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Abstract.  We analyze the results of a recent experiment with bosonic rubidium
atoms harmonically confined in a quasi-two-dimensional (2D) geometry. In
this experiment a well-defined critical point was identified, which separates
the high-temperature normal state characterized by a single component
density distribution, and the low-temperature state characterized by a bimodal
density distribution and the emergence of high-contrast interference between
independent 2D clouds. We first show that this transition cannot be explained in
terms of conventional Bose—Einstein condensation of the trapped ideal Bose gas.
Using the local density approximation (LDA), we then combine the mean-field
(MF) Hartree—Fock theory with the prediction for the Berezinskii—Kosterlitz—
Thouless (BKT) transition in an infinite uniform system. If the gas is treated
as a strictly 2D system, the MF predictions for the spatial density profiles
significantly deviate from those of a recent quantum Monte Carlo (QMC)
analysis. However, when the residual thermal excitation of the strongly confined
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degree of freedom is taken into account, excellent agreement is reached between
the MF and the QMC approaches. For the interaction strength corresponding
to the experiment, we predict a strong correction to the critical atom number
with respect to the ideal gas theory (facte?). Quantitative agreement between
theory and experiment is reached concerning the critical atom number if the
predicted density profiles are used for temperature calibration.
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1. Introduction

As first noticed by Peierls]], collective physical phenomena in an environment with a
reduced number of dimensions can be dramatically changed with respect to our experience
in three dimensions (3D). The example of Bose—Einstein condensation in a uniform gas is a
good illustration of the crucial role of dimensionality. In 3D, condensation occurs at a finite
temperature, and the phase of the macroscopic wavefunction exhibits long range2prier |

2D, such long range order is destroyed by thermal fluctuations at any finite temperature, both
for an ideal and for an interacting Bose gas4].

In the presence of repulsive interactions between particles, a uniform 2D Bose gas can
nevertheless undergo a phase transition from a normal to a superfluid state at a finite critical
temperature. This transition was predicted by BerezinSkahd by Kosterlitz and Thoules6][

(BKT), and it has been observed in several macroscopic quantum systems, such as helium films
adsorbed on a substrafd.[The superfluid state exhibits quasi-long range order, such that the
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one-body correlation function decays algebraically at large distance. By contrast the decay is
exponential in the normal phase.

The recent advances in the manipulation of quantum atomic gases have made it possible
to address the properties of low-dimensional Bose gases with novel tools and diagnostic
techniques §]-[18] (for recent reviews, se€lp, 20]). A recent cold atom experiment also
addressed the BKT problem by realizing a 2D array of atomic Josephson jun@jnall
these systems bring new questions, since one is now dealing with a harmonically trapped,
instead of a uniform, fluid. In particular, due to a different density of states, even in 2D one
expects to recover the Bose—Einstein condensation phenomenon in the ideal Bose @&.case [
The total number of atoms in the excited states of the trap is bounded from above, and a
macroscopic population of the ground state appears for large enough atom numbers. However
real atomic gases do interact. It is therefore a challenging question to understand whether in the
presence of atomic interactions, a trapped Bose gas will undergo a BKT superfluid transition
like in the uniform case, or whether conventional Bose—Einstein condensation will take place,
as for an ideal system.

In recent experiments performed in our laboratoty, [18], a gas of rubidium atoms
was trapped using a combination of a magnetic trap providing harmonic confinement in the
xy-plane, and an optical lattice, ensuring that the third degree of freedpof the gas was
frozen. The analysis of the atomic density profile revealed a critical point, between a high
temperature phase with a single component density distribution, and a low temperature phase
with a clear bimodal distribution1fg]. This critical point also corresponded to the onset of
clearly visible interferences between independent gases, which were used to study the coherence
properties of the systeni]. Surprisingly, the density profile of the normal component was
observed to be close to a Gaussian all the way down (in temperature) to the critical point. This
density profile is strikingly different from the one expected for the ideal gas close to the BEC
critical temperature. Furthermore, if the width of the observed quasi-Gaussian distribution is
interpreted as an empirical measure of the temperature, this leads to a critical atom number at
a given temperature which is about five times larger than that needed for conventional Bose—
Einstein condensation in the ideal gas. These two facts showed that, in sharp contrast to the 3D
case, interactions in 2D cannot be treated as a minor correction to the ideal gas BEC picture, but
rather qualitatively change the behavior of the system.

The main goal of the present paper is to analyze this critical point. We start in s@ction
with a brief review of the properties of an ideal Bose gas in the uniform case and in the case
of harmonic confinement. In secti@ we adapt the ideal gas treatment to the experimental
geometry of L8], and provide a detailed calculation showing that the experimental results
cannot be explained by this theory. Next, in sectihrwe take interactions into account at
the mean-field (MF) level and we combine this analysis with the numerically known threshold
for the BKT transition in the uniform cas@3J]. We first present a MF treatment for a strictly
2D gas. For the parameter range explored experimentally, it leads to a critical atom number
in good agreement with the prediction of the most recent quantum Monte Carlo (QMC)
calculations 24]. However the predicted MF density profiles significantly differ from the QMC
ones in the vicinity of the critical point. In a second step, we take into account the residual
excitation of thez motion in the MF model and we obtain excellent agreement with the QMC
calculation. The predicted density distribution near the critical point has a quasi-Gaussian shape
and the ‘empirical’ temperature extracted from this distribution is in fact somewhat lower than
the real temperature. Taking this into account we obtain good quantitative agreement between
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experimental results and theoretical predictions. Finally we summarize our findings and discuss
the connection between the BEC and the BKT transition in a 2D gas. While in a uniform,
infinite system only the latter can occur at finite temperature, in a trapped gas both are possible,
and the BEC transition can be viewed as a special, non-interacting limit of the more general
BKT behavior.

2. Bose-Einstein condensation in an ideal 2D Bose gas

This section is devoted to a review of well-known results concerning the ideal Bose gas in 2D.
We first address the case of a uniform system at the thermodynamic limit, and we then consider
a gas confined in a harmonic potential.

