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Abstract. We report on the realization of a sodium Bose–Einstein condensate
(BEC) in a combined red-detuned optical dipole trap formed by two beams
crossing in a horizontal plane and a third, tightly focused dimple trap (dT)
propagating vertically. We produce a BEC in three main steps: loading of the
crossed dipole trap from laser-cooled atoms, an intermediate evaporative cooling
stage that results in efficient loading of the auxiliary dT, and a final evaporative
cooling stage in the dT. Our protocol is implemented in a compact setup and
allows us to reach quantum degeneracy even with relatively modest initial atom
numbers and available laser power.
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1. Introduction

The preparation of degenerate atomic quantum gases is interesting from both a fundamental and
an applied point of view. On the one hand, the unprecedented level of control on these systems
allows one to study quantum many-body phenomena in the absence of perturbing effects
unavoidable in solid-state systems [1]. On the other hand, degenerate gases are a promising
starting point to reliably produce highly entangled states, which could pave the way for a new
generation of atom-based quantum sensors (see [2, 3] and references therein).

In view of the sensitivity of these strongly correlated states to the perturbations caused by
magnetic field fluctuations, experimental schemes in which evaporative cooling is performed
without the use of external magnetic fields are particularly interesting. These so-called ‘all-
optical evaporation’ schemes rely on far off-resonant optical dipole traps. They have been
developed by several groups to produce Bose–Einstein condensates (BECs) of various atomic
species, in particular alkali atoms (Rb [4–6], Li [7], Cs [8] and Na [9]). In such all-optical setups,
the trapping potential is almost independent of the internal state, opening the route to the study
of spinor condensates [10].

Experiments relying on all-optical setups are based on a common experimental scheme:
laser-cooled atoms are first loaded into an optical dipole trap and then evaporatively cooled
by lowering the trapping laser intensity and thus the trap depth. In this paper, we discuss how
to optimize these two steps for producing an all-optical BEC of sodium atoms, starting with
relatively modest atom numbers and laser powers.

The first issue, dealing with the transfer from the magneto-optical trap (MOT) to the optical
dipole trap, has extensively been studied (see e.g. [11]). Laser cooling forces and light-assisted
losses can be strongly modified by the presence of the dipole trap potential. The size and depth
of the trapping potential have to be adapted to the size, density and temperature of the MOT.
A convenient configuration is a laser trap consisting of two crossed Gaussian beams [12], as
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in our experiment. The loading of the trap then occurs in two steps: atoms are first captured
in both arms of the trap and then start filling the crossing region by ‘free evaporation’ once
the near-resonant cooling beams have been turned off [4]. We will describe our procedure to
optimize the atom number N in the crossing region and the temperature T at the end of the free
evaporation to obtain a high phase-space density D and a large collision rate γcoll. We recall that
D = N (h̄ω/kBT )3 and γcoll ∝ N/ω3T for a Boltzmann gas in a harmonic trap, with h̄ being
the Planck constant, kB the Boltzmann constant and ω the average trapping frequency. For a
given beam size, we find that the optimal trap depths for loading and free evaporation differ.
We suggest that trap-induced light shifts on the cooling transition is the physical mechanism
underlying this observation.

The second issue is related to the efficiency of evaporative cooling. In this respect, optical
traps differ in several aspects from magnetic traps. In magnetic traps, evaporative cooling takes
place in the so-called runaway regime, where the elastic collision rate γcoll and evaporation
efficiency stay constant or even increase with time [13]. In optical traps, this regime is not
easily reachable because the trap depth and trap confinement both increase with the trapping
laser power. In practice, decreasing the trap depth to force evaporation results in a looser
confinement, so that the collision rate can decrease even if the phase-space density increases.
Solutions involving modification of the trapping potential have been demonstrated to resolve
this issue. For example, a dynamical change in the beam size using a zoom lens allows one
to maintain constant confinement while reducing the trap depth [5], thus preserving a high
collision rate during evaporation. Runaway evaporation in an optical trap can also be obtained
by using an additional expelling potential independent of the trapping laser (gravity or ‘pulling’
laser) in order to decouple trap confinement and potential depth [14, 15]. A third solution,
based on the addition of a tighter ‘dimple’ potential [8, 16], has been realized and characterized
theoretically [17–19]. This solution, which is the one investigated in this paper, leads to a
two-step evaporation sequence: after the loading of a larger trap, atoms are first transferred
by cooling into the ‘dimple’ trap (dT) and then further cooled down in this trap. The major
advantages of this technique are its relative technical simplicity (as compared, for instance,
with a ‘zoom-lens’ method), the increase in phase-space density during the transfer and the
high efficiency of the second evaporation step due to the high confinement in the ‘dT’. Here we
describe the first application of this technique to 23Na. Starting with 3 × 105 trapped atoms, a
BEC of ∼104 23Na atoms is produced after ∼2 s evaporation time.

