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Abstract. We study spin fragmentation of an antiferromagnetic spin 1
condensate in the presence of a quadratic Zeeman (QZ) effect breaking spin
rotational symmetry. We describe how the QZ effect turns a fragmented spin
state, with large fluctuations of the Zeeman populations, into a regular polar
condensate, where the atoms all condense in the m = 0 state along the field
direction. We calculate the average value and variance of the population of the
Zeeman state m = 0 to illustrate clearly the crossover from a fragmented to an
unfragmented state. The typical width of this crossover is q ⇠ kBT/N , where q
is the QZ energy, T the spin temperature and N the atom number. This shows
that the spin fluctuations are a mesoscopic effect that will not survive in the
thermodynamic limit N ! 1, but are observable for a sufficiently small atom
number.
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1. Introduction

The natural behavior of bosons at low enough temperatures is to form a Bose–Einstein
condensate (BEC), i.e. a many-body state where one single-particle state becomes
macroscopically occupied [1]. There are, however, situations where bosons can condense
simultaneously in several single-particle states, forming a so-called fragmented condensate.
Several examples are known, where fragmentation occurs due to orbital (Bose gases in optical
lattices or in fast rotation) or to internal degeneracies (pseudo-spin-1/2 or spin-1 Bose gases).
These examples have been reviewed in [2, 3].

The spin-1 Bose gas, first studied by Nozières and Saint James [4], is a striking example
where fragmentation occurs due to rotational symmetry in spin space. For antiferromagnetic
interactions of the form V12 = gss1 · s2 between two atoms with spins s1 and s2 (gs > 0), the
many-body ground state is expected to be a spin singlet state [2, 5]. In such a state, the three
Zeeman sublevels are occupied, leading to three macroscopic eigenvalues of the single-particle
density matrix (instead of just one for a regular condensate). As pointed out in [2, 5, 6],
the signature of fragmentation is then the occurrence of anomalously large fluctuations of
the populations Nm in the Zeeman states m = 0, ±1 (see also [7, 8], where similar behavior
is predicted in a pseudo-spin-1/2 system). In the singlet state, for instance, the expectation
value and variance of N0 are hN0i = N/3 and 1N 2

0 ⇡ 4N 2/45, respectively (N is the total
number of particles). Such super-Poissonian fluctuations (1N 2

0 / hN0i2) deviate strongly from
the value expected for a single condensate or any ensemble without correlations where
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1N 2
0 / hN0i.3 It was pointed out by Ho and Yip [6] that such a state was probably not realized

in typical experiments, due to its fragility toward any perturbation breaking spin rotational
symmetry (see also [9–14]). In the thermodynamic limit N ! 1, an arbitrary small symmetry-
breaking perturbation is enough to favor a regular condensed state, where almost all the atoms
occupy the same (spinor) condensate wave function and 1N0 ⌧ N .

In this paper, we give a detailed analysis of the phenomenon of spin fragmentation for
spin-1 bosons. Our analysis assumes the conservation of total magnetization mz. The fact that
magnetization is an (almost) conserved quantity follows from the rotational invariance of the
microscopic spin exchange interaction, and from the isolation of atomic quantum gases from
their environment. A key consequence is that in an external magnetic field B, the linear Zeeman
effect only acts as an energy offset and does not play a role in determining the equilibrium
state. The dominant effect of an applied magnetic field is a second-order (or quadratic) Zeeman
energy, of the form q(m2 � 1) for a single atom in the Zeeman state with magnetic quantum
number m.4 The quadratic Zeeman (QZ) energy breaks the spin rotational symmetry, and favors
a condensed state with m = 0 along the field direction. In [10–13], the evolution of the ground
state with the QZ energy q was studied theoretically. Since experiments are likely to operate far
from the ground state, it is important to understand quantitatively how the system behaves at
finite temperatures. This is the main topic we address in this paper.

Our focus in this paper will be to calculate the first two moments (average value and
variance) of N0. These moments illustrate clearly the evolution of the system from fragmented
to unfragmented and thus constitute the main experimental signature of fragmentation. The
main findings are summarized in figure 1, where we plot the standard deviation of n0 = N0/N
in a q–T plane. Large fluctuations of the m = 0 state are observed for small q. We can
distinguish three different regimes. For low q ⌧ Us/N 2 and low temperatures kBT ⌧ Us/N
(Us / gs is the spin interaction energy per atom), the system is close to the ground state in a
regime we call ‘quantum spin fragmented’ [2, 5, 6, 12]. We also observe a thermal regime for
kBT � Nq, Us/N dominated by thermally populated excited states. We call this second regime
‘thermal spin fragmented’. Finally, for q large enough and temperature low enough, the bosons
condense into the single-particle state m = 0, forming a so-called ‘polar’ condensate [16, 17]. In
this limit, hN0i ⇡ N and 1N0 ⌧ N . We indicate this third regime as ‘BEC m = 0’ in figure 1.