2.1. The uniform case

In the thermodynamic limit a uniform, ideal Bose gas does not undergo Bose—Einstein
condensation when the temperatiires reduced, or the 2D spatial dengitys increased. Bose—
Einstein statistics leads to the following relation between the phase space d2rsiy.? and

the fugacityZ = exp(Bu)

D=0gi(2), (=) Z/j“ (1)
j=1

Hereir = h(2r/(mksT))¥? is the thermal wavelengtim is the atomic masg = 1/(ksT) and

wu is the chemical potential. The functigg(2) is the polylogarithm, that takes the simple form
01(Z) = —In(1— Z) for « = 1. Becausg,(Z) — +oo whenZ — 1, (1) has a solution irZ for

any value ofD. Hence no singularity appears in the distribution of the population of the single
particle levels, even when the gas is strongly degeneEate (1). This is to be contrasted with
the well-known 3D case: the relatioD®? = g3/»,(Z) ceases to have a solution for a phase
space density above the critical valie® = g /5(1) ~ 2.612, where the 3D Bose—Einstein
condensation phenomenon takes place.

2.2. The ideal 2D Bose gas in harmonic confinement

We now consider an ideal gas confined in a harmonic potevitia) = mw?r?/2. We assume

that thermal equilibrium has been reached, so that the population of each energy level is given
by Bose—Einstein statistics. Since the chemical potentialalways lower than the energiyw

of the ground state of the trap, the number of atd®ccupying the excited states of the trap
cannot exceed the critical valig'®

+oo

(id) _ j+1
Ne™ = ; exp(jBhw) —1° @)

This expression can be evaluated in the so-calkrdi-classical limit KT > hw by replacing
the discrete sum by an integral over the energy ranging from @d 22:

. ks T \?
Ng@ = (hB—w) % (D). (3)

New Journal of Physics 10 (2008) 045006 (http://www.njp.org/)


http://www.njp.org/

3) I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

with g»(1) = 72/6. This result also holds in the case of an anisotropic harmonic potential in the
xy-plane, in which case is replaced by the geometric mean= | /wxwy, wherewy, wy are the

two eigenfrequencies of the trap. The saturation of the number of atoms in the excited states is a
direct manifestation of Bose—Einstein condensation: any total atom nushaboveN % must

lead to the accumulation of at ledst— N{® in the ground state of the trap.

Equation B) is very reminiscent of the result for the harmonically trapped 3D gas, where
the saturation number B3P'® = (kg T/(hw))® gs(1) . However, an important difference arises
between the 2D and the 3D cases for the spatial density profile. In 3D the phase space density in
ris given byD®P) (1) = gs/2(Ze#V®) in the limitks T > hw. The threshold for Bose—Einstein
condensation is reached fdr= 1; at this pointN is equal to the critical numbeX*>'® and
simultaneously the phase space density at the center of thB {#ag0) equals the critical value
03/2(1). This allows for a simple connection between the BEC thresholds for a homogeneous gas
and for a trapped system in the semi-classical lkgit > hw. In 2D, such a simple connection
between global properties (critical atom numtbéf?®) and local properties (critical density
at centern(0)) does not exist. Indeed the semi-classical expression of the 2D phase space
density is

D(r) = gi(Ze PV©D). (4)

Becausay,; (1) = +oo this leads to a diverging value at the center of the trap whapproaches
1. Therefore, although the integral @f(r) over the whole space converges =1 and
allows to recover J), the semiclassical resultf cannot be used to derive a local criterion
for condensation at the center of the trap.

One can go beyond the semi-classical approximation and calculate numerically the central
phase space density as a function of the total number of atoms. We consider as an example the
trap parameters used ia§], wherewy/(27) = 9.4 Hz andwy/(27) = 125Hz. In the typical
caseksT/(hw) =50 (T >~ 80nK), the discrete summation of the Bose—Einstein occupation
factors forZ = 1 givesN, >~ 4800 (the value obtained from the semi-classical re8uis@100).

Using the expression for the energy eigenstates (Hermite functions), we also calculate the phase
space density at the origin and we fibd0) ~ 13. Let us emphasize that this value is a mere
result of the finite size of the system, and does not have any character of universality.

3. Condensation of an ideal Bose gas in a harmonic + periodic potential

In order to produce a quasi 2D gas experimentally, one needs to freeze the motion along one
direction of space, say. In practice, this is conveniently done using the potenti&l’ (z) =

V, sirf(kz) created by an optical lattice along this direction. A precise comparison between the
measured critical atom number and the prediction for an ideal gas requires to properly model
the confining potential and find its energy levels. This is the purpose of the present section.

3.1. The confining potential

The optical lattice is formed by two running laser waves of wavelengilpropagating in the
yz-plane with an angle-6/2 with respect to theg-axis. The period = 7 /k = A_/(2SIN0/2))

of the lattice along the-direction can be adjusted to any value abayvg¢2 by a proper choice

of the angle. For a blue-detuned lattice,( is smaller than the atomic resonance wavelength),
V), is positive and the atoms accumulate in the vicinity of the nodal plaee8 andz = +x /K,
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etc. The oscillation frequency at the bottom of the lattice welle(® = 2,/\pE; /h, where
E, = h?k?/(2m). In order for the quasi-2D regime to be reachea@{® must notably exceed
the typical thermal energgg T as well as the interaction energy per particle for a non-ideal gas.

For a blue detuned lattice an additional confinement inXixg@lane must be added to
the optical lattice potential. This is conveniently achieved using a magnetic trap, that creates a
harmonic potential with frequencies, andw,. The magnetic trap also provides an additional
trapping potentiamw?z?/2 along thez-direction. The oscillation frequeney, created by the
magnetic trap is usually much lower than the one created by the latff®e The main effect
of the magnetic confinement along thelirection is to localize the atoms in th€ central
lattice planes, where the effective number of planes 4 kg T /(mw?¢?). As we see below this
number is on the order of 2—4 for the range of parameters explorddjinTlhe fact that more
than just one plane is populated is an important ingredient of the experimental procedure used
in [17, 18]. It allows one to look for interferences between planes, and to access in this way the
spatial coherence of the quasi-2D gas.