This paper is organized as follows. In section 2, we give an overview of our experimental
setup. In section 3, we investigate the loading of a dipole trap from a MOT of sodium atoms
and study how the compression of the trap after the atom capture improves the initial conditions
for evaporative cooling. We then present, in section 4, how evaporative cooling works in the
presence of the auxiliary dT, detailing its filling dynamics, and the last evaporative cooling
stage to reach Bose–Einstein condensation.

2. Experimental setup

2.1. Laser cooling

Our experiment starts with a sodium MOT capturing approximately 107 atoms in 10 s from a
vapor whose pressure is modulated using light-induced atomic desorption [20]. After the MOT
is formed, a far off-resonant dipole trap is switched on (see section 2.2). The detunings and
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Figure 1. (a) Sketch of the laser geometry showing the CDT propagating in
the horizontal plane and the dT propagating vertically. (b) Fluorescence image
of atoms trapped in the CDT, taken after a short time-of-flight. The thermal
equilibrium state in such a potential has a characteristic spatial structure: two
elongated ‘arms’ and a denser crossing region. (c) Evolution of the powers of the
CDT and the dT during the sequence. The first step corresponds to the loading
of the CDT from a ‘cold-MOT’ phase, followed by a compression that helps to
fill the central trapping region. The next step consists in evaporatively cooling
the CDT and results in the filling of the dT. The last step is evaporative cooling
in the dT, which leads to Bose–Einstein condensation.

powers of both the cooling (tuned to 3S1/2, F = 2 → 3P3/2, F ′
= 3 transition) and repumping

(tuned to the 3S1/2, F = 1 → 3P3/2, F ′
= 2 transition) lasers are modified in order to optimize

the trap loading. During a first ‘dark MOT’ phase [21], we lower the power of the repumping
laser in about 100 ms, from Irep = 300 to 10 µW cm−2 per beam while keeping the magnetic
gradient on. This reduces the loss rate due to light-induced collisions by limiting the population
of excited states [11]. We keep the cooling laser intensity at the same value as that for MOT
loading, Icool = 0.9 mW cm−2 per beam, which corresponds to one sixth of the saturation
intensity (Isat = 6.3 mW cm−2). During this ‘dark MOT’ phase, both the spatial density in the
dipole trap and the temperature increase. We then apply a 30 ms-long ‘cold MOT’ phase, where
the cooling beam detuning is shifted from δcool ≈ −0 to δcool ≈ −3.80 (0/2π ≈ 10 MHz is the
natural linewidth). The temperature of the atoms after this cooling sequence is around 50 µK.

2.2. Trapping laser configuration

The far off-resonant dipole trap results from the combination of three beams, two forming a
crossed dipole trap (CDT) in the horizontal x–y plane and a tightly focused one propagating
vertically along the z-axis (see figure 1(a)), which we refer to as the dT. The CDT is derived
from a 40 W fiber laser (IPG Photonics) at 1070 nm. This trap is formed by folding the beam
onto itself at an angle θ ' 45◦ in the horizontal plane. At the crossing point, both arms have a
waist wCDT ≈ 42 µm. We control the laser power using a motorized rotating waveplate (OWIS
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Table 1. Trapping frequencies and trap depths at PCDT ≈ 36 W and PdT ≈

200 mW for the CDT and dT, respectively.

