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1. - Introduction. 

The control of atomic motion by laser light is a field which has expanded 
very rapidly over the last few years. One of the most spectacular achievements 
in this domain is the possibility of reaching extremely low atomic kinetic tem- 
peratures, in the microkelvin range, by irradiating an atomic vapour with mul- 
tiple quasi-resonant laser beams [l]. The lirnits of laser cooling in these so-called 
optical molasses correspond to r.m.s. velocities Z of the order of only a few pho- 
ton recoil velocities [2,3]: 

Ak ; = a  few - ,  
M 

where hk is the momentum of a photon involved in the cooling process and M is 
the atomic mass. One can even pass beyond this recoil limit using some im- 
proved cooling schemes [4,5]. 

The combination of these low temperatures with the possibility of trapping 
the atoms around a given point in space offers a new unique tool for atomic spec- 
troscopy and quantum optics, and many fields of atomic physics can benefit 
from these new techniques: metrology using atomic fountains [6,7], collision 
physics [8-111, nonlinear optics [12,13], etc. 

These ultra-low temperatures also allow one to reach situations where the 
quantum nature of the atomic motion plays an important role. The atomic de 

(*) Unité de recherche de 1'Ecole Normale Supérieure et de l'université Paris 6, associée 
au CNRS. 
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Broglie wavelength 

is indeed quite large, of the order of a fraction of optical wavelength. This may 
be of great help for atomic interferometry experiments [14]. For sufficiently 
high atomic densities, this might also offer a way of observing collective quan- 
tum effects in a sample of cold neutral atoms. 

This course is devoted to a description of various approaches to laser cooling 
of neutral atoms. We restrict here to the case of a closed atomic transition be- 
tween a stable ground state g and an excited state e with a lifetime r-' (see 
fig. 1). These two energy levels are separated by an energy hwA and they may 
both have a Zeeman degeneracy. The cooling laser field is supposed to be 
monochromatic, with an angular frequency wL. 

The laser-cooling problem constitutes a mode1 case for dissipation in quan- 
tum mechanics (see fig. 2): The a t o m  + laser  f i e ld  system evolves coherently 
due to absorption and stimulated-emission processes, and it is dissipatively cou- 
pled to a reseruoir formed by the quantized field in its ground state. This dissi- 
pative coupling corresponds to spontaneous-emission processes, and plays an 
essential role for interaction times longer than the excited lifetime r-'. 

We start in sect. 2 with a brief survey of the semi-classical description of 

Fig. 1. - Closed atomic transition with a stable ground state g (angular momentum J , )  and 
an excited state e (angular momentum J e )  with a lifetirne r -'. 

dissipative coupling: 
spontaneous emission 

1 its ground 1 
? ? -  coherent coupling: 

absorption+stimulated emission 

Fig. 2. - The interacting systems in a laser-cooliig problem. 
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laser cooling, in which the atomic centre of mass is treated as a classical, point- 
like particle. We present two cooling mechanisms, the Doppler-cooling scheme 
and the Sisyphus-cooling scheme. We then show that the limit of this second 
cooling mechanism requires a quantum treatment, which is presented in sect. 3. 
Finally sect. 4 is devoted to the description of a new, general approach to dissi- 
pative processes in quantum optics based on Monte Car10 wave functions and to 
a discussion of its application to laser-cooling problems. 

2. - Semi-classical description of laser. cooling. 

2'1. Validity of the semi-classical treatment. - In order to treat the atom as 
a moving classical pointlike particle, two assumptions are necessary. The fwst 
condition enswes that the atomic position is well defined on the shortest spatial 
scale of variation of the laser field parameters (phase, polarization or intensity), 
ie. the optical wavelength A. This can be written 

where Ax denotes the size of the atomic wave packet or, more precisely, the co- 
herence length of the atomic-density operator (e.g., the thermal de Broglie 
wavelength for a Boltzmann distribution). 

The second condition ensures that the atomic velocity is well defined with 
respect to the velocity width of the atomic resonance. More precisely we re- 
quire an uncertainty kAv on the Doppler shift much smaller than the width r of 
the atomic resonance: 

Condition (4) can also be seen as the requirement that the spatial spreading 
of the atomic wave packet between two successive spontaneous emissions re- 
mains small as compared to A. We assume here that spontaneous-emission proc- 
esses occur with a rate r (saturated transition) and we use the fact that each of 
these processes decreases the coherence length of the atomic-density matrix to 
less than A [15]. 

Clearly the two assumptions (3) and (4) are compatible with the Heisenberg 
inequality 

only if the following relation holds: 

, This is the so-called broad-line condition which requires the recoil energy ER to 
be much smaller than the energy width hï of the excited atomic level. We have 
indicated in table 1 the value of the ratio w / E R  for the resonance line of three 
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TABLE 1. - Value of the <<broad-line pararneter~ hr /ER for various atoms used i n  laser- 
cooling experirnents. 

 tom h r / E ~  

c(typical>> atoms, the metastable helium atom in the 2 3$ state, and the sodium 
and cesium atoms. We see that the broad-line condition is well satisfied for Na 
and Cs, but is only marginal for He*. 

2'2. The average radiative forces. - Once the two conditions (3) and (4) hold, 
one can derive an expression for the average radiative force f acting on an atom 
located in a given position r and with a given velocity o. Using Ehrenfest theo- 
rem, one gets [16,17] 

The force is proportional to the average atomic dipole d and to the gradient of 
the laser electric field E a t  the atom location. We now discuss these two 
contributions. 

1) The laser electric field is assumed here to be monochromatic, and can, 
therefore, be written as 

The force related to the gradient of the phase # ( r )  is called the radiation pres- 
sure force or scattering force, the force related to the gradient of the real ampli- 
tude 8 ( r )  is the dipole or gradient force, and finally the force related to the 
gradient of the complex unit vector ~ ( r )  is simply named polarization gradient 
force. 

2) The mean atomic dipole d is obtained from the average value of the 
atomic-dipole operator: 

(9) d = (D)  = T ~ ( P , , D ) .  

