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Abstract. The quantum kinetic equation describing slow atomic motion in laser light is 
derived by an operatorial method which provides mathematical expressions with a trans- 
parent physical structure. We prove in a general way that the coefficients appearing in this 
equation, which is of a Fokker-Planck type, are simply related to the mean value and to 
the correlation functions of the Heisenberg radiative force of the semiclassical approach, 
where the atomic position is treated classically. We derive in particular a new theoretical 
expression for the damping force responsible for radiative cooling'and we interpret it in 
terms of linear response theory. We also obtain a new crossed r - p  derivative term, which 
does not appear in semiclassical treatments, but which we find to be very small in most 
situations. Finally, al1 the theoretical expressions derived in this paper are valid for any 
J, to Je transition and are not restricted to two-level atoms. 

1. Introduction 

The subject of atomic motion in resonant laser light has been intensively studied 
recently and applications as varied as cooling of an atomic beam (Prodan et al 1982, 
Balykin et al 1984), isotope separation (Bernhardt et al 1976) or radiative atomic 
trapping (Ashkin 1978, Ashkin and Gordon 1979, Dalibard et al 1983) have been 
investigated, from both theoretical or experimental points of view. Considering the 
various theoretical descriptions of this atomic motion, one can first make a distinction 
between 'short interaction time' treatments, where spontaneous emission processes can 
be neglected during the atom-laser interaction and 'long interaction time' treatments 
where, on the contrary, many spontaneous processes can occur during the interaction 
time. In the first case, one can write a Schrodinger equation for the atomic wavefunction 
(see e.g. Letokhov and Minogin 1981), and extract from this equation al1 the characteris- 
tics of the motion. In the second case, where the interaction time is long compared 
with the lifetime of the atomic excited levels, one has in principle to take into account 
the coupling of the atom with al1 the modes of the electromagnetic field responsible 
for spontaneous emission processes. The random character of spontaneous emission 
then causes a stochastic spreading of the atomic momentum distribution. This 'long- 
time' situation, which occurs very frequently in experiments, and which is the one we 
are interested in in this paper, is therefore much more complicated than the short-time 
limit. 

Up to now, there have been two main approaches to the description of atomic 
motion in laser light in the long interaction time limit. The first one is based on a 
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classical treatment of the atom's position, assuming a very small atomic wavepacket 
(Cook 1979, 1980a, Gordon and Ashkin 1980). It is therefore possible to calculate, 
via optical Bloch equations, the stationary internal atomic state and then to find, by 
application of Ehrenfest's theorem, the equation of motion of the centroid of the 
atomic wavepacket. Such an approach brings out the notion of 'average radiative 
force'. It is also possible in this treatment to describe the spreading of the atomic 
momentum due to the randomness of spontaneous emission, in a way similar to the 
one used in noise theory: one introduces a momentum diffusion constant which is 
expressed in terms of the two-time autocorrelation function of the radiative force 
(Cook 1980a, Gordon and Ashkin 1980). 

The second approach to atomic motion in laser light for long interaction times is 
a fully quantum treatment of both internal and external atomic degrees of freedom, 
based on the use of the Wigner transform of the atomic density matrix. Under some 
conditions, it is possible to eliminate, from the master equation describing the atomic 
dynamics, al1 the internal atomic variables and to get a closed equation for the Wigner 
phase-space distribution function. This equation is of a Fokker-Planck type, containing 
terms which describe not only the mean force, but also the diffusion of atomic 
momentum. It can be applied to various types of situations, such as slow atoms in 
any laser light (Cook 1980b), fast atoms in a fluctuating or weak field (Kazantsev 1978, 
Javanainen and Stenholm 1980, Cook 1980b), or fast atoms in a running or standing 
wave (Baklanov and Dubetskii 1976, Minogin 1980, 198 1 a, b, Letokhov and Minogin 
1981, Kazantsev et al 1981a, b, Stenholm 1983, 1984b, Tanguy et al 1984, Minogin 
and Rozhdestvensky 1984). 

This second approach seems probably more rigorous than the first one (i.e. semi- 
classical treatment) but it has an important disadvantage which lies in the complexity 
of the calculations which are involved. As a consequence, for most of its applications, 
calculations have been restricted to the case of two-level atoms. Furthermore, it is 
only at the end of the calculation, working on the explicit expressions of the coefficients 
of the Fokker-Planck equation, that one can relate this treatment to the semiclassical 
one. 

The motivation of this paper is to try to fil1 the gap between these two approaches. 
We would like to present a new derivation of the Fokker-Planck equation leading, for 
the coefficients of this equation, to expressions directly given in terms of one- or 
two-time averages of the Heisenberg radiative force of the semiclassical approach. 
Such a derivation, which, in addition, is not limited to two-level atoms (it applies to 
any J, to Je transition), has therefore a more transparent structure. We thus prove, in . 
a general way, that the momentum diffusion coefficient appearing in the Fokker,Planck 
equation exactly coincides with the one deduced in the semiclassical theory from the 
autocorrelation function of the radiative force. Furthermore, we establish some interest- 
ing new results. For example, we get for the friction coefficient of the Fokker-Planck 
equation, which is related to the linear term in the expansion of the radiative force in 
powers of the atomic velocity, an explicit expression in terms of two time averages of 
the radiative force, and we interpret this result as a linear response of the atomic dipole 
to the perturbation associated with the motion of the atom in the laser wave. 

