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We present a quantum theory of one-dimensional laser cooling of free atoms using a transition with a J = O ground 
state and a J = 1 excited state. This treatment is valid both for broad lines (recoil energy small compared with the 
energy width h r  of the excited level) and for narrow lines. For broad lines we recover the well-known cooling limit 
for a two-level transition (-hr/2), whereas for a narrow line the cooling limit is found to be of the order of the recoil 
energy. The stationary momentum distribution is obtained for both cases and is found to be close to the one 
obtained by Monte Car10 simulations. 

1. ~ R O D U C T I O N  
Laser cooling of free atoms is a technique that has been 
widely investigated both theoretically and experimentally 
during the past several years. The simplest cooling mecha- 
nism is the so-called Doppler cooling initially proposed by 
Hbsch  and Schawlow for free atomsl and by Wineland and 
Dehmelt for trapped par t i~les .~ Doppler cooling occurs 
when atoms are irradiated with counterpropagating laser 
waves detuned below resonance. Owing to the Doppler ef- , fect, a moving atom will tend to absorb photons into the laser 
wave counterpropagating its velocity rather than into the 
copropagating wave; thus it encounters a force opposed to its 
velocity and becomes cooled. 

The purpose of this paper is to study the Doppler-cooling 
mechanism and its limits by a fully quantum treatment of 
atomic motion. Until now, Doppler cooling was investigat- 
ed mainly by using a semiclassical treatment of the atom- 
laser intera~tion.~ Such a treatment is valid for broad atom- 
ic lines-the energy width of the excited state h r  is large 
compared with the recoil energy Er = h2k2/2m-and leads to 
the well-known cqoling limit for two-level atoms3 

The residual kinetic energy E, is of the order of h r ,  and it is 
therefore large compared with the recoil energy. Much less 
work has been devoted to the problem of Doppler cooling 
with narrow atomic lines (Er 2 h ï )  for which a semiclassicai 
treatment is no longer valid: Such a treatment indeed re- 
quires that the atomic position be known to an uncertainty 
hz much smaller than X (scaie of variation of the laser field) 
and also that the atomic velocity be known such that the 
uncertainty kAv on the Doppler shift is smaller than the 
natural width r of the excited  tat te.^ For a narrow line, the 
Heisenberg uncertainty relation prevents these two condi- 

,tions from being fulfilled simultaneously. By contrast, a 
fully quantum treatment should allow the two regimes of 
Doppler cooling (broad or narrow lines) to be connected 
together. 

Experimentally, the measured temperatures of laser- 
cooled atoms in the so-cailed optical molasses5 were recently 

shown to be much lower than the limit given in expression 
(1.1), even for broad atomic transitions.- This is probably 
due to the multilevel structure of the atomic ground state 
involved in the process.7~8 This structure leads to extra 
cooling via the polarization gradient force, which is in addi- 
tion to the previously described Doppler cooling. Here, we 
do not wish to investigate this new cooling regime; therefore 
we focus on a transition involving a nondegenerate Jg = O 
ground state and a Je = 1 excited state. We note, however, 
that Our quantum treatment can also be generalized to more- 
complicated atomic transitions. Thus it can be a starting 
point in the investigation of the limits of the newly discov- 
ered extra cooling that seems to approach the recoil limitg 
and therefore may also require a quantum treatment.1° 

Here we focus on the one-dimensional cooling of Jg = 0, 
Je = 1 atoms, irradiated by two counterpropagating a+ and 
a- polarized plane waves, respectively (Fig. 1). This sche- 
matic is already known to be simpler than that of a two-level 
atom in a standing wave.11 In the latter case, coherent 
redistribution of photons may indeed occur between the two 
waves by absorption in one wave and stimulated emission in 
the other wave. In the a+-a- configuration, conservation of 
angular momentum prevents such a redistribution from oc- 
curring. 

Here we use the method of families first presented in Refs. 
12 and 13. This method recently was applied to the study of 
cooling below the recoil energy, using coherent population 
trapping.14 The principle of the method for the present case 
is as follows: If we consider for any momentum p the family 
formed by the three States (g, p ) ,  le+, p + hk), le-, p - hk), 
we find that this family remains globally invariant in the 
evolution resulting from the kinetic-energy term and the 
laser-atom interaction term of the total Hamiltonian. Con- 
nections among various families are caused only by sponta- 
neous emission and are easy to handle. Once these concepts 
have been precisely defined (Section 2), we turn to the time 
evolution and to the stationary solution for the atomic densi- 
ty matrix (Sections 3 and 4). We find, in particular, that for 
a narrow line the stationary solution for W b ) ,  the probabili- 
ty for finding the atom with momentum p, may be far from a 
Gaussian, contrary to the broad-line result. Finally, we 
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Fig. 1. A (g, J = O) - (e, J = 1) atom irradiated by two counterprop- 
agating O+ and O- polarized waves. 

consider specifically weak excitations (Rabi frequency << 
ï) for which it is possible to obtain an analytical derivation 
of various averages ( p n )  in the stationary state. In particu- 
lar, we show that for very narrow lines, the smallest rms 
momentum is reached for a detuning 6 between the 
laser frequency w~ and the atomic frequency w~ such that 

leading to 

- pz 
E, = - E 0.5Er >> h ï .  