For a two-level atom without Zeeman degeneracy(*), the dipole operator D is 

(*) This situation can be achieved in practice using a o + polarized laser beam acting on a 
Jg-  Je = Jg + 1 transition, in which case the atom is optically pumped on the transition 
19) = 1 g, mg = J,) - 1 e )  = le, me = Je).  Note that there is no polarization gradient force 
in this case. 
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given by 

where do is the reduced dipole moment of the transition. For a more complex 
atomic transition in which the angular momenta of the ground and excited lev- 
els are taken into account, this atomic-dipole operator involves Clebsch-Gordan 
coefficients between ground and excited Zeeman sublevels [BI. The average 
value in (9) is taken over the steady-state atomic-density operator, calculated 
from the optical Bloch equations. This steady-state density operator can be cal- 
aulated either for an atom at  rest in r or for an atom dragged with a velocity u 
and passing in r at  a given time. 

We give here the expression of the radiative forces acting on a two-level 
atom at  rest without Zeeman degeneracy. The radiation pressure force f R P  and 
the dipole force f d i p  are given by[17] 

h6 V s  f = - - -  
dip 2 l + s l  

where we hAve introduced the detuning 6 = oL - (O* between the laser and 
atom frequencies, the Rabi frequency LI = 28do &/hl and the saturation par- 
ameter 

2'3. Fokker-Planck equation for the atomic phase space distribution. - For 
slowly moving atoms, we obtain from (7) the force at  f r s t  order in velocity 

(14) f ( r ,  U )  = f ( r ,  O)  - [a( r ) l .  u , 
where [a(r)]  is the friction tensor, describing the damping of atomic motion in 
the optical molasses. In order to study the limit of cooling in these molasses, we 
need also to take into account the counterpart of cooling, which is the heating 
due to the randomness of spontaneous-emission processes. 

In the semi-classical approach, this can be done by writing a Fokker-Planck 
equation for the evolution of the atomic centre-of-mass phase space distribu- 
tion. Such an equation can be obtained in the lirnit 

(15) Tint << Te* 1 

wbich corresponds to a situation where the interna1 atomic variables have a 
time response Th, much smaller than the time of evolution of external variables 
Te,. It is valid for slow atoms (k 1 v 1 Th, << 1) and it is obtained by eliminating the 

29 - Rendiconti S.I.F. - CXX 
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internal dynamics adiabatically to get an equation for the external atomic phase 
space distribution, or, more precisely, the atomic-density matrix in the Wigner 
representation w( r ,  p, t) [19,20]: 

This equation contains a free-flight term, a force term (see (14)), and finally a 
diffusion term describing the heating due to the randomness of spontaneous- 
emission processes. Dij(r) is the tensorial momentum diffusion coefficient. 

The steady state of (16) gives the position and momentum equilibrium distri- 
butions for the atom and allows one in particular to derive a temperature for 
laser-cooled atoms. A simple approximate solution of this equation is obtained 
by assuming a spatially uniform distribution W. Due to the spatial periodicity of 
optical molasses, f ( r ,  O) averages to 0, and one is left in the isotropic case with 
the simpler equation 

whose solution is Gaussian, with an effective temperature which can be written 
in terms of the spatially averaged friction and diffusion coefficients: 

Let us briefly conclude with some comments on the validity of (18). First, 
we have to check in each particular situation that this kinetic energy kBT is 
larger than the depth of the wells which may be created by f ( r ,  O). If it is not 
the case, the assumption of a spatially uniform steady-state distribution is 
clearly not valid. Second, we have to give some estimate for the validity condi- 
tion (15) of the general Fokker-Planck equation (16). A typical internal t h e  is 
Th, - r-' for a two-level atom without Zeeman degeneracy, while external t h e  
will be found in the following to be of the order of M/hk2  or longer. The broad- 
line condition then ensures that (15) is verified. For an atom with Zeeman de- 
generacy in the ground state, this is not true any more because there may ap- 
pear very long pumping times which reverse the inequality of (15) and make 
this Fokker-Planck approach unapplicable. 

2'4. Doppbr cooling. - We consider here the one-dimensional situation rep- 
resented in fig. 3. An atom is moving in the field created by two counterpropa- 
gating plane running waves, detuned red from resonance (w < w~ ) [21,22]. 
We assume that the two running waves are weak and do not saturate the atomic 
transition. Then we can obtain the total force acting on the atom by adding in- 
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Fig. 3. - Doppler cooling in 1D optical molasses. 

dependently the radiation pressure forces created by each running wave [23]. 
Due to the choice w~ < wA and because of Doppler effect, a moving atom sees 
the counterpropagating wave closer to resonance than the copropagating one. 
Consequently, for an atom moving, for instance, to the right as in fig. 3, the ra- 
diation pressure force created by the counterpropagating wave coming from the 
right is larger than the radiation pressure force exerted by the copropagating 
wave coming from the left. Therefore, a moving atom feels a net force opposed 
to its velocity. This friction force damps the atomic motion and the atom is 
cooled. 

Using the expression (Il) for the radiation pressure force created by each 
travelling wave and replacing 6 by 6 + kv to take into account Doppler effect, we 
obtain for the net force acting on a moving atom in the limit k lu 1 << 16 1 
(19) f =  -- a u ,  

where the friction coefficient E is given by 

We note, as announced above, that the external time M/Z associated with this 
damping is larger than M/hk2, since so << 1. 

The momentum diffusion coefficient can be estimated simply by noting that, 
due to the randomness of the number of absorbed photons per unit time and the 
randomness of the momentum carried away by the spontaneously emitted pho- 
ton, the atomic momentum performs a random walk with a step hk and a rate 
- 2Tso. This gives 

Using (18), we now get the temperature of Doppler-cooled atoms. The tempera- 
ture is minimal for a detuning 6 = w~ - wA equal to -I'/2, and it is given 
by i241 

, This gives temperatures in the range of 100p.K. More precisely, for the 
3 atoms considered above, one obtaks 36 pK for He*, 240 p.K for Na and 120 pK 
for Cs. We note that, for atoms cooled at  the Doppler limit (22), the r.m.s. vel- 
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ocity 5 and the de Broglie wavelength (ie. coherence length Ax) are given by 

(24) A d B = A x = 2 z  

so that both conditions (3) and (4) are simultaneously fuifilled in the broad-line 
limit: 

This shows that, in the broad-line limit, it is legitimate to use a semi-classical 
treatment to derive the Doppler-cooling limit. 