The paper is organised as follows. In $2, we present Our notations and we briefly 
recall the definition and the equation of evolution of the Wigner transform of the 
atomic density matrix. In § 3, we first show how to expand this equation of evolution 
for slow atoms. We then indicate the general principle of the elimination of fast 
internal atomic variables in terms of the slow one (Wigner function). We then apply, 
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in Q 4, the previous results to the calculation of the atomic density matrix in the Wigner 
representation, and we physically interpret its expression.. Finally, in Q 5, we derive 
the Fokker-Planck equation for the Wigner function, we establish the connection 
between this equation and the 'semiclassical' theory, and we discuss the new results 
which appear in Our denvation. 

2. Evolution of the atomic density matrix in the Wigner representation 

2.1. Notations and assumptions 

The Hamiltonian of the system 'atom+field' is the sum of four parts: 

HA is the atomic Hamiltonian, HF the quantised field Hamiltonian. The laser field is 
supposed to be in a coherent state, so that we can treat it as a c-number field, and then 
split the atom-field coupling into two parts (Mollow 1975), the first one (VA-,) 
describing the atom-laser coupling, and the second one ( VA_,) the atom-quantised-field 
coupling, the quantised field being taken in its ground state. 

The atomic Hamiltonian is the sum of the kinetic energy of the atom and of its 
intemal energy: 

where we use the general notation: 

(a),  16) being intemal atomic States. In (2.2), the summations bear respectively on the 
(2Je+ 1) and (2Jg+ 1) Zeeman sublevels of the excited and ground energy levels, w, 
being the atomic frequency. 

The quantised electromagnetic field is expanded on the complete set of plane wave 
modes with wavevector k, frequency w = clkl and polarisation E.  The Hamiltonian HF 
of the quantised field is thus: 

where a,, and a;, are the destruction and creation operators of a photon in the mode 
S E-  

The atom-quantised-field coupling VA-, can be written in the electric-dipole 
r, 

approximation as: 

where D is the atomic dipole operator and E(R)  the quantised field taken for the 
atomic position operator R: 

L' is the quantisation volume. 
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The atom-laser coupling is also taken in the electric dipole approximation: 

VA-L(R) = -D .&laSer(R, t) (2.7) * 

where &,,,,(R, t) is obtained by replacing, in the classical function &laser(r, t) describing 
the laser field, r by the atomic position operator R. We assume that &,,,,, is perfectly 
monochromatic and we split it into its positive and negative frequency part: 

blaS,,(r, t) = &(+'(r) exp(-iwLt) + &(-'(r) exp(iwLt). (2.8) 

As usual, al1 the calculations will be done using the rotating-wave approximation, 
which consists in keeping only the resonant terms in the atom-laser coupling (2.7). 
To this end, we introduce the raising D+ and lowering D- parts of the atomic dipole 
and we denote the reduced matrix element of the dipole between the ground and 
excited level by d. Putting 

so that (S+, S- dimensionless): 

the atom-laser coupling can be written, in the rotating-wave approximation: 

VA-, = -d[S+ &(+'(R) exp(-ioLt) + S- 8'-'(R) exp(iwLt)]. (2.1 1) 

2.2. Evolution of the reduced atomic density matrix 

The atomic system is coupled by VA-, (2.5) to al1 the modes of the electromagnetic 
field, this coupling being the cause of spontaneous emission. The first step of Our 
calculation is then to take into account this coupling and to derive a master equation 
for the reduced atomic density matrix p, = Tr,(p), describing the effect of the atom- 
quantised-field interaction. The approximations used in this derivation are based on 
the smallness of the correlation time T, of the quantised electromagnetic field. It is 
then possible to consider only one interaction process between the atom and the field 
during the time T,, and also to neglect the free flight of the atom during 7,. We will 
not derive here explicitly the master equation for p,, since it is now a well known 
procedure (Cohen-Tannoudji 1977). We just indicate the final result for the contribu- 
tion (dpddt),,, of the 'atom-vacuum quantised field' coupling, to the evolution of 
the reduced atomic matrix p,: 

In this expression K is a unit vector and k is defined by: 

l? is the natural linewidth of the excited level: 



Atomic motion in laser light 1665 

The first line of equation (2.12) describes the de-excitation of the excited Zeeman 
sublevels. For example, using the normalisation for S+ and S- (P, projector on excited 
level) : 

one gets the following evolution for the population of level le): 

(i (el pAle)) vaC = -r(el pAle). 

This first line of (2.12) also describes the damping of 'Zeeman coherences' in the . 
excited level and of 'optical coherences'. 

The second line of (2.12) describes the 'feeding' by spontaneous emission of the 
ground-state Zeeman sublevels. Note the presence of exp(ik. R) and exp(-ik- R), so . that a rate equation as simple as (2.16) cannot be obtained with this term. As we will 
see in O 2.4, these terms exp(*ik. R) describe the recoil of the atom in the spontaneous 
emission process: the population of the ground state, corresponding to a given momen- 
tum p, can be fed by spontaneous emission of atoms in the excited state with a 
momentum p + hk, where hk is the spontaneous photon momentum. 