2m 

Now let us discuss briefly how our work ties in with previ- 
ous results. In Ref. 15, Wineland and Itano considered the 
problem of laser cooling with narrow atomic lines but used a 
different hypothesis: They assumed they had a collection of 
atoms in which collisions would ensure complete thermaliza- 
tion between two successive photon-scattering processes so 
that the velocity distribution would be Gaussian at  any time. 
In their model, they could then reach a temperature well 
below the recoil energy Er. By contrast, we consider here a 
single atom, and we do not make any hypothesis about the 
momentum distribution. The recoil energy can then be 
shown to be a natural lower bound to energies accessible .by 
Doppler cooling.16 

Recently, Wallis and Ertmer did a study of laser cooling 
using a narrow atomic line and a broadband laser.17 This 
technique ensured that, in spite of the narrowness of the 
atomic line, the atom was always resonant with one of the 
two counterpropagating laser beams. They obtained a 
minimum residual kinetic energy of the order of h ï ,  well 
below the single-line limit found here [Eq. (1.311. This tech- 
nique therefore appears to be quite promising, provided that 
the proposed multiline spectrum can be realized.18 

Recently as well, W. Phillips and CO-workers performed a 
Monte Car10 simulation of three-dimensional Doppler cool- 
ing, using both narrow atomic and laser 1ines.lg Their re- 
sults appear to be close to the ones that we obtained with the 
quantum model. 

2. MOMENTUM FAMILIES AND THEIR 
EVOLUTION 

A. Definition of Momentum Families 
As we noted in the Introduction, the choice of a a+-a- laser 
configuration leads to a simple structure for the atomic evo- 
lution equations. Consider, for example, the state lg, p )  

(atom in the ground state with momentum pz = p along the 
axis Oz of propagation of the laser beam). This 'state is 
coupled to two other states le+, p + hk)  and le-, p - hk)  by 
absorption of a+ or a- laser photon. Because of conserva- 
tion of angular momentum, these two states are themselves 
coupled only to Ig,p) by stimulated-emission processes. We 
are then led to consider, for any momentum p, the family 
3(p )  formed by the three states: 

Using this basis, we can expand the atomic density operator 
p. In particular, we put 

and the five quantities deduced by exchanging + and - and 
by taking complex conjugates. 

At first sight, the knowledge of these nine quantities for 
any momentum p is not sufficient to determine completely 
the atomic density operator p. However, we see in what 
follows that this set of nine functions of D is closed with 
respect to the time evolution in the case of a a+ - a- laser 
configuration: None of the time derivatives a,, p,+, . . . 
involves any coupling to interfamily density-matrix ele- 
ments, such as (g ,  plplg,pf) withp # p'; i.e., matrix elements 
of the density operator p between a bra and a ket belonging 
to two different families 3(p )  and 3 ( p f ) .  

One should be aware that the quantity p is just the label of 
the family and not necessarily the atomic momentum. For 
example, a + b )  denotes the probability of finding the atom 
in the internal state le+) with momentum p + hk. For the 
ground state, however, p coincides with the expectedatomic 
momentum. 

One can also note that definitions (2.2) are monodimen- 
sional. Actually, one must consider them as traces over the 
two axes Or and Oy, so that one has, for instance, 

This trace over p, and p, plays an important role in the 
description of spontaneous-emission processes (see Appen- 
dix A). 

We now consider the evolution of the atomic density ma- 
trix using this family basis. This evolution contains three 
terms: a term resulting from the atomic kinetic energy and 
internal energy 

H - - + ho, c lei) ( e ~ ;  
O -  2m 

+O,+,- 

a term resulting from the atom-laser coupling, which we 
take here in the electric-dipole and rotating-wave approxi- 
mations, 
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and a term resulting from spontaneous emission. In Eq. 
(2.5), D+ and D- are the raising and lowering parts of the 
atomic-dipole operator, 6+ and 6- are the positive- and 
negative-frequency parts of the (classical) laser electric field, 
and Z is the atomic position operator along the Oz axis. 