2'5. Sisyphus cooling. - Sisyphus cooling is the simplest example of laser 
cooling with polarization gradients. It uses the Zeeman structure of the ground 
atomic state to provide a cooling which is much more efficient than Doppler 
cooling. The search for cooling mechanisms other than Doppler has been initiat- 
ed by the discovery of anomalously low temperature in optical molasses, well 
below the Doppler-cooling limit [2], and the role of polarization gradients has 
been emphasized shortly after [25,26]. 

In one dimension, two types of polarization gradient, corresponding to two 
different cooling mechanisms, have been identified [27-291. The first one is ob- 
tained with two plane waves with orthogonal linear polarizations (fig. 4a)). The 
axes of the resulting polarization are constant, oriented at  45" with respect to 

Fig. 4. - The two limiting cases of polarization gradient in one dimension. a) The lin I lin 
configuration, with a gradient of eliipticity and constant axis of polarization. b )  The u +-u - 
configuration, with a resulting rotating linear polarization. 
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Fig. 5. - Light-shifted ground-state energy levels of a J,  = 112 -Je  = 312 atom in a 
lin I'lin laser field. Due to the gradient of ellipticity of the light, the two Zeeman sublevels 
osciilate in phase opposition with a period A/2. 

the polarization axis of the incoming beams. The ellipticity of the resulting po- 
larization varies in space, going from circular to linear over a distance of A/8. 
This configuration leads to Sisyphus cooling, as we show below. The second 
configuration is obtained with two incoming waves with orthogonal circular po- 
larizations (fig. 4b)). The resulting polarization in this o +-o - configuration is 
linear everywhere (no gradient of ellipticity), and its direction rotates with a 
period 112. This configuration leads to orientational cooling. 

We now focus on the situation of fig. 4a) and we consider the motion of an 
atom with an angular momentum J ,  = 112 in the ground state and Je = 3/2 in 
the excited state (see fig. 5) ( * ) .  We restrict ourselves to the low-saturation 
domain: 

which is known experimentally to lead to the lowest temperatures. In (27), Sa = 

= 2do Lj!, / A ,  where do is the reduced dipole moment of the transition, and Lj!, the 
field amplitude in each travelling wave. When (27) is fulfilled, the atoms remain 
mostly in their interna1 ground-state sublevels. In the following, we also re- 
strict to situations where the Doppler shifts can be neglected compared to r. 
Therefore, we ignore here the Doppler-cooling mechanism presented in sub- 
sect. 2'4. We decompose the effect of the laser light on the atoms into two parts. 
We first consider the reactive part, ie. the shifts of the levels caused by the 
light. We then study the dissipative part of this coupling, corresponding to the 
real transitions between the ground-state sublevels associated with sponta- 
neous-emission processes. 

We consider as for Doppler cooling a negative detuning, so that the two Zee- 

(*) The simpler atomic transition J, = O - Je = 1 would not lead to any additional cooling 
with respect to Doppler cooling. 



454 J. DALIBARD and Y. CASTIN 

man substates are shifted downwards. The key point is that the size of the shift 
of each substate depends on the location of the atom. If the atom is located at  a 
place where the light is U -  polarized (z = O in fig. 5), the shift of level 1 g- ) = 
= 1 g, m = - 112) is three times bigger than the shift of level 1 g+ ) = 1 g, m = 

= 1/2), because of the intensity factors (squares of Clebsch-Gordan coefficients) 
of the me - mg = - 1 transitions, as indicated in fig. 5. At a place where the 
light is U +  polarized (z = A/4 in fig. 5), the conclusion is reversed and the level 

1 g+ ) is shifted three times more than the level 1 g- ). In a place where the light 
is linear, one fmds by symmetry that the two shifts are equal. Going through a 
small algebra, we obtain that the reactive part of the atom-laser coupling con- 
sists in a periodic potential U, (z), depending on the atomic ground-state sub- 
level g, : 

uo 2 U, (z) = - (-2 + cos2kz) with Uo = - -ho. 
2 3 

We now consider the transitions between g+  and g- caused by spontaneous 
emissions; these optical-pumping processes also depend on the location of the 
atom. Suppose that the atom is moving towards the right and starts in z = O in 
level g- (fig. 6). At this place since the light is u - , the atom cycles on the transi- 
tion 1 g, m = - 112)- 1 e, m = - 312) and can never jump to the level g+ . 
Therefore, it has to clirnb uphiil untii it reaches a place where there is a suffi- 
cient amount of u + light so that the atom can be optically pumped to g+  by a se- 
quence ( g, m = - 112) + le, m = 112) + 1 g, m = 112). This occurs preferen- 
tially around z = A/4, at the top of U- ( z ) ,  where the light is purely u + , and the 
atom is then put in a valley for U+ (2). Once in level g+  in z close to A/4, the atom 
has little chance to come back to g- , because the light is essentially cr + polarized 

Fig. 6. - Sisyphus effect: due to the spatial variation of the optical-pumping rates, a mov- 
ing atom climbs more than it goes down in its energy diagram. This causes a damping of its 
velocity in a much more efficient way than Doppler cooling. 
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at  this place. The atom has, therefore, to climb again in U+ (2) until it reaches 
a place where there is a noticeable fraction of c- light, which can pump it back 
to g-  . 

I t  is clear that the atom loses energy in this process since it climbs more than 
it goes dom.  This is in close analogy with the Sisyphus myth in the Greek 
mythology where Sisyphus was sentenced by the Gods to push a rock forever to 
the top of a mountain, the rock rolling back to the valley each time it had 
reached the top. For this atomic Sisyphus process, it is instructive to make a 
balance of momentum and energy exchange. As the atom climbs uphill, it con- 
verts kinetic energy into potential energy, its total energy remaining constant. 
The decrease of momentum of the atom is due to a redistribution of photons be- 
tween the two travelling waves forming the polarization gradient. Then, when 
the atom jumps from the top of a hill to a valley, it spontaneously emits a photon 
whose energy is higher than the laser photon energy by the height of the hill. 
This transition decreases the potential energy of the atom, while leaving its ki- 
netic energy unchanged if one neglects the recoil associated with the sponta- 
neous emission of the photon. 