In order to extract thermodynamic information from the interference between planes, one
must ensure that the various populated planes have the same temperature. This is achieved
by using finite size lattice beams in tlg-plane, so that atoms in the high energy tail of the
thermal distribution can actually travel quasi freely from one plane to the other, thus ensuring
thermalization. In the experiments describedli, [L8], the waistW, of the lattice beams along
the x-direction was chosen accordingly. The total trapping potential can then be written in the
following way

V(r) = V™M) + Vi) ®)
with

\/ (mag (r) = %m (a))Z(XZ + w§y2 + a)gzz) , (6)

vy = v, a2/ W2 sit(k(z— zp)). (7)

Note that we have included here the offggbetween the optical lattice and the bottom of the
magnetic potential; this quantity was not set to a fixed value in the experinfentsd). We
consider below two limiting situations: (Rz, = 7 /2, with two principal equivalent minima

at kz= 4 /2; (ii) kzy =0, with one principal minimum at =0 and two side minima at

kz= 4. At very low temperatures, we expect that A will lead to two equally populated planes
whereas configuration B will lead to one populated plane. For the temperature range considered
in practice, the differences between the predictions for A and B are minor, as we will see below.

3.2. Renormalization of the trapping frequengyby the optical lattice

In order to use the Bose—Einstein statistics for an ideal gas, one needs to know the position of
the single particle energy levels. For the potentit(is not possible to find an exact analytical
expression of these levels. However, if the extension of the atomic motion alorefihection
is smaller than the laser waist, an approximate expression can be readily obtained, as we
show now.

The frequencies of the magnetic trap usedli, [1L8] are wyx = 27 x 10.6 Hz andw, =
w, = 27 x 125 Hz. The optical lattice has a perisdk = 3 um (E; = h?k?/(2m) = h x 80 Hz)
and a potential height at centely/h =35kHz (17 «K). The lattice oscillation frequency
at center X =0) is thusw{® (x = 0) = 27 x 3kHz (hw{®/ks = 150 nK). When the atoms
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occupy the ground state of tizemotion, they acquire the zero-point enettgy!® (x)/2 from

the z-degree of freedom. The dependancexarf »{2°(x), due to the Gaussian term%’/ W’
in the laser intensity, causes a renormalization oftieequency:

2V WE
wf%w/izwi—m—\;\)gr. (8)

The waist of the lattice beams W, = 120um which leads tav, =27 x 9.4 Hz. A similar
effect should in principle be taken into account for the frequengyHowever the scale of
variation of the laser intensity along theaxis is the Rayleigh length, which is much larger
than the waistWW, and the effect is negligible.

This simple way of accounting for the finiteness of the wdigiis valid when the extension
of the motion alongx is small compared t&,. For T = 100 nK, the width of the thermal
distribution alongx is \/ks T/mw2 ~ 50 um, which is indeed notably smaller thai,. Taking
into account the finiteness &/, by a mere reduction of the trapping frequency alongs
therefore valid for the major part of the energy distribution.

We note however that atoms in the high energy tail of the distributtos Gkg T for our
largest temperatures) can explore the regidn- W, where the influence of the lattice beams
is strongly reduced. In this region, the atoms can move from one lattice plane to the other. As
explained above these atoms play an important role by ensuring full thermalization between
the various planes. We now turn to an accurate treatment of the critical atom number required
for Bose—Einstein condensation, taking into account these high energy levels for which the 2D
approximation is not valid.

3.3. The critical atom number in a ‘Born—Oppenheimer’ type approximation

In order to get the single particle energy eigenstates in the lattice+harmonic potential
confinement, and thus the critical atom number, one could perform a numerical diagonalization
of the 3D Hamiltonian with the potentiab). This is however a computationally involved task
and it is preferable to take advantage of the well-separated energy scales in the problem.

We first note that the trapping potenti&l) (s the sum of a term involving the variablgs
andz, and a quadratic componentynThe motion along thg-axis can then be separated from
thexzproblem, and it is easily taken into account thanks to its harmonic character. For treating
thexz problem we use a ‘Born—Oppenheimer’ type approximation. We exploit the fact that the
characteristic frequencies of tkemotion are at any point notably larger than the frequency of
the x-motion. This is of course true inside the lattice laser waist, sdﬁ@%/wx ~ 300, anditis
also true outside the laser waist as ¥direction corresponds to the weak axis of our magnetic
trap. Therefore we can proceed in two steps:

1. For any fixedx, we numerically find the eigenvalués(x), j =0, 1, .. ., of thez-motion in
the (VM9 + v (%) (x 7) potential. We determine thg;s up to the threshold & T above
which the thermal excitation of the levels is negligible. The result of this diagonalization is
shown in figurel for the configurations A and B.

2. We then treat semi-classically the motion on the various potential curves;(x).
Adding the result for the independent harmopimotion—also treated semi-classically—
we obtain the surface density(x, y) (integral of the spatial densitps(r) along the
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Figure 1. Eigenvalues of the motion in the magnetic+optical-z-potential, for
fixed values of the&x-coordinate (left: configuration A and right: configuration B).
directionz)

1 x4V (Mma
n(x’ y) — ﬁ Z gl (Ze_ﬂ(EJ(X) V¢ g(y))) (9)
j

This procedure yields a result that is identical to the semi-classical prediction in two limiting
cases:

1. The pure 2D case, that is recovered for large waists and low temperatures. In this case the
restriction to the closest-to-center lattice plane and to thezilestel is legitimate, and the
sum overj contains only one significant term corresponding4o (

2. The pure 3D harmonic case with zero lattice intensity whgre) = mw?2x?/2 +(j +1/2)

hw,. In this case the sum ovdrin (9) leads ton(x, y) A2 = go(Ze V™ *¥) /(Bhw,),
which coincides with the 3D resuR®P)(r) = gz,2(Ze#V®) when integrated along

Of course this procedure also allows to interpolate between these two limiting cases, which is
the desired outcome. The integralroih the xy-plane foru = min(E;(x) + VM9 (y)) gives the
critical atom numbeN/29(T) in the ideal gas model for this lattice geometry. It is shown in
figure2(a) for the two configurations A and B.