2.3. Transformation to the rotating reference frame 

In order to eliminate al1 time dependences in the coefficients of the equation of evolution 
of the atomic density matrix, we now put 

(el PAlg) =(el pAlg> e x ~ ( i w ~ t )  

(81 PAle) = (gl  ale) e x ~ ( - i w ~ t )  
(2.17) 

(el PAlel)=(el  ale? 
(81 PAlgl> = (gl PAI~'). 

The evolution of pA is given by 

where fiA and PA-, are the time-independent operators 

2-4. Wigner v t a t i o n  of the atomic density matrix 

As explained in the introduction, the Wigner representation is very well adapted to 
the study of atomic motion in a light wave. In this representation, the density operator 
pA(t) is represented by the [(2Jg+ l)+(2Je+ l)lZ matrix W(r, p, t) (Wigner 1932, 
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Takabayasi 1954, De Groot and Suttorp 1972): 

We also define the Wigner function f(r,  p, t) which is the trace of W: 

We can now write the equation of evolution for W(r,p, t): starting from (2.18), 
we obtain after a straightforward calculation . 

d Z ~  - Z (S- E*) W(r, p + hk, t)(S+ . E)  
f r 1 8 n / 3 .  

where we have introduced the Fourier transform V(k) of the operator YA-,(r): 

The first two terms in (2.22) come from HA, via respectively the kinetic energy and 
the intemal energy. The second line describes the atom-laser coupling and the third 
and fourth lines come from the atom-vacuum coupling. Note in the fourth line the 
presence of W(r, p + hk, t) and not W( r, p, t), which, as we already mentioned (8 2.2), 
is a signature of the recoil of the atom in spontaneous emission. 

2.5. Elimination of free jligh t 

The last step of this section is to eliminate, in equation (2.22), the free flight term 
-(p/m) d Wlar. Such an elimination will indeed simplify the calculations of the next 
sections. This will be achieved simply by introducing the following change of function: 

where to is an arbitrary reference time. The equation of evolution of * can now be 
obtained in a straightforward way; we first write again (2.22) for ( r  + (p/m)(t  - t,), p, t) 
instead of (r, p, t): $ 

P 
(i) ($ W( r, p, t )) becomes ($ W (r  +- (t  - t,), p, t 

r m r + ( ~ / m ) ( l - l o )  
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and we have 

(ii) --. - P a a W(r,p,t)becomes--.- @(r,p,t)  
m a r  m a r  

(iii) ~ ( r , ~ + f f i k )  becomes W ( t -  to),p+$fik, t) 

We finally get for the equation of evolution of @: 

This equation, as (2.18) or (2.22), is an exact exprejsion. The free flight term has 
been eliminated so that the equation of evolution of W does not contain any spatial 
derivative. The countebart of this elimination is that the exponential exp(ik. r) in 
the atom-laser coupling term is now exp{ik [ r  + (p/m)(t - t,)]} (Doppler effect) and 

* also that the equation is no longer local in r since it involves r and r * (fik/m)(t - t,). 

Remark One can note that the transformation (2.24), from W to is the equivalent 
of the following unitary transformation on the density operator. 

which corresponds to an interaction representation with respect to the atomic kinetic 
energy. 
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3. Principle of the adiabatic elimination of fast internal atomic variables 

Equation (2.26), obtained at the end of the previous section, describes al1 the dynamics 
for an atom in a monochromatic light wave. Unfortunately, this equation involves a 
great number of coupled matrix elements (4(Je + J, + l)'), each of these being a function 
of (r, p, t), and its general solution is impossible to obtain, even for the simplest case 
of a two-level atom (Je = J, =O). The purpose of this section is then to show that under 
certain conditions concerning the atomic momentum distribution, it is possible to 
extract from (2.26) a closed equation for the trace f of * More precisely, we want 
to express the time derivative af(r, p, t)/dt in terms of f(r,  p, t) and its r and p 
derivatives. 

3.1. Validity conditions and principle of the procedure 1 

In al1 this paper, we will first limit ourselves to situations where the momentum width 
Ap of @ is large compared with the photon momentum hk: 

This means that a single-photon absorption or emission process changes only very 
slightly the atomic momentum distribution. (For sodium atoms, this corresponds to 
a velocity spread large compared with 3 cm SC'). Note that such an assumption 
concerning the smallness of the elementary steps of a given process is very often the 
starting point of a Fokker-Planck treatment of this process (see e.g. Van Kampen 
1981). Secondly, we will only consider in this paper slow atoms such as those found 
in laser cooling experiments. More precisely, we assume that these atoms travel over 
a small distance (compared with the optical wavelength A) during the internal relaxation 
time ï-': 

where o is a typical atomic velocity (root mean square velocity). For sodium atoms, 
this gives o« 6 m s-'. This assumption has important consequences concerning the 
form of the solution of equation (2.26). Since the displacement of the atom during 
the internal relaxation time is very small, the internal variables are at every time 'nearly' 
in their steady state, following quasi-adiabatically the external motion. In other terms, 
provided condition (3.2) is fulfilled, internal atomic variables appear as fast components 
of W, while f=Tr(@),  the variations of which describe the modification of motion 
due to the laser light, is the only slow component of 6? 