The evolution from the fragmented, singlet condensate to an unfragmented condensate
with increasing QZ energy q is similar to a well-known example in the literature on quantum
magnetism, the Lieb–Matthis model of lattice Heisenberg antiferromagnets [18]. This model
describes collective spin fluctuations of an Heisenberg antiferromagnet on a bipartite lattice. It
constitutes a popular toy model for demonstrating the appearance of broken symmetry ground
states in condensed matter [19–24]. The ground state of such system (in principle also a spin
singlet) was found theoretically to evolve to a Néel state in the thermodynamic limit in the
presence of an arbitrarily small staggered magnetic field (whose sign alternates from one site
to the next). The underlying theory is close to the one presented here. An essential difference

3 Note that the problem we discuss here is unrelated to the anomalous fluctuations of the total condensate number
found for ideal gases in the grand canonical ensemble [1]. In this work, we assume implicitly the canonical
ensemble, and study the fluctuations of the populations of individual Zeeman states discarding quantum and thermal
depletion of the condensate.
4 This second-order shift originates from the hyperfine coupling between electronic and nuclear spins, and
corresponds to the second-order term in an expansion of the well-known Breit–Rabi formula for alkalis (see
e.g. [15]).
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Figure 1. Standard deviation1n0 =1N0/N of the population N0 of the Zeeman
state m = 0, normalized to the total atom number N . We mark three different
regimes in the q–T plane. ‘Spin fragmentation’ refers to a fragmented spin
state with large population fluctuations, where 1n0 ⇠ 1. In the quantum regime
(Nq/Us ⌧ 1/N and kBT/Us ⌧ 1/N ), this is due to quantum fluctuations: the
system is then close to the singlet ground state. In the thermal regime (kBT �
Nq, Us/N ), on the other hand, thermal fluctuations dominate over the quantum
one and over the effect of the QZ energy. Conversely, ‘BEC m = 0’ refers to the
atoms forming a regular polar condensate with almost all the atoms in m = 0, and
1n0 ⌧ 1. The plot was drawn by numerically diagonalizing the Hamiltonian (1)
and computing thermodynamic averages from the spectrum and eigenstates,
using N = 300 particles. Note the logarithmic scales on both the horizontal and
the vertical axis.

is that the present model of antiferromagnetic spin-1 BECs is expected to accurately describe
actual experimental systems [25, 26]. In the antiferromagnet case, the staggered magnetic field
is a theoretical object that cannot be produced in the laboratory for real solids. In contrast, the
QZ energy is easily controllable in spin-1 BEC experiments. Another important difference is
that experiments with ultracold quantum gases are typically conducted with relatively small
atom numbers, from N ⇠ 102 to 106, so that the conclusions that hold in the thermodynamic
limit do not necessarily apply and spin fragmentation can be observed experimentally.

The paper is organized as follows. In section 2, we present the basic model that describes
an ensemble of spin-1 bosons with antiferromagnetic interactions condensing in the same
orbital wave function irrespective of the internal state (single-mode approximation (SMA)). In
section 3, we use the basis of total spin eigenstates (exact in the absence of an applied magnetic
field, q = 0). We derive approximate solutions for the spectrum and eigenstates for q > 0 in
section 3.1, and discuss how they evolve with increasing QZ energy. By using these results, we
compute in section 4 the average value and variance of N0 at finite temperatures, and compare
the approximate solution to numerical diagonalization of the Hamiltonian. We finally present in
section 5 an alternative approach, where the fragmented condensate is described as a statistical
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mixture of mean-field (symmetry broken) states. We find excellent agreement with the exact
diagonalization of the Hamiltonian.

2. Single-mode description of spin-1 condensates

We consider a gas of ultracold spin-1 bosons in a trap with Zeeman components m = �1, 0
or +1. We discuss the case of antiferromagnetic interactions and assume the validity of the SMA,
i.e. that all bosons condense in the same spatial orbital irrespective of their internal state [27].
The Hamiltonian is [28]

Ĥ = Us

2N
Ŝ

2 � q N̂ 0, (1)

where Us > 0 is the spin interaction energy per atom5, q > 0 is the QZ energy, Ŝ is the total spin
operator and N̂↵ is the number operator in Zeeman state ↵. We assume that the number of atoms
N is even for simplicity. Odd values of N could be treated in a similar way, without modifying
the final results to order 1/N . Typical experimental values for the parameters of the SMA model
are N = 103–105, Us/kB ⇠ 2–5 nK, while q can be varied from zero to values much larger than
Us by changing the magnetic field [25, 26].

In the absence of an external magnetic field (q = 0), the Hamiltonian reduces to a quantum
rotor with moment of inertia N/Us [5, 11]. The energy eigenstates are thus simply the total spin
eigenstates |N , S, Mi, with S the spin quantum number and M its projection on the z-axis. The
corresponding eigenvalues are E(S) = (Us/2N )S(S + 1), with a degeneracy 2S + 1. The wave
functions for these states are known explicitly in the Fock basis [2, 5, 6] (see also appendix A).