If we now take into account the recoil in spontaneous-emission processes, we 
have to add to the previous reasoning the corresponding heating, which puts a 
threshold for the potential depths U,, [15,18]. Each fluorescence cycle, ie .  ab- 
sorption of a laser photon spontaneous emission of a fluorescence photon, can be 
shown to lead to an increase of kinetic energy ((41/30)ER). Among those cy- 
cles, only a fraction of 116 contributes to cooling, by changing the interna1 
atomic state: g + + e + g - or g - + e + g + . The average loss of energy for these 
cooling cycles is Uo/2, so that we fmd that there is a net cooling effect only if 

The intuitive limit of Sisyphus cooling corresponds to a situation where 
the energy of the atom is of the order of or smaller than the potential 
modulation depth Uo. In this case, the atom does not have a sufficient 
kinetic energy to climb the potential hills, and it gets trapped in the potential 
valleys of U, (2). This intuitive reasoning is confirmed by a semi-classical 
treatment where one calculates a friction coefficient and a momentum diffusion 
coefficient, averaged over a wavelength[28]. The friction coefficient is found 
to be independent of the light intensity: 

and the equilibrium temperature is given by 
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This indicates that small temperatures should be obtained with small laser 
intensities and large detunings. 

Let us discuss briefly the validity of this semi-classical result. First we note 
that the result (31) can only be qualitatively correct since we obtained it assum- 
ing a uniform spatial atomic distribution, and we predict at the same time a 
temperature of the order of the potential-well depth Uo (subsect. 2'3). We now 
compare the optical-pumping relaxation time for internal variables, Th, = 
= l / r s o ,  with the characteristic time Te* for external variables. We take 
here 

(32) Te* = M / ü  or l /Qow,  

which corresponds to either the velocity damping time or the oscillation period 
in the bottom of the potential well (28). Both choices lead to the same expression 
for the validity condition (15): 

One can check that this validity condition is also equivalent to the requirement 
kü Th, << 1, where ü is the r.m.s. velocity deduced from (31). This last condition 
ensures that it is legitimate to keep only the fwst-order velocity components in 
the expression of the force acting on the atom, for al1 the velocity classes popu- 
lated in steady state (see (14)). For a given detuning, the validity condition (33) 
puts a lower bound on the intensity and, therefore, on the temperature that one 
can predict in this model: 

We finally note that, between the threshold (29) and the lower bound (33), 
there is for 16 1 >>r a large range of values of Uo for which Sisyphus cooling is 
expected to work, but cannot be described by the previous semi-classical treat- 
ment. We show in the next section how to fil1 this gap using a quantum 
approach. 

3. - The quantum regime of Sisyphus cooling. 

3'1. Experimntal and numerical results. - Let us now compare the predic- 
tions (31), (34) of the simple semi-classical model of Sisyphus cooling presented 
above with results obtained either experimentally or numerically. We have 
plotted in fig. 7 temperature measurements which have been obtained with Cs 
atoms[3]. These data show a very good qualitative agreement with (31). The 
temperature v h e s  linearly with Uo - Q / 1 6 ( over a wide range of laser inten- 
sities and detunings, and the proportionality coefficient differs by less than a 
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0.5 1.0 O 
laser intensity ( R ~ I ~ ~ )  

Fig. 7. - Temperature measurements of Cs atoms in optical molasses, as a function of laser 
intensity and detuning. a)  Temperature vs. intensity a t  fixed detuning. Insert: lowest 
temperature achieved as a function of detuning. b )  Temperatures of a)  plotted against 
0 / 1 6 1 . The straight line is a fit to the points with smail 0 / 1 6 1 . The <<universal lawn 
kBT -Q2/161 is valid until kBT-10ER;  )61/2x: lOMHz, 20MHz, O 30MHz, X 
40 MHz, 54 MHz, * 95 MHz, O 140 MHz. 

factor 3 from the one appearing in (31). This agreement is very remarkable if 
one notes that temperature measurements were done in 3D, while (31) is a 1D 
prediction. Also the Cs transition is Jg = 4 -Je  = 5, quite far from our Jg = 
= 112 - Je = 312 model. 

However, an important difference appears between the semi-classical model 
and those experimental resuits, that we already noticed at the end of the previ- 
ous section and which indicates the need for a more elaborate treatment. The 
lowest temperatures are obtained for detunings large compared to r. For such a 
detuning, as one decreases the laser intensity, the molasses works well until 
one reaches a temperature of the order of 10ER. This limit, which is in good 
qualitative agreement with (29), is independent of detuning and is well below 
the bound (34). This indicates that many points of fig. 7, and in particular the 
coldest ones, are not within the validity region of the semi-classical treatment 
given by (33). 

This difference also appears in a complete numerical treatment of 1D Sisy- 
,phus cooling for a J,  = 112 - Je  = 312 transition in which one looks for the 
steady s&te of the total (internd + external) atomic-density matrix[l5,30]. 
The steady-state r.m.s. velocity is plotted in fig. 8 in units of the recoil velocity, 
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10" I 
10'' 10' 102 

- 6 /F  

Fig. 8. - Contour plot of the r.m.s. velocity i in 1D Sisyphus cooling for the Cs atom pa- 
rarneters. The lowest velocities are of the order of 6.7 recoil velocities. They are obtained 
for a set of parameters 6, Uo well outside the validity region of the semi-classical treat- 
ment. This validity region is below the high-saturation domain indicated by the line so = 1, 
and above the dotted line Q,,,,rp = 1, where r p  = 9 /2r so  is the optical-pumping t h e .  

as a function of the detuning 1 6 1 /r and the optical-well depth Uo / E R .  We have 
also shown in this figure the validity domain of the semi-classical approach (33). 
One clearly sees that the smallest r.m.s. velocities are obtained for a set of pa- 
rameters outside the semi-classical validity region (*). 

I t  is, therefore, necessary to elaborate another theoretical treatment for de- 
scribing laser cooling in the regirne Tht > T,. One could first think of an im- 
proved semi-classical treatment, by taking into account the velocity depen- 
dence of friction and diffusion, and also the spatial variation of the atomic distri- 
bution. However, it is actually easier to go directly to a quantum treatment of 
atomic motion, which will in addition lead to the predictions of new quantum ef- 
fects related to the trapping of the atoms in the optical wells. 

