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Abstract. We have studied the expansion of a small cloud of 
85Rb atoms in three-dimensional optical molasses (lin I lin 
and a+- u- configurations) and observed diffusive motion. 
We determined the spatial-diffusion coefficients for various 
laser intènsities and detunings, and compared them (in the 
case of lin I lin molasses) to values calculated from friction 
and momentum-diffusion coefficients of a one-dimensional 
(ID) theory of laser cooling. The predicted variations of the 
spatial-diffusion coefficient with laser, intensity and detuning 
are in good qualitative agreement with the experimental data. 
We found that the minimal value observed experimentally, 
N 6 x cm2/s, lies within a factor of 3 of the 1D theo- 
retical minimum, N 26h/M, where M is the atomic mass. 

PACS: 32.80.Pj; 42.50.Vk; 35.80.+s 

Optical molasses is a configuration of laser beams which 
cools and viscously confines a gas of atoms. Viscous con- 
finement refers to the fact that atoms in the molasses ex- 
perience such a strong damping of their motion that their 
mean free path is much smaller than the dimensions of the 
molasses. The motion of the atoms is diffusive and confine- 
ment results from the fact that the time to diffuse out of the 
molasses region can be quite long. 

The first theoretical treatments of optical molasses [ l ,  
21 were in the context of 'Doppler cooling', Le., a mode1 
in which atoms are treated as two-level systems interacting 
with low-intensity laser beams. Under these circumstances, 
one can calculate a spatial-diffusion coefficient D,, and a 
time scale T for atoms to escape from the molasses due 
to spatial diffusion. For example, according to the theory 
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of Doppler cooling ([l] and Sect. 2E of [3]), the minimum 
diffusion coefficient for Rb atoms, laser cooled on the 780 
nm resonance line, is 3 x cm2/s, which corresponds to a 
mo1,asses decay time of 800 ms for a sample radius of 5 mm. 
Initial measurements of the decay [ l ,  31 were in agreement 
with the early calculations and led to the feeling that the 
situation was well understood. 

More recently, it was discovered [4] that the tempera- 
ture of atoms in optical molasses was much lower than that 
predicted by Doppler-cooling theory. This led to a new the- 
ory of multi-level-atom laser cooling [5, 61 that explained 
the low temperatures, and predicted details of the depen- 
dence of temperature on laser intensity and detuning that 
were subsequently confirmed experimentally [7]. The new 
theory predicted [5] that the damping of atomic motion was 
much stronger than in the case of Doppler cooling. This im- 
plied not only much lower temperatures for the atoms, but 
also much reduced spatial diffusion. Molasses decay times 
expected on the basis of the damping and heating rates of [5] 
were often in excess of 100 s for a 1 cm diameter molasses. 
Such long times have never been observed. 

In this paper, we present a detailed experimental and 
theoretical investigation of spatial diffusion. In Sect. 1, we 
introduce a method to directly measure the diffusion constant 
by observing the expansion of a cloud of atoms. This tech- 
nique is more accurate and reliable than using the molasses 
lifetime to infer D,. We find diffusion constants much lower 
than those measured previously. In Sect.2, we re-examine 
the theory of spatial diffusion in optical molasses, taking 
into account some of the recent insights into the laser cool- 
ing process. These include the fact that the damping force 
may not be linear in velocity, that the distribution of atomic 
velocities may not be Maxwellian, and that the atom motion 
may be affected by the periodic array of potentials created 
by interfering laser beams. We find that these theoretical 
estimates are in reasonable agreement with our new mea- 
surements. 



1 Experiment 

Our technique to measure D, is to record images of a cloud 
of atoms, released from a Magneto-Optical Trap (MOT) [8], 
expanding in molasses. We use a CCD camera and a VCR to 
record a sequence of images (a movie). These images then 
are analyzed using a frame grabber to digitize the images. 
The size of the cloud as a function of time gives a measure 
of D,. This technique is insensitive to any small overall 
drift velocity due either to imbalance of the beams or, in 
the a+- a- configuration, due to residual magnetic fields. 
If the drift is very large or if the expansion is non-isotropie, 
it is easily recognized and can be corrected. The method is 
also insensitive to losses due to background collisions or any 
other unifonn loss, since we measure only the shape of the 
expanding cloud. 

