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ABSTRACT 

We present a model for an "atom laser", and we show that, under quite 
general conditions, such a device may lead to the accumulation of a macre 
scopic fraction of the atoms in a given mode of the surrounding atomic cavity. 
We point out the similarities between this phenomenon and the weli known 
Bose-Einstein condensation. 

Among the numerous applications of laser cooling, a most fascinating one is related 
to the manifestations of the statistical nature of the atoms, either bosonic or fermionic. 
For bosons, an actively pursued goal is the Bose-Einstein condensation; the prospects 
for this condensation in an atomic gas, first cooled with lasers, and further compressed 
by evaporative cooling, will be discussed extensively in other contributions to the 
present book [l]. Here we want to focus on a related, but different project: the "atom 
lasern. In such a device we replace the photons of the standard laser by bosonic 
atoms, the amplification of light being replaced by the stimulated emission of atoms 
in a given mode of an atomic cavity. A related situation is adressed in 121, where an 
explicit expression is derived for the gain of a matter wave amplifier. 

1. R a t e  equations for t h e  a t o m  laser 

We consider here atoms with two interna1 levels a and b. The atoms are injected in the 
atom laser in state a with rate &. They decay to state b, and they are then trapped 
by an external potential forming a 3-dimensional box with a volume V (fig. 1). A 
photon is spontaneously ernitted during the decay, with a momentum Ak. We will 
assume that the incident atoms in state a have a momentum of the order or smaller 
than lik to that the momenta of the atoms in b after the decay lie in a sphere of 
radius po = 2 hk. Since the density of states in momentum space for a box of volume 
V is V / ( ~ T A ) ~ ,  the number of levels (b,p) which can be reached after the decay of an 
incident atom is: 

V 47rp0 32x V - -- Nlev = -- - 
 TA)^ 3 3 X3 

where X = 2 ~ l k .  We restrict here to the case where V is much larger than Ag. The 
opposite situation has been explored in [3,4]. 
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Figure 1: A mode1 for an atom lasec atoms are injected with rate R, in interna1 state 
a. They decay to the intemal state b, and are then trapped inside a box of volume 
V. The laser action originates /rom the stimulated emission of atoms in states IL,$) 
when these states are dready occupied. 

We now consider the evolution of the mean occupation number nb(p') of a given 
state Jb,j). We use here rate equations as it is comrnonly done for usual (photon) 
lasers [SI. The equation of motion for nb(p') consists in three terma: 

The first t m  describes the losses of atoms out of the cavity; we assume that the loss 
rate rb(p7 c m  be written as 

This loss rate is minimum for p = O, with a quadratic increase around this value. 
Such a dependaice can be achieved for instance using a velocity selective excitation 
from b to another untrapped state c [6,7]. 

The second term in (2) describes the feeding of the state Ib,g due to the decay: 

a -, b + photon. (4) 

The number of atoms in state a is No. When al1 levels Ib,p) are empty, the total 
decay rate of state a is 70 and we assume for simpliuty that the decay rata  towards 
each of the N*, accessible levels Ib,g have the same value X / N ~ .  When level (b,g 
is occupied, both the spontaneous and the stimulated emission of a bosonic atom in 
(b,g are induded in (2), leading to the factor 1 + nb(p'). 

The last term of (2) corresponds to the reverse process 

b + photon 4 a. (5) 

i.e. to the reabeorption of emitted photons. a is the absorption cross-section of a 
photon, and Nv denotes the number of photons present in the volume V. 

The equations of evolution for the number of atoma in state a, No, and the number 
of photons Nu are given by: 

Nb C C  Nu = -7,NU + (l+-) fi, - vNvNb 

We have put Nb = &nb@'), and denotes the time of flight of a photon across 
the box of volume V (7, - C / V ~ / ~ ) ;  we assume that al1 photons escape when they 
reach the border of the atomic cavity. 

2. The  steady-state of the atom-laser 

Rom the three equations of evolution of nb(p'), No, Nu, we can now determine the 
steady-state of the atom laser. After some algebra, we get: 

where we have put f = Nb/Niev, ro = &/Nb, (feeding rate per mode) and u = 
(ocN~,)/(7,V). The determination of the steady-state requires the determination of 
f ,  which is done by summing (8) over p and by solving the resulting equation. 

In order to get a macroscopic accumulation of population in the single quantum 
state with minimal lossa Ib,p= O), a necessary condition is u < 1, so that f can a p  
proach the value for which (1 + f)7&/ra = 1 -u and Ib,P= 0) can be macroscopically 
populated. One can give a simple physical interpretation of this condition u < 1. 
Suppose that one atom is Sitting in Ib,p = 0) and that a second atom is brought 
in state a. The final possible states are either the two atoms in Ib,P = O), which 
corresponds to a gain for our 'lasern, no atom in Jb,P = O), which corresponds to a 
loss, or one atom in Ib,P= 0) and another in Jb,$ # O), which we can ignore. The 
gain probability taking into account both the spontaneous and stimulated processes 
is P+ = 2/N1,. The loss occurs when the photon emitted in the decay of the second 
atom from a to b is reabsorbed by the atom initially in Jb,P = 0); the correspond- 
ing probabiiity is P- = CV-'/~. The intuitive necessary condition for 'single mode 
lasingn P+ > P- is nothing but u > 1, within a numerical factor. 