3'2. Principle of a quantum treatment. - We have seen both experimentally 
and numerically that the parameters 6 and Q, or equivalently 6 and Uo, leading 

(*) For numerical reasons, this plot has been calculated with a simplified dipole radiation 
pattern, which slightly overestimates the heating due to spontaneous photon recoil. 
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Fig. 9. - Band structure of the energy spectrum of H, for Uo /ER = 100 (a)) and as a func- 
tion of Uo /ER (b)). The shaded areas correspond to allowed energies. For a given Uo, the 
energies above - Uo/2  corresponding to an above-banier motion are mostly allowed 
(quasi-free motion). On the opposite, the energy bands corresponding to a bound classical 
motion ( - 3 Uo / 2  < E < - Uo 12) are very narrow, except in the irnmediate vicinity of 
Uo 12. 

The eigenvalue problem 
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can be cast into a universal one using the reduced units C = kz, Uo/ER, 
Enq IER: 

d 2 q (  Uo 
(42) - + -  E n ,  q 

dc2  ER (-2+eos2C)+n,q(C) = +n,q(C). 

The spectrum of H, is indicated in fig. 9a) for Uo/ER = 100, which is close to 
the optimum situation appearing in fig. 8. We find 6 bands corresponding to 
bound states (En,, < - Uo 12); the width of the lowest band n = O is extremely 
small( 10-6ER ). A plot of the energy spectrum as a function of Uo /ER is indicat- 
ed in fig. 96). I t  shows that the number of ~bound bands. increases as d m ,  
as does the splitting AO,,, between two adjacent bands. 

3'4. Steady-state populations. - We now take into account the transitions in- 
duced by optical-pumping processes between the various In, q, E). As we have 
emphasized above, the density matrix in the secular approximation can be de- 
scribed only in terms of the populations x,, ,, , of those eigenstates. 

In steady state, we have 

- - - (43) 0 = Xn, q, xn, q, E 2 y(n, q, E+n' ,  q' ,  t 
n o ,  q ' ,  E '  

+ 2 y ( ~ ' , q ' , ~ ' + n , q , ~ ) ~ n ' , q ' , r ' -  
n' ,  q ' ,  E' 

The rates y(n, q, e + n ' ,  q ' ,  e ') are derived from the master equation describ- 
ing optical-pumping processes. We will not perform a detailed calculation for 

0.4 I I  I I I  I I I I  I I I  

Fig. 10. -, Steady-state populations of the various energy bands, as a function of Uo/ER. 
This calculation has been done taking into account the first 80 bands, with 6 values for q in 
each band. 
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Uo'E, 

Fig. 12. - Steady-state kinetic energies EK = MÜ2/2  and EL = M 6 v 2 / 2  (where 6v is the 
half-width at exp [ - 1/21 of the velocity distribution) as a function of U,, . These two quanti- 
ties would be equal for Gaussian velocity distributions. 

the average kinetic energy EK = Mü2 12 as a function of Uo . It is minimal 
for Uo /ER = 95, with ü = 5.5 hk/M. 

3'5. Conclusions for this approach. - The general features of this quantum 
treatment are in good qualitative agreement with experimental and numerical 
results of subsect. 3'1. The most striking result is the existence of a universal 
parameter Uo/ER. This universality appears clearly in fig. 8 where the contour 
lines are parallel with the 8 axk in the region O,, Tht << 1, indicating that here 
also the results depend only on Uo/ER. Also both the variations of the steady- 
state atomic kinetic energy with Uo and the order of magnitude of the minimum 
5 are in agreement with the numerical results shown in fig. 8. 

This approach also gives access to other observable quantities of laser-cooled 
atomic samples, more deeply connected to the quantization of atomic motion, 
such as the discrete structure of the energy spectrum. These quantum features 
have recently been observed in two spectroscopy experiments, one dealing with 
the absorption spectrum of the cold atomic sample[32], the other one with the 
fluorescence spectrum[33]. Also an experiment in Stony Brook has shown the 
existence of strong magnetic r.f. resonances in laser-cooled samples produced 
by M.I.L.C. (magnetically induced laser cooling), which may be related to tran- 
sitions between the quantized levels [34]. 

This treatment can clearly be generalized to other transitions and other 
cooling schemes. We have extended it to the ID Sisyphus cooling of a 
J, = 1-Je = 2 transition[l5], and also to the study of Sisyphus cooling 
in 2D[35]. BERGEMAN has used a similar approach to study the M.I.L.C. 
situation[36]. Also COURTOIS and GRYNBERG have used such an approach to 



464 J. DALIBARD and Y. CASTIN 

give a quantitative analysis of the spectroscopy experiments showing the 
atomic quantization mentioned above [37]. 

4. - A Monte Carlo wave function approach. 

We now turn to the last part of this lecture which is devoted to the descrip- 
tion of a new general method which can be used for the theoretical study of dis- 
sipative processes in quantum optics and atomic physics, such as laser cooling. 
Usually the dissipative coupling between a small system and a large reservoir 
can be treated by a master-equation approach [38-411; one writes a linear equa- 
tion for the time evolution of the reduced-system density matrix ps = Tr,,, ( p), 
trace over the reservoir variables of the total density matrix. If we denote Hs 
the Hamiitonian for the system, this equation can be written 

In (45), JI,,, is the relaxation superoperator, acting on the density operator ps .  
I t  is assumed here to be local in tirne, which means that ps  ( t )  depends only on ps 
a t  the same time (Markov approximation). Al1 the system dynamics can be de- 
duced from (45). One can calculate one-time average values of a system operator 
A: a( t)  = (A)(t) = Tr(ps( t )A) ,  and also, using the quantum regression theo- 
rem [42], multitime correlation functions such as (A(t + z) B(t)). 