Dipole trap ωx/2π (kHz) ωy/2π (kHz) ωz/2π (kHz) V0/kB (mK)

CDT 2.5 4.5 5.1 1.2
dT 3.7 3.7 0.021 0.10

GmbH), followed by a Glan–Taylor polarizer (bandwidth ∼10 Hz) and a control input on the
current in the laser pump diodes (bandwidth ∼50 kHz). The waveplate is used for the coarse
reduction of laser power by changing the amount of light transmitted by the polarizer, whereas
the current control is used at the end of the evaporation ramp (low laser powers) and for fast
servo-control of the intensity to reduce fluctuations. Combining both servo loops, we can control
the laser power from its maximal value (PCDT ≈ 36 W) down to ≈100 mW. We can switch
off the trapping potential to an extinction level greater than 90% in less than 10 µs using the
laser current input. We use motorized mirrors (Agilis, Newport Corporation) for alignment.
Special care is taken to ensure the orthogonality of the polarization of both arms, realized by the
insertion of a λ/2 waveplate that is positioned with a precision .0.5◦. A misalignment of only
1◦ results in measurable heating of the sample [20].

The auxiliary dT is produced using a 500 mW laser (Mephisto-S, InnoLight GmbH) at
1064 nm. As sketched in figure 1(a), the beam propagates vertically and crosses the CDT with
a waist of wdT ≈ 8 µm. The laser beam is transmitted through a single-mode optical fiber and
focused to a waist size wdT using a custom-made microscope objective (CVI Melles Griot,
NA& 0.3). An acousto-optic modulator placed before the fiber allows us to control the intensity
and to quickly switch off the dT beam.

To fix the notation that will be used in the following, we give here the expressions for the
dipole trap potentials. The expression for the CDT potential is given by

VCDT(x, y, z) = −
V 0

CDT

2

[
e−2(x2+z2)/w(y)2

(w(y)/wCDT)
2 +

e−2(u2+z2)/w(v)2

(w(v)/wCDT)
2

]
, (1)

with w(y) = wCDT

√
1 + y2/y2

R and with yR the Rayleigh length being yR = πw2
CDT/λ ≈ 5.2 mm.

We have also introduced the rotated coordinates: (u, v) = (xcos(θ) + ysin(θ), −xsin(θ) +
ycos(θ)). The expression for the dT potential is given by

VdT(x, y, z) = −V 0
dT e−2(x2+y2)/w2

dT, (2)

neglecting the confinement of the dT along the z-axis, always negligible compared with the
vertical confinement of the CDT. Typical trapping frequencies and potential depths are given in
table 1.

In figure 1(c) is schematically presented the temporal evolution of the powers of the two
lasers during the experimental sequence. This time evolution is optimized for loading and
evaporation, as explained in sections 3 and 4.

2.3. Imaging

We monitor the time evolution of the trapped cloud using both fluorescence imaging and
absorption imaging [22]. Fluorescence light is captured by the same high-numerical-aperture
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= V0CDT/4 = V0CDT/2 = V0CDT × 3/4

VCDT(x, y, 0)
V0CDT/2

x [µm]x [µm] x [µm]

y [µm] y [µm] y [µm]
(a) (b) (c)

Figure 2. CDT potential in the z = 0 plane, truncated at an energy ε = V 0
CDT/4

(a), ε = V 0
CDT/2 (b) and ε = V 0

CDT × 3/4 (c).

microscope used to focus the dT. The photons are collected on a low-noise charge-coupled
device camera (PIXIS, Princeton Instruments). In figure 1(b), we show a typical fluorescence
image. We typically observe the atoms after a time-of-flight of tToF = 0.1 ms during a short pulse
(tmol = 50 µs) performed with the six cooling and repumping beams.

Absorption images are recorded with a vertically propagating resonant probe beam, which
is well suited for the analysis of the central denser part of the trapped cloud but is not very
precise for the arms of the CDT. Indeed, the regions corresponding to the CDT arms display
low optical densities (< 0.1) only slightly above the noise level (∼0.04, limited by residual
fringes on the background). Atom counting in the arms of the CDT is thus more accurate using
fluorescence images.