1.1 Realization of optical molasses 

Our apparatus has already been described in [9]. Briefly, 
an atomic beam of neutral Rb was slowed by a pair of 
frequèncy-chirped diode lasers [IO]. The slowed atoms en- 
tered a UHV region (= IO-' Pa) where a MOT cap- 
tured them and confined them to a volume smaller than 
1 mm3. The laser beams for the MOT and molasses were 
derived from a Ti-Sapphire ring laser which was locked to 
a Rb saturated-absorption cell. Acousto-Optic Modulators 
(AOMs) permitted computer control of the offset frequency 
between the MOT or molasses laser beams and the locked 
frequency. Light from the Ti-Sapphire laser was then split off 
into three beams (one for each Cartesian axis) and passed 
through a liquid-crystal variable-retardation plate to allow 
computer selection of either circularly or linearly polarized 
beams. Each of the three beams were individually expanded 
with telescopes before entering the vacuum chamber. Care 
was taken in the optical setup to preserve the polarization of 
the light through al1 reflections. As each beam left the cham- 
ber, it passed through a quarter-wave retarder and was retro- 
reflected back through the quarter-wave plate and into the 
chamber. In this way, each axis had perpendicular, counter- 
propagating, linearly polarized beams (lin I lin) when used 
with incoming linear-polarized light, or opposite-helicity, 
counter propagating, circular-polarized light (a+<-) when 
circular light was brought into the chamber. The three beams 
were reduced in size by an aperture to an 18 mm diameter 
region over which the intensity varied less than 5%. The 
intensity was varied by manually rotating a half-wave plate 
in front of a linear polarizer. We did not vary the intensity 
electronically using the AOMs because of resulting changes 
in alignment caused by thermal effects in the AOM. A diode 
laser, frequency-locked to a saturated-absorption signal, was 
tuned to the F=2 ground state, and brought into the cham- 
ber dong one of the MOTImolasses axis to repump atoms 
which fell into that ground state. 

The magnetic field for the MOT was provided by a 
pair of water-cooled coils inside the vacuum system. Ad- 
ditional coils to cancel üny residual magnetic fields were 
added outside. ~ h e "  residual field was nulled by minimizing 
,the temperature of the molasses with respect to variations 
of the magnetic field [3]. The temperature was measured 

with a time-of-flight method. In this method the molasses 
lasers were switched off and the atoms dropped ballistically 
through a distance of approximately 5 cm after which they 
intersected a probe beam. The fluorescence induced by this 
beam was recorded and the time-of-flight signal yielded a 
temperature. Details of this technique are given in [4, 7, 91. 
We estimate that the field present in the molasses region was 
less than 10pT. 

1.2 Data acquisition 

Each measurement began by switching on the MOT coils 
(and switching the MOTImolasses beams to circular polar- 
ization). In this way, a very small (< 1 mm) dense (x 10'' 
atoms/cm3~ cloud of atoms fonned near the center of the 
intersection of the molasses beams. After collecting atoms 
for about 2  s, the MOT was released by switching off the 
coils (in about 100ps) and the polarization was returned to 
linear (in the case of lin I lin measurements). After the coils 
were turned off, the frequency was changed (via the AOM) 
to the detuning to be used for the measurement. This change 
in frequency also affected the intensity, as the efficiency of 
the AOM was frequency dependent. The expanding cloud of 
atoms was recorded in a video-movie by a high-sensitivity 
CCD camera together with an on-screen clock to provide 
timing information. The first frames used in the data pre- 
sented below began more than 100 ms after the detuning 
was changed to its final value. This allowed ample time for 
the velocity distribution of the cloud of atoms to reach the 
steady state. 

Measurements were made for both lin l lin and a+- 
a- molasses. Detunines in the l i n 1  lin case were var- " 
ied from approximately 1 to 10 natural linewidths r on 
the low-energy ( r d )  side of the resonance, and intensities 
ranged from about 0.5 to 3 mW/cm2. The natural linewidth 
r / 2 n  = 5.89 MHz for rubidium. The majority of the data 
were taken under lin I lin conditions. Data for a+- a- po- 
larizations were taken with detunings ranging from about 2  
to 10 r. 

1.3 Data analysis 

Each of the movies was analyzed in the following way. A 
frame grabber was programmed to sample images at 100 ms 
intervals (every 3 frames) over the length of each movie. 
Each frame was then smoothed by replacing each pixel 
value (an 8-bit digitized intensity associated with each pixel) 
with an unweighted average of the surrounding 3x3  grid 
of pixels. Each pixel collected light from an area of about 
5 x 1 0 - ~  mm2 at the molasses. This technique provided better 
signal to noise for low-intensity frames without sacrificing 
accuracy. For each movie, the background level was found 
by locating and averaging over pixel regions where no atoms 
were present. For about 65% of the movies, the background 
was flat to f 1 pixel value, however, for the remaining 35% 
of the data the background level was not uniform throughout 
the image. This variation in the background level was due to 
reflections of laser light scattered inside the vacuum cham- 
ber. Since it was not possible to unambiguously determine 
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Fig. 1. Data from one movie. The increase in area is linear until the atomic 
cloud begins to reach the edge of the molasses after about 6s. The t h  
sets of data indicate the area Ap in number of pixels, in which the molasses 
intensity exceeded 113, 112, or 213 (0) of the peak intensity 

the background variation, analysis of the data was done for 
both largest- and smallest-possible background levels, and 
uncertainties assigned accordingly. 