We present here an alternative treatment based on a Monte Carlo evolution 
of wave functions of the small system (MCWF) [43-461. This evolution consists 
of two elements: evolution with a non-Hermitian Hamiltonian, and randomly 
decided .quantum jumpsn, followed by wave function normalization. This ap- 
proach, which is equivalent to the master-equation treatment, has two main in- 
terests. First, new physical insight may be gained, in particular in the studies 
of the behaviour of a single quantum system. Second, if the relevant Hilbert 
space of the quantum system has a dimension N large compared to 1, the num- 
ber of variables involved in a wave function treatment ( -  N )  is much smaller 
than the one required for calculations with density matrices ( -  N". For the 
problem of laser cooling in the quantum regime which is of interest here, N 
stands for the number of interna1 + external atomic states, and is indeed >> 1. 
The MCWF approach may, therefore, bring an important gain in computing 
time compared with the density matrix treatment used, for instance, for get- 
ting the results plotted in fig. 8. 

4'1. The MCWF procedure. - The class of relaxation operators that we con- 
sider here is the following: 
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This type of relaxation operators is very general and is found in most of the 
quantum optics problems involving dissipation. In (46), the Cm's are operators 
acting in the space of the small system. Depending on the nature of the problem 
there can be one, a few or an infinity of these operators. 

For the particular case of spontaneous emission by a two-level system with- 
out Zeeman degeneracy, there is just a single operator Cl = *u - in the relax- 
ation operator (46): 

with 

(48) O + =  Ie>(gI, u -  = Ig)(eIs 

One can check that this form of $'&, indeed leads to the weli-known relaxation 
part of the optical Bloch equations: 

We now present the procedure for evolving wave functions of the small sys- 
tem. Consider at  tirne t that the system is in a state with the nonnalized wave 
function I+(t)). In order to get the wave function at  tirne t + 6t, we proceed in 
two steps: 

1) First we calculate the wave function ( g5 "'(t + 6t)) obtained by evolv- 
ing 1 +(O) with the non-Hermitian Hamiltonian 

This gives for sufficiently small 6t 

Since H is not Hermitian, this new wave function is clearly not normalized. 
The square of its n o m  is 

where 6p reads 

30 - Rendieati S.I.F. - CXX 
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The magnitude of the step 6t is acljusted so that this calculation at first order is 
valid; in particular it requires 6p << 1. 

For the particular case of the two-level atom problem (4'0, the non-Henni- 
tian Hamiltonian is 

This amounts to adding the imaginary term - i h r / 2  to the energy of the unsta- 
ble excited state, as usual in scattering theory. 

2)  The second step of the evolution of 1 +) between t and t + 6t consists in 
a possible <<quantum jumpn (fig. 13). The various possible «directions. for those 
jumps are given by the Cm operators, and the probability for making a jump in 
the «direction. of a particular Cm is 6pm given in (54). The new nonnalized wave 
function after such a jump is given by 

I+(t + 6t)) = cm I r(t)) with probability 6pm . 
Ilcm I +(t>)ll 

Using (53), we find that the total probability for making a jump is 6p. In the no- 
jump case, which occurs then with a probability 1 - 613, we take as new normal- 
ized wave function at t h e  t + 6t: 

1 + 'l) (t + 6 t)) 
(57) 1+(t + 6t)) = with probability 1 - 6p = 1 - 2 6pm . 

I I  I +'"(t + 6t))ll m 

quantum jumps: 
probabilities 6pm 

random 
choice 

no quantum jump: 
probability 1- 6pm 

m\ l@(t+6t)) = l$~" ' ( t+6t) )  
I I  l@"'(t+6t))ll 

Fig. 13. - The possible quantum jumps in the Monte Car10 evolution. 
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Consider again as an example the particular case of the spontaneous emis- 
sion of a two-level atom. The wave function at time t can be written as 

1 +(t)) = a(t) le) + ~ ( t )  1 9). 

Since there is a single Cm operator in this case, there is only one possible type of 
quantum jump. The probability for this quantum jump is 

and the wave function after the jump, deduced from (48) and (56), is simply 
1 +(t  + 6t)) = 1 g). If no jumps occur, the wave function at  time t + 6t is similar 
to (58), with the coefficients a( t  + 6t) and P(t + 6t) deduced from a( t )  and P(t) 
using the evolution with the non-Hermitian Hamiltonian (55). Therefore, we 
see for this particular case that the Monte Carlo evolution can be understood as 
the stochastic evolution of the atornic wave function if a continuous detection of 
the emitted photons is performed. The probability of detecting a photon during 
a particular time step 6t is indeed equal to 6p given in (59), and the new wave 
function after the detection, according to the standard quantum measurement 
theory, corresponds to the atom in its ground state g. 

It is actualiy quite a general result that the Monte Carlo evolution outlined 
above represents a possible history of the system wave function with a suitable 
continuous-detection process taking place [43,45]. Consequently, although this 
procedure does not make any reference to measurements on the system, it is of- 
ten useful, in order to get some physical understanding for the result of the sim- 
ulation, to refer to such a continuous-detection process as if it was realiy 
performed. 

4'2. Equivalence with the master equation. - With this set of rules we can 
propagate a wave function 1 +(t)) in time, and we now show that this procedure 
is equivalent to the master equation (45). More precisely we consider the quan- 
tity ü(t) obtained by averaging u(t) = 1 +(t))(+(t) 1 over the various possible 
outcomes at  time t of the MCWF evolutions al1 starting in 1 +(O)), and we prove 
that O(t) coincides with pS(t) at al1 times t, provided they coincide at  
t = 0. 

Consider a MCWF 1 +(t)) a t  time t. At time t + 6t, the average value of 
u(t + 6t) is 
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which gives, using (51), (52) and (56), 

We now average this equation over the possible values of u(t) and we 
obtain 

This equation is identical to the'master equation (45). If we assume that ps (O) = 
= 1 +(0))(+(0)), a(t) and ps(t) coincide at  any t h e ,  which demonstrates the 
equivalence between the two points of view. In the case where ps(0) does not 
correspond to a pure state, one has f r s t  to decompose it as a statistical mixture 
of pure states, p(0) = C pi 1, and then randomly choose the initial 
MCWFs among the ( x i )  with the probability law p,. 