3. Loading and free evaporation in the crossed dipole trap (CDT)

3.1. Dipole trap loading dynamics

We can distinguish two stages in the dynamics of the trap loading. At first, during the
MOT/CDT overlap period, atoms are captured mainly in the arms of the CDT without a notable
enhancement of the density in the crossing region. In the second phase that follows the extinction
of the MOT beams, which we call ‘free evaporation’, the hottest atoms leave the arms and the
remaining ones fill the crossing region through thermalization. The quantity of interest is the
number of atoms in the central region NC, which corresponds approximately to the number of
atoms with an energy ranging between −V 0

CDT and −V 0
CDT/2 (as defined in equation (1)). We

show in figure 2 the potential VCDT in the z = 0 plane, truncated at three different energy levels.
One can see that atoms having energies lower than V 0

CDT/2 explore only the central region, as
expected. This dense part is the relevant component that matters for further evaporative cooling.

Although both the trapping lasers (CDT and dT) are turned on simultaneously, the CDT
is much deeper than the dT, the latter playing a negligible role during this initial stage. In this
section, we discuss auxiliary experiments where the dT is absent.

New Journal of Physics 13 (2011) 065022 (http://www.njp.org/)

http://www.njp.org/


7

In order to understand the loading dynamics during the first stage, we give a brief overview
of the relevant mechanisms (see [11] for a detailed analysis). The loading rate of atoms in the
CDT is proportional to the probability of an atom being trapped by the dipole potential and to
the atomic flux in the CDT/MOT overlap region. The first term corresponds to the damping of
the velocity of an atom when it crosses one arm of the CDT, leading to a reduction in its total
energy below the CDT potential depth. The second term is proportional to the spatial density and
the average velocity of the atoms in the MOT and thus depends on the temperature of the atoms.
The relevant parameters for optimizing the loading rate, namely the atomic density and the
temperature, can be adjusted by the ‘dark MOT’ and ‘cold MOT’ phases (see section 2.1). The
presence of the dipole potential changes locally the cooling properties, due to the light shifts
induced by the CDT laser beams. During this phase, atom accumulation in the trap crossing
region is limited by light-assisted inelastic collisions, such as radiative escape.

In the second stage, after the MOT light is extinguished, the trapped atoms thermalize and
the sample cools down by evaporative cooling (at a fixed potential depth). Atoms concentrate
in the crossing region and the phase-space density shows a substantial increase as compared
with the MOT [4].

We have experimentally tested CDT configurations with different beam sizes wCDT (from
30 to 50 µm). A larger beam size helps to trap more atoms during the capture stage due to a
higher overlap volume. However, at a given available power, larger beams imply a weakening of
the trap stiffness, which in turn penalizes the thermalization after capture. The data presented in
this paper were taken with a beam waist of wCDT ≈ 42 µm. We obtain very similar results in the
case of wCDT ≈ 35 µm, but with different optimal powers at each stage. In the next subsection,
we will concentrate on the optimization of the laser power to find the optimal trap depth for
filling the central region.

3.2. Optimization of CDT loading

In order to characterize the filling dynamics of the crossing region, we define the filling factor
α = NC/N as the fraction of atoms in this region relative to the total number of atoms in the
dipole trap. Images such as that in figure 1(b) are processed with a multi-component fitting
routine that extracts the temperature, the density, the total atom number N and the number
of atoms NC. Details of the fitting procedure are presented in appendix A. The results of the
optimization of the CDT power are presented in figure 3, where we plot the evolution of the
atom number NC and the filling factor α with time. We fit the function α(t) = a(1 − e−t/τ ) + b
to our data.

We look first at a situation in which ‘free evaporation’ occurs at constant CDT power,
keeping the same power during the free evaporation phase as during the capture stage. We report
in figure 3 the evolution of NC and α with time for three different powers (PCDT = 7.9, 13.7 and
36 W). The values of the loading time τ and the asymptotic value α∞ = a + b of the filling
factor obtained from the fit are shown in figure 4. We find an optimal power PCDT = 13.7 W that
maximizes both the number of atoms NC and the stationary filling fraction α∞.

