked to spin and total density ex-
citations must therefore be carefully re-examined for this type of solution:
the spin structure that appears here costs a lot of energy and may couple
with a density excitation.
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Figure IV.9. The two density profiles of the minority component for N2/ρ0x0 = 5
for a zero-velocity magnetic soliton.

Large numbers N2. In the case where N2/ρ0x0 ≫ 1, the values Ω found
by solving (IV.84) are close to Ω = 0 and opposite to each other. They lead
to very similar spatial profiles:

ρ2(x)

ρ0
≈ 1

1 + |Ω|
2 cosh(2x)

, (IV.86)

shown with solid and dotted lines in figure IV.9 for N2/ρ0x0 = 5. These
profiles are≈ flat and close to 1 on a segment of length ln(4/|Ω|) ≈ N2/ρ0x0
centered on x = 0. They decrease towards 0 on the length scale x0 since
κ ≈ 1 in this case. This structure corresponds to a spin domain in the
ferromagnetic case, or a quasi-pure bubble of condensate 2 of density ρ0,
immersed in condensate 1.

Possible phase jumps. We indicated in (IV.79) the possibility of a jump
of the phase φ (of unknown amplitude at this stage) at a point xs where
sin[θ(xs)] = 0, i.e., where θ = 0 or θ = π. Let us briefly revisit this point
for the two categories of solutions considered, and see what it means for
the phases of the two condensates. First, let us note that the solution given
in (IV.82) for sin(θ/2) never cancels out, whatever the sign of Ω. This rules
out finding a point x where θ(x) = 0. A possible zero of sin[θ(x)] must
therefore correspond to θ(x) = π, i.e. a point x for which sin[θ(x)/2] = 1
corresponding to the total depletion of the bath.

We can see from (IV.82) that the condition sin(θ/2) = 1 is indeed ful-
filled at x = 0 for the solutions with Ω > 0. The phases ϕ and φ can
therefore be discontinuous at this point. The phases φ1 and φ2 of the two
condensates can then be deduced from (IV.49-IV.52)

∂xφ1 = − sin2(θ/2) ∂xφ ∂xφ2 = cos2(θ/2) ∂xφ . (IV.87)

At a point xs where θ(xs) = π, the discontinuity of φ is transferred (up to
a ± sign) to the bath phase φ1. More precisely, if we return to the wave
function of the bath ψ1(x), it can be written (up a global phase) as

Ω > 0, v = 0 : ψ1(x) =
√
ρ0

√
Ω sinh(κx)

[
1 + Ωcosh2(κx)

]1/2 , (IV.88)

thus a phase jump of±π in x = 0. On the other hand, there is no phase dis-
continuity for the wave function of the minority component at this point.

On the other hand, solutions corresponding to Ω < 0 never reach the
value 1, so the bath depletion is never total for them. We deduce that the
phase φ(x) is uniform throughout space for these solutions, and the same
applies to the individual phases of the two condensates φ1 and φ2. From
(IV.82), we find for the bath wave function (still up to a global phase):

Ω < 0, v = 0 : ψ1(x) =
√
ρ0

√
|Ω| cosh(κx)

[
1 + |Ω| sinh2(κx)

]1/2 (IV.89)

and for the wave function of the minority component

Ω < 0, v = 0 : ψ2(x) =
√
ρ0

(1− |Ω|)1/2
[
1 + |Ω| sinh2(κx)

]1/2 . (IV.90)

3-3 Experimental realization of a soliton at rest

The Collège de France group recently carried out an experiment in which
a magnetic soliton at rest was produced and characterized in a two-
component mixture (figure IV.10). The starting point is a flat-bottom box-
shaped optical trap along the x axis with a length Lx = 60µm. The other
degrees of freedom are tightly confined, with width Ly = 3µm and thick-
ness Lz ∼ 0.3µm. A uniform condensed gas of N1 ≈ 20 000 rubidium
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Figure IV.10. Magnetic soliton in a two-component mixture.

atoms (i.e. ρ0 = 370 atoms/µm) is prepared at very low temperature. Spin
dynamics are frozen along the y and z directions, so that the gas is initially
described to a good approximation by the one-dimensional wave function
ψ(x) =