After the background was determined and subtracted, the 
peak intensity was found and three numbers were computed: 

and A2/3. These numbers corresponded to the ar- 
eas throughout which the intensity of the molasses exceeded 
113, 112, and 213, respectively, of the peak intensity. 

If one considers a three-dimensional Gaussian distribu- 
tion of atoms, expanding in a spherically-symmetric cloud, 
with an e-' radius at a time t = O of ( 4 ~ , t ~ ) ' / ~ ,  the density 
of atoms, p, is then given by 

Here, D, is the spatial-diffusion constant, No is the number 
of atoms in the cloud at t = 0, and T is some characteristic 
lifetime of atoms in the trap due to, for example, background 
collisions. The camera integrates over the z-axis, and the 
area Ap defined by the radius at which the intensity of the 
image falls to P of its peak value, is given by 

This analysis assumes that any loss mechanism is indepen- 
dent of density. This may not be true at very high densities 
where collisions between cold atoms could occur. In our ex- 
priment, however, al1 measurements started several hundred 
milliseconds after the MOT was released; consequently, the 
densities had fallen to levels where trap loss from collisions 
between atoms in the expanding cloud was negligible. Our 
data supported this assumption, as the expansion of the area 
Ap was always very linear at the beginning of the movies 
(just after the MOT was released). 

An example of data taken from a single movie is shown 
in Fig. 1. This movie was taken with a normalized inten- 
sity of IlIo = 1.05 for each of the six laser beams with 
a detuning of 4.75 î. I o  is the saturation intensity of a 
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Fig. 2. The first few seconds of data from Fig. 1.  Linear behavior here is 
indicative of diffusive motion. The solid lines indicate linear least-squares 
fits of the data. A measure of the self-consistency of the data can be seen 
by scaiing the slopes of the other fits by ln@-') [see (2)]. The doned and 
dushed lines correspond to such a scaling (relative to AlI3) of Ai lz  and 
A2/3, respectively 

transition having a Clebsch-Gordon coefficient of 1, and is 
defined below in (9); for rubidium, Io = 1 . 6 2 m ~ l c m ~ .  The 
atoms diffuse with A, increasing linearly until they begin 
to reach the edge of the molasses beams. When they hit an 
edge, the area either remained constant or decreased due to 
loss of signal (as is the case in Fig. 1). Analysis of the data 
proceeded until the cloud visually reached an edge, or the 
signal-to-noise ratio became too small. Additionally, the first 
few frarnes of each movie were eliminated as they contained 
pixels affected by saturation from the high initial intensity 
of the trap. 

For each of the movies, a linear least-squares fit was 
applied to data which were obtained before the atoms dif- 
fused to the edge of the molasses region (Fig. 2). A diffusion 
constant was calculated for each Ap using (2). A weighted 
average of the three values (one for each area, 
and A2/3) was computed with weights determined by the 
goodness of their linear fits. Values for D, obtained for the 
different values of ,û typically agree to within 8%. These 
values are plotted as a function of intensity for several de- 
tunings for the lin l lin data in Fig. 3. 

Similar, but less extensive, measurements were taken af- 
ter a significant optical realignment. These data are not pre- 
sented in this paper (intensities and detunings do not match 
exactly, so a direct comparison is not possible), however, 
the values of the spatial diffusion lie within ~ 1 0 %  of the 
values given here. This confirms our confidence in the data 
presented here. 

In this expenment our efforts were focused primarily on 
measurements of linllin data. We did, however, take data 
for a few conditions using a+- a- molasses. The diffusion 
constants were approximately a factor of 2 higher than those 
measured in the lin l lin configuration with similar detunings 
and intensities. 

Uncertainties for the data of Fig. 3 were evaluated in 
two ways; the statistical uncertainty of the fits added in a 
weighted sum, or the difference in values computed when 



1- 
1 1.5 2 2.5 

Intensity (VIo) 

i 
-A 

1 1.5 2 2.5 

Intensity (VIo) 

O 4 4 l , 
O 0.5 1 1.5 2 2.5 

Intensity (VIo) 

Fig. 3ae.  Li I lin data for a variety of detunings as a function of inten- 
sity I/ZQ Detunings vary between - 1.02r and -9.85r. Uncertainties, as 
discussed in Sect. 1.3, aie indicated for al1 points 

using the range of possible backgrounds. In N 60% of the 
movies, the uncertainty due to background subtraction was 
greater than the statistical spread. The error bars shown on 
the graphs in Fig. 3 correspond to the larger of the two con- 
tributions. In each case, error bars were significantly smaller 
than the magnitude of the observed value. 