Remarks 

(i) Conditions (3.1) and (3.2), which put a lower and an upper bound on the 
atomic velocity are compatible only if: 

This condition, which is supposed to be fulfilled in the following, means that the 
recoil energy has to be very small compared with the natural width or, in other words, 
that the atom is still in resonance with the laser light after a single-photon absorption 
or emission. 
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(ii) Since there are two expansion parameters, E I  and E,, it is important to know 
their respective orders of magnitude, for a given situation, in order to expand at the 
correct order the initial equation (2.26). We are mostly interested here in the radiative 
cooling limit where one has (see e.g. Wineland and Itano 1979): 

so that 

In such a case, E ,  and E, are small parameters with the same order of magnitude, 
and equation (2.26) has then to be expanded to the same order in E ,  and EZ. 

(iii) Because of the Heisenberg inequality 

condition (3.2) actually gives a lower bound for the spatial width Ar of the atomic 
distribution function: 

Note that, because of (3.3), this lower bound is much smaller than the optical 
wavelength. 

We can now outline the procedure which will be followed in this paper: we are 
looking for the time derivative aflat, which we will calculate for simplicity at time 
t = to (to can actually take any value so that this choice t = to does not introduce any 
restriction). In order to get this time derivative at time to, we will need the evolution 
of interna1 variables of 6' on a time interval prior to to and of the order of the relaxation 
time ï-' of these variables. We will then expand equation (2.26) on a time interval: 

It - to isa  few ï-'. (3.8) 

This expansion gives for the variable p, using (3.1): 

R2k.k a2 2- +; 2 api ap, 
W(r,p, t )+  .... 

For the variable r, using (3.7) and (3.8), we get 

We can also expand the exponential 

We thus obtain in this way an expansion of a6'(r,p, t)/at in terms of its r and p 
derivatives at the same point, same momentum and same time. In the next section 
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( 5  3.2), we study the zeroth 
trace f does not evolve at 
adiabatic elimination ($8 3. 
of the slow one 

order of this expansion and we show in particular that the 
the lowest order. This will be the starting point of the 

.3-3.5) of the rapid internal variables of 6' to the benefit 

3.2. Zeroth-order expansion: optical Bloch equations 

To zeroth order in E ,  and E ~ ,  equation (2.26) can be written: 

where ~ B l o c h  is the following operator acting on 6': 

zBloch is the so-called Bloch operator (Allen and Eberly 1975), giving the evolution 
of the reduced atomic density matrix p, for an atom 'at rest in r' (the variable p 
remains spectator): 

The first line of (3.13) describes the atomic free evolution and the atom-laser coupling, 
the second and third lines describe the relaxation due to spontaneous emission. An 
important quantity associated with the Bloch operator (3.13) is the steady-state density 
mat'rix, w,(r), satisfying: 

 BIO OC^( r, ' us( r, = (3.15~) 

Tr u,(r) = 1. (3.156) 

Note that the characteristic time for reaching this steady state is T-' (relaxation 
time of internal variablest). 

Since 2Bloch is time independent, equation (3.12) can be formally integrated, 
between two times t, and t2(t2z t,): 

As soon as t2- tl is larger than r-', (3.16) can be simplified since 6'(r,p, t2) is 
then proportional to the steady-state matrix w,(r). The propo@onality coefficient, 
equal to Tr(>il(r, p, t,)) according to (3.156), is also equal to Tr( W(r, p, t,)) since the 
trace of 6' remains unchanged during the time evolution (3.12), as a coniequence of 

d 
- (Tr 6') = Tr(~B,och(r )  6') = O 
d t  

t We elirninate here the rare cases where there are several steady States, or where the single steady state is 
reached only after a time long cornpared with T-', due to a very weak laser excitation implying long purnping 
times. 
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which can be easily shown from (3.13) (conservation of the total population at 
point r). Equation (3.16) can then be written in this case 

tz- t , ~ ï - ' +  *(r,p, tz)= f(r,p, t,)u,(r). (3.18) 

3.3. The slow variable f 
Since the trace f of * does not evolve at zeroth order (cf (3.17)), d j l d t  is at least of 
order one in E, and EZ, contrary to the other components of % In other words, f is 
a slowly varying function compared with the internal atomic variables. Starting from 
a forma1 expansion of (2.26) up to order two in E, and E,: 

we can write for the evolution off: 

( 9 ,  and g0, represent respectively the first- and second-order contributions). 
The next step is now to calculate formally *(r, p, t) up to order one, and to express 

it in terms of f and its r,p derivatives (8 3.4). Using (3.20), we will then get the 
requested closed equation giving the evolution of f up to order two (P 3.5). Such a 
procedure is called an adiabatic elimination of fast internal variables to the benefit of 
the slow variable f (seé e.g. Gardiner 1983, Stenholm 1984a, b). 