When q 6= 0, since [Ŝz, N̂0] = 0, the magnetic quantum number M (eigenvalue of Ŝz)
remains a good quantum number. One can diagonalize Ĥ by block in each M sector. For each
M , the energy eigenstates can be expressed in the angular momentum basis

|�Mi =
NX

S=|M |
cS,M |N , S, Mi. (2)

To express the Hamiltonian in (1) in the |N , S, Mi basis, we need to compute the action
of N̂0. The non-vanishing matrix elements of N̂0 are hN , S, M | N̂0|N , S, Mi, hN , S ± 2, M |
N̂0|N , S, Mi (see appendix A). The Schrödinger equation then takes the form of a tridiagonal
matrix equation

hM
S,S+2cS+2,M + hM

S,S�2cS�2,M + hM
S,ScS,M = EcS,M (3)

with E the energy eigenvalue and where the coefficients hM
S,S0 are easily obtained from the

expressions given in appendix A.

3. Spectrum and eigenstates for M = 0

A first approach for finding the spectrum and eigenstates is to diagonalize numerically the matrix
hM in (3). Our goal in this section is to propose an analytical approximation to better understand
the structure of the spectrum and the eigenstates. The discussion allows one to describe how the

5 The spin interaction energy Us can be calculated from Us = gs
R

dx| (x)|4, where  (x) is the spatial orbital of
the condensate.
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ground state evolves with q, and will also be useful to understand qualitatively the behavior of
the systems at finite temperatures later in this paper. For simplicity, we focus in this section on
the M = 0 sector. The conclusions we obtain remain qualitatively correct for M 6= 0 provided
its value is not too large (|M | ⌧ N ).

3.1. Continuum approximation for large q

We make the assumption that the thermodynamic behavior is dominated by states, such that the
dominant coefficients in the |N , S, Mi basis obey 1 ⌧ S ⌧ N . As we will see later in this paper,
this assumption is justified for large enough q at T = 0, and for any q at finite temperatures
kBT � Us/N . In this limit, the matrix elements hS,S, hS,S±2 can be simplified. We obtain to
lowest order in 1/S, S/N (see appendix B)

�J (x + ✏)c(x + ✏) � J (x � ✏)c(x � ✏) +
NUs

2
x2c(x) =

✓
E +

Nq
2

◆
c(x), (4)

where we have set x = S/N , ✏ = 2/N , c(x) = cS,0. This equation maps the spin problem
to a tight-binding model for a particle hopping on a lattice, with an additional harmonic
potential keeping the particle near x = 0. The model is characterized by an inhomogeneous
tunneling parameter J (x) = Nq (1 � x2/2)/4 and a harmonic potential strength NUs. Boundary
conditions confine the particle to 06 x 6 1.

If c(x) changes smoothly as a function of x , the tight-binding model can be further
simplified in a continuum approximation. We show in appendix B that the tight-binding equation
reduces to the one for a fictitious one-dimensional harmonic oscillator

� q
N

c00(x) +
N
4

(q + 2Us) x2c(x) = (E + Nq) c(x). (5)

The boundary condition c(0) = 0 selects the eigenstates of the standard harmonic oscillator with
odd parity. The mass m and oscillation frequency ! of the fictitious oscillator are found from
h̄2/2m ⌘ q/N and m!2 ⌘ N (q + 2Us)/2. The oscillator frequency is thus

h̄! =
p

q(q + 2Us). (6)

This collective spectrum was also obtained by the Bogoliubov approach of [10, 12].

3.2. Ground state

In this section, we use the results established previously to examine the evolution of the
ground state with increasing q. Our results reproduce the ones from [12] obtained by using a
different method. The ground state of the truncated fictitious harmonic oscillator (with boundary
condition c0(0) = 0) is given by

c0(x) = 1
⇡ 1/4� 1/2

x
�

exp
✓

� x2

2� 2

◆
(7)

with the quantum harmonic oscillator size

� =
r

h̄
m!

=
r

2
N

✓
q

q + 2Us

◆1/4

. (8)
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The continuum approximation is valid only if c(x) varies smoothly on the scale of the
discretization step ✏, or equivalently when � � 1/N . This gives the validity criterion for this
approximation

q � Us

N 2
. (9)

For q < Us/N 2, the ground state is very close to the singlet state, with a width � ⌧ 1/N . Here,
spin fragmentation occurs purely due to quantum spin fluctuations (related to antiferromagnetic
interactions) of a polar BEC. We indicate this state in figure 1 as ‘quantum spin fragmented’.