B. Evolution from the Atomic Interna1 Energy and 
Kinetic Energy 
The evolution resulting from Ho does not modify the value of 
the populations n,, n+, n- since (g, p ) ,  le*, p & hk) are 
eigenstates of Ho. For the optical coherences p+,, p-,, . . . 
we find, by including the derivative of their explicit time 
dependence e(* lULt), that 

p,+(p) then oscillates at a frequency equai to the bare detun- 
ing 

6 = UL - UA (2.7) 

modified by both the Doppler shift -kp/rn and the recoil 
shift -hk2/2rn. In what follows, we introduce the renorma- , 
lized detuning 6, which includes the recoil shift 

Finaily, the evolution from Ho of the excited-state coher- 
ences p+- and p-+ is given by 

C. Evolution from Atom-Laser Coupling 
The atom-laser coupling has been given in Eq. (2.5). In this 
equation, the atomic-dipole operators can be written as 

D- = ddg) (e+lu+ + Ig) ( e h -  + Ig) (eolu,), 

D+ = (D-)+, (2.10) 

d is the atomic-dipole constant, u, is a unit vector aiong Oz, 
and u+ and u- are the unit vectors corresponding to a+ and 
a- polarizations aiong Oz: 

The laser electric fields 6+(Z) and 6-(Z), resulting from the 
superposition of the a+ wave and a- wave with wave vectors 
equai to k u, and -k u,, respectively, can be written as 

where 60 is the field amplitude of each of the traveling 
waves. We now introduce the atom-laser field 'coupling 
constant (Rabi frequency for each traveling wave): 

and, using 

eikZlp) = I p  + hk), 

we get 

where we assumed that Q is real. 
We now calculate the equations of evolution resulting 

from the laser of the density matrix: 

The five other equations for n-, p+,, p,-, p-,, and p-+ can be 
deduced from these four by taking complex conjugates and 
exchanging + and -. 

D. Evolution from Spontaneous Emission 
We now come to the evolution of the atomic density operator 
from spontaneous-emission processes. The structure of the 
resulting terms, expressed in the momentum family dasis, is 
more complicated than the previous contributions. A given 
family is indeed not invariant under spontaneous-emission 
processes. For example, the quantity n,(p) = (g, plplg, p ) ,  
representing the population of the ground state g with mo- 
mentum p, can be fed by any (e+, p'(p)e+, p') = *+(Pt - hk), 
provided that p' and p differ by less than hk. In Appendix A 
we show that 

+ n-(p + p' + hk)] 

= 1?[7i+(p - hk) + ?r-@ + hk)], (2.17) 

where N(p')dpl is the probability that when a fluorescence 
photon circularly polarized along Oz is emitted it will have 
its momentum aiong z between p' and p' + dp' (dipole 
radiation pattern): 

and where the functions ik* are defined by 
hk 

**(P) = Ihk dp'NW)n.(P +pl). (2.19) 
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The evolution of the eight other family quantities defined in 
Eqs. (2.2) is much simpler, corresponding simply to the usual 
decrease resulting from spontaneous emission. One has, for 
example, 

E. Structure of the Equations of Evolution 
If one puts together al1 the various terms found above, one 
geb 

kg@) = I'[ir+(p - hk) + ii-(p + hk)] 

plus the five equations that can be deduced from Eqs. (2.21) 
by taking complex conjugates andlor exchanging + and -. 

Let us comment briefly on the structure of these equa- 
tions. A first important remark is that the evolution of any 
of the nine functions r,(p), r+(p), p+&), . . . does not in- 
volve any coupling to interfamily density-matrix elements 
such as (g, plplg, p') withp # p'. This simplification, which 
we mentioned at the beginning of this section, arises from 
the choice of a a+-a- laser configuration. The conservation 
of angular momentum in this case prevents any coherent 
redistribution of photons between the two counterpropagat- 
ing waves from taking place, which would in turn couple 
these nine functions to the interfamily density-matrix ele- 
ments. This simplification must be contrasted with the case 
of a two-level atom in a standing wave. In the latter case, 
one finds that the state Ig, p )  is coupled by absorption from a 
traveling wave to the state le, p + hk), itself coupled by 
stimulated emission into the other traveling wave to Ig, p + 
2hk), and so on. . . . The quantum treatment of this prob- 
lem would then require consideration of, for instance, an 
infinite number of elements (g, plplg, p') with Ip' - pl = 
2nhk, instead of keeping only (g, plplg, p ) .  Actually, at low 
power (Rabi frequency Q smaller than the width I'), we do 
not expect a large difference between the a+-a- configura- 
tion and the standing-wave case, since stimulated processes 
are negligible compared with spontaneous ones. On the 
other hand, a t  high power (Q >> r ) ,  we know from the semi- 
classical treatment that the two configurations lead to quite 
different results.ll 

With regard to the structure of the equations of evolution 
(2.21), we also can note that ail these equations except for 

the one giving kg are similar to usual optical Bloch equations, 
the label p being just a spectator. On the other hand, the 
equation giving contains the term I'(ii+ + ii-), which 
describes the transfer among families because of recoil. 
This term is at the origin of the radiation force and its 
fluctuations.12 Now if we consider the evolution of the total 
population of the family p, we get 

+ I'[ir+(p - hk) + ir-(p + hk)]. 