√
ρ0. Atoms are prepared in the electronic ground state and in the

hyperfine sublevel |F = 1,mF = −1⟩.
Using a transition involving an infrared photon of wavelength ∼

790nm and a microwave photon, we transfer a fraction of the atoms from
|F = 1,mF = −1⟩ to |F = 1,mF = +1⟩. The infrared beam is spatially
shaped by a system of micro-mirrors so that the x dependence of the trans-
ferred fraction reproduces the function sin2(θ/2) given in (IV.82). During
the transfer, the total density remains equal to ρ0 at any point x. Further-
more, we aim for a solution Ω < 0 so that the wave functions ψ1,2 have a
uniform phase: there is therefore no manipulation required to obtain the
right phase profile, unlike in experiments with dark solitons.

In practice, we are interested in situations of low depletion, where the
density of the minority component varies approximately as 1/ cosh2(κx)
[cf. (IV.85)]. This simple profile is "printed" by choosing a given value of
κ, in this case κ−1 = 5.5µm. The number of atoms transferred is varied
by changing the intensity of the light beam. We then measure whether the
resulting structure contracts, expands or remains stationary. In the latter
case, we deduce that we have reached the conditions for the formation of a
zero-velocity magnetic soliton with Ω ≈ −0.91. The length scale x0 is equal
to 1.61µm in this particular case.

22 CHAPTER 1. Solitons in the static regime
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Figure 1.7: Magnetic soliton at rest. (a), Absorption image of the minority component wave
packet in |2⟩. The axis of the tube is horizontal. The color is in arbitrary units proportional to
the atomic surface density. The horizontal solid line corresponds to a length of 10µm. (b), Mean
linear density along the tube direction (𝑥). The solid line is a fit of the data to the analytical profile
of the magnetic soliton. (c), We vary the atom number transferred to the minority component
and monitor the short time evolution of the size of the wave packet. Solid lines are fits of the
function 𝑡 ↦ 𝜎0 + 𝛾𝑡2 to the data. The error bars correspond to the statistical error obtained from
the fit of the density profiles. (d), Evolution of the expansion coefficient 𝛾 as a function of the
atom number 𝑁2. The value 𝑁𝑠 corresponds to the atom number for which the wave packet is
stationary. This experiment thus demonstrates the realization of a magnetic soliton at rest.

Work in progress as of February 18, 2025

Figure IV.11. a,b: Visualization of the density ρ2(x) of the minority component
of a magnetic soliton. The density ρ0 of the majority component (not visible here)
is 370 atoms/µm. c,d: Expansion of the wave packet ψ2 as a function of the atom
number N2. The magnetic soliton state is reached for N2 = 370. Figure taken
from Franco Rabec’s thesis (see also Rabec, Chauveau, et al. (2024) ).

A typical result is shown in figure IV.11. For the value chosen for κ,
the number of atoms ensuring stationarity is N2 = 370. This yields the
interaction parameter of the experiment gs = h× 0.06Hz·µm; this result is
in good agreement with what we expected, given the 3D scattering lengths
and the geometry of the trap confining the atoms. We will return to the
magnetic soliton thus produced in section 4, to study Bloch oscillations
under the effect of a constant force.
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3-4 The magnetic soliton in motion

We now turn to the solution of the system (IV.77) for any velocity v. As the
corresponding calculations are fairly lengthy, we will simply give the main
results here. The angle θ is given by

ρ2(x)

ρ0
= sin2

θ

2
=

2κ2

2 + Ω +
√
Ω2 + v2 cosh(2κx)

(IV.91)

with
κ =

√
1 + Ω− v2/4 (IV.92)

which generalizes the result (IV.82-IV.83) to the case v ̸= 0. The phase ϕ is
no longer uniform and it is given by:

tan

(
ϕ(x) +

1

2
xv

)
=

2Ω− v2 + 2
√
Ω2 + v2

2κv
tanh(κx) (IV.93)

The number of atoms of the minority species 2 in this structure is:

cosh Ñ2 =
2 + Ω√
Ω2 + v2

(IV.94)

where we have set Ñ2 ≡ N2/ρ0x0.