We note that the smallest measured value of the diffu- 
sion coefficient was u 6 x 10-4 cm2 s-'. For a 1 cm molasses 
and this value of the diffusion coefficient, equation (30) of 
[3] implies a molasses lifetime of approximately 40s. We 
were not able to observe lifetimes of this length due, pre- 
sumably, to background-gas collisions. The longest lifetime 
we observed was 13 s for a 1.8cm diameter molasses. This 
is reasonable given the background pressure of Pa. 

2 Theoretical approach to the spatial diffusion 
in optical molasses 

We present in this section a few theoretical considerations 
about the problem of spatial diffusion of atoms in optical 
molasses. Let us emphasize that we will not give here a 
complete solution to this problem, which remains one of the 
difficult points in an understanding of laser cooling. What we 
will try to do here is to start with the standard well-known 
results for Brownian motion, and to increase gradually the 
complexity of Our mode1 to anive at a description which 
models, in a qualitatively satisfactory way, the experimentai 
results presented above. 

We first consider sub-Doppler cooling and more specif- 
ically the Sisyphus mechanism in which cooling occurs be- 
cause of correlations between light shifts of Zeeman ground 
states and the opticai pumping rates between these states. 
The analytical results derived below hold for the cooling of 
an atom with a J, = 112 ++ Je = 312 transition, in a 1D mo- 
lasses formed by a pair of counter-propagating waves with 
orthogonal linear polarizations (lin I lin configuration). 

2.1 Spatial diffusion in standard Brownian motion 

The random motion of a large Brownian particle with a mass 
M in a bath of small molecules is well described in terms of 
two components: a linear friction force f (v) = -au, where 
a is a constant, indicating how the average velocity of the 
Brownian particle is damped in the bath; and a constant 
momentum-diffusion coefficient Dp giving the heating of 
the Brownian particle due to the randomness of collisions of 
bath molecules. 

The time evolution of the average square momentum of 
a Brownian particle is given by 

The fluctuation-dissipation relation relates Dp, a ,  and the 
temperature T of the bath as Dp = MkBTa,  where kB is 
Boltzmann's constant. It ensures that, in a time T, = M l a ,  
the Brownian particle reaches a steady-state corresponding 
to a thermal equilibrium with the bath such that 



On a time scale long compared to T,, as shown for instance 
in the Appendix of this paper, the motion of the particle is 
diffusive, Le., the average of the square of the position of 
the Brownian particle increases linearly with time: 

The spatial diffusion D, is given by 

This expression has the standard forrn for a diffusion con- 
stant, i.e., the product of the square of the random-walk step 
size 'UT,, times the rate of random steps 1 /T, . 

2.2 Spatial difSusion for molasses in the linear regime 

The sirnplest mechanisrn for laser cooling, Doppler cooling, 
is well described by the previous linear approach. The be- 
havior of the spatial-diffusion coefficient for Doppler cooling 
has beep discussed in detail in [3], so that we just briefly 
review it here. The friction coefficient and the momentum- 
diffusion coefficient along a given axis are given by [3] 

where r is the natural decay rate of the population of the 
excited state of the cooling transition, k = 2r/X is the wave 
nurnber, and 6 = W L  - W A  is the detuning between laser and 
atomic frequencies. The saturation parameter is related to 
the Rabi frequency Q associated with each traveling wave 
forming the 1D molasses by 

2Q2 
So = - 

Q2 1 
- with - - - . 

462 + r2 7 r2 21~ 

I is the intensity in each traveling wave forrning the mo- 
lasses and Io is the saturation intensity. We assume so  « l 
throughout this section, which is well satisfied for the experi- 
mental conditions. We recall that Doppler cooling, described 
by the friction coefficient a, originates from imbalance 
between radiation-pressure forces exerted by the Doppler- 
shifted waves forming the molasses. The momentum-diffusion 
coefficient D, is related to the fluctuations of the nurnber of 
photons absorbed in each wave forrning the molasses, and 
to the fluctuations of momenturn carried away by the flu- 
orescence photons. For detunings 6 such that 161 > r, the 
spatial-diffusion coefficient deduced from (6-8) is 

r 6 4 ~ 0  D - -  - 
k2 (r) i, 

It is well known that Doppler-cooling theory cannot ac- 
count for the ultra-low temperatures observed in the rno- 
lasses. When comparing the prediction (10) to the exper- 
imental results sketched in Fig.3, it clearly appears that 
Doppler~cooling theory cannot explain either the observed 
magnitude of the spatial-diffusion coefficient, or its depen- 
dence on laser pararneters. For instance, for I = Io, the 
increase of D, as ( S / T ) ~  is not observed at all, since D, 

varies by less than a factor 2 when I6l/r  goes from 1.70 to 
9.85. Also, the values for Da derived frorn (10) are much 
larger than the experimental results. For example, taking 
again I = Io and I6l/r = 4.75, we get D, N 3crn2/s which 
is more than 1000 times larger than the experirnental value. 