This equation has a clear physical meaning: The atom 
leaves the family p by spontaneous emission from leve). le+, p 
+ hk) and le-, p - hk) (terms - I'[r+(p) + r-(p)]), and it 
enters this family by spontaneous emission from any le*, p') 

'with Ipf - pl < hk (terms involving ir+ and ir-). When 
stationary state is reached, these two entering and leaving 
fluxes are equal for any family p. 

3. NUMERICAL RESULTS FOR ARBITRARY 
INTENSITIES 

In order to study the dynamics and the stationary state of 
the atomic density matrix, we performed a numerical study 
of the full set of Eqs. (2.21). We discretized the momenta by 
using typically 200 points. For a narrow line (Fig. 2) corre- 
sponding to h r  = Er, we took 10 points per recoil hk. In 
comparison, numerical solutions of the usual Fokker-Planck 
approach involve typically one point per recoil hk. 

In Fig. 2, we plotted for this narrow line the evolution of 
the function giving the probability W b )  of finding the atom 
with a momentum p, independently of its interna1 state 

W b )  = rg@) + r+@ - hk) + r-(p + hk). (3.1) 

t z o  
-5hk O 5lik 

Fig. 2. Time evolution of the momentum'distribution W(p)  for the 
case of a V r o w  line (hr = Er) with a Rabi frequency f2 = r and a 
detuning 6 = -2.5r (discretization 200 pointa, 10 points per recoil 
momentum). The last distribution (fort = m) was obtained dired- 
ly by solving the set of equations deduced from p = 0. 
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Fig. 3. (a) Variation of the stationary rrns momentum with Rabi frequency il for the two narrow lines h r  = Er and h r  = O.lEr. For each Rabi 
frequency we took the detuning d that minimizes the rrns momentum. (b) Variation with the Rabi frequency Q of the detuning d that minimizes 
the rrns momentum for the two lines tLr = Er and fir = O.lE,. 

The distribution W(p)  in the stationary state exhibits a 
triplet structure, with local minima a t  the resonant momen- 
ta. The stationary state was obtained consistently by look- 
ing for the long-time limit of the time-dependent solution of 
Eqs. (2.21) and directly solving the set of equations deduced 
from Eqs. (2.21) by setting p = O and Tr p = 1. 

We then calculated for the stationary state the value of the 
rms momentum, which is an indicator of the quality of cool- 

ing. Note that, for narrow lines, there is no equivalent of a 
temperature any more since the momentum distribution is 
not Maxwellian. We have always found that the lowest rms 
momenta are obtained at low power (R << F ) .  As an exam- 
ple, we plotted in Fig. 3(a),  for the two lines hF = Er and hF 
= Er/lO, the minimum rms momentum as a function of the 
Rabi frequency R. The detuning 6 is optimized for each 
value of R in order to minimize the rms momentum [see Fig. 
3(b)] .  In Fig. 4, we have plotted for the line hF = Er some 
stationary momentum distributions, for a given detuning 6 = 
-1.25hk2/m and for various Rabi frequencies. 

Restricting ourselves now to the low-power domain, we 
studied numerically the cooling limit as a function of the 
ratio hF/Er. For broad lines, we recovered the limit for the 
average kinetic energy E,: 

for a detuning 6 = -F/2. [Let us recall that we are consider- 
ing here a one-dimensional problem and are taking into 
account the dipole radiation pattern: The cooling limit 
would then be slightly different from expression (1.1).] For 
ultranarrow lines, the optimum detuning is 6 = -2.2hkZ/m 
and leads to the limit 

i 1 We see in Section 4 how these results can be obtained in a 
faster and more precise way by using analytical arguments. 

We also looked for the time constants involved in the 
transitory regime toward the stationary state. The first way 

Fig. 4. Stationary momentum distributions W b )  er various Rabi to obtain these time constants is t0 look for the eigenvdues 
frequencies Q, in the case of a narrow line fir = Er (6 = -2.5r). of the discretized system derived from Eqs. (2.21). This 
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approach has led us (at low power) to the well-known time 
constant 

for broad lines3 and to 

nr 
@ proportional to - 

l ? ( h ~ ) ~  

for narrow lines. In order to understand this last result, we 
developed the following semiquantitative argument, which 
is valid at low power. We take an atom with a momentum p 
large compared with hk, and we look for the average time 
that it takes to reach the zero momentum. The average time 
required to decrease this momentum p by hk is 

where y+ and y- represent the atomic excitation rates corre- 
sponding to the two traveling waves 

and where we chose 6 = -2hk2/m (close to the optimal 
detuning for narrow lines). Summing up over the various 
time steps t,, we get the order of magnitude of the average 
time 4 required to decrease the momentum p to O: 

l 

4 = tp + tp-hk + tp-2hk + . - + thk 

domain, a Monte Carlo simulation of this problem in a rate- 
equation approximation. Absorption and. spontaneous- 
emission processes were allowed for in a random way, ac- 
cording to rates calculated from optical Bloch equations. 
The results are perfectly consistent with the fully quantum 
treatment (see, e.g., Fig. 5). This indicates that for the case 
of a narrow line the dynamics of a V system under the 
influence of spontaneous scattering of photons is well de- 
scribed in a rate-equation approach, as it is known to be the 
case for broad lines. This must be contrasted with the 
problem of a A system in the same O+-u- configuration, 
where such a rate-equation approach cannot describe the 
recently discovered cooling below the recoil limit by popula- 
tion trapping.14 