To gain some intuition from these complicated equations, it is interest-
ing to represent the state of the soliton in the plane (v,Ω) (figure IV.12).
First, we note that the definition of κ in (IV.92) puts a constraint on the do-
main of the accessible plane. As the argument of the square root must be
positive, we must choose the pair (v,Ω) such that

Ω > −1 + v2

4
, (IV.95)

which represents a domain bounded by a parabola of axis z. The condition
Ω > −1 found in (IV.81) corresponds to the special case v = 0 of this general
condition.

In the plane (v,Ω), the curves corresponding to constantN2 are ellipses,
with their vertices located in v = 0, Ω < 0 and in v = 0, Ω > 0. These
vertices correspond to the two solutions identified earlier for v = 0, and

−3 −2 −1 0 1 2 3

−1

0

1

2

v

Ω

Figure IV.12. Red curve: ellipse representing the possible states of a magnetic
soliton in the (v,Ω) plane for a fixed number of tildeN2 particles (here tildeN2 ≈
1.7). The colored area corresponds to the (v,Ω) parameters for which there is no
solution. As tildeN2 increases, the ellipse contracts around the point (0, 0).

we can now see that these particular solutions are linked by a continuum
of solutions corresponding to non-zero velocity. The question, open at this
stage, is to find a way to set the soliton in motion and make it travel along
this ellipse. In the next section, we will show how this is possible.

The energy of the soliton is always given by the simple relation E =
2κ. From this result, we find that the momentum P deduced from the
canonical relation

(
∂E

∂P

)

Ñ2

= v (IV.96)

is related to the velocity by

v = 2
sinP

sinh Ñ2

(IV.97)
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This last relationship allows us to write the energy as

E(Ñ2, P ) = 2 tanh(Ñ2/2) + 4
sin2(P/2)

sinh Ñ2

(IV.98)

In this particular case of the magnetic soliton, we can verify the general
relationship P = −ℏρ0 ∆φ1 given in (IV.63), linking the momentum P and
the phase variation of the bath ∆φ1 around the zone where component 2
is localized.

The fact that energy and velocity are periodic functions of momentum
is remarkable. This will play an essential role in the next section, where we
will study the motion of the magnetic soliton under the effect of a force.
In mathematical terms, this periodicity is explained by the fact that the
momentum is proportional to the phase variation of the bath ∆φ1, and
that a phase is generally defined modulo 2π.

Here we have used the fact that the momentum P and the velocity v
are conjugate quantities. Since the energy (IV.98) depends on the two in-
dependent variables P and Ñ2, a natural question is to find the variable
conjugate to Ñ2. A straightforward calculation yields

(
∂E

∂Ñ2

)

P

= −Ω , (IV.99)

which shows that Ω plays (up to a minus sign) the role of a chemical po-
tential, i.e. the energy required to modify the number of particles Ñ2 by
one unit, at constant momentum.

A reminder on units. Position and time are expressed here in units of x0
and t0 given in (IV.56-IV.57). The unit of velocity is x0/t0, the unit of energy
is ℏ

t0
ρ0x0 and the unit of momentum is ℏρ0. We have set Ñ2 = N2/ρ0x0.

4 Bloch oscillations of a magnetic soliton

4-1 "Usual" Bloch oscillations

The phenomenon of Bloch oscillations is one of the most spectacular man-
ifestations of quantum physics for a single particle. Provided this particle
is placed in a suitable environment, the action of an external force f , uni-
form and constant in time, does not lead to a uniformly accelerated motion,
but to an oscillating motion. We have encountered and studied this phe-
nomenon in detail in previous courses (see in particular the lecture series
2012-13), so we will just briefly introduce it here.