For q � Us/N 2, the continuum approximation is valid. We see from (8) that as q increases,
the QZ energy mixes an increasing number of S states. Asymptotically, for q � Us, the true
ground state is a superposition of ⇠N� ⇡ p

2N total spin eigenstates. In this regime, we can
compute the moments of N0 by expressing the depletion operator N � N̂0 in terms of the ladder
operators b̂ and b̂† associated with the fictitious harmonic oscillator. We find

N � hN0i = Us + q
2
p

q(q + 2Us)
, (10)

1N 2
0 = U 2

s

2q(q + 2Us)
. (11)

For Us/N 2 ⌧ q ⌧ Us, the depletion N � hN0i and variance1N 2
0 are larger than unity but small

compared to N , N 2, respectively, while for q � Us, they become less than one particle: in the
latter case, the ground state approaches the Fock state (â†

0)
N |vaci expected from the mean field

theory. We indicate both regimes as ‘BEC m = 0’ in figure 1, without marking the distinction.

3.3. Excited states for M = 0

We now turn to the description of the excited states, still limiting ourselves to the case
M = 0 for simplicity. The tight-binding model (4) is characterized by a tunneling parameter
J = Nq(1 � x2/2)/4 and a harmonic potential strength  = NUs. Let us examine two limiting
cases. For q = 0 (no hopping), the energy eigenstates coincide with the ‘position’ eigenstates
with energy E(S) ⇡ (Us/2N )S2 for S � 1. Conversely, when Us = 0 the energy eigenstates
are delocalized states, which form an allowed energy band of width ⇠4J ⇠ Nq . The weak
inhomogeneity of the tunneling parameter does not play a large role since these states are
confined near x = 0 by the harmonic potential.

For the general case where J ,  6= 0, the eigenstates can be divided into two groups
[29, 30]:

• low-energy states with energy E < 4J , which are extended ‘Bloch-like’ states modified
by the harmonic potential; the continuum approximation introduced earlier corresponds
to an effective mass approximation, valid for low-energy states with E ⌧ 4J = Nq (the
requirement q � Us/N 2 found before still holds); and

• high-energy states with E � 4J , that would be in the band gap in the absence of the
potential energy term (and thus forbidden). They are better viewed as localized states,
peaked around x(E) ⇡ p

2E/NUs with a width ⇠ 1/N . As a result, they are very similar
to the angular momentum eigenstates |N , S, 0i for the corresponding value of S. For these
states, the continuum approximation does not hold.
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Figure 2. Probability densities (amplitude shown as gray scale) of the eigenstates
of the spin-1 Hamiltonian (1) as a function of ‘position’ x = S/N and energy
E/Us. The plot corresponds to N = 2000 and Nq/Us = 10. At low energy, the
eigenstates explore the whole available region, from the turning point down to
x = 0. Conversely, at high energies, the eigenstates are more and more localized
around the diagonal, as expected for potential energy eigenstates. We show as
insets the probability densities for the 10th (b) and 500th (c) excited states for
illustration.

We illustrate this classification in figure 2, where we show the probability densities |c(S)|2
as a function of energy. One can see the change from a ‘delocalized’ regime at small energies
to a ‘localized’ regime at large energies. The wave functions were calculated exactly by
diagonalizing the Hamiltonian for N = 1000. We also show the corresponding energy spectrum
in figure 3, showing the same crossover from delocalized states at low energies to localized
states at high energies. For low energies, the spectrum is given by the harmonic oscillator model,
✏n ⇡ h̄!(2n + 3/2) with n integer. For high energies, the energy eigenstates are localized around
xn = n/N , with a spectrum given by ✏n ⇡ Usn2/2N with n integer. Both expressions agree well
with the numerical result in their respective domains of validity.

4. Spin fragmentation at finite temperatures

We have seen in section 3.2 that for a system in its ground state, the depletion and fluctuations
of the M = 0 state were rapidly collapsing as q was increased above Us/N 2, and the system
turned from a fragmented to a single condensate with all the atoms in the Zeeman state m = 0.
The energy gap to the first excited state is 3Us/N near q = 0. For typical experimental values
[25, 26], this corresponds to a few pK, vastly smaller than realistic temperatures for a typical
experiment (a few tens of nK) due to the 1/N scaling. Therefore, it is natural to ask how
the crossover from a fragmented to a single condensate is modified at finite temperatures.
In the remainder of the paper, we thus consider the high temperature case kBT � Us/N .
We will compute the first two moments of N0 at finite temperatures, hN0iT and (1N 2

0 )T =
hN 2

0 iT � hN0i2
T , and use these quantities to study the fragmented to single condensate crossover.
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Figure 3. Energy spectrum for N = 2000 and Nq/Us = 10. The black solid line
is the spectrum calculated by numerical diagonalization of the Hamiltonian (1),
shifted up by q N . The red dashed line corresponds to E(S) = (Us/2N )S2 +
q N/2, the blue dotted line to the harmonic oscillator approximation.