4. LOW-INTENSITY LIMIT: AN ANALYTICAL 
APPROACH 

In the low-intensity limit (Q << r ) ,  it is possible to perform 
an analytical study of the stationary state of equations 
(2.21). We derive in what follows the value of the rms 
momentum in the stationary state and then show how one 
can get an approximate analytical form for the stationary 
distribution *,(pl. 

A. Rms Momentum in the Low-Intensity Limit 
In the low-intensity limit, one can easily extract from Eqs. 
(2.21) the values of ?r+(p) and ?r-(p) as functions of ~ , (p ) :  

This first equation relates the three populations T+, T-, and 
T, inside a given family 9(p). On the other hand, Eqs. (2.22) 
lead to 

~ + b )  + r-(p) = %+(p - hk) + ?r-(p + hk). (4.2) 

This second equation gives a relation among populations of 

This result is clearly in agreement with the one obtained 
numerically [expression (3.5)). If we choose Q = r (limit for 
this low-power argument), we obtain that the cooling time 
for narrow lines varies as r-3. 

Finally, we can Say that we performed, in the low-jntensity. 

Fig. 5. Cornparison of the stationary momentum distribution obtained by (a) the quantum method and (b) a Monte Carlo approach (hr = Er, 
n = o s r ,  6 = - 2 . 5 ~ ) .  
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States belonging to different families. Using simultaneously 
the parity of the ground-state population in the stationary 
state 

it is possible then to derive al1 the momenta ( p n )  of this 
stationary distribution. 

First, we consider the case of a broad line (Er << hl'). We 
multiply Eq. (4.2) by p2 and take the integral over p from -w  

to +W.  We then get by using Eq. (2.19) 

We now replace r+ and a- by their expression in terrns of ?r, 

[Eq. (4.1)] and take as new integration variables pl = pf and 
p2 = p + pf F hk. Equation (4.4) can now be written as an 
average over momentum with a weight a,: 

7 
( ~ ( 7 -  - y + ) ( p ) )  = 1 0 h k ( ( ~ +  + Y - ) @ ) ) ,  (4.5) 

where the coefficients y ,  are given in Eq. (3.7) and where we 
get from Eq. (2.18) 

Relation (4.5) describes the equilibrium in the steady state 
between dissipation and fluctuations. The dissipation is 
due to the cooling force f(p) = hk(y+ - y - )@) ,  and the 
fluctuations are described by the momentum diffusion coef- 
ficient 7/10(hk)2(y+ + y - )@) .  For a broad line, the average 
Doppler shift Ikplml in the stationary state is small com- 
pared with the natural width l', so that we get from Eq. (3.7) 

If we insert these two results into Eq. (4.5), we get 

This is the well-known cooling limit for broad lines, which is 
minimum for 6 = - r / 2 ,  where Ë, = 7hl'/40. 

For a narrow line, the problem of the derivation of Ë, is 
more complex since an expansion like the one that leads to 
expressions (4.7) and (4.8) is no longer possible. The princi- 
ple of the calculations is presented in detail in Appendix B; 
here we indicate only the main results. 

The first result deals with the convergence of the integral 
J?: p2"a,(p)dp. We find that this integral converges if 

In particular, this leads to 

21 hk2 
a ,  normalizable if 6 < - - - , (4.11) 

20 m 

7 hk2 i p 2 )  exists if 6 < - - -- 
4 m 

Physically, this means that in an experiment with a finite 
collection of atoms, the number of particles with a velocity 
smaller than a given bound tends to zero with increasing 
interaction time when condition (4.11) is violated. 

The analytical expression for ( p 2 )  is given explicitly in 
Appendix B [Eq. (B16)]. We plotted in Fig. 6 the variations 
of ( p 2 ) / 2 m  with detuning 6 for various ratios hl'lE,. The 
optimum detunings, which minimize ( p 2 ) ,  range from 6 = 
-l'/2 for a broad line to 6 = -1.72hk2/m = -3.441'(Er/hl') for 
a narrow line. This confirms the numerical results found in 
Section 3. The corresponding values for Ë, = ( p 2 ) / 2 m  are 
plotted in Fig. 7 .  They range from 7hl'/40 for a broad line to 
0.53Er for a narrow line. 