The environment that gives rise to the phenomenon of Bloch oscilla-
tions is a periodic potential in space, which we will denote V (x), limiting
ourselves to a one-dimensional problem for the sake of simplicity. Let a be
the spatial period of the potential, V (x + a) = V (x). The temporal period
of the Bloch oscillation is then

tB =
2πℏ
fa

(IV.100)

The explanation of this phenomenon lies in the structure of the disper-
sion relation that links the particle’s energy E to its momentum, or rather
quasi-momentum, noted here as p. In the periodic potential V (x) and in
the absence of the external force f , this dispersion relation is composed of
energy bands En(p) with periodicity 2πℏ/a:

En

(
p+

2πℏ
a

)
= En(p). (IV.101)

The eigenstates |ϕn,p⟩ of the Hamiltonian are also periodic in p, apart from
phase factors of no importance here. A momentum domain of width
2πℏ/a, for example [−πℏ/a,+πℏ/a], is called a Brillouin zone.

Let us assume, for example, that the particle is prepared in the lowest
energy band, n = 0, in the form of a wave packet obtained by superimpos-
ing a continuum of quasi-momentum values:

|ψ(t = 0)⟩ =
∫
c(p) |ϕn=0,p⟩ dp (IV.102)
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Now let us apply the additional force f : each quasi-momentum p will
evolve according to ṗ = f . Let us further assume that this force f is suf-
ficiently weak that during its motion, the particle remains in the lower
band n = 0. After the time tB , the quasi-momentum of each eigenstate
involved in the integral (IV.102) has increased by the quantity 2πℏ/a, and
this quasi-momentum has therefore described the entire Brillouin zone. We
deduce that the particle’s state has returned to its initial value (apart from
one global phase). In particular, the average particle position is back to its
initial value.

This phenomenon was first demonstrated for electrons in superlattices
(Feldmann, Leo, et al. 1992), then for atoms in standing light waves (Ben
Dahan, Peik, et al. 1996; Wilkinson, Bharucha, et al. 1996). The essential in-
gredient is the periodic variation of physical observables (energy, velocity,
position, etc.) with momentum. The response of the momentum to a force
(ṗ = f ) then immediately implies an oscillating motion for the physical
object involved.

4-2 Force on a magnetic soliton

Let us now consider a magnetic soliton initially at rest. This soliton is com-
posed with N2 atoms immersed in a bath of type 1 particles, with asymp-
totic density ρ1(x) = ρ0. Suppose we apply a force f to each particle of
type 2, without affecting the particles of type 1. If the force is sufficiently
weak, the soliton will (at least at short times) be accelerated as a whole:
particles 2 will start moving in the direction of the force, and the hole they
create in the bath of particles 1 will follow this motion. If this were not the
case, we would generate an excitation of the total density of the mixture,
which we have seen is costly in terms of energy because it is proportional
to g.

Assuming that the fluid mixture can continue to be described as a mag-
netic soliton that retains its integrity under the action of the force f , the
canonical momentum of the system varies as follows

dP

dt
= F with F = N2f (IV.103)

This relationship is deduced from the conservation of total energy in the

presence of the potential U(x) associated with the force f (f = −dU/dx):

Etot = E(Ñ2, P ) + Ñ2U(xs) (IV.104)

where E(Ñ2, P ) is given in (IV.98) and xs represents the position of the
center of the soliton. Since N2 remains constant, we find

0 =
dEtot

dt
=

(
∂E

∂P

)

Ñ2

dP

dt
+ Ñ2

dU

dx

dxs
dt

(IV.105)

which leads to, using the soliton velocity v = dxs

dt =
(
∂E
∂P

)
Ñ2

:

0 = v
dP

dt
− Ñ2fv ⇒ dP

dt
= Ñ2f . (IV.106)

The uniformly accelerated motion of the soliton will last as long as the
corresponding velocity v, expressed in reduced units x0/t0, is smaller than
1. In this regime we have [cf (IV.97-IV.98)]:

v ≈ P

meff
E(Ñ2, P ) ≈ E0(Ñ2) +

P 2

2meff
(IV.107)

with the effective mass
meff =

1

2
sinh Ñ2. (IV.108)