4.1. Spin fragmentation for q = 0

Let us first consider the case q = 0. An important remark is that super-Poissonian fluctuations
are not unique to the ground state, but also occur for low-energy eigenstates with S ⌧ N . This
is best seen by considering values of S such that 1 ⌧ S ⌧ N . In this limit, we find

hN̂ 0iSM ⇡ (N 2 � S2)(S2 � M2)/8, (12)

hN̂ 2
0iSM ⇡ (3N 2 � S2)(S2 � M2)2/8, (13)

(1N 2
0 )SM ⇡ (N 2 � S2)(S2 � M2)2/8, (14)

where hN̂ p
0 iSM = hN , S, M | N p

0 | N , S, Mi. Hence, we find super-Poissonian fluctuations for
M ⌧ S ⌧ N , which eventually vanish as S (resp. M) increases to its maximum value N
(resp. S).

We calculate now the thermally averaged hn0iT and (1n2
0)T in the canonical ensemble. The

average population in m = 0 is given by

hN0iT = 1
Z

X

S,M

e�� 0S(S+1)hN0iSM . (15)

The second moment hN 2
0 iT and the variance (1N 2

0 )T are given by similar expressions. Here, Z
is the partition function and � 0 = Us/2NkBT . Assuming that the temperature is large compared
to the level spacing (kBT � Us/N ), the thermodynamic sums over energy levels is dominated
by states with large S � 1. There are two regimes to consider.

At intermediate temperatures, states with 1 ⌧ S ⌧ N dominate the thermodynamics. To
calculate the thermal average over all S in this regime, we replace the discrete sums by integrals
and send the upper bound N of the integral to infinity. A simple estimate of the mean value of
S, hSi ⇠ (NkBT/Us)

1/2, shows that the condition 1 ⌧ S ⌧ N corresponds to the boundaries

Us

N
⌧ kBT ⌧ NUs. (16)
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In this regime, we find

hN0iT ⇡ N
3

, (17)

(1N 2
0 )T = hN 2

0 iT � hN0i2
T ⇡ 4N 2

45
, kBT ⌧ NUs. (18)

We note that to the leading order in 1/N , the moments of N0 are identical for those found in the
singlet state.

The second regime arises when the temperature becomes very large (kBT/NUs > 1), where
one expects the sum to saturate due to the finite number of states. In this limit, the upper bound
of the integral cannot be taken to infinity, and one must take the restriction S 6 N into account.
On the other hand, the Boltzmann factor can be replaced by unity, and the sums can then be
calculated analytically. One finds

(1N 2
0 )T �NUs ⇡ N 2/18. (19)

To summarize (see figure 1), for q = 0 we always find large depletion and super-Poissonian
fluctuations (1N 2

0 ⇠ hN0i2). The average population is always N/3 as expected from the
isotropy of the Hamiltonian. The relative standard deviation remains approximately constant
(to order N ) at the value 1N0/N ⇡ 2/3

p
5 ⇡ 0.298 for kBT ⌧ NUs, and changes to 1/3

p
2 ⇡

0.236 for very large temperatures kBT > NUs where all the states are occupied with equal
probability.

4.2. Bogoliubov approximation for q 6= 0

For large q > 0 (and hSzi constrained to vanish only in average), we expect that the system
will form a condensate in the m = 0 Zeeman state, with small fluctuations. Such a system can
be described in the Bogoliubov approximation (as described in the appendix of [12]), which
extends to any M the harmonic oscillator approximation made earlier for the M = 0 sector. One
sets â0 ⇡ p

N 0, and expresses the fluctuations â±1 in terms of new operators ↵̂±,

↵̂± = uâ±1 � vâ†
⌥1. (20)

Here, the Bogoliubov amplitudes u, v defined by

u ± v =
✓

q
2Us + q

◆±1/4

(21)

are chosen to put the Hamiltonian in diagonal form

HBogo =
X

µ=±
h̄!

✓
↵̂†

µ↵̂µ +
1
2

◆
� (g + q). (22)

The energy h̄! of the Bogoliubov mode is identical to the one previously found in the harmonic
oscillator approximation for M = 0 (equation (6)). Note that we have now two such modes
(instead of only one in the case M = 0).6

6 We expect, in general, three modes of excitations for a spin-1 system. When the constraint of constant particle
number is taken into account, this reduces the number of modes to two. The suppressed mode would correspond to
the density fluctuations in an extended system, and is explicitly ruled out by the SMA. When a further constraint
M = 0 is imposed, another mode is canceled—corresponding to magnetization fluctuations which are explicitly
forbidden, thus leaving only one excitation mode.
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Figure 4. Depletion (left) and standard deviation (right) of N0. The solid line
shows the exact numerical result for N = 1000 and T = 10Us, the blue dash-
dotted line is the result calculated for q = 0 by using equations (17), (18) and the
red dashed line shows the Bogoliubov approximation. Deviations are observed
for q/T ⇠ N (not visible at the scale of the figure), which is expected from our
approximation: this regime corresponds to a depletion of one atom or less, and
corrections /1/N that we neglect become important.