In a second set of experiments, the CDT is kept at constant PCDT = 13.7 W during the ‘cold
MOT’ phase, and ramped up in 50 ms to another value just after switching off the resonant lasers.
As shown in figure 4, ramping up the power to the maximum available power results in quicker
loading of the central region ('2 s) and a better filling ratio (α∞ ' 0.6), the best values being
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Optimal loading

N
C

Free evaporation time [s]Free evaporation time [s]

(a) (b)

α∞ = 0.71, τ = 2.2 s

α∞ = 0.59, τ = 5.6 s

α∞ = 0.56, τ = 9.8 s

α∞ = 0.36, τ = 4.7 s

α
=
N
C
/N

7.9 W
13.7 W
36 W
2s ramp

Figure 3. Evolution of the atom number in the center of the CDT (a) and the
loading ratio α = NC/N (b) in four different loading situations: low power
(circles), highest power (diamonds), ∼1/3 of maximum power (crosses) and
ramping up in 2 s after loading at low power (stars). The loading ratio α(t) is
fitted with the function a(1 − e−t/τ ) + b. The results of the fit τ and α∞ = a + b
are indicated in (b).

apparently limited by the available laser power. A slower, linear power ramp to PCDT = 36 W
in 2 s (also shown in figure 3) leads to a slightly better loading ratio (α∞ ' 0.7) and a slightly
lower temperature, which altogether results in a higher number of atoms (about twice as many
atoms in the center of the CDT, as compared with the loading at constant PCDT = 13.7 W). This
particular ramp provides the best starting point we could achieve for the evaporative cooling
stage.

The results of the two series of experiments show the existence of an optimal power
Popt

CDT = 13.7 W for the loading of the atoms during the period in which the MOT and CDT
are simultaneously present. We interpret this observation in the following way. The CDT laser
exerts different light shifts on the various hyperfine states in the ground (3s) and excited (3p)
manifolds. These differential light shifts can perturb the laser cooling dynamics in the CDT
region and thus degrade the capture efficiency. For instance, if we take the |g〉 = |F = 2, m F =

2〉 → |e3〉 = |F ′
= 3, m F = 3〉 transition and a π -polarized CDT laser, we find that near the trap

bottom, the laser detuning changes according to

δ33 = ωL − ω33 + α33 I, (3)

with ωL being the cooling laser frequency, ω33 the ‘bare’ transition frequency
and I = 2PCDT/πw2

CDT the intensity of the CDT laser4. For sodium, we find that
α33/2π ≈ 27 Hz cm2 W−1. For our optimal cooling beam detuning δcool = ωL − ω33 ≈ −3.80

4 For the calculation we use the data from the NIST atomic spectra database [23] and consider the 3s → 3p,
3p → 3d, 4d transitions (see also [24]).
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Figure 4. (a) Filling time τ and (b) center filling fraction α∞ for CDT in two
different situations: the solid curve shows the results of the experiments where
the CDT laser is held at any time at the same power. The dashed curve denotes
the compression experiments where the power starts at PCDT = 13.7 W in the
‘cold MOT’ phase and is ramped up in 50 ms to the final value indicated after
switching off the molasses beams. The error bars correspond to 90% confidence
bounds on the fit coefficients τ and α∞. For PCDT = 13.7 W, both curves should
intersect as the experimental sequence is the same. The observed difference
indicates systematic variations between different experimental runs, probably
due to dipole trap pointing fluctuations and total atom number variations. The
vertical dashed line corresponds to the optimal power PCDT = 13.7 W for the
‘cold MOT’ phase.

(see section 2.1), we find that the detuning on the cooling transition vanishes when I ≈

|δcool|/α33 ≈ 1.4 × 106 W cm−2. Experimentally, the optimum Popt
CDT = 13.7 W corresponds to

I opt
= 4.7 × 105 W cm−2, close to the value calculated above, and a change of detuning from

−3.80 to δ33 ≈ −2.50. We reached a very similar optimum in another set of experiments
with w′

CDT = 35 µm, where we found an optimum power P ′opt
CDT = 10 W corresponding to I ′opt