3.4. Calculation of the density matrix 

We are looking here for a density operator @ having the following form: 

In this expression is the part of * which follows adiabatically the external atomic 
motion, and the deviation of * from its adiabatic part, which we hope to be small, 
and which we want to calculate up to order one. 

We first note, using (2.21) and (3.15b), that 

Tr(X(r, P, t)) = 0. (3.22) 

We now insert (3.21) in the equation of evolution of 6' (3.19); using (3.15a) and 
(3.20), we obtain at order one: 

The perturbative resolution of (3.23) is now straightforward; at zeroth order, one gets: 

or 

X(r, P, t) = exp[(io,,och(r)(t- ti)IX(r, P, ti) (3.25) 

for any time ti prior to t. Provided the atom-laser coupling has been on for a period 
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larger than T-', one can choose ti < t -T-' so that, using (3.19) and (3.22): 

,f( r, p, t)  = O at order zero. (3.26) 

Putting (3.26) in (3.23), we obtain at order one: 

which can be integrated: 

Since the quantity inside the bracket has a zero trace, the only times which contribute 
to the integral verify t - t ' S  ï so that one can replace the lower bound ti of the integral 
by -03. 

Remark. The previous calculations could be also presented in terms of projection 
operators (see e.g. Aganval1974, Stenholm 1984a, b). Let P (  r) and Q( r )  be the operators 
in Liouville space defined by their action on any vector 6' of this space: 

One easily checks that P and Q project respectively on slow and fast subspaces of 
equation (3.19). Using this general formulation, we get for ,f: 

X(~ ,P ,  t ) = ~ ( r ) @ ( r , ~ ,  t) (3.30) 

and 9Bloch(r) can be shown to obey the following equalities 

P(  r)   BIOC OC^( r )  = %,OC,( r)  ' P(  r)  = 0 (3.3 1 a )  

%loch( r)  = Q( r)%loch( r)Q( r).  (3.3 1 b) 

The expression (3.28) for ,f(r, p, t)  can then be written in the following way: 

3.5. Evolution of the Wigner function 

We now come to the last step of this section, i.e. we insert the expression of obtained 
in (3.21) and (3.28), in the equation of evolution (3.20) of S. This equation (3.20) is 
'a priori' valid for any time t close to to. Actually, we write it for t = to since this 
choice will simplify notably the calculations of $0  4 and 5; we then get: 
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Note that we have replaced in the two time integrals f(r,  p, t') by f(r,  p, t,). This is 
possible since only times t' close to to contnbute to the integral, and for such times, 

* the difference f(r ,  p, t') - f (r, p, t,) is of order one in E,  and EZ and would then give a 
contribution to af/at(,=, of order three at least. To summanse, we have derived in 
this section two main results. First, we have obtained an expression of the atomic 

* density matrix (3.21)-(3.28). In § 4, we will discuss the physical content of this 
expression. Secondly, we have obtained a closed equation of evolution for the Wigner 
function (3.33). In § 5, we will show, using the expressions of 2, and 2z extracted 
from (2.26), that this equation is of a Fokker-Planck type and we will calculate its 
coefficients. 

Note finally that equation (3.33) deals with the function f defined in (2.24b) and 
not with the real Wigner function f: However, since we are now considering a time t 
equal to the reference time t,, we have from (2.24b): 

4. Perturbative calculation of the atomic density operator 

In this section, we first determine, using (2.26), the operator 2 , ( r ,p ,  t)(§ 4.1). We then 
use this expression to calculate, using (3.21) and (3.28), the atomic density operator 
(§ 4.2). Finally, we interpret physically our results ( O  4.3). 

4.1. Rate of variation at order one 

The expansion of (2.26), up to order one in E ,  and E,, can be wntten, using (3.9), 
(3.10) and (3.11): 

with 

a t-t, a 

We have used in (4.2) the notation: 

{A, B}, = AB + BA 
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and we have put 

We will cal1 F(r) the radiative force operator at point r, since it is the quantum 
equivalent of a classical force, usually defined as the opposite of the potential gradientt. 

4.2. Calculation of the atomic density operator 

We can now insert the expression of 2, in (3.28), which gives ,f, and then get @ up 
to order one. Since there are actually three terms in 2 , ,  one commutator of @ with 
p .  F(r )  and two anticommutators between a@/ap, a@/ar and F, there are three 
corresponding contributions from ,f to 6'; taking (3.28) for t = to and putting T = t - t' 
in the integral, we immediately getS 

@(r,p, to) =f(',P, to)as(r,p, to)+X(r, P, to) 
with 

The three terms of (4.56) respectively come from the three contributions of 2, to ,f. 
We have put in (4.56): 

4 is the average, in the stationary state, of the radiative force. It is equal to the 
stationary force calculated in the semiclassical approach (cf introduction). 

4.3. Physical interpretation 

In addition to the adiabatic term fus, there are, via X, three contributions to @ that 
we want now to discuss. 