Once out of this regime, we must return to the complete dispersion rela-
tionE(Ñ2, P ) to determine the soliton’s motion. As this dispersion relation
is periodic in P with the period 2π in reduced units, i.e., 2πℏρ0 in physical
units, we deduce that the soliton will have an oscillating motion with the
time period

tB =
2πℏρ0
F

(IV.109)

as initially predicted by Kosevich, Gann, et al. (1998) and Kosevich (2001).
We thus find typical Bloch oscillation dynamics, even though no under-
lying periodic structure is present in this system (Gangardt & Kamenev
2009; Schecter, Gangardt, et al. 2012). The correspondence between the tra-
ditional result (IV.100) and that found for a magnetic soliton is as follows:

a ↔ ρ−1
0

f ↔ F = N2f
(IV.110)
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Figure 2. Soliton preparation and Bloch oscillations in a tube. a, Reconstructed absorption image of the initial density profiles in both |1i
and |2i. The colours represent the relative weight of the atomic densities n1 and n2 of both components. The opacity of the image is proportional
to the total density of the system. b, Integrated density profile of component |2i along the transverse direction of the absorption image. The
solid line is a fit of the data to a 1/ cosh2 function, which corresponds to the expected shape of the soliton in the limit of low values of n2/n1

at the soliton position. For a given gradient, N2 is not varied much so that the printed profile, which we keep identical for all experiments,
stays close to the soliton solution (see Fig. S2 in Methods). c, Time evolution of the minority component in |2i for N2 = 1300(100) atoms and
n0 ⇡ 350 µm�1 and under the action of a uniform di↵erential force of f = 9.0(7) ⇥ 10�28 N, showing the phenomenon of Bloch oscillations.
The error bars correspond to the statistical deviation obtained from 10 repetitions of each experiment. The solid line is a sinusoidal fit to the
data. Images are shown every 30 ms from the initial preparation of the wave packet. The dashed line is a guide to the eye to mark the initial
position of the wave packet. d, Measured Bloch period when varying N2 and the applied magnetic field gradient b0, which creates the force
f = µBb0, where µB the Bohr magneton. The di↵erent colors correspond to di↵erent forces applied on the soliton. The linear bath density n0 is
fixed. The solid black line is the prediction of Eq. (2) without any free parameter.

Figure IV.13. Bloch oscillations of a magnetic soliton prepared as shown in figure
IV.11. The bath of particles 1 is present, but not visible in this series of images,
as the light beam used to image the system is not resonant with atoms in the |1⟩
state. Figure taken from Rabec, Chauveau, et al. (2024).

It is important to note that we are dealing here with a collective phe-
nomenon: the period is a function of N2f and not of f alone. In other
words, the soliton’s oscillation is not the superposition of individual mo-
tions of type 2 particles each subjected to the force f , but it corresponds to
the dynamics of a "mesoscopic" object (for N2 ≫ 1) subjected to the force
F = N2f .

For the graphical representation in the plane (v,Ω), this oscillating mo-
tion is equivalent to travelling along the ellipse of figure IV.12 in the coun-
terclockwise direction. The two turning points of the motion, at which the
soliton’s velocity cancels out, correspond to the two states of the soliton at
rest found in § 3-2 [see also Zhao, Wang, et al. (2020) for a description in
terms of effective mass whose sign depends on time].

4-3 Observation of Bloch oscillations

The magnetic soliton whose preparation we described in § 3-3 can be set
in motion by a magnetic field gradient, since the two sublevels involved,
|1⟩ ≡ |F = 1,m = −1⟩ and |2⟩ ≡ |F = 1,m = +1⟩ experience opposing
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n0 ⇡ 350 µm�1 and under the action of a uniform di↵erential force of f = 9.0(7) ⇥ 10�28 N, showing the phenomenon of Bloch oscillations.
The error bars correspond to the statistical deviation obtained from 10 repetitions of each experiment. The solid line is a sinusoidal fit to the
data. Images are shown every 30 ms from the initial preparation of the wave packet. The dashed line is a guide to the eye to mark the initial
position of the wave packet. d, Measured Bloch period when varying N2 and the applied magnetic field gradient b0, which creates the force
f = µBb0, where µB the Bohr magneton. The di↵erent colors correspond to di↵erent forces applied on the soliton. The linear bath density n0 is
fixed. The solid black line is the prediction of Eq. (2) without any free parameter.