=

5.2 × 105 W cm−2 and a comparable final detuning δ33 ≈ −2.40.
One could think that tuning the cooling beam frequency further than −3.80 on the red

side of the |g〉 → |e3〉 transition could help to mitigate the effect, thus increasing the optimal
power and ultimately the number of atoms captured. However, two separate effects work against
this strategy. Firstly, this compensation is efficient only near the trap bottom and not across the
whole trapping region. Secondly, it brings the MOT beams closer to resonance with neighboring
transitions that can shift in opposite ways. For example, the |g〉 = |F = 2, m F = 2〉 → |e2〉 =

|F ′
= 2, m F = 2〉 transition has an intensity dependence δ22 = ωL − ω22 − α22 I , with ω22 being

the corresponding frequency and α22/2π ≈ 16 Hz cm2 W−1. The latter effect is limiting for 23Na,
which has a hyperfine structure splitting ω33 − ω22 much smaller than heavier alkalis (87Rb
and 133Cs).
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4. Two-stage evaporation

4.1. Evaporation in the CDT alone

As pointed out in the introduction, lowering the laser intensity to reduce the trap depth for
evaporation is inevitably accompanied by a reduction in trap stiffness (near the trap bottom,
the trap frequency ω is proportional to

√
P/w), unlike in magnetic traps, where the depth

and confinement are independent. The resulting decrease in density and collision rate can
make the cooling due to evaporation stop at low laser power, and this is precisely what is
observed in our experiment. For a harmonic trap, the classical phase-space density is given
by D = N (h̄ω/kBT )3, where ω stands for the mean trapping frequency. In a simple model
where the evaporation parameter η = V CDT

0 /kBT is assumed to be constant and where losses
are neglected, the gain in phase-space density when the trap depth is lowered from V CDT

0 to
V CDT

0 /r (r > 1 is the reduction factor) is given by [25]

D = D0r
β, β =

3

2

η2
− 7η + 11

η2 − 6η + 7
. (4)

The starting point in our experiment (about 3 × 105 atoms at T ' 100 µK) corresponds
to η ≈ 10 and a phase-space density D0 ∼ 10−4. According to equation (4), evaporating with a
reduction factor r = 200 leads to a final phase-space density of ∼0.2. In our experiment, the
laser power is ramped down during evaporation according to

VCDT(t) = V 0
CDT(1 + t/τevap)

−αevap, (5)

where the parameters τevap = 30 ms and αevap = 1.2 were optimized empirically. Even after
optimization we have not been able to achieve a final phase-space density greater than ∼10−2 in
the CDT alone5. We also observe that the collision rate after ∼1 s is lower than that after 10 s−1

and that evaporative cooling stops near this point. Such a collision rate is too low to maintain
efficient thermalization and sustain the cooling process.

4.2. Evaporation in the dimple trap

The decrease in evaporation efficiency mentioned in the previous subsection is caused by the
relation between trap depth and confinement strength inherent in optical traps. To circumvent the
decrease in evaporation efficiency mentioned in the previous subsection, one needs independent
control of the trap depth and of the confinement strength. To achieve this aim, we have added
a tight ‘dimple’ to the initial trap [8, 20, 26, 27]. We turn on the auxiliary dT together with
the main CDT, but keep it at the constant power PdT = 200 mW during the CDT ramp6. With
the ‘dimple’ addition, the atoms feel a more and more confining potential as they cool, in
stark contrast to the situation in the CDT alone. In our experiment, we take advantage of
the dissipative nature of evaporative cooling to fill such a dT. As the atoms in the CDT are
evaporatively cooled, they get progressively trapped in the stiffer potential, which results in
a substantial increase in spatial density [8, 18]. Since the temperature remains the same, this
translates into a huge boost in the phase-space density. This is markedly different from an

5 The measured phase-space density is lower than the prediction of equation (4). This should be attributed to
the crudeness of the model underlying this equation. In particular, three-body losses, which are important at the
densities present in the CDT, are not accounted for.
6 Keeping the dT power high causes no modification for the CDT loading and compression.
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Figure 5. Evaporative cooling trajectories in the combined trap (CDT and dT)
(circles) and in the CDT alone (stars). We show the time evolution of the atom
number N (a), temperature T (b), dimple filling αd (c) and phase-space density
D (d).

adiabatic trap compression which increases spatial density but leaves the phase-space density
unchanged [28]. After 1 s evaporation in the CDT, the dT power is reduced to provide the final
stage of evaporative cooling (see figure 1(c)).