As mentioned in the introduction, the master-equation approach and the re- 
duced density matrix give access to one-time average values a(t) = (A)(t) = 
= Tr ( ps (t)A), which can now also be obtained with the MCWF method. One cal- 
culates, for several outcomes ( +(')(t)) of the MCWF evolution, the quantum av- 
erage ( + (') (t) 1 A ( + (t)), and one takes the mean value of this quantity over the 
various outcomes ( + (t)): 

For n sufficiently large, (62) implies that (A)(,,(t) = (A)(t). 
As an example of the agreement between the master-equation approach and 

the MCWF approach, we have calculated by those two methods the excited- 
state population of a two-level atom coupled to a coherent laser field. The pa- 
rameters for this Rabi nutation are a zero detuning 6 between the laser and 
atomic frequencies, and a Rabi frequency Q = 3r. In fig. 14a), we show this ex- 
cited-state population for a single ~historyn for 1 +(t)). One finds, as expected, a 
continuous evolution for this population oscillating between O and 1, with ran- 
dom quantum jumps projecting the atomic wave function into the ground state. 
In fig. 14b), we indicate the MCWF result obtained with the average of 100 
wave functions. It shows a damped oscillation as a result of the dephasing of the 
individual oscillations due to the randomness of the various quantum jumps. 
This MCWF result is in very good agreement with the one derived from the 
master equation (optical Bloch equations). 

As appears clearly in the proof, the equivalence of the master-equation and 
MCWF approaches does not depend on the particular value of the time step 6t. 
From a practical point of view, the largest possible 6t is preferable, and one 
might benefit from using a generalization of (51) to a higher order in 6t, as, for 
example, a 4th-order Runge-Kutta-type calculation. The only requirement on 6t 
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time (unit: llr) 

Fig. 14. - a )  Time evolution of the excited-state population of a two-level atom in the 
MCWF approach. The dashed lines indicate the projection of the atomic wave function on- 
to the ground state (quantum jump). b)  Excited-state population averaged over 
100 MCWF starting ali in ground state at time O. The dotted line represents the master- 
equation result. 

is that the various v i  6t, where the f ivi  are the eigenvalues of H ,  should be small 
compared to 1. Of course, we assume here that those eigenvalues have been 
simplified as much as possible in order to eliminate the bare energies of the 
eigenstates of Hs. For instance, for a two-level atom with a transition fre- 
quency w A  coupled to a laser field with frequency wL, one makes the rotating- 
wave approximation in the rotating frame so that the ( v i  1's are of the order of 
the natural width r, the Rabi frequency D or the detuning 6 = wL - wA; they 
are consequently much smaller than wA. 

One might wonder whether there is a minimal size for the time step 6t. In 
the derivation presented above, it can be chosen arbitrarily small. However, 
one should remember that the derivation of (45) involves a coarse-grain average 
of the real density operator evolution. The time step of this coarse-grain aver- 
age has to be much larger than the correlation time z, of the reservoir, which is 
typically an optical period for the problem of spontaneous emission. Therefore, 
one should be cautious when considering any result derived from this MCWF 
approach involving details with a tirne scale of the order of or shorter than z,, 
and only 6t larger than z, should be applied. This appears clearly if one starts 
directly from the interaction Hamiltonian between the system and the reservoir 
in order to generate the stochastic evolution for the system wave function[43]. 
The condition 6t>>zc is then required to prevent quantum Zeno-type ef- 
fects [47]. This restriction is discussed in detail in[48] in connection with quan- 
tum measurement theory. 

4'3. Connection with previous works. - The problem of stochastic wave func- 
tion'evolution in connection &th the treatment of dissipative systems in quan- 
tum optics has recently received a lot of attention. In the context of nonclassical 
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field generation, CARMICHAEL [45] has proposed an approach named *quantum 
trajectories~, inspired by the theory of photoelectron counting sequences [49] 
and quite similar to the spirit of the present work. 

For simple atomic systems (2 or 3 levels) coupled to the electromagnetic 
field, the dynamics can be interpreted in terms of one or a few delayfinctions, 
which give the probability distribution of the t h e  intervals between the emis- 
sion of two successive photons [50-521. When this function is known analytical- 
ly, it can generate a very efficient Monte Carlo analysis of the process: just after 
the emission of the n-th fluorescence photon at  time t,, the atom is in its ground 
state and the choice of a single random number is sufficient to determine the 
t h e  t, + of emission of the (n + 1)-th photon. This type of Monte Carlo analysis 
has been used in [531 to simulate an atomic-bearn cooling experiment, and in [51.] 
to prove numerically the existence of dark periods in the fluorescence of a 3-lev- 
el atom (quantum jumps). Very recently, laser cooling of atoms using velocity- 
selective coherent population trapping[54] and lasing without inversion[55] 
have been analysed by this type of Monte Carlo method. 

Unfortunately, the delay function cannot be calculated analytically for com- 
plex systems involving a large number of levels. Nevertheless, it is possible to 
generate a Monte Carlo solution for this problem in which a single random num- 
ber determines the time of emission of each fluorescence photon[46]. The evolu- 
tion of the system between two quantum jumps has to be integrated step by 
step numerically, so that the amount of calculation involved is similar to the one 
required by the method presented in this lecture. 

Another class of stochastic equations for system wave functions, which is 
also equivalent to the master equation (45), has been introduced by GISIN and 
PERCWAL [561 (see also the work by D I ~ S I  [571). In this approach, only continuous 
stochastic equations are considered. CARMICHAEL has shown that, for the partic- 
ular case of the homodyne detection of the fluorescence light, the quantum jump 
formalism can be transformed into such a continuous stochastic equation[45]. 
Actually this proof can be extended to the most general case[58]. 

4'4. Application to laser cooling. - We now focus on the case of 1D Doppler 
cooling of a two-level atom, for which we present some numerical results. This 
will give an illustration of the effectiveness of the MCWF method as compared 
with the master-equation approach for studying laser cooling in the quantum 
regime. 

4'4.1. The  model. We consider here Doppler cooling of a two-level atom, 
as has already been described in subsect. 2'3: Doppler cooling originates from 
the fact that an atom moving in the field of a standing wave is closer to reso- 
nance with the counterpropagating component of the wave than with the CO- 

propagating one; the atom, therefore, feels a net radiation pressure force op- 
posed to its velocity. This picture works well at  nonsaturating laser intensities, 
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where one can add the effect of the two waves independently. At higher intensi- 
ties this semi-classical analysis becomes more complicated [59,60] and a quan- 
tum treatment of the atomic external motion is a good alternative. We present 
here the result of such a treatment using both a master-equation and a MCWF 
approach. 