In the Bogoliubov approximation, the moments of N0 can be obtained analytically. The
quantum (T = 0) depletion of N0 is smaller than one atom. The thermal part of the depletion
and variance of n0 = N0/N read for kBT � h̄!:

1 � hn0i = 2(Us + q)

q + 2Us

kBT
Nq

, (23)

1n2
0 = 2

⇥
(Us + q)2 + U 2

s

⇤

(q + 2Us)2

✓
kBT
Nq

◆2

. (24)

The prefactors take values of order unity, and both the depletion 1 � hn0i and standard deviation
1n0 scale as kBT/Nq. The above expressions are valid provided they describe small corrections
to a regular polar condensate where almost all the atoms accumulate in m = 0 (hn0i = 1), or in
other words for temperatures

kBT ⌧ Nq. (25)

4.3. Comparison between the different approximations

We compare in figure 4 the predictions for the moments of N0 obtained from the various
approximations discussed in the paper, Bogoliubov approximation and q = 0 limit. These
approximations are compared to the results obtained by diagonalization of the original
Hamiltonian (1) and computing thermodynamic averages by using the exact spectrum and
eigenstates.

When Nq/kBT ⌧ 1, the localized states of section 3.3, which are dominated by their
potential energy, will be populated. Since these localized states are close to the angular
momentum eigenstates found in the q = 0 limit, to a good approximation the formula derived
in section 4.1 (see (17), (18) and the continuous blue line in figure 4). On the other hand,
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for Nq/kBT � 1, thermal states mostly populate states with E ⇠ q N , i.e. ‘delocalized’ states
within the low-energy ‘Bloch band’ of width ⇠ Nq. Those states correspond to small depletion
and fluctuations, and they are well described by the Bogoliubov approximation presented in
section 4.2 (see (23), (24) and the red dashed line in figure 4). The numerical solution of
the original model (3) interpolates between the two well-defined asymptotic limits, either a
thermal mixture of total spin eigenstates for q ⌧ kBT/N or a thermal state of Bogoliubov-like
excitations for q � kBT/N .

We note to conclude this section that in the regime Us/N ⌧ kBT ⌧ NUs, the tight-binding
model defined in equation (3) has a quasi-universal form at finite temperatures, in the sense
that the model is entirely specified by two dimensionless parameters, for instance kBT/Us and
Nq/Us. We found that the physical quantities hN0i, (1N0) depend only on their ratio Nq/kBT ,
to a very good approximation. This quasi-universality, which can be explored by experiments,
will be easily justified in the broken symmetry approach presented in the next section.

5. Comparison with the broken-symmetry picture

So far, we have treated the problem by the most natural method, by looking for the
eigenspectrum of the Hamiltonian. Another approach [2, 3] to the problem of spin 1 bosons
with antiferromagnetic interactions relies on the set of so-called polar or spin-nematic states,
defined as

|N : �i = 1p
N !

�
� · â

�N |vaci, (26)

where the vector � reads in the standard basis

� = ei�

0

B@

1p
2

sin(✓)ei�

cos(✓)

� 1p
2

sin(✓)e�i�

1

CA . (27)

For a single particle, the states |�i = P
i=0,±1�i |m = ii form a continuous family of spin 1

wave functions with vanishing average spin. In fact, |�i is the eigenvector with zero eigenvalue
of the operator � · ŝ, with ŝ the spin 1 operator. The states |N : �i correspond to a many-body
wave function where all the particles occupy the single-particle state |�i. As a result, one has
hN : �|Ŝ|N : �i = 0.

5.1. Zero temperature

It is interesting to connect the spin nematic states to the angular momentum eigenstates. The
spin nematic states form an overcomplete basis of the bosonic Hilbert space. On writing the
states |N , S, Mi in this basis, one finds [2, 3, 12]

|N , S, Mi /
Z

d� YS,M(�)|N : �i, (28)

where YSM denotes the usual spherical harmonics and where d� = sin(✓)d✓ d�. In particular,
the singlet ground state |N , 0, 0i appears to be a coherent superposition with equal weights
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of the nematic states. Consider now the average value in the singlet state hÔkisinglet =
hN , 0, 0|Ôk|N , 0, 0i of a k-body operator Ôk ,

hÔkisinglet = 1
4⇡

Z
d� d�0hN : �0|Ôk|N : �i. (29)

As shown in [2], for a few-body operators with k ⌧ N this expectation value can be
approximated to order 1/N by the much simpler expression

hÔkisinglet ⇡ 1
4⇡

Z
d�hN : �|Ôk|N : �i. (30)

This approximation shows that the system can be equally well described by a statistical
mixture of spin-nematic states described by the density matrix [2, 3]

⇢̂BS = 1
4⇡

Z
d�|N : �ihN : �|. (31)

At zero temperature and zero field, there is no preferred direction for the vector � so that
each state can appear with equal probability. This approach is known as a ‘broken symmetry’
point of view, where one can imagine that the atoms condense in the same spin state for each
realization of the experiment, but this spin state fluctuates arbitrarily from one realization to
the next. The important point is that the overlap integral hN : �0|N : �i between two spin-
nematic states vanishes very quickly with the distance |� � �0|. This allows one to use the
approximation hN : �0|N : �i ⇡ 4⇡�(� � �0) +O(1/N ), which leads to

hÔkiBS = Tr[⇢̂BSÔk] ⇡ hÔkisinglet +O(1/N ). (32)

This result can be written as a general statement concerning the average values of a few-body
observables with k ⌧ N [2]: to the leading order in 1/N , the exact and broken symmetry
approaches will give the same results after averaging over the ensemble. The differences
between the two approaches are subtle and vanish in the thermodynamic limit as 1/N .