Finally, we can mention an interesting point that was 
pointed out to us by Phillips and CO-workers, who first ob- 
tained this result by using a Monte Car10 approach to this 
problemlg; it concerns the large 161 variation of E, (see Fig. 6) .  
We see that for large 161, Ë, increases linearly with (61, as one 
would expect from the limit (4.9), but it remains below the 
semiclassical limit 7h161/40. This can be understood by a 
simple reasoning. First, we note that for very large (81, an 
expansion such as the one shown in expressions (4.7) and 
(4.8) is valid, even for narrow atomic lines. In this case, the 
Doppler shift kplm is indeed small compared with 161. In 

Fig. 6. Variations (for fl << I') of the stationary kinetic energy Ë, 
with detuning 6 for various recoil shifts. The curve with E, = O 
represents the predictions of usuai semiclassicai molasses theory 
[Eq. (4.9)l. 

Fig. 7. Variations for fl << I' of the stationary kinetic energy ËK 
with the ratio hI'lE,. The detuning is aiways chosen in order to 
minimize E,. 
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order to obtain a more accurate expression than the semi- 
classical result (4.9), we improve expansions (4.7) and (4.8) 
in the following way: 

where the two coefficients A and B are obtained from Eq. 
(3.7): 

They are both positive for large 6. A > O means that the 
force f around p = O is larger (in modulus) than its tangent in 
p = O. B > O means that an atom with nonzero momentum is 
more likely to be excited than an atom at rest. We now put 
expansions (4.13) into Eq. (4.5), and we obtain 

where we note (Ex),,, the semiclassical result obtained in Eq. 
(4.9), and assume that the stationary distribution for ?r,(p) is 
close to a Gaussian so that (p4) = 3 ( ( ~ ~ ) ) ~ .  Inserting the 
explicit values for A and B into Eq. (4.6), we obtain for large 
161 

This result can be recovered by use of the exact result [Eq. 
(B16)] from an asymptotic expansion in 1/6. 

To sum up, the difference between E, and (E,),i is due to 
two effects. First, the force acting on a moving atom is 
actually larger than the one we would calculate from .p(dfl 
dp),=O (coefficient A > O). Second, momentum diffusion is 
larger for moving atoms (coefficient B > O). For large 6, we 
found a decrease of EK with respect to (Ex),,. This means 
that the effect of the extra diffusion compensates only par- 
tiaily for the effect of the extra cooling (3A > B).20 

B. Connection with Semiclassical Treatment: an 
Approximate Expression for T&J) 

We now turn to the problem of connecting Our treatment to 
semiclassicai ones, based on a Fokker-Planck equation ap- 
proach and leading to a Gaussian momentum distribution in 
the stationary state. Our starting point will be Eqs. (4.1)- 
(4.3), vaiid in the low-intensity limit. 

We begin by expanding Eq. (4.2) in terms of hk; this 
expansion is valid as long as ?r*(p) do not Vary too greatly on 
the scaie hk. For the case of broad lines, this is certainly 
vaiid for any p, whereas for the case of narrow lines, this is 
true only when p is large compared with hk. In the latter 
case, we then expect to find the correct asymptotic behavior 
of ?r*(p) or ?rg(p), but Our results should not be applied in the 
range I p l  < hk. Coming back to the definition of ii* [Eq. 
(2.19)], we find that 

= ",(P) 7 hk (2) - (p) 

+ (3) (p) + . . . , (4.18) 

where we used relation (4.6). Inserting this result into Eq. 
(4.2), we obtain a Fokker-Planck-type equation with the 
momentum-dependent force and diffusion coefficient equal 
to the ones deduced from Eq. (4.5): 

with 

The value of G in p = f m is zero, so that G(p) is nul1 for any 
p. If we now replace ?r*(p) with their expression in terms of 
?rg(p), we obtain a first-order differential equation in ?rg(p), 
which gives after integration 

where ?ro is a normalizing coefficient and the exponent a is 
given by 

For a narrow line, the result (4.21) is only in qualitative 
,agreement with the exact results found numerically in Sec- 
tion 3 for the stationary distribution of ?rg(p) and also for the 
'rms momentum (pz) found in Subsection 4.A. On the other 
hand, it gives back exactly the convergence condition of 
J pZn?rg(p)dp, ensuring a finite value for the average value 
(pZn) [see expression (4.10)]. This convergence condition is 
indeed governed by the large p behavior of ?rg(p) and ?r*(p), 
for which expansion (4.18) is valid. 