Figure IV.14. Variation of the period measured for Bloch oscillations as a function
of N2 and the force f = µBb

′.

forces in this gradient. In practice, we prepare the cloud in the state |1⟩
in the presence of the gradient b′, chosen to be sufficiently small that the
equilibrium density ρ1 remains practically uniform. We use b′ = 1G/m,
which corresponds to an energy difference ∆U between the two ends of the
segment of the order of a nanokelvin, well below the chemical potential of
the gas. The force f introduced earlier is equal to the difference in forces
felt by the atoms on the states |1⟩ and |2⟩, corresponding to f = µBb

′ where
µB is the Bohr magneton.

The period of Bloch oscillations is a few hundred milliseconds, which
is very long compared to the time it takes a sound wave to travel from one
end of the sample to the other (ten milliseconds). The assumption made in
(IV.52) of a zero current J is therefore legitimate: the phonons generated
by the soliton’s motion make several round trips between the ends of the
tube and the soliton itself in a period tB ; this ensures that the phase of the
bath of particles 1 can be considered uniform on either side of the soliton.

An example of oscillations is shown in figure IV.13. The measured pe-
riod is in excellent agreement with the prediction (figure IV.109).

Using atom interferometry, we can study the state of the bath at the
turning points of the motion. At initial times as well as after an integer
number of oscillations, the bath is expected to have a uniform phase [cf. eq.
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Figure IV.15. Study of the phase of the bath of particles |1⟩ at the turning points
of the Bloch oscillation. The segment of atoms containing the soliton is made to
interfere with a test segment of uniform phase.

(IV.89)], which corresponds to the lower point of the ellipse in figure IV.12.
On the other hand, after one half of the oscillation period (or 3/2, 5/2,...),
the bath phase is expected to have a jump of±π at the soliton center, which
corresponds to the upper point of the ellipse in figure IV.12 [cf. eq. (IV.88)].

These predictions concerning the bath phase can be checked by prepar-
ing a second segment, parallel to the first one, for which all atoms are in
state |1⟩. This second segment is then used as a phase reference. At a given
time, the confinement of the two segments is released. The atoms expand
ballistically and the interference between the two segments is observed.
When the segment with the soliton is associated with a uniform phase for
the wave function ψ1(x), the interference fringes are expected to be recti-
linear. On the other hand, when ψ1(x) has a phase jump of π, the fringes
are expected to exhibit a dislocation at the soliton position. This is indeed
what we observe experimentally (see figure IV.15).

This experimental result presents a strong analogy with that of a
Josephson junction subjected to a potential difference V constant over time
(Bresolin, Roy, et al. 2023). Denoting φ the phase difference of the super-
conductor on either side of the junction, the behavior of this junction is
governed by the following two equations:

I = Ic sinφ (IV.111)
dφ

dt
=

qV

ℏ
(IV.112)

where I is the current flowing through the junction and Ic is the junction’s

characteristic current. These equations lead to a sinusoidal current I(t).

I(t) = Ic sin(ωt) with ω = qV/ℏ. (IV.113)

The correspondence with the soliton oscillation is made by the following
identification:

I ←→ v (IV.114)

φ ←→ P/ℏρ0 = φ1(x−)− φ1(x+) (IV.115)

qV ←→ N2f/ρ0 (IV.116)

Equations (IV.111) and (IV.112) are equivalent to (IV.97) and (IV.103) respec-
tively, which we rewrite here in physical units:

v = vc sin(P/ℏρ0) with vc =
2

sinh Ñ2

x0
t0

(IV.117)

dP

dt
= N2f. (IV.118)

4-4 The origin of the periodicity of E(P )

As mentioned above, the origin of the Bloch oscillation phenomenon lies
in the periodicity of the dispersion relation E(P ), from which we deduce
the periodicity v(P ) since v = ∂E/∂P . If the momentum evolves linearly
in time under the effect of a constant and uniform external force F , with
Ṗ = F , the energy, velocity and position of the system under study will be
oscillating functions of time.