The critical atom numbeN {249 can be compared with the result for a single plai{&
with eigenfrequencies; andwy. The ratio gives the effective number of planés;, shown as
a function of temperature in figu&b) for the two configurations A and B. This ratio increases
with temperature, which means thif'@'9 increases faster thah? with temperature in the
temperature domain considered here. For example, in the range 50-110nK, the variation of
N2 is well represented by #, with 8 = 2.8.

Three phenomena contribute significantly to this ‘faster tighincrease of N{ad,
Firstly, in the lattice + harmonic potential geometry, the number of contributing planes increases
with temperature, even if the atomic motion in each plane remains 2D (i.e. the atom number
per plane increasing strictly a&?). Secondly, we are exploring here a region of temperature
whereks T becomes non negligible with respectha{2 (the two quantities are equal for
T = 150 nK), and the thermal excitations of thenotion in each lattice plane cannot be fully
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Figure 2. (a) Critical atom numbeN/2? in the ideal gas model for the optical
lattice + magnetic trap configuration, as a function of temperature. The points
represent the experimental results ofl8][f and the error bars combine the
systematic and statistical uncertainties on atom numbers. (b) Effective number
of planesNgr = N /N{@ as a function of temperature. In both panels the
continuous (dashed) line is for configuration A (B). The calculation is performed
using the first 100 eigenvalues of tzemotion, and the first neglected levels
E;(x) are 22 kHz (JuK) above the bottom of the trap.

neglected. Thirdly, for the largest considered temperatures, the extension of the atomic motion
along x becomes comparable to the laser waist, and the lattice strength is then significantly
reduced.

3.4. Comparison with experimental results

In [18] the critical atom number in the lattice + magnetic trap configuration was measured
for various ‘effective’ temperatures, deduced from the width of the quasi-Gaussian atomic
distribution. Each critical point N, T.¥?) was defined as the place where a bimodal
spatial distribution appeared, if the atom number was increased beyond this point at constant
temperature, or the temperature reduced at constant atom number. The critical point also
corresponded to the threshold for the appearance of interferences with a significant contrast
between adjacent planes. The experimental measurements of critical points, taken over the
effective temperature range 50-110nK, are shown as dots in fRf{aje The systematic +
statistical uncertainty of the atom number calibration is 25%. Assuming that the effective
temperatures coincide with the true ones (this point will be examined in set#pme find

NP /NGt ~ 5.3 (4+1.2).

In addition to this large discrepancy between experiment and ideal gas model for the
critical atom numbers, one also finds a strong mismatch concerning the functional shape of
the column density n(x, y) dy that was measured in absorption imaging i, [18]. While
the experimental result is quasi-Gaussian, the column density profiles calculated for an ideal
gas at the critical point are much ‘peakier’. An example is given in the appendix for a single
plane, and we checked that a similar shape remains valid for our harmonic + lattice potential.
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We, therefore, conclude that the experimental resultd gifdannot be accounted for with this
ideal gas prediction for ‘conventional’ BEC.

4. Interactions in a quasi 2D trapped Bose gas

To improve the agreement between the experimental results and the theoretical modeling we
now take repulsive atomic interactions into account. In a first stage we present a 2D MF analysis,
in which the motion along is assumed to be completely frozen whereasthmotion is treated
semi-classically. In order to model interactions in this case, we start from the 3D interaction
energy (g®?/2) [ n(r) d®, where g®P =4rh?a/m and a is the scattering length. The
z-degree of freedom is restricted to the Gaussian ground state of the confining potential, with

an extensiom, = h/(ma)§'at)), and the interaction energy is

Eing/nz(r) d’r .

We setg=h2§/m, where the dimensionless paramefge= /87 a/a, characterizes the
strength of the 2D interaction (for a more elaborate treatment of atomic interactions in a
guasi-2D geometry, se@%, 26]). For the optical lattice used irnlg], we find§=0.13. In a
second stage, we take into account the residual excitation af thetion in a ‘hybrid’ 3D

MF approximation. We calculate in a self-consistent way the quantum levels afrtiegion,
whereas the motion in they-plane is still treated semi-classically.

4.1. Criticality within MF solutions: 3D versus 2D

We start our discussion with a brief reminder of the role of (weak) interactions in a trapped 3D
Bose gasZ27]. One often uses the MF Hartree—Fock approximation, that gives in particular a
relatively accurate value for the shift of the critical temperature for Bose—Einstein condensation.
In order to calculate this shift, one assumes that above the critical temperature, the atoms
evolve in the effective potentialy;(r) =V (r) + 29®Pns(r). The phase space densityriris
thus a solution ofD®P)(r) = g;/2(Ze#Ver"), As for the ideal case this equation ceases to
have a solution when the central phase space density goes ghgile. The mere effect of
repulsive interactions within the MF approximation is to increase the number of atoms for
which this threshold is met. The increase is typicall§0% for standard trap and interaction
parametersq7].
For a trapped 2D gas this treatment based on a local criterion (phase space density at
center) cannot be used. Indeed as explained in se2tit is not possible to identify a critical
phase space density at which BEC of the 2D gas is expected. On the contrary the semiclassical
approximation leads to an infinite central density at the critical point, and it is unclear whether
one can achieve an arbitrarily large spatial density in the presence of repulsive interactions.
One could also look for a global criterion for criticality based on the total atom number.
The starting point is the solution of the MF equation

D(r) = gy (Ze #¥") (10)

with Veg(r) =V (r) +2gn(r). Wheng =0, we saw in sectior2 that the solution of 10) can
only accommodate a finite number of atoris However the situation is dramatically changed
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in the presence of repulsive interactions. Indeed for any nongeeosolution to {0) exists

for arbitrarily large atom number2§]. Consequently no critical point can be found by simply
searching for a maximal atom number compatible witB) (In the following we will therefore

turn to a different approach, starting from the known exact (i.e. non-MF) results concerning the
critical BKT point in a uniform interacting 2D Bose gas. The MF approximation will be used
in a second stage, in combination with the local density approximation (LDA), to determine the
critical atom number in the trapped system.