In order to explain the ultra-low ternperatures observed in 
the molasses, one has to refer to polarization-gradient cool- 
ing. We now consider this type of cooling mechanism, and 
we focus specifically on Sisyphus cooling. In some particular 
conditions, obtained for relatively large laser intensities and 
small detunings, the linear Brownian motion approach (i.e., 
the frictional force is linear in momenturn and the diffusion 
coefficient is independent of v) can be used for describ- 
ing the Sisyphus mechanisrn. In a lin I lin 1D model for a 
Jg = 112 +-t Je = 312 transition [5], the friction coefficient 
a and the momenturn-diffusion coefficient D, are given by 

with 

There are now two contributions to the momentum-diffusion 
coefficient. The first is identical to the one found in the 
Doppler-cooling model, assuming that al1 the fluorescence 
photons are emitted along the cooling axis ("true 1D model"). 
The second contribution originates from the fluctuations of 
the light shift-induced force, as the atorn randornly jurnps 
from one Zeeman ground state to another. 

For detunings 161 > r ,  the contribution of Dp2 dorni- 
nates and this model leads to an equilibriurn "temperature" 
for the molasses given by 

Replacing the values of a and D, in (6), we obtain 

This prediction, based on a linear Brownian-motion ap- 
proach, is valid when the average displacement of an atom 
during an optical purnping time T, is small cornpared to the 
reduced laser wavelength X/2r [SI. The validity condition 
for (16) is therefore 

The optical pumping time is T, = 9/(2rso).  Substituting 
(15) into (17), we obtain 

where the numeric coefficient was obtained using parameters 
for rubidium's mass, linewidth and wavelength. 

To extend this rnodel to 3D, we need to know how the 
various cooling parameters T,, a, and D, are changed. For 
T, we can use the simple argument that if the intensity I in 
each wave remains the same, the total intensity incident on 



an atom is multiplied by 3, so that 7, is divided by 3. For a 
and D, this kind of scaling is more difficult, so that we turn 
to a numerical calculation of these coefficients. We consider 
again an atom with a J, = 112 ++ Je = 312 transition, 
moving now in the field of 3 standing waves, each in the 
lin I lin configuration [Il].  One finds that in the range of 
parameters of interest here, a is divided by 7 while D, is 
divided by 3, so that the temperature is increased by a factor 
2.3. Using this result in (6), we are led to a multiplication 
factor for D, of 7 x 713 N 16 so that we get 

The validity condition (18) is also modified, it becomes 

Experimental results obtained in 3D included a range of 
I / I o  between 0.3 and 2. Detunings satisfying (20) should 
then be much smaller than 5 r .  Therefore, only the first two 
detunjngs, - 1.02 and - 1.7F, are in the validity rangefor 
this approximation. Although there are insufficient data at 
6 = -1.02r for a comparison, one finds that at -1.7r 
(Fig. 3a), D, varies linearly with intensity for IlIo > 0.5. 
The order of magnitude given by (19) is also satisfying con- 
sidering the difference between our model atomic transition 
and the real one; for I = Io and 6 = -1.7r  we obtain 
N 7 x cm2 s-', which is within a factor 2 of the ex- 
perimental result. 

2.3 Beyond the linear regirne 

As we have seen, most of the experimental points are out- 
side of the range of validity given by (18) and (20) of the 
linear treatment of molasses. To study one-dimensional sit- 
uations beyond this, a simple extension of the Brownian- 
motion model has been proposed in [12]. It consists in tak- 
ing 