The periodicity of E(P ) (or rather Erel(P ) in what follows) with period
2πℏρ0 is in fact a general property of a 1D gas. To show this, we will follow
a line of reasoning due to Bloch (1973) and Bloch (1974) [see also Haldane
(1981)]. Consider a set of N particles of mass m on a ring of perimeter
L, which amounts to imposing periodic boundary conditions on the wave
function Ψ(x1, · · · , xN ). Let us separate the N position variables into a
center-of-mass variable

X =
1

N
(x1 + · · ·+ xN ) (IV.119)
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and N − 1 relative variables ξ1, · · · , ξN−1 that we will not have to define
explicitly. The Hamiltonian is written as

Ĥ =
P̂ 2

2M
⊗ 1̂rel + 1̂com ⊗ Ĥrel (IV.120)

where M = Nm denotes the total mass, P̂ =
∑
p̂i is the total momentum,

and Ĥrel contains the kinetic terms related to the relative momenta as well
as the effect of interactions between particles, which depend only on the
position differences xi − xj . We can then search for the eigenfunctions of
Ĥ in the form

ΨP (x1, · · · , xN ) = eiPX/ℏ Φp(ξ1, · · · , ξN−1) (IV.121)

where P is a possible eigenvalue of the total momentum operator P̂ and
where

ĤrelΦP = Erel(P ) ΦP . (IV.122)

The total energy associated with ΨP is therefore

P 2

2M
+ Erel(P ) . (IV.123)

At this point, it may come as a surprise to see P appear in the eigen-
value equation (IV.122) for the Hamiltonian Ĥrel: the latter depends only
on the relative variables ξi and we might naively have expected a complete
decoupling between the degree of freedom of the center of mass and the
relative variables. In fact, this complete decoupling does not occur, due to
the constraints of the periodic boundary conditions adopted here. To ex-
plain this point, we will make these constraints explicit by exploiting two
types of transformations.

• If we perform the translation xi → xi+L for each particle, the relative
coordinates are unchanged and X → X + L. Since the wave function
ΨP must remain unchanged, we deduce that eiPL/ℏ = 1, i.e.

P = 2πnℏ/L with n ∈ Z. (IV.124)

This is the usual quantization relation for the momentum of a particle
(here, the center of mass) in a box of size L.

• If we perform the translation xi → xi+L for just one of theN particles,
the prefactor eiPX/ℏ is multiplied by eiPL/Nℏ = eiP/ℏρ0 with ρ0 = N/L.
As for the relative variables, they are modified in a way that we will
not specify explicitly, but which we can write as ξj → ξ′j . Since ΨP

must remain unchanged in this translation, we deduce that the func-
tion of the relative variables is modified according to:

ΦP (ξ
′
1, · · · , ξ′N−1) = e−iP/ℏρ0 ΦP (ξ1, · · · , ξN−1) . (IV.125)

Here we explicitly see that a value of P obeying the quantization condi-
tion (IV.124) generally leads to a change of the boundary conditions of the
function ΦP . This is precisely why the eigenfunctions ΦP of the relative
motion and the associated eigenvalues Erel(P ) depend on the momentum
of the center of mass.

However, if we choose P such that e−iP/ℏρ0 = 1, i.e. P multiple of
2πℏρ0, then the eigenfunctions satisfy the same boundary conditions as
those for P = 0. Since the relative Hamiltonian Ĥrel does not depend on P ,
we deduce that its spectrum for P = 2πℏρ0 is the same as that for P = 0.

Furthermore, in the thermodynamic limit N → ∞, L → ∞ with
ρ0 = N/L constant, the mass M = Nm tends towards infinity so that the
kinetic energy of the center of mass P 2/2M also tends towards 0 when
P = 2πℏρ0. In particular, this provides the desired periodicity for the
ground-state energy of the system, which is what interests us here for the
magnetic soliton.

In the Bloch oscillation experiment we described earlier, the magnetic
soliton can be seen as a mesoscopic impurity that enables us to inject mo-
mentum into the bath in a controlled manner via the force F , and thus
probe the general periodicity ofE(P ) that we have just explained. Another
experiment exploiting this same periodicity is described in Meinert, Knap,
et al. (2017), where the impurity is then microscopic since it is composed
of a single atom, of a different nature to that of the bath (see also Grusdt,
Shashi, et al. (2014), Petković & Ristivojevic (2016), and Will & Fleischhauer
(2023)).
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