Note that it is also possible to pursue the search for a critical point only within the MF
approach, by looking for example whether its solution exhibits a thermodynamical or dynamical
instability above a critical atom numbe2q, 30]. This instability would be an indication that
the system tends to evolve towards a different kind of state, with a non-zero quasi-condensed
and/or superfluid component, and quasi-long range ord&r32).

4.2. The BKT transition and the LDA

In an infinite uniform 2D Bose fluid, repulsive interactions have a dramatic effect since they
can induce a transition from the normal to the superfluid state, when the temperature is lowered
below a critical value. The superfluid density jumps from 0 ta%at the transition point33].
The microscopic mechanism of the 2D superfluid transition has been elucidated by BKT. For a
temperature larger than the critical temperature, free vortices proliferate in the gas, destroying
the superfluidity. Below the transition, vortices exist only in the form of bound pairs involving
two vortices of opposite circulations, which have little influence on the superfluid properties of
the system.

In a uniform system the phase space denBitig a function of the chemical potential and
temperaturdd = F(u, T). For any givenT, the superfluid transition occurs whars equal to
a critical valueu(T). The corresponding critical value. for the phase space density depends
on the interaction strength a34—[36]

Dc=1n(¢/9), (11)

where & is a dimensionless number. A recent Monte Carlo analysis provided the result
& =380+ 3 [23] (see also37]). For§ = 0.13 this gives a critical phase space den8ity= 8.0.

We now consider a trapped gas whose size is large enough to be well described by the LDA.
The phase space densityrins given byD(r) = F(u — V(r), T) and a superfluid component
forms around the center of the trap if the central phase deixi®) is larger thanD. [38].

The edge of the superfluid region corresponds to the critical line wherd/ (r) = u.. The
phase space density along this line is equabtpindependently of the total number of atoms

in the trap. This can be checked experimentally and constitutes a validation of the LDA. The
integration of the experimental data along the line of sigbbes not lead to any complication
because the trapping potential is separa¥l@,) = Vi(x) + Vo(y). Therefore the edges of the
superfluid region along the-axis are located ia-x. such thav/;(x.) = u — . (see figured(a)),

and the column density along the line of sight passing #ax. is

1 1
ncm(xc):ﬁ / D(Xc, Y) dy=ﬁ f F(ue— Va(y), T)dy (12)

which is also independent of the total atom numblerThis is confirmed experimentally, as
shown in figure3(b) where we plon.y(X.) as a function ofN. The slight increase (10%) of
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Figure 3. Check of the LDA. (a) The column density, is measured at the
edgex = x. of the central part (in gray) of the bimodal distribution. (R)(xc)

is plotted as a function of the total atom numlbéin the harmonic trap + lattice
configuration. Within the LDA for a single planeg,(X;) should be independent

of N, which is indeed nearly the case. The small variation.gfx.) for largeN

may be due to the appearance of a nonnegligible population in side planes of the
optical lattice potential. The data have been taken for the effective temperature
T =105 nK. Each point is extracted from a single image.

Neol(Xe) for atom numbers larger than>310° may be due to the fact that the population of
additional planes becomes non-negligible for such |&ge

The possibility to use the LDA to study the BKT critical point in a harmonically
trapped quasi-2D Bose gas has been checked recently by Holzmann and Krauth using a QMC
analysis P4]. For trap parameters close to the onesid] they have shown that a superfluid
component, characterized by a reduced moment of inertia, indeed appears at the center of the
trap when the local phase space density reaches a critical value close to the pretligtion (

4.3. Density profile in the 2D MF theory

In this section, we use the MF Hartree—Fock approximatid@ o calculate the density profile

of the trapped atomic cloud. As we mentioned above, this equation admits a solution for any
value of the fugacityZ, and therefore for an arbitrarily large number of particles. Rewritl@ (

as

D(r) = —In(1—Zze 9PO/mg VD) (13)
we see that the value oD for any temperature and at any point in space depends

only on the parameteR defined by R? = (x/x7)?+ (y/yr)?, wherex; = (02mB)~%2 and
yr = (wjmp)~"2. The total atom number is given by

ke T\ [ <
N = (B_) f B(RIRAR, (14)
ho 0
whereD(R) is the solution of the reduced equation
D(R) =—1In (1— Ze‘gf’(R)/”e‘Rz/2> . (15)
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Quite remarkably this result foD(R) neither depends on the trap parameters, nor on the
temperature. The only relevant parameters are the fugacignd the reduced interaction
strength@. The scaling of the atom numbét with the temperature and the trap frequency
in (14) is therefore very simple. In particular it does not depend on the trap anisatkgipy
but only on the geometric mean

For atom numbers much larger th&al{® it is interesting to note that the radial density
profile deduced from the MF equatioh3) exhibits a clear bi-modal shape, with wings given
by n(r)ax2~ ze#V® and a central core with a Thomas—Fermi profign@) ~ 1 — V (r).
However, this prediction of a bi-modal distribution using the Hartree—Fock approximation
cannot be quantitatively correct. Indeed the Hartree—Fock treatment assumes a MF gnergy 2
The factor 2 in front of this energy originates from the hypothesis that density fluctuations
are those of a Gaussian fie{d?) = 2 (n)2. Actually when the phase space density becomes
significantly larger than 1, density fluctuations are reduced and one approaches a situation
closer to a quasi-condensate in whicB) ~ (n)? [23]. Taking into account this reduction could
be done for example using the equation of state obtained from a classical field Monte Carlo
analysis in B9].

4.4. Critical atom number in the 2D MF approach

We now use the solution of the MF equatioh3) to evaluate the critical atom number
N{™ that is needed to reach the threshold)(for the BKT transition at the center of the
trap D(0) =In(¢/§). For a given interaction strengtf) we vary the fugacityZ and solve
numerically (.3) at any point in space. Examples of spatial density profiles at the critical point
are given in the appendix, both before and after time-of-flight. The integration of the density
profile over the wholey-plane gives the total atom numbir From (L4) and (5), it is clear

that the scaling oN{™ with the frequenciesy y and with the temperature is identical to the
one expected for an ideal trapped gas.