The plots in figure 5 summarize the evaporation dynamics. We show the atom number
N , temperature T , dT filling αd = Nd/N , where Nd is the number of atoms present in the
dT, and phase-space density D during the ramp, compared with the evaporation without dT7.

7 The measurement of αd is made in the following way: the dT laser is switched off 2.8 ms after the CDT laser, and
we let the cloud expand during time-of-flight tToF = 0.2 ms before taking an absorption image. At this time, atoms
released from the CDT have expanded in the x–y plane more than those released from the dT, which is appropriate
for counting each component.
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From figure 5(c), we observe that almost all atoms accumulate rapidly (within a few hundred
of ms) in the dT. At this stage, the atoms are essentially trapped by the dT in the x–y plane
and by the weaker CDT in the z-direction. We therefore call this stage ‘evaporative filling’.
At the end of it, we obtain a cold sodium gas with high phase-space density and collision rate
(γcoll ≈ 2 × 103 s−1), well suited to start a second evaporative cooling stage.

The difference in trapping frequency between the cases with and without dT leads to an
increase of about 100 in phase-space density at t = 1 s. We quantify the evaporation efficiency
κevap from the starting point (N0,D0) to (N1,D1), using the definition given in [13]:

κevap = −
ln(D1/D0)

ln(N1/N0)
. (6)

Typical values in magnetic traps are κevap ∼ 1–2. In our experiment, we obtain much better
evaporation efficiencies with the use of the dT (κdT

evap ' 3.5) than without (κCDT
evap ' 1.6).8

We pursue the evaporation by reducing the dT depth, with an exponential ramp from
PdT = 200 to 2 mW in 1.5 s, with a time constant τdT = 0.6 s. This results in a phase-space
density increase and a crossing of the BEC threshold after ∼1 s ramping, with '2 × 104 atoms
at T ' 1 µK. At the end of this ramp, we obtain an almost pure BEC with '104 atoms.

Finally, we note that the dT is used here in quite a different way compared to the experiment
reported in [26, 27]. In these works, the authors studied an adiabatic process, in which the gain
in phase-space density is obtained isentropically by modifying the trap potential shape [29]. In
the present work, the entropy is reduced by evaporative cooling as the transfer between the CDT
and the dT proceeds.

5. Conclusion and prospects

We have demonstrated a method to achieve Bose–Einstein condensation of 23Na in an all-
optical experimental setup. We have shown the importance of adapting the trapping potential
to the MOT cooling dynamics for optimizing the capture in the arms of the crossed trap. In
the free evaporation step that follows, an increase in trap depth leads to a fast transfer of atoms
from the arms to the central region, providing thus a dense sample. We have also described
the implementation of a two-step evaporation stage using a tightly focused ‘dT’. ‘Evaporative
filling’ of the dT occurs at almost the same atom number and temperature as in the CDT alone.
As a result, the phase-space density increases as (ωdT/ωCDT)

3, where ωdT is the dT average
frequency and ωCDT the CDT average frequency at low power. Experimentally this corresponds
to a large gain in phase-space density, of ∼100. After a final evaporation stage in the dT, we are
able to obtain almost pure BECs containing ∼104 atoms.

The efficient ‘evaporative filling’ of the dT suggests to generalize the scheme by adding
a second, even smaller dT to shorten the time to reach Bose–Einstein condensation. Such a
scheme with imbricated evaporative cooling steps (like the layers of an ‘atomic matryoshka’)
can be taken into consideration if the aim is the production of BECs with small atom number,
confined in a microscopic potential [30–32].