where the velocity v, is such that 2kv,~, = 1. (For simplicity 
we have dropped a few unessential terms which appear in 
1121, so that some minor differences appear between our 
results and those of Castin et al. This has no consequence 
on the principal conclusions of the model.) For velocities 
Ivl « v, which correspond to (17), we recover the previous 
linear model. For Ivl » v,, which corresponds to the case 
where the atom travels over several wavelengths between 
two optical pumping processes, the force and the part of the 
diffusion coefficient due to fluctuations of the dipole force 
are reduced. This model leads to a steady-state momentum 
distribution ~ ( u )  given in [12] (see also the Appendix of this 
paper): 
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Fig. 4. The theoretical spatial-diffusion coefficient D,, for a ID model. 
presented in units of h/M (A/M = 7.5 x 10-6cm2/s for 8 5 ~ b ) .  as a 
function of intensity I / b  for three values of detuning 6 = - 2 r  (&shed- 
dotted line), - 4 r  (darhed line), and - 8 r  (dotted line). These curves were 
obtained using (A20). which takes into account velocity dependence of the 
force and the momentum-diffusion coefficient given in (21) and (22). The 
solid line is the prediction of the linear model (16). It is indicated only 
for a detuning of 6 = -Zr. These curves were plotted for ~ r / A k '  = 
760, corresponding to rubidium's atomic parameters. Although a direct 
comparison with the (3D) experimental values is not appropriate, we have 
included, on the right-hand side, an additional scale to allow magnitude 
comparisons 

with 

The parameter A is proportional to the typical light shift 
h6so measured in units of recoil energy ER = hk2/2M. 

This steady-state distribution nicely reproduces the ob- 
served disintegration (also known as décrochage) of the mo- 
lasses when the light shift is too small. In our model, the 
disintegration corresponds to the situation A < 112, for 
which one can no longer normalize the distribution ~ ( v ) .  
By contrast, for large A, one can show that one recovers a 
Maxwellian velocity distribution with Mü2 = h6s0/4. 

Using the standard theory of adiabatic elimination of a 
fast variable (momentum) with respect to a slow one (posi- 
tion), one can now deduce from (21) and (22) an equation 
for (x2) similar to (5). The general expression for the spatial 
coefficient D, is given in the Appendix (A20). In Fig. 4, we 
have plotted the variations of D, with the laser intensity I 
for three different detunings, I6l/r = 2, 4, and 8: 

For the smallest detuning \ 6 l / r  = 2, two regimes clearly 
appear. At high intensities, D, varies linearly with I and 
we recover the prediction given in (16). When the intensity 
decreases, D, goes through a minimum and then increases 
to infinity. The same type of variations could be found for 



the two other detunings appearing in Fig. 4, but the linear 
regime occurs at much higher intensities [as expected from 
(18)], and it is not represented in Fig. 4. We do, however, 
observe the divergence of D, at low intensity for each de- 
tuning. From the expression of D, given in (A20), we see 
that the divergence occurs for a constant value of the light- 
shift corresponding to a value for the parameter A equal to 
2.5. Below this value, the motion becomes non-diffusive and 
(x2(t)) increases faster than t. We note that this requirement 
for diffusive motion is 5 times more constraining in terms 
of laser intensity than the condition for having a normaliz- 
able steady-state velocity distribution. We therefore expect 
that even for molasses perfectly "well behaved" in terms 
of momentum distribution, the spatial motion may present 
deviations from the diffusive law. This may explain why it 
is so difficult to observe the disintegration of the velocity 
distribution in experiments with optical molasses: the diver- 
gence of the spatial diffusion destroys the molasses before 
the velocity distribution disintegrates. 

The minimal value of D, as a function of intensity is 
nearly the same for the three curves of Fig. 4. The absolute 
minimym of D,, found for 161 /r = 4.3 and A = 9.5, is 

When used with rubidium's parameters for mass, linewidth 
and wavelength, these values of A and S correspond to a 
saturation parameter so = 0.17, and a minimum spatial- 
diffusion coefficient of 0.2 x 1OP3 cm2/s. It is remarkable 
that the absolute minimum value for D,, derived from such 
a simple 1D theory, is quite close to the minimum 3D ex- 
perimental value of 0.6 x 1 0 - ~  cm2/s. 

In order to improve the agreement between the theoreti- 
cal predictions and the experimental results, one would need 
to perform a real 3D treatment. One should also consider an 
atomic transition more realistic than the Jg = 112 +-t Je = 
3/2 scheme. Such a treatment would lead to new values for 
the main parameters of Fig. 4, which are: (i) the slope of the 
linear part in the variations of D, with 1/10, (ii) the light 
shift below which D, diverges, and (iii) the value of the 
absolute minimum of D,. The modification of the slope of 
the linear part of the variation of D, vs. IlIo for a sim- 
ple approximation of the 3D case has already been given 
in (19). We have seen that it reproduces the experimental 
results within a factor 2. 