The Hamiltonian Hs reads here, using the rotating-wave approximation, 

yhere Z and P are the atomic position and momentum operators and Q is the 
Rabi frequency of each travelling wave forming the standing wave. We choose 
the initial wave function 1 $(O)) equal to 1 g, p = O). At a time t,  1 $(t)) can be 
written 

where the momentum po depends on the random recoils which have occurred 
between O and t,  and remains constant between two quantum'jumps. According 
to subsect. 2'2, the evolution of a,  and ,ûn consists of sequences of two steps. 
First the wave function evolves linearly with the non-Hermitian Hamiltonian 
H = Hs - ihr 1 e)(e 1/22 

Then we randomly decide whether a quantum jump occurs. The probability 6p 
for a jump is proportional to the total excited-state population: 

If no quantum jump occurs, we simply normalize the wave function. If a quan- 
tum jump occurs, the momentum hk' dong the z-axk of the fluorescence photon 
is chosen randomly with a probability law deduced from the dipole radiation 
pattern, which leads to [44] 

where ,u is a normalization coefficient. We note that in this way the recoil due to 
spontaneous emission is treated in an exact manner. In the master-equation ap- 
proach, an exact treatment of the spontaneous recoil requires a discretization of 
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atomic momenta on a grid with a step sue smaller than hk. This increases the 
amount of calculation of the master equation with respect to the MCWF one, in 
addition to the N vs. N 2  argument mentioned in the introduction (*). 

In order to make a fair comparison between the two approaches, we have 
chosen a coarse discretkation for the atomic momentum, with a step ske f i ,  i.e. 
k ' = - k, O or k and a probability law 115 : 315 : 115, which gives an optimum 
representation of the diffusion rate due to the directional distribution of sponta- 
neously emitted photons. 

4'4.2. Numerical results .  We. have considered the case of sodium atoms 
for which the Doppler-cooling limit (22) corresponds to p,,,. - 8.4 hk. We have 
discretized the momentum between - 50 A k and + 50 h k which corresponds to a 
basis with 202 eigenstates in total, with at any time 101 nonzero coefficients an 

and pn (see (651, where p, is either an odd or even multiple of Ak). 
The results for the evolution of the sample mean (Pz)(,,, defmed as 

are given in fig. 15 together with the results for (P2)(t)  obtained using the mas- 
ter-equation treatment. These results correspond to the parameters Sa = - 6 = 
= r/2. The MCWF results have been obtained with the average of n = 500 
evolutions. 

We have indicated in fig. 15 the statistical error 6P&, on the determination of 
(P2)(,, (see [44] for details). This quantity 6P&, gives an estimate of the quality 
of the result, and, with n = 500 wave functions, the signàl-to-noise ratio in the 
range of 20 is quite satisfactory. 

With a scalar machine, we have found that the time required for the calcula- 
tion with 500 wave functions is equal to the time required for the master-equa- 
tion evolution. With a vectorial compiler, we have found that there is an addi- 
tional gain of a factor 15 in the benefit of the MCWF procedure. Therefore, even 
for this relatively simple 1D problem with xonlyn 200 levels, the MCWF method 
is at least as efficient as the master-equation approach for determining cooling 
limits with a good precision. 

We clearly see in fig. 15 the existence of two regirnes in the evolution of 
(P2)(t).  At short time (t < 200r- ' ,  see insert of fig. 15), the number of sponta- 
neous emissions is small, and the physics involved is essentially the diffraction 
of the plane atomic de Broglie wave by the grating formed by the laser standing 
wave [61]. For longer interaction times, dissipation comes into play [62,63] and 
(P2)(t)  tends to a steady-state value, of the order of (11 This value for 

(*) This is the reason why fig. 8 has been obtained with a simplified dipole radiation 
diagram. 
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time in units of r-' 
Fig. 15. - T h e  evolution of ( P z )  in Doppler cooling of Na atoms, with 0 = - 6 = r/2. The 
points represent the Monte Carlo results, obtained by averaging n = 500 MCWF evolu- 
tions. The solid curve is the result of the density matrix approach. The insert details the 
short-the regime corresponding to the diffraction of the atomic de Broglie wave by the 
laser standing wave. 

p,,,. is larger than the Doppler-cooling limit (8.4Ak) because of saturation 
effects. 

4'5. Conclusion for the MCWF approach. - We have presented a stochastic 
evolution for the wave function of a system coupled to a reservoir in the Marko- 
vian regime. Each time step in this stochastic evolution consists of two parts: a 
non-Hermitian evolution and a possible quantum jump. We have proved the 
equivalence of this Monte Carlo wave function approach with the master-equa- 
tion treatment. 

This approach provides a computational tool which is often more efficient 
than the standard master-equation treatment for systems with a number of 
states N >> 1 (for a detailed discussion see [44]). Indeed a wave function involves 
only N components while a density matrix is described by N2 terms. I t  is, 
therefore, particularly well adapted to the study of laser cooling in the quantum 
regime. We have presented here the 1D example of Doppler cooling. This 
method has also been applied successfully to determine the cooling limits of the 
Sisyphus mechanism in 2 dimensions [35], and also to calculate the spectnun of 
the light emitted by an assembly of cold atoms [64]. Problems such as the study 
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of collisions between cold atoms, or nonlinear mixing of quantum fields may also 
benefit from such an approach. 

We have emphasized that this simulation is in many practical cases directly 
connected to a measurement sequence performed on the system. Each Monte 
Carlo trajectory is a possible history for the individual quantum system. In this 
respect, the noise appearing when one simulates with this method the measure- 
ment of a given observable A is also interesting. The fluctuations in the nurnber 
of occurrences of a given eigenvalue ai of A correspond to the quantum noise 
that one would get in a reai experiment, performing the relevant detection 
scheme on an individuai quantum system. Since more and more quantum optics 
and atomic-physics experiments are now performed with a single system (sin- 
gle ion or atom, single mode of a cavity), Monte Carlo wave function methods 
should, therefore, have many applications, since they lead to predictions closer 
to actual experimental signals than the master equation, which rather deals 
with ensemble averages. 

The authors are very grateful to C. COHEN-TANNOUDJI and K. MOLMER for 
their participation to various parts of this lecture. 
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