It is worth noting the difference between individual states and the ensemble. The moments
of N0 in the state |N : �i are given by

hN : �|N̂ 0|N : �i = Nu2,

hN : �|N̂ 2
0|N : �i = N (N � 1)u4 + Nu2,

where u = cos(✓). The variance of N0 for a system prepared in a single spin-nematic state,
Nu2(1 � u2), is thus Poissonian, as expected for a regular condensate. On the other hand,
computing the ensemble averages over ⇢̂BS gives

hN0i = N
Z 1

0
du u2 = N

3
,

hN 2
0 i =

Z 1

0
du

�
N (N � 1)u4 + Nu2� = 3N 2 + 2N

15
,

1N 2
0 = 4N 2 + 6N

45
.
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The variance in the ensemble is thus super-Poissonian, and differs from the result in the
exact ground state only by the sub-leading term /N . This is in agreement with the general
statement made above.

5.2. Moments of N0 at finite temperatures

We now extend the broken symmetry approach summarized above to finite temperatures. The
density matrix should include a weight factor proportional to the energy of the states |N :�i.
To the leading order in 1/N , these states have zero interaction energy7 and a mean QZ energy
given by �Nq cos2(✓). In the spirit of the mean-field approximation, we replace the Boltzmann
factor by its mean value and write the density matrix as

⇢̂BS ⇡ 1
Z

Z
d�|N : �ihN : �|eN�q�2

z (33)

with � = 1/kBT . The partition function can then be expressed as

Z =
Z 2⇡

0
d�

Z ⇡

0
sin(✓)d✓ eN�q cos2(✓) = 2⇡F�1/2 (N�q) . (34)

Here, we introduced the family of functions

F↵(y) =
Z 1

0
x↵ eyx dx, (35)

which are related to the lower incomplete gamma functions. In a similar way, we can compute
the moments of n0 = N0/N to the leading order in N as

hnm
0 i = Fm�1/2 (N�q)

F�1/2 (N�q)
. (36)

From this result, one can easily deduce the average and variance of n0. This calculation provides
an explicit proof of the numerical evidence that, to the leading order in N , the moments of N0

obey a universal curve depending only on Nq/kBT and not on q/Us or T/Us separately.
From the properties of the functions F↵, we recover the results established in the previous

section. When x ! 0, one finds F↵(x) ⇠ 1/(↵ + 1) and hnm
0 i ⇠ 1/(2m + 1). By using this

result we recover for q = 0 the previous results, i.e. hn0i = 1/3 and 1n2
0 = 4/45. When

x ! 1, F↵(x) ⇠ ex/x ⇥ [1 �↵/x +↵(↵� 1)/x2]. This leads to the asymptotic behavior
hnm

0 i ⇠ 1 � m/(N�q) + m(m � 3/2)/(N�q)2 + · · · when N�q � 1, which reproduces the
Bogoliubov results (23), (24) for q ⌧ Us.8

We finally compare, in figure 5, the results from the broken symmetry approach to the
results obtained by diagonalizing the Hamiltonian (1). We find excellent agreement between
the two in the regime of thermal fragmentation, supporting the picture of mean-field states with
random orientation fluctuating from one realization to the next. We note that the ansatz (33)
for the density matrix is by no means obvious, and the good agreement with the numerical
results is obtained only because the set of polar states is a good description for sufficiently

7 Explicitly, one has hN : �|Ŝ2|N : �i = N (1 + cos2(✓)), so that the interaction energy of the state |N : �i is given
by Us cos2(✓) ⇠O(1) compared to the QZ energy ⇠O(N ). The same argument applies to the off-diagonal matrix

elements hN : �0|Ŝ2|N : �i.
8 For q � Us, the depletion and standard deviation of n̂0 are of the order 1/N , of the same order as the error made
by using the broken symmetry approach.
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Figure 5. Exact diagonalization (red solid line) versus broken symmetry
approach (black dots) for N = 1000, kBT/Us = 10.

low temperatures: although these states are not true eigenstates of the Hamiltonian (1), the
action of Ĥ yields off-diagonal matrix elements scaling as 1/N [31], and thus vanishing in the
thermodynamic limit. At high temperatures (kBT ⇠ NUs), where all the high-energy states are
populated the broken-symmetry ansatz is no longer adequate.