We have plotted in figuré(a) the variation ofD(0) as a function ofN/N{® for various
interaction strengths. For a given atom number the phase space density at the center decreases
when the strength of the interactions increases, as expected. The numerical reN{{it’fcs
plotted as a dashed line in figu4éa). We find that it is in excellent agreement—to better than
1% —with the result of 39|

(mf)
NC

3§
N — D, (16)
C

—1+
7-[3

over the whole rangg = 0—1. This analytical result was initially derived i8d] for g < 1 using
an expansion around the solution for the ideal Bose gas, but this approximation can actually be
extended to an arbitrary value gf{40]. The strongly interacting limit (§DZ/73 > 1) can be
easily understood by noticing that in this case, the atomic distribufiOhr{early coincides
with the Thomas—Fermi profilegh(r) = 1« — V (r). Using the relation between the total atom
number and the central density for this Thomas—Fermi distribuXiea 27 §(n(0)aZ )? (with
ano = (h/(Mmw))*?), one then recovers the second term of the right-hand sidkhf (

Let us emphasize that figudéa) is a mix of two approaches: (i) the MF model, that does
not lead in itself to a singularity along the dashed line of figd(a. (ii)) The BKT theory for
a uniform system, which is beyond a MF treatment and which has been adapted to the trapped
case using the LDA in order to obtain the critical number indicated by the dashed line.
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Figure 4. (a) Central phase space density predicted by the 2D MF theory, as
a function of the atom number for various interaction strength$he dotted

line represents the semi-classical prediction for the ideal gas. The dashed line
indicates where the threshold for superfluidifyil) is met at the center of the
trap. (b) Column density foN = N{™ = 36000 atoms in an isotropic trap

(wox =wy=w,§=0.13 ks T = 110w). The dashed line is the result of the 2D

MF analysis of sectiod.3. The continuous line is the 3D QMC result obtained

in [24], with w, = 83w anda = §a,/+/8x. The dots are the result of the hybrid

3D MF calculation of sectiod.5 for the same parameters. Inset: Prediction of
the hybrid 3D MF approach for the phase space density (log scale) as a function
of r? (a Gaussian distribution leads to a straight line). Continuous line: total
phase space density; dashed line: phase space density associated with the ground
stateg, of the z-motion; dash-dotted line: phase space density associated with
all other stateg;, | > 2.

We now compare the 2D MF prediction with the results of the QMC calculatio24)f [
looking first at the critical atom number and then at the density profiles.gFo0.13 the
MF prediction for the critical number16) is N{™/N{® = 1.8. This is in relatively good
agreement with the QMC calculation d4], which givesTOM® = 0.70T® or equivalently
NMO /NP = 2.0. The QMC calculation has been performed for various atom nunibefis
a 3D harmonic trap such that /o = 0.43/N and a 3D scattering length= §a,/~/8x, with
§g=0.13.

The agreement between the 2D MF and the QMC approaches is not as good for the
density profiles close to the critical point. An example is shown in figiibg, where we take
kg T = 110hw (N{® = 20 000). We choosH = N{™" = 36 000 and we plot the column density
Neoi(X) Obtained by integrating the spatial density along the directioasdz. The MF result
is shown as a dashed line, and it notably differs from the QMC result, plotted as a continuous
line. As we show below this disagreement is essentially a consequence of the residual excitation
of the z-motion kg T/(hw,) = 1.4), that is neglected in the 2D MF approach, whereas it is
implicitly taken into account in the 3D QMC calculation.
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4.5. The hybrid 3D MF approach

In this section, we extend the 2D MF treatment to take into account the residual excitation of
the z-motion. As pointed out to us by the authors @#], this is necessary for a quantitative
analysis of the experiment§], since the temperature and the chemical potential at the critical
point were not very small comparedhe{, but rather comparable to it.

We follow here a method related to the one developed in setimnanalyze the ideal
gas case. We start from a trial 3D density distributair). At any point(x, y), we treat the
z-motion quantum mechanically and solve the eigenvalue problem fartheable

—h? d?
[%E"’Veﬁ(r)} pi (X, y) = Ej(X, y) ¢j(zIX, y), (17)
where Ve (r) = m(wix? + wiy® + wiz%) /2 + 2g°”na(r) and [ |gj(z|x, y)|?dz=1. Treating
the xy-degrees of freedom semi-classically, we obtain a new spatial density

ny(r) = —k—lz 2 loi@x. y)IPIn (1— 0B, (18)
j

We then iterate this calculation until the spatial densiyr) reaches a fixed pointé[]. With

this method, we fulfill two goals. (i) We take into account the residual thermal excitation of the
levels in thez-direction. (ii) Even at zero temperature we take into account the deformation of
the z-ground state due to interactions.

This *hybrid 3D MF’ method is different from the standard MF treatment used to describe
3D Bose gases. In the latter case, all three degrees of freedom are treated semi-classically,
which is valid when the particle population is distributed smoothly over several quantum states.
This standard 3D MF would not be applicable in our case, where a significant part of the total
population accumulates in the lowest state

An example is shown in figuré(b), where we plot the column density,(x) obtained with
this hybrid MF method, taking into account the first 5 eigenstatie$he agreement between the
hybrid 3D MF prediction and the ‘exact’ QMC prediction & is excellent. This shows that
the predictions of this hybrid 3D MF approach are reliable as long as the superfluid transition
has not been reached at the center of the trap.

We show in the inset the variations of the phase space deDsity. We plot In(D) as a
function ofr?, so that a Gaussian distribution would appear as a straight line. The dashed line is
the phase-space density associated with the ground statezofnibigion ¢;, and the dash-dotted
line corresponds to the excited staigs j > 2. The continuous line is the total phase-space
density. At the center of the trap, as a consequence of Bose statistics, most of the population
(80%) accumulates in the ground state Forr > r1, the repartition of the population among
the eigenstates of tremotion follows the Boltzmann law, and50% of the atoms occupy the
excited stateg;, ] > 2. A practical consequence of this increasing influence of excited states
of the z motion with increasing is that the total phase space density profile is notably closer
to a Gaussian distribution than when only the ground state of thetion is retained in the
calculation, as is the case in the 2D MF approach.