In the remaining part of this section, we assume that c = O, so that u = O. This 
simplifying assumption is strictly speaking non physical, but we will sa later that it 
can be justified for some realistic situations. The steady-state population of (b,g is 
t hen 

1 
nr(p') = 1 + (9) 

&b(p') r O - 1 

which has a mathematical structure very dose to the standard Bose-Einstein distri- 
bution. In particular we choose here a quadratic variation of 7b(p') around p= O, as 



a* i t  is the case for the factor exp(p2/2MkBT) entering into the Bose-Einstein distribu- 
tion. It is therefore quite intuitive that under certain conditions upon the "intensive 
variables" ro,rm,a, we will find that the level IL,$ = O), for which losses are mini- 
mal, may be macroscopically occupated. The remaining of the discussion is actually 
analogous to the textbook derivation of the Bose-Einstein condensation [8]. 

The equation determining f is 

A similar set of equations has been written by Casperson for the case of a photonic 
multimode laser [9]. When going to the continuous limit (box size V1I3 large compared 
to A), (10) becomes: 

where 

From a graphical analysis, we check that the transcendental equation (11) has a 
solution onlv if 

Suppose first that this condition is valid; we determine f using (11) and we can then 
deduce the population of each level Ib,a using (8). No singularity appears for this 
set of populations, each of them going to O when the volume V is increased while the 
three "intensive variables" ro,rm,a are kept constant. We note that in this region 
the value of f solving (1 1) is always larger than the value f,, = (~,/TM)) - 1 for 
which the parameter g becomes infinite. 

Consider now a situation where the condition (13) is violated. As for the Bose con- 
densation situation, the continuous limit can only be taken alter treating separately 
the most populated state $= 0: 

The value of the parameter f solution of this equation is very close1 to fh, so that 
the number of atoms Ni in states Ib,a with P#  O can be evaluated taking f = f,,: 

'Tbia ia very iimilar b the fact that the chernical potential is very close to O when the Bose 
condensation tbreshold ia reached. 
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Figure 2: Variations, for various sizes of the box volume V, of nb(a)/~b as a function 
of m / r o ,  with a = 40r0. The density at threshold is Nb/V - 3/X3. 

The total number of atoms in the b state is given by: 

The difference between Nb and Ni gives the population of the single quantum state 
Ib,P = O) (see fig.2). As for the Bose condensation, this population is macroscopic, 
in the sense that the "condensaten density nb(6)/v tends to a finite value when the 
volume V goea to infinity, ro, m, 0 beeing kept constant. 

3. Discussion 

We have presented here an open model for an atom laser, where atoms are injected 
in an atomic cavity in state a and where they leave the cavity by being transferred 
with a rate %(fi fiom state b to an untrapped state c. One can also consider a closed 
model where atoms leaving b are "recycledn in a. The only modification in our initial 
set of equations is to replace R,, in (6) by &%(8nb@5. One obtains for such a closed 
model results similar to the present ones; in particular, one recovers the existence of 
a threshold a t  which the single quantum state Ib,g gets macroscopicaiiy populated. 

To implement such a scheme experimentally, a possible way is to  choose for a and 
b two hyperfine ground states of an alkali atom. Atoms are prepared in a from a 
magneto-optical trap, which can lead to a rate r, - 1 atom/mode/second. The decay 
from a to b occurs via the ,absorption of a photon of an additional depumping laser 
and the spontaneous emission of a Raman photon. At this stage, one has to examine 
carefuiiy the hypothesis o - O used here. Actually, if the additional laser is purely 
monochromatic, the re-absorption cross section of the spontaneous Raman photon 
is large, of the order of X2; because of stimulated Raman processes, this large aoss 
section is found even if the depumping laser is detuned far from any atornic resonance 
[IO]. We propose to use a broad-band depumping laser, with a detuning 6 from an 
atomic resonance and with a width Aw such that 7, ( Aw ( 6; in this case the 
stimulated contribution to the cross-section is reduced by a factor b /r0 Ill]. 



Let us point out sorne differences between this atorn-laser scherne and Bose- 
Einstein condensation. First, it is clear that the population distribution obtained 
in (9) is not a thermal equilibrium. We did not consider here any thermostat which 
would impose a temperature to the atomic gas. Second, we do not rely on elastic 
collisions to build up the condensate. Thie condensate appears thanks to the decay 
process (4) involving a stimulated ernission of atoms in an already occupied state. 

Finally we note that this "condensation" scheme can be extended to systerns with 
lower. dimensionality provided one can master precisely the loss rate 7b(P3. In the 
present discussion, the loss rate varies quadratically with (pl. This ensures that the 
3D integral in (11) converges when f = fdnl and it allows a rnacroswpic population 
to appear in Jb,P= O). In a 2D system, the integral in (11) would diverge when f 
goes to fd, so that the equation equivalent to (11) would have a solution for any 
set of parameters r a ,7~ ,a  and no condensation would be found. The situation is 
different for a linear dependence of the loss rate in Ipl. In this case, the integral in 
(11) will converge in f = fdn both for a 3D and a 2D systern. The condensation 
phenornenon could then be observed also in 2Dl which the practical advantage of a 
faster elimination than in 3D of the emitted photons. 
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