Consider the first term of (4.56): 

t Note that, because of the isotropy of the quantised field in the vacuum state, the relaxation t ems  in (2.26) 
do not contribute to <, . 
S. The r derivative of W actually gives rise to two t ems  (aj/ar)uS and jdu,/dr. However the characteristic 
sca- of variation for us is larger than A so that IduJdrl is of the order or smaller than ka,. The contribution 
o f f  d q d r  can then be shown to be at least of order two, and is therefore neglected in (4.56). The other 
term (df/dr)u, cannot be neglected since spatial distributions narrower than Acan be considered (the only 
restriction on the spatial spread is (3.7)). 
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Adding this term to the adiabatic one fus, we can wnte the result as fu  with: 

Such a density matnx u has actually a clear physical meaning. Note first that the 
integral term in (4.7) is just the linear atomic response at time to, to the time-dependent 
perturbation (p-@mh)(t - to). u is then the (first-order) solution at time to, of the 
equation: 

F>( 

Now, coming back to the definition of F(r) ,  we get: 

so that u is actually the solution of: 

The matrix u then appears to be the atomic density operator including the first-order 
correction due to the atomic motion. It contains, in particular, the modification of the 
internal state due to the Doppler effect in a plane wave. We will then cal1 the first 
line of (4.5 6) the 'Doppler term'. 

Consider now the second and third contributions in (4.56): 

These two terms have a structure which is different from the 'Doppler term'. They 
are indeed not proportional to but to its denvatives with respect to r and p. For 
this reason, they cannot be taken into account by simply replacing the stationary state 
us,, by another one, u, as we have done for the Doppler term. Actually, these terms 
descnbe a correlation between internal and external vanables. More precisely, the 
position and momentum atomic distributions ar6 split into several parts, each of these 
corresponding to a given atomic internal state. This can easily be seen on the simple 
example of a two-level atom moving in a strong resonant standing wave (no gradient 
of phase, zero detuning and Rabi frequency larger than T). We introduce the dressed 
levels: 

where Ig) and le) are the ground and excited levels. These dressed States are eigenstates 
of the dressed-atom Hamiltonian ('atom + laser' Hamiltonian in the 'rotating' frame) 
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with energies respectively equal to ihw , and - f hw ' ( ~ e ~ n a u d  and Cohen-Tannoudji 
1982, Reynaud 1983). In this dressed set, us and F have the following expressions, 
at the lowest order in T/ w, : 

and * can be easily calculated: 

which can also be written: 

We then find a diagonal density matrix with equal global weights on the two dressed 
levels. However, we see also that there is a slight splitting between the position or 
momentum distributions corresponding to levels 1 and 2. For example, if the total 
position distribution is centred in ro, then the position distribution 'for level 1' is 
centred in ro-2hVw,/mr2, and 'for level 2' in ro+2hVwl/mr2. Such a splitting has 
a straightforward interpretation: an atom in level 1 (level 2) experiences a force 
F = -ihVw, (+ fhVw,, respectively); this force acts during a random time, of the order 
of T = 2/ r ,  which is the radiative lifetime of both levels 1 and 2 (Reynaud 1983). It 
follows that this force produces a momentum splitting Ap- F. T-  fhVw, / r  and a 
position splitting Ar - r n - ' ~ .  T~ - * h V ~ ~ / r n I ' ~  which are precisely those found above. 

5. Fokker-Planck equation for the atomic Wigner function 

In this last section, we derive the equation of motion for the Wigner function f This 
is done first at order one (8 5.1), and then at order two (8 5.2). We get in this way a 
Fokker-Planck equation and we show that the coefficients of this equation are related 
to correlation functions of the radiative force operator (8 5.3). Finally, we discuss the 
physical content of Our results (8 5.4). 

5.1. Rate of variation of the Wigner function ut order one: mean radiative force 

At order one, the evolution of the Wigner function S is given by (cf (3.20)): 

For t = to, the only non-vanishing part of the expression (4.2) of 60, is: 
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so that 

using the definition (4.6) of 4. Coming back to f, via equation (3.34), we finally have 
at order one: 

This equation is the same as the one describing the evolution of a classical 
phase-space distribution f(r,  p, t) for a particle with mass m, submitted to a force equal 
to the steady-state radiative force 4. 

5.2. Variation of the Wigner function at order two: Fokker-Planck equation 

In order to apply the formula (3.33), giving af/atJ,=,,, we still have to evaluate the 
quantity: 

For that, we expand at order two the equation of evolution for @ (2.26), keeping in 
my ' tha t  we only need Lf2 for t = to and, furthermore, that we take the trace of Lf2 - W; v n d  
As a consequence, the atom-laser coupling is not going to contribute to (5.9, since 
the only non-zero part of this coupling at order two and for t = to is a sum of 
commutators: 

which have a zero trace. The relaxation term on the contrary has a non-vanishing 
contribution. For t  = to, we find: 

so that (5.5) becomes: 

- with 

The coefficients E, are related to the dipole radiation diagram for an atom in the 
stationary state as. More precisely, E, is proportional to the average value of 
(hki). (h4)  where hk is the momentum of a fluorescence photon. For a two-level 
atom, E, is also proportional to the stationary population of the excited level. In the 
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general case, we have the relation (using (2.15)): 