Finally we mention that we have also developed a simpler version of this hybrid 3D
MF analysis, in which thep; levels are not calculated self-consistently, but are assumed to
coincide with the energy eigenstates in the potemtiafz2/2 (see also42]). For the domain of
parameters relevant for the experiment, the two approaches lead to very similar results.
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Figure 5. (a) Hybrid 3D MF prediction for the normalized column density

for the lattice configuration AT = 150 nK andN = 110000 atoms. For these
parameters the phase space density associated with the lowest eigenvalue of
the z motion reaches the critical valug, at the center of the most populated
planes. The dotted line is a Gaussian fit which gives the effective temperature
Teit = 0.64T =96 nK. (b) Critical atom number as a function of the effective
temperature obtained from a Gaussian fit of the MF result. The continuous
line (resp. dashed line) is for configuration A (resp. B). The points are the
experimental results ofLB], already shown in figuré@.

4.6. MF approach for the lattice configuration and comparison with experiment

In order to compare the predictions of the MF approach with the experimental results, we now
turn to the lattice geometry, corresponding to a stack of parallel planes locateg im + j ¢, |
integer. For simplicity we assume that the laser wdigis large compared to the spatial extent
of the atomic cloud, so that we can treat the gas as a superposition of independent harmonically
trapped systems. Each system is located in the vicinity of a nodal plane of the optical lattice, and
is treated as a harmonic trap with frequenci¢sw, andw{®. Note that we include here ‘by
hand’ the renormalizatiom, — )/, of the x-frequency due to the finiteness of the laser waist,
that we discussed in secti@2 The magnetic trap adds an extra confinement along-tinds
with a frequencyy, so that the chemical potential for the planés i = u — mwi(zo+ j£)?/2.
We assume that the critical point is reached when the phase space density associated with
the lowest eigenstatg, in the most populated plane reaches the critical valig Once the
corresponding fugacity is determined, we calculate the spatial distribution in each plane, sum up
the various contributions, and integrate the spatial distribution over the line ofystghibtain
the column densitygq (X).

A typical result forng is given in figure5(a) for the temperatur@ = 150 nK and for
the lattice configuration A. The total atom number % £ 1. It is well fitted by a Gaussian
distribution exg—x?/2x2) (dotted line), so that we can assign an effective temperature to this
distribution T = mw?2x3/ks. In the example of figuré(a), we findTet = 0.64T (96 nK). For
the samel and a lattice in configuration B, the effective temperature obtained with a Gaussian
fitis Te = 0.69T (103 nK) and the total atom numberls= 1.0 x 10°. We have repeated this
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procedure for temperaturdsin the range 100-200 nK and consistently found the ratig T
in the range B-0.7, with a quality of the Gaussian fit similar to what is shown in figb(a).

We have plotted in figur&(b) the calculated total number of atoms in the lattice at the
critical point, as a function of the effective temperature deduced from the Gaussian fit to the
column density. We have also plotted the experimental points8y&Jready shown in figuré.

We remind the reader that the experimental ‘effective’ temperature is also deduced from a
Gaussian fit to the measured column density. One reaches in this way good agreement between
the experimental results and the hybrid 3D MF prediction. The predicted density profiles with
the 3D MF approach therefore provide a satisfactory means for temperature calibration. They
indicate in particular that for the experimeritg], the effective temperatures are typically
30—-40% below the real ones. To improve on the comparison between theory and experiment,
a more controlled set-up will be needed with an accurate independent measurement of
temperature, as well as the possibility of addressing only a single or a fixed number of planes.

5. Summary and concluding remarks

In this paper, we have analyzed the critical point of a trapped quasi-2D Bose gas. We have
shown that the experimental results d8] are not in agreement with the ideal Bose gas theory.
The differences are found first at the qualitative level: the predicted shape for the ideal gas
distribution is ‘peaky’ around its center, which clearly differs from the quasi-Gaussian measured
profile. Also the measured critical atom numb®&gT) do not agree with the predictions for

the ideal gas. Using the ‘effective’ temperatures obtained by treating the Gaussian profiles as
Boltzmann distributions, the measurlig(T) are larger by a factor5 than the predicted ones.

We then discussed the predictions of a hybrid approach based on the LDA. It combines the
density profile calculated using a MF Hartree—Fock treatment, and the known result for the
critical phase space density for the BKT transition in an infinite, uniform 2D Bose2Gad//e
compared the predictions of this approach with the results of a recent QMC calcul2djon [
and reached the following conclusions: (i) if one is interested only in the critical atom number,
it is sufficient to use a strictly 2D MF approach. It leads to the approximate analytical result
(16), in good agreement with the QMC prediction. For the experimental parametelrd] ti¢

critical atom number iN; ~ 2N (ii) In order to calculate accurately the density profiles

for the experimental temperature ranggg between (bhw, andhw,), it is important to take

into account the residual excitation of th@legree of freedom (the same conclusion has been
reached in 42]). We have presented a hybrid 3D MF approximation which leads to density
distributions in excellent agreement with the QMC predictions close to the critical point. When
generalized to the lattice geometry used in the experiment, the predicted density profiles are
close to a Gaussian distribution, and good agreement between theory and experiment is reached
concerning the critical numbé.(T) when the predicted density profile is used for temperature
calibration.