For a broad line, expression (4.21) can be simplified in 
taking the limit of an infinitely heavy atom (m + m, so that 
hk2/mr + O) while keeping constant the linewidth r ,  the 
detuning 6, and the atomic kinetic energy E, = p2/2m. The 
numerator of Eq. (4.21) is immediately found to tend toward 
the constant value (62 + 1'2/4)2, while the calculation of the 
limit of the denominator requires some more care. First we 
write 

Then we expand 

The first term of the right-hand side is a constant that 
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must be incorporated in so, while the second term of Eq. 
(4.24) multiplied by a tends to the limit E,8/(S2 + F2/4). We 
therefore obtain the well-known result for broad lines 

with E, = p2/2m and where Ë, is given in Eq. (4.9). 
In conclusion, Eq. (4.21) appears to be a convenient way to 

evaluate easily and with a good approximation expressions 
involving the stationary distribution sg(p) for both narrow 
and broad lines. 

5. CONCLUSION 

We have presented in this paper a full quantum method to 
study the limit of Doppler cooling. This method uses the 
concept of families corresponding to a given momentum 
p.12-l4 This method is well suited to the situation studied in 
this paper, where one-dimensional cooling is produced by 
two a+ and a- polarized counterpropagating waves. Con- 
servation of angular momentum prevents coherent redistri- 
bution of photons between the two waves, which in turn 
makes thé density-matrix evolution particularly simple 
when it is written in the family basis. 

The method presented here is vaiid for any ratio between 
the recoil energy Er and the naturai width h r .  It therefore 
establishes a link between the semiclassical regime Er << h r ,  
which is usuaily studied by using a Fokker-Planck analysis 
based on an expansion in terms of the small parameter hk/ 
J?, and the quantum regime Er > h r .  In this quantum 
regime, we found that the rms momentum is of the order of 
hk. A Fokker-Planck approach cannot in this case give with 
good precision the complete velocity distribution. Howev- 
er, we showed that it leads to the good asymptotic behavior 
of the stationary velocity distribution. 

We found that this quantum treatment leads to results 
similar to the ones obtained by a Monte Carlo treatment of 
the process. The Monte Carlo treatment was performed in 
the rate-equation approximation. We believe that this re- 
sult is specific to the cooling of a V system, which does not 
involve any long-lived coherences in the ground state; a 
simple Monte Carlo approach could not, for example, give an 
account of the phenomenon of cooling by coherent popula- 
tion trapping recently discovered in a A system. On the 
other hand, the possibility of describing Doppler cooling by a 
Monte Carlo approach is important: Monte Carlo methods 
are indeed the only available methods in practice when the 
system gets more complicated, i.e., cooling a narrow atomic 
line with a broadband laser,17 three-dimensionai Doppler 
cooling,lg and so forth. 

Finally, we emphasize that the family method could be 
applied to any atomic transition J,  -,Je (with Je = J, or J, f 
1) irradiated with two counterpropagating a+ and a- laser 
waves. For instance, for J, # O, Je = J,  + 1, and for a broad 
line, Doppler cooling is reinforced by polarization gradient 
cooling, which lowers the achievable temperature from h r  to 
a value limited only by Er.7 Because of this very low tem- 
perature, a Fokker-Planck analysis is no longer applicable, 
while the family method remains valid and offers a theoreti- 
cal way to determine the limiting temperature.1° 

APPENDIX A: SPONTANEOUS EMISSION IN 
THE FAMILY METHOD 

The goal of Appendix A is to determine the evolution result- 
ing from spontaneous emission of the nine functions sg(p), 
~ + ~ ( p ) ,  . . . defined in Eqs. (2.2). We start with the master 
equation giving the evolution of the density operator p re- 
sulting from spontaneous-emission processes (see, e.g., Ref. 
4) 

r 
( d ~ / d t ) , ~ ,  = - - [(A+. A-)p + p(A+. A-)] 

2 

R is the position operator of the atomic center of mass, 
acting only on external variables, and A- and A+ are the 
lowering and raising parts of the reduced atomic-dipole op- 
erator 

A- and A+ differ from the operators D- and D+ defined in 
Eqs. (2.10) by the multiplicative factor d (electric-dipole 
moment of the transition). The first line of Eq. (Al) de- 
scribes the decrease resulting from spontaneous emission of 
excited-state populations and coherences and of optical co- 
herences (density-matrix elements between an excited state 
and the ground state). From the contribution of this first 
line, one immediately deduces the equations of evolution 
[Eqs. (2.20)]. 

We now tackle the problem of determining the equation of 
evolution of sg(p) [see Eq. (2.1711 from the contribution of 
the second and third lines of Eq. (Al). This line describes 
how the ground-state population is fed by spontaneous 
emission of a fluorescence photon in the solid angle dC! 
around direction n, with energy hck and polarization c 1 n. 
We first take the matrix element of Eq. (Al) between (g, pl 
and1g.p). Weget 

3 r  (2 (9, PIPIB, P)) = g, / d2C! 
S.E. 

x 1 (g, p + h k n l ( ~ +  e)+p(A'.  CI^, p + hkn). (A31 
t l n  

We now expand the vector c on the basis u*, u, [Eqs. (2.11)]: 

and we obtain from Eq. (A3) by using A+ uqIg) = le,) 