6. Conclusion

We have studied the properties of an ensemble of antiferromagnetic spin-1 bosons with QZ
energy breaking the spin rotational symmetry. The system evolves with increasing QZ energy
from a super-fragmented condensate with large fluctuations to a regular polar condensate
where the atoms condense in m = 0. We focused, in particular, on the behavior of a thermal
mixture of excited states, and discussed the evolution of the moments of N0 with increasing
q. Two approaches were explored, one relying on the diagonalization of the Hamiltonian
(either exactly or approximately in certain parameter regimes), and the other relying on a
broken symmetry picture where the system is described as a statistical mixture of degenerate
polar condensates. Both approaches were found in remarkable agreement. In this paper, we
focused on the equilibrium properties and assumed thermal equilibrium from the start. An
interesting question is how the physical system (i.e. also including the dynamics of non-
condensed modes not described in the SMA) can reach such an equilibrium state, e.g. following
a quench in q [32]. This problem, which can be linked to the more general question of
thermalization of closed quantum systems [33], provides an interesting direction for future
work.
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Appendix A. Total spin eigenstates

The general expression of the states |N , S, Mi in the Fock basis is

|N , S, Mi = 1pN (Ŝ(�))P( Â†)Q(â†
+1)

S|vaci. (A.1)

Here, P = S � M , 2Q = N � S, Ŝ� is the spin lowering operator and Â† = â†
0 � 2â†

�1â†
+1

is the singlet creation operator. The two operators commute. The normalization constant
reads

N = S!(N � S)!!(N + S + 1)!!(S � M)!(2S)!
(2S + 1)!!(S + M)!

, (A.2)

where !! indicates a double factorial.
The action of â0 on the angular momentum eigenstates is

â0|N , S, Mi =
p

A�(N , S, M)|N � 1, S � 1, Mi +
p

A+(N , S, M)|N � 1, S + 1, Mi, (A.3)

where â0 is the annihilation operator of a boson in the Zeeman state m = 0, and where the
coefficients A± are given by

A�(N , S, M) = (S2 � M2)(N + S + 1)

(2S � 1)(2S + 1)
, (A.4)

A+(N , S, M) = ((S + 1)2 � M2)(N � S)

(2S + 1)(2S + 3)
. (A.5)

The non-zero matrix elements of N̂0 are

hS|N̂ 0|Si = (A+(N , S, M) + A�(N , S, M)) , (A.6)

hS + 2|N̂ 0|Si =
p

A�(N , S + 2, M)A+(N , S, M), (A.7)

hS � 2|N̂ 0|Si =
p

A+(N , S � 2, M)A�(N , S, M), (A.8)

where we abbreviated the notation for the state |N , S, Mi as |Si to simplify the notation. We
then obtain the matrix elements of Ĥ0 in the |N , S, Mi basis as

hM
S,S = Us

2N
S(S + 1) � qhS|N̂ 0|Si, (A.9)

hM
S,S+2 = �qhS + 2|N̂ 0|Si, (A.10)

hM
S,S�2 = �qhS � 2|N̂ 0|Si. (A.11)
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Appendix B. Continuum approximation

We expand the matrix elements hS,S, hS,S±2 to the first order in 1/S, S/N , M2/S2, and obtain

hM
S,S±2 ⇡ N

4


1 � M2

(S ± 1)2

�
� 1

8N

⇥
(S ± 1)2 � M2⇤ , (B.1)

hM 6=0
S,S ⇡ N

2

✓
1 � M2

S2

◆
, hM=0

S,S ⇡ N
2

. (B.2)

For M = 0, we obtain

� Nq
4

✓
1 � (x + ✏)2

2

◆
cS+2 +

✓
1 � (x � ✏)2

2

◆
cS�2

�
+

NUs

2
x2cS =

✓
E +

Nq
2

◆
cS, (B.3)

where we have set x = S/N and ✏ = 2/N . We now take the continuum limit, where ✏ ⌧ 1 is
taken as a discretization step and cs becomes a continuous function c(S). We write

N 2

4
(cS+2 + cS�2) ⇡1c(s) +

N 2

2
c(s). (B.4)

By substituting in (B.4) and neglecting a term / (qx2/N )1c, we arrive at (5).
This derivation is valid as long as the relevant states are well localized around x = 0.

This is always the case in the ground state, which has a width at most ⇠1/
p

N for q � Us.
For the thermal states, the width is ⇠ p

kBT/ [N (2Us + q)], which gives the condition kBT ⌧
N (Us + q). Finally, the cross-term / (qx2/N )1c is of the order 2Ep Ecc/ [N (2Us + q)] in terms
of the kinetic and potential energies Ec, Ep of the harmonic oscillator. In the thermal regime,
a typical order of magnitude for this term is thus (kBT )2/[N (2Us + q)], small compared to the
energy kBT typical for the other terms we kept in the equation provided the condition above is
fulfilled.
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