2.4 Extension of theoretical models ta three dimensions 

In order to determine the experimental value of the light shift 
below which D, diverges, we have replotted in Fig. 5 the ex- 
perimental points as a function of the typical light shift hlS)so 
in units of h r .  The low light-shift part of the curve suggests 
a divergence near hlS)so % O.Olhr, which corresponds to 
h(Slso = 1 5 E ~ .  This value of the light shift in units of & 
corresponds, within a factor of 2, to the values for which dis- 
integration was observed in previous measurements [7, 91. 
This value of the light shift is, however, 20 times lower than 
the 1D prediction. It is difficult to give an account for such 
a large factor in absence of a real 3D treatment of spatial 
diffusion in optical molasses. Nevertheless, we can compare 

O ! : -4 
O O 1 0.2 0.3 0.4 

Light shift in units of hi- 

Fig. 5. Diffusion constants for ail data as a function of light shiil (h(61so) 
in units of t i r .  For low values of the light shift. the diffusion coefficient 
increases, with an apparent divergence located approximately at ti161so 
0 .o ih r  

results obtained in 1D and in 2D for such threshold light 
shifts, and assume that the tendency from 1D to 2D will not 
reverse from 2D to 3D. Consider, for instance, the popu- 
lation of the quantum ground state of atomic motion in the 
light shift potential. In ID, for the laser configuration studied 
above, this population was maximal for h)61so = 90ER [13]. 
In 2D, for the laser configuration formed by two standing 
waves aligned along two orthogonal axes x and y and with 
linear polarizations y and x, the position of the maximum 
is notably reduced to h)S)so = 22ER [14]. We can expect 
that a reduction of a similar order of magnitude would be 
found for the spatial-diffusion coefficient; however, this has 
not yet been checked. 

The 3D calculation of the minimum value of the spatial- 
diffusion coefficient is also an open problem. It cannot be 
derived simply from an extrapolation of 1D results, because 
there is a qualitative change in the nature of the problem with 
the change of dimensionality. In ID, between two sponta- 
neous emissions, the atom travels on a straight line with a 
constant mechanical energy. In 2D or 3D, the trajectory of 
the atom between two spontaneous emissions is very compli- 
cated because the atom is deflected by potential hills created 
by the light. These hills are regularly spaced with a spatial 
period equal to a fraction of an optical wavelength A. De- 
pending on the nature of this Hamiltonian motion (chaotic 
or regular), this may or may not lead to a different type 
of spatial diffusion with a mean free path, or decorrelation 
length, of a few spatial periods of the potential. In the case 
where the motion is diffusive, if we neglect the effect of 
spontaneous emission, and if we take n X  to be the decorre- 
lation length, where n is a numerical factor, we obtain for 
the spatial-diffusion coefficient 

For a given detuning this formula should hold in the interme- 
diate regime where the intensity is above the disintegration- 
threshold intensity, but where it remains below the intensity 



corresponding to the linear regime studied in Sect. 2.2 (20). 
In the linear regime, the atom randomly jumps several times 
between various Zeeman ground-state sublevels when trav- 
eling over a single wavelength; consequently, scattering by 
potential hills corresponding to a given sublevel is effec- 
tively averaged out. Let us assume a velocity ü of 6 recoil 
velocities hk/M (which is typical for our intensities and 
detunings). From (27), we find that for minimum diffusion 
coefficients of the order of 0.6 x 1 0 - ~  cm2/s (i.e., 80hlM) 
we get a decorrelation length of approximately 2X. A 2D 
and a 3D Monte-Carlo analysis of the classical motion of 
the atom in the light shift potential is currently underway to 
investigate this problem in more detail. 

3 Conclusion 

We have measured spatial diffusion parameters for the 
lin I lin configuration of a 3D optical molasses, as well as 
some values for the a+- a- configuration. Diffusion con- 
stants inferred from previous measurements of the lifetime 
of a sodium molasses [ l ,  31 are at least two orders of mag- 
nitude larger than the minimum diffusion constant measured 
in this work. We have also presented a 1D (lin I lin) model 
for spatial diffusion in optical molasses, with a force vary- 
ing nonlinearly with velocity, and with a velocity-dependent 
diffusion coefficient. We have also made a few comments 
on possible extensions of our predictions to the 3D problem. 
The predictions of the model agree reasonably well with the 
experimental results and qualitatively reproduce their behav- 
ior. Specifically, this includes the existence of a minimum 
light shift for which diffusive motion can be observed, and 
above this light shift, an increase of D, with IlIo if the de- 
tuning is small, or a plateau value for D, if the detuning is 
large. The theory also predicts a minimum spatial-diffusion 
coefficient (0.2 x 1oP3 cm2/s for Rb) which is within a factor 
of 3 of the measured value. 