($ (8,  PIPI^, P)) S.E. = 1 / d2C! 
qq' 

r l n  

where the sum over q and q' ranges from -1 to +l. We now 
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take the trace of p over pz and p, in order to get the evolution 
of 7rg(p): 

of momentym in the stationary atomic distribution) and the 
reduced populations: 

(e,,, pz = p + hk cos Olple,, pz = p + hk cos O), (A61 We also introduce the two dimensionless parameters 

8 D=- (renormalized detuning measured 
hk2/2rn in units of recoil shift), 

where O represent the polar angle of Q with respect to the Oz 
axis. The sum over E gives 

t l n  

so that Eq. (4.1) can be written as 
and the integral over the azimuthal angle 4 of Q leads to 

Equation (4.2) describing the stationarity of the external 
degrees of freedom becomes with 

where 

.N(q') = 3/,(1 + q'2) (B6) We now use as a new variable the component dong Oz of the 
momentum of the fluorescence photon 

is the reduced dipole radiation pattern of svontaneous emis- 
p' = hk cos O. (-410) sion. Finaiiy, the symmetry of the statjonary state [Eq. 

(4.3)] leads to We note that the contribution of q = O to Eqs. (A6) can be 
omitted since the population of the state leo) remains zero at  
any time. Then finally we get 

We now define the average value Rn of qnln! in the state le+): 

X [?r+(p - hk + p') + T-(p + hk + p')], (All) 

with 

The average value of qnln! in the state le-) is simply equal to 
(-l)nRn, according to Eqs. (B7). Using relation (B4), multi- 
plying by q2, and integrating over q, we can relate (p2), to 
the coefficients Rn with n < 4: 

which demonstrates Eq. (2.17). 

APPENDIX B: STATIONARY RMS MOMENTUM 
IN THE LOW-INTENSITY LIMIT 
Here we wish to derive the rms momentum in the 
stationary state. We consider the low-intensity limit (Q << 
I') so that this rms stationary momentum is actually given by 
the average of p2 in the ground-state momentum distribu- 
tion *,(p): 

We now calculate Rn recurrently up to n = 4. The first 
recursive relation comes from the parity of R,(q) [Eqs. (B7)]: 
the average value of in the ground state is zero, which 
can be written in terms of Rn using Eq. (B4) as 

The second relation comes from the Eq. (B5), which gives 
after a multiplication by q2n+2 and integration over q 

I t  is useful from a practical point of view to work with 
dimensionless quantities. Let us define the reduced atomic 
momentum q = plhk (hk is expected to be the smallest scale 
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where we put 

The coefficients Ln are simply related to the dipole emission 
pattern. We get, for instance, LI = 1, L2 = 7/10,. . . . Com- 
bining Eqs. (B10) and (Bll),  we now get a succession of 2 X 2 
systems giving Rzn and R2n+l in terms of Rh with k < 2n: 

On the other hand, relation (B11) for n = O provides the 
initial condition 

The calculation of (p2) from Eq. (B9) can now be done in two 
steps. In the first one, we calculate Rp and R3 from the 
system [Eqs. (B13)] taken for n = 1. In the second step, we 
calculate R4 from Eqs. (B13) written for n = 2. We get, for 
example, 

This result is physically meaningful if R2 is positive; we 
checked that this condition implies that the quantity 3Lz + 
D has to be negative, or equivalently 6 < -(21/20)hkz/m. 
This ensures that 1 p2*+(p)dp converges or, according to 
Eq. (B4), that *,(p) can be normalized. More generally, one 
expects 1 qZnR+(q)dq to be positive if the determinant of the 
linear system [Eqs. (B13)] is negative [(2n + 1)Lz + D < O], 
which, because of Eq. (B4), ensures that 1 q2n-zR,(q)dq is 
finite and positive. This gives the convergence condition 
(4.10). 

By inserting into Eq. (B9) the value of Rz, RB, and R4 
calculated from the 2 X 2 linear systems [Eqs. (B13)], we get 
the atomic rms momentum in the steady state at the low- 
intensity limit: 

We used the following notation in Eq. (B16): 

and made the following quantities appear: 

The momenta Ln are defined in Eq. (B12). 
The coefficients a and j3 depend only on the radiation 

pattern N(q') of spontaneous emission along Oz axis. In the 
case of a purely longitudinal or purely transversal spontane- 
ous emission with respect to the Oz axis, they are both zero. 
In the real physical case [see Eq. (B6) for N(qt)], a and j3 are 
positive and less than 3 X By neglecting in Eq. (B16) 
al1 the terms involving a and j3, we find for the mean kinetic 
energy the approximate formula 

The absolute minimum of the approximation of E, given in 
formula (B20) is reached in the limit of an ultranarrow line 
for an optical renormalized detuning [see Eq. (2.8)] 

and has the value 

This must be compared with the exact values given in Sec- 
tion 4 and deduced from Eq. (B16): 
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