We now briefly discuss the nature of the critical point that appears in the trapped 2D
Bose gas and compare it with ‘standard’ Bose—Einstein condensation. For a harmonically
trapped ideal gas, we recall that conventional Bose—Einstein condensation is expected in the
thermodynamic limiN — oo, @ — 0 andNw? constant. This is a consequence of the density of
states for a quadratic Hamiltonian around the zero energy. The price to pay for this condensation
in a 2D system is a diverging atomic density at the center of the trap. In contrast, when
interactions are taken into account, the MF approximation leads to the poténtiat 2gn(r)
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Figure 6. (@) Trapping potentiaV/ (r) (dashed line) and effective MF potential
Veir(r) = V (r) + 2gn(r) (continuous line), fog = 0.13 and a central phase space
density equal to the critical valuell). (b) Schematic representation of the
condensed fraction in a finite 2D Bose gas for a given interaction strength
g (continuous line). Two limits can be considered: (1) thermodynamic limit
N — oo, w — 0, Nw? constant; the condensed fraction tends to zero for any
nonzero value of, (2) ideal gas limig — 0.

that is flat at the origin (figuré(a) and B8]). The ‘benefit’ of the harmonic trapping potential

is lost and the physics of the trapped interacting gas is very similar to that of a uniform
system. In particular one expects in the thermodynamic limit the appearance of quasi-long
range order only, with no true Bose—Einstein condenge°[The transition between the ideal
and the interacting case is explicit in equatiofg)(and (L6), where the limit§ — O gives

Dc — +oo andN{M /N® — 1. In particular L6) can be used to separate a ‘BEC-dominated’
regime wherey = 3GD?/7% < 1 andN; ~ N9, and a ‘BKT-dominated’ regime, where the
contribution ofn is dominant and\. > Né““. In the latter case, the spatial distribution in the
MF approximation is a Thomas—Fermi disk with radigs- and (L6) is equivalent (within a
numerical factor) to the BKT threshold.{) for a uniform gas with density = N/(x R%:).

The rubidium gas studied irl}, 18] is at the border of the ‘BKT-dominated’ regime ¢ 1),
whereas previous experiments performed on quasi-2D gases of sodium 8tarsgsponded

ton ~ 0.1, well inside the ‘BEC-dominated’ regime.

Finally, we must take into account the finite size of the gas in our discussion. It is
known from simulations of 2D spin assemblies that for a finite size system, the average
magnetization increases rapidly around the BKT transitds). [It is at first sight surprising
that this magnetization can be used as a signature of BKT physics, since it would not exist in
an infinite system where a genuine BKT transition takes place. However, it is relevant for all
practical 2D situations: as emphasized48][one would need extremely large systems (‘bigger
than the state of Texas’) to avoid a significant magnetization even just below the transition
point. A similar phenomenon occurs for a finite size Bose gas. A few states acquire a large

6 A similar flattening of the MF potential occurs in 3D, but it has no important consequence in this case since true
BEC is possible in an infinite, uniform 3D system.
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population around the transition point, and this allows for the observation of good contrast
interferences between two independent gases. In particular the condensed ffa¢tamgest
eigenvalue of the one-body density matrix) is expected to grow rapidly at the critical point, and
this has been quantitatively confirmed by the QMC calculatiordf. [To illustrate this point

we have schematically plotted in figudéb) the expected variations df with the parameters

of the problem. For giveg and N, f, takes significant values far < T, (continuous line). If

the strength of the interactiorisis kept constant, the condensed fractiyntends to zero for

any finite temperature if the thermodynamic limit is taken (arrow 1 in figif9). Note that

the superfluid fraction should tend to a finite value in this limiting procedure. Now one can
also keepN constant and decreageto zero (arrow 2 in figuré(b)). In this case one expects

to recover the ideal gas resuf = 1 — (T/T.9)2 for any value ofN. Therefore, we are facing

here a situation where two limits do not commute:imlimg_, ¢ # limg_,olimy_, . Of course

this does not cause any problem in practice since none of these limits are reached. In this sense
the phenomenon observed in our interacting, trapped 2D Bose gas is hybrid: the transition point
is due to BKT physics (the density of states of the ideal 2D harmonic oscillator does not play

a significant role because of the flattening of the potential), but thanks to the finite size of the
system, some diagnoses of the transition such as the appearance of interferences, take benefit of
the emergence of a significant condensed fraction.
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Appendix. The time-of-flight in the 2D MF approximation

We have emphasized in this paper that the measured density profiles differ from those calculated
for an ideal gas or within the 2D MF theory. The profiles calculated in steady-state in the
trap are found to be much ‘peakier’ than the experimental ones. As the experimental profiles
were actually measured after a time-of-flighttef 22 ms ¢t = 1.3), it is important to check

that this mismatch between predicted and observed profiles remain valid when the ballistic
expansion of the atoms is taken into account. Also the atom distributions were measured
using an absorption imaging technique, with an imaging beam propagating alogepthe.
Therefore the measurement gave access to the column deggiky t), obtained by integrating

the total density along. In this appendix, we take into account the time-of-flight and the
integration along they-direction, both for an ideal and for an interacting gas within the 2D
MF approximation.
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Figure A1. Reduced column density in the trap (dashed line) and after a time-
of-flight t such thatwst = 1.3 (continuous line). (a) Ideal gas case, for an atom
number equal to the critical valu8)( (b) MF result for§ = 0.13. The fugacity

is chosen such that the threshold for superfluiditi) {s met at the center of the
trap.

The spatial distributiom(r, t) at timet can be calculated from the phase space distribution
p(r, p) atinitial time using

ne.0= [ o =pt/m.p)Fp. (A1)
In the semi-classical approximation the in-trap phase space density is given by

1 _
p(r, p) = = {exp[(p*/(2m) + Ver(1) — 1) / ks T] — 1}

where Ve = V (r) + 2gn(r) andn(r) is obtained by solving13). The result for the column
density can be written as

! (A.2)

1 (keT)? i X
nCO|(Xa t) = ; <hB_(,()) F(X7 Za ga T)a X = ;a T = th~ (AS)

The results folF are shown in figuréd1(a) for an ideal gas, and in figukel (b) for an interacting

gas in the MF approximation. In the ideal gas case, the initial column density can be calculated
analytically:

F(X,Z,0,0) =

«/]2-_71 032 (Ze—x2/z> (A.4)

and the column density after time-of-flight is deduced from the initial value by a simple
dilatation

1 X
F(X, Z = Fl —.Z . A.
( ’ 9 07 T) m (\/ma 9 09 O) ( 5)
In figure Al(a), the fugacity is such that the atom number equals the critical nurgpén the
interacting case of figurA1(b), the number of atoms is such that the criterion for superfluidity

is met at the center of the trap. In all cases, it is clear that the observed profiles are very different
from a Gaussian, in clear disagreement with the experimental observation.
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