Xi Eii is then the total population of the excited atomic level. 
We are now able to derive from (3.33) the explicit expression for af/at),,,; in this 

expression, there will be a first-order term, already calculated in P 5.1, and two types 
of second-order terms. The first type is a term involving &(t0) which we have just .. 
calculated in (5.8). The second type of second-order terms are those formed by products 
of 2 , ( t0)  and 2 , ( t ) ;  2,( to)  consists just in a p derivative of 6' (see (5.2)), while 2 , ( t ) ,  
for t # t,, involves three terms (see (4.2)): a p  derivative, an r derivative and a commutator 
of 6' with p .  F(r) .  As a consequence, there will be three terms of this second type 

7 

in a f/dt) ,, ,: a double p, p derivative ('diffusion term'), a crossed p, r derivative ('crossed 
term') and a single p derivative combined with a multiplication by p .  F ('friction 
term'). We then get the following Fokker-Planck equation, coming back to f via (3.34): 

On the first line of (5.10), we find the first-order term and the second-order term related 
to &(t,). On the second line, we find the three terms coming from the product 
2,( to)  * 2,( t ) .  Using (3.33), (4.2) and (5.2), one finds for the three coefficients D,, 7, 
and y,: 

(5.1 l a )  

5.3. Coeficients of the Fokker-Planck equation and correlation functions of the force 
operator 

Before giving a physical interpretation for equation (5.10), it is useful to relate first 
the coefficients D,, 7, and y, to the correlation functions of the Heisenberg force 
FH(r, t) introduced in the semiclassical theory. More precisely, we want to establish 
here the two equalities: 
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h t t i ng  A = 6 and B = F, in (5.12), we will then be able to simplify the three expressions 
(5.1 1). 

It is important to note that, in the left-hand side of equations (5.12), the various 
operators A, B, us are pure atomic operators, actually internal atomic operatorst for 
an atom at rest in r, whereas, on the right-hand side, AH(7) and BH(0) are Heisenberg 
operators in the total space including the variables of the quantised field. More 
precisely, the evolution of AH(7), in the right-hand side of (5.12), is Hamiltonian, 
governed by the total Hamiltonian (2.1) where R is treated as a fixed c number r (see 
e.g. Gordon and Ashkin 1980), whereas (;p,loch describes a non-Hamiltonian evolution, 
including relaxation terms, for the reduced atomic variables. 

C '  Let us first transform the left-hand side of (5.12a). Expanding A on a set of 
eigenvectors, V,, of (;p,loch (in Liouville space), with eigenvalues A,: 

A = E  a , ~ ,  
7 

Ir 

we get 

Before turning to the right-hand side of (5.12a), consider now one-time averages,, 
(AH(7)), of the Heisenberg operator AH(7) (for an arbitrary atomic state). Going back 
from the Heisenberg picture to the Schrodinger picture, and using the equation of 
motion (3.14) of the reduced atomic density matrixS, one can show that, for T >  0: 

In order to calculate the two-time average of the right-hand side of (5.12a), we can 
then use the quantum regression theorem (Lax 1968, Louise11 1973), which applies 
when the correlation time of the reservoir (in Our case, the correlation time of vacuum 
fluctuations) is very short compared with the relaxation time (in Our case, the radiative 
lifetime r- ') .  Such a theorem States that, for T > 0, the T dependence of the two-time 
average ( BH(0)AH(7)) is given by the same equation as the T dependence of the one- 
time average (AH(7)). More precisely, if   AH(^)) is given by (4.15), then: 

Using BH(0) = B, and comparing (5.14) and (5.16), one deduces the equality (5.12a). 
We could prove (5.12b) in the same way. 

Finally, we can now re-express the coefficients D,, q, and y, in the following way: 

t They can be also considered as vectors in the internal atomic Liouville space. ce,,,,, being an operator 
in this Liouville space. 
$ We need only this reduced matnx since A is an atomic operator. 
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5.4. Physical discussion 

The Fokker-Planck equation (5.10) descnbes the motion of a particle with mass m, 
submitted to a force (aflap, terms), with momentum diffusion (a2f/api ap, terms) and 
'crossed effects' (a2f/ap, arj terms). We now discuss separately these three contributions. 

5.4.1. Mean force. The total force appeanng in (5.10) can be written: 

It is the sum of the stationary force q5 and of a damping (or heating) force. We have , 
obtained in (5.19) an operatonal expression for the damping tensor y,, which, to Our 
knowledge, is a new one. We have checked that for a two-level system, (5.20) gives 
back the usual friction force calculated for example, semiclassically by an explicit 
expansion of the atomic density matrix in terms of kv/T (Gordon and Ashkin 1980). 
However let us insist on the fact that (5.19) and (5.20) are valid for any JE-Je transition. 