8 We have found experimentally that turning on the dT at a later stage during the evaporation ramp still results in
a boost in phase-space density. However, the cooling is not as efficient, so that the final phase-space density and
the evaporation efficiency are both slightly worse.
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Appendix A. Analysis of CDT images

A figure of merit for the loading in the CDT is the number of atoms in the crossing region of the
trap, as mainly these atoms will participate in evaporative cooling. We will take the ratio between
the atoms in this region and the atoms in the arms as an indicator of the loading efficiency. We
fit the atomic density profiles with a sum of three Gaussians, two of them fitting the arms region
and the last one fitting the central region,

f2D(x, y) =

3∑
j=1

G(A j; x j , y j; σ j x , σ j y), (A.1)

with G(A, x, y, σx , σy) = Ae−1/2(x/σ x )
2
−1/2(y/σ y)

2
. Here A is the amplitude and σx and σy are the

sizes of the distribution along the directions x and y. The first two components 1, 2 model the
arms so that σ1y � σ1x and σ2y � σ2x . The third component models the denser crossing region.
The second arm propagates with an angle θ : (x2, y2) = (x1cos(θ) + y1sin(θ), −x1sin(θ) +
y1cos(θ)). Each arm is supposed to be radially symmetric; the size in the z-direction is therefore
taken as equal to the radial size in the (x, y) plane. From the sizes and the calibration of the total
fluorescence counts on the CCD with the atom number measured from an absorption image, we
infer the atom number in each of the components N1, N2 and N3.

In order to evaluate how well equation (A.1) can fit the density profile, we perform the fit
on a computed density profile of an atomic cloud at thermal equilibrium in a CDT potential
U (r) = VCDT(r) (see equation (1)), for PCDT = 13.7 W and wCDT = 42 µm. For a classical gas,
the phase-space density f (r, p) is given by

f (r, p) =
1

Z
e−[ p2/2M+U (r)]/kBT 2(− p2/2M − U (r)) (A.2)

with Z being the partition function chosen such that
∫

f (r, p)
d3rd3 p
(2π h̄)3 = 1, and 2 the Heaviside

step function. An integration of f (r, p) along the imaging direction z yields a two-dimensional
(2D) profile nsim

2D (x, y),

nsim
2D (x, y) =

∫
dz

∫
f (r, p)

d3 p
(2π h̄)3

=

∫
dz e−U (r)/kBT 0inc

(
U (r)
kBT

,
3

2

)
, (A.3)

where 0inc is the incomplete gamma function. We also calculate the density of states ρ(ε) (with
−V 0

CDT < ε < 0),

ρ(ε) =

∫
d3rd3 p
(2π h̄)3

δ
(
ε − p2/2M − U (r)

)
=

1

(2π)2

(
2m

h̄2

)3/2 ∫
dr

√
ε − U (r). (A.4)
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Figure A.1. Test of the multicomponent fitting routine used to analyze CDT
images. For (a), (b) and (c), black diamonds show the result from the fit. In
(a), the center atom number is calculated from the density of states and shown
as a solid line. For the solid lines in (b) and (c), n0 and D are taken from the
formulae at thermal equilibrium. In (d), the temperatures extracted from the size
of the arms and the size of the central component are compared with the ones
used to compute the distribution.

This can be used to determine the number of atoms NC that have an energy between −V 0
CDT and

−V 0
CDT/2,

NC = N
(
−V 0

CDT 6 ε 6−V 0
CDT/2

)
= n03

3
dB

∫ V 0
CDT/2

0
dε ρ(ε)e−ε/kBT , (A.5)

with n0 being the density in the center of the trap, and 3dB = h/
√

2πmkBT the thermal de
Broglie wavelength. We take NC as an estimate of the number of atoms in the central region.
Equations (A.4) and (A.5) are evaluated numerically using Monte-Carlo integration.
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We apply to the simulated profiles nsim
2D the same fitting routine as that used for the

experimental images. In figure A.1, we compare the fit output with the parameters used in the
simulation.

As one can see, the number of atoms in the center is found to be very close to NC.
This validates our method to estimate the loading ratio α = NC/Ntot with the result from
the fit N3/(N1 + N2 + N3). Note, however, that the procedure systematically overestimates the
temperature in the arms by ∼30%. This is due to the Gaussian shape of the trap that leads to
a radial density profile that is wider than the profile created by a harmonic trap with the same
curvature. We checked that, for a truncated harmonic trap, the fitted temperature is equal to the
temperature T obtained for the simulated profile (equation (A.3)).
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