Two different natural scales appear for the diffusion con- 
stant. The first one is î / k 2  (5.7 x 1oW3 cm2/s for Rb). It 
shows up both for the Doppler-cooling model, and in the 
linear treatment of Sisyphus cooling. This scale, r /k2 ,  ap- 
pears multiplied by functions of intensity or detuning that 
can be arbitrarily large or small, provided the validity con- 
dition of the linear model is fulfilled. The second scale is 
h/M (7.5 x 1 0 - ~  cm2/s for Rb). It appears in the determina- 
tion of the absolute minimum of D,, with a multiplicative 
factor depending on the dimensionality. The existence of 
these two scales is related to two scales which appear in 
the determination of the temperature: (1) h r  for Doppler or 
Sisyphus cooling in the linear regime (again with a multi- 
plicative factor depending on I l I o  and 6/r), and (2) the 
recoil energy ER = h2k2/2M which gives the scale of the 
minimum temperature achievable with polarization-gradient 
cooling. Therefore, it would be quite interesting to test the 
prediction that the scale h/M appears as an absolute limit for 
D,, by determining experimentally the minimum value of 
the spatial-diffusion coefficient for atoms of various masses. 
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Appendix 

The purpose of this Appendix is to present the general 
derivation of a spatial-diffusion coefficient for the 1D prob- 
lem of an atom moving in molasses. We assume that the 
atomic equation of motion has the standard form of a 
Fokker-Planck-Kramers equation [15]. The atomic phase- 
space distribution W(x, u, t) evolves then as 

We suppose that the force F(v) and the momentum-diffusion 
coefficient Dp(v) are known, and we want to derive an equa- 
tion of motion for the position distribution p(x, t) 

(A2) 

Since the force F(r)  and the momentum-diffusion coefficient 
Dp(u) depend only on the velocity v and not on the position 
x, the problem is invariant under any space translation and 
we may hope to be able to derive a diffusion equation for 
p(x,t). Actually, we will see that this is indeed possible 
provided that F(v) and D,(v) "behave correctly" when v 
goes to infinity. 

We follow the standard procedure of the adiabatic elimi- 
nation of a fast variable (here, the velocity v) to keep only the 
evolution of a slow variable (here, the position x) [15,16]. 
The equation of motion (Al) can be written formally 

where 

L(O) and L(') are linear operators on W, acting, respectively, 
in velocity space and position space, and E is an expansion 
parameter. The principle of adiabatic elimination is that the 
velocity part of W nearly reaches a steady state such that 
L(O) . W = O. One is then left only with the evolution of 
the position part of W, which leads to the required spatial- 
diffusion coefficient. 

We introduce the normalized function ~ ( v )  such that 
L(O' T(u) = O: 

n(u) = r(0) exp (JUV M F - d v ! )  , 
Dp(vl) 

and we write 



The quantity 6W is a small correction to the adiabatic solu- 
tion p(x, t ) ~ ( v ) ,  and it is defined such that 

+O0 

1, 6W(x,  v ,  t)dv = 0 .  649) 

We now insert (A8) into the equation of motion ( A l )  or (A3), 
and we integrate over v .  Since ~ ( v )  is an even function of 
v ,  we get 

We now need 6W at the lowest order in E. The equation of 
motion for 6W,  also deduced from ( A l )  or (A3), is 

where terms in E L ( ' )  . (6W) have been neglected. To first 
order in E ,  the solution of (Al 1 )  is such that 

L(O) . ( 6 ~ )  = - E L ( ' )  . ( P T )  . 6412) 

We now use the explicit form (A4) of the operator L(O) to 
invert this relation and obtain 6W.  After simple algebra, we 
get 

where we have introduced the function 

Finally, inserting the expression (A13) for 6W into the 
equation of evolution (A10) for p(x,t) we obtain a closed 
equation for p which has the form of a diffusion equation: 

with 

A. 1 Examples 

A. 1 .1  Linear case. We have for a linear force and a constant 
momentum-diffusion coefficient, 

1 
T ( V )  = - exp (-v2/2ü2) , 

5 6  

ü 
4(v)  = - exp (-v2/2ü2) , 

6 
from which we deduce 

A.1.2  Sisyphus cooling. Using (21) and (22) for the friction 
and the diffusion coefficient, we first derive from (A16) the 
expression (23) for ~ ( v ) .  Then, a lengthy but straightforward 
calculation starting from (A15) leads to 

The three curves of Fig. 4 have been drawn from this analyt- 
ical expression for D,. The divergence of D,  which appears 
in (A20) for A < 512 can be understood simply. D,  is de- 
fined only if the integral over v entering in (A16) converges 
as u goes to f CO. Since ~ ( v )  varies as v-2A at infinity, 4(v)  
varies as v2-2A; the diffusion coefficient DP(,) tends to a 
constant value Dpl, so that the integral of (A16) converges 
i f 4 - 2 A  < - 1 ,  or A > 5 / 2 .  
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