We can find the damping force again Gy a semiclassical argument using a linear 
response theory, as we have done for the 'Doppler term' of the density matrix in § 4.3 
(actually, the damping force and the 'Doppler term' come both from the component 
of 6P,(t): [ p .  F, Wj). In a semiclassical treatmentLthe atomic motion can be taken 
icto account by replacing the atom-laser coupling VA_,(r) by the time-dependent one 
VA-,(r + ( p l  m)(t - to)) which, at first order, can be written (cf (4.9)): 

where U is the operator: 

If we look for the total average force acting on the moving atom (MA) at time to, 
(FH(r, t,)),,, we find first the stationary force q5(r), resulting from the atom-laser 
coupling VA_,(r), and secondly a small correction, due to the perturbation U(r, p, t), 
and that we can write, using linear response theory (Martin 1968): 

Using the expression of the damping tensor y, (5.19), one then checks immediately 
that (5.23) is identical to (5.20). 

5.4.2. Digusion terms. The total diffusion coefficient of equation (5.10) is 

As it is now well known (see e.g. Stenholm 1983), we find two contributions to the 
momentum diffusion coefficient. The term +fi'kLTE,(r) is due to the fluctuations of 
the momentum carried away by fluorescence photons, while D,(r) corresponds to 
fluctuations in momentum exchanges between the atom and the laser (fluctuations of 
the number of photons absorbed in a plane running wave, fluctuations of the dipole 
force in a focused wave). 
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An important result of this paper is the expression (5.17) for the coefficient D,. 
Such an expression had already been used in a semiclassical treatment of the atomic 
motion in a light wave (Cook 1980a, Gordon and Ashkin 1980) but it has never 
appeared, to our knowledge, in a fully quantum treatment leading to a Fokker-Planck 
equation. Note that expression (5.17) is the quantum analogue of the classical diffusion 
coefficients found in Brownian motion theory: 

where p is the momentum of the Brownian particle, and .F and the fluctuating force 
? acting on it. Using: 

one gets 

which, for a stationary process, is the analogue of equation (5.17). 

5.4.3. Crossed eflects. These effects come from the crossed derivative of (5.10): 

a2f 
T i , .  api a r, 

This seems to be a new term for free atoms, but one can note that a contribution of 
this type has already been found in the study of the motion of trapped ions (Javanainen 
1981). In Our problem, the origin of this term lies in the spatial splitting of the various 
components of the interna1 atomic density operator found in § 4.3. The action of the 
radiative force operator on these components causes a rotation in phase space of the 
total Wigner function, and this rotation is described by the a2f/api ar, term. 

Note that, although we could not eliminate this term from the beginning since it 
appears at order two, as damping and diffusion, its contribution seems to be very small 
in most interesting physical situations. For example, for a two-level system moving in 
a strong running wave, 7, is found to be of the order of the recoil energy h2k2/2m.  

I If the spatial extension off is of the order or larger. than the optical wavelength A, we 
then get: 

where we have used the expression of the average force 4 in a strong running wave: 

Since 4 a f / a p  is a term of order one in E ,  and E,,  7, a2f/api arj is in this case at least of 
order three and can therefore be neglected. More generally, it appears that this term 
contributes only in situations where, after a large number of spontaneous emissions 
(which is necessary to denve the Fokker-Planck equation), the spatial extension 
remains small compared with A. Besides this very particular case, we can omit the 
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crossed term, so that we are left finally with the following Fokker-Planck equation: 

where 9, given by equation (5.20), includes the stationary radiative force and the 
damping force, and where 9,, given in (5.24), describes the diffusion due to the 
fluctuations of the radiative force and of the momentum carried away by spontaneous 
photons. 

6. Conclusion 

We have presented in this paper a full quantum treatment of atomic motion in laser 
light. Starting from the equation of motion of the reduced atomic density matrix, in 
the case of slow atoms (Doppler effect smaller than the natural width), we have 
eliminated the fast interna1 variables to the benefit of the slow external one, and we 
have derived a quantum kinetic equation for the Wigner function, which is of a 
Fokker-Planck type. 

The originality of the approach presented in this paper consists in its operatorial 
character. Rather than calculating explicitly the coefficients of the Fokker-Planck 
equation, we have tried to keep mathematical expressions containing quantities with 
a clear physical meaning, such as the Bloch operator in r, (;P,,,,,(r), or the radiative 
force operator in r, F(r) .  This allowed us to compare our results with the serniclassical 
ones, where similar quantities are introduced 'by hand'. 

We have thus shown that our momentum diffusion coefficient exactly coincides 
with the semiclassical one. We have also derived a new operatorial expression for the 
damping force responsible for radiative cooling, and we have interpreted it using a 
serniclassical linear response theory. Finally, a third terrn appears in our treatment, 
consisting in a crossed r ,p  derivative. Such a term, which is very small in most 
situations, has not been anticipated in serniclassical approaches. 

The similarity between our results and the semiclassical ones calls for a last comment. 
The serniclassical treatments are restricted to situations where the atomic wavepacket 
is very small, and the force and the diffusion coefficient are calculated at the centre 
of this wavepacket. In the quantum kinetic equation, we find a force and a diffusion 
coefficient which are functions of r and which, for each value of r, coincide with the 
semiclassical values associated with a very small wavepacket in r. It must be kept in 
mind however that the quantum kinetic equation can be applied to atomic wavepackets 
which are not restricted in size. This equation has therefore a wider range of applicabil- 
ity and allows the study of situations which could not be easily handled by semiclassical 
treatments. 
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