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Abstract – We propose a theoretical framework based on SU(3) coherent states as a convenient
tool to describe the collective state of a Bose-Einstein condensate of spin-1 atoms at thermal
equilibrium. We work within the single-mode approximation, which assumes that all atoms con-
dense in the same spatial mode. In this system, the magnetization mz is conserved to a very
good approximation. This conservation law is included by introducing a prior distribution for
mz and constructing a generalized statistical ensemble that preserves its first moments. In the
limit of large particle numbers, we construct the partition function at thermal equilibrium and
use it to compute various quantities of experimental interest, such as the probability distribution
function and moments of the population in each Zeeman state. When N is large but finite (as in
typical experiments, where N ∼ 103–105), we find that fluctuations of the collective spin can be
important.

Copyright c⃝ EPLA, 2015

Introduction. – Coherent states (CS) are an essential
tool of modern physics. The original (or “standard”) co-
herent states of a harmonic oscillator are quasi-classical
wave packets following closely the classical oscillating tra-
jectories with minimal uncertainty in their position and
momentum. Mathematically, they are obtained by acting
with a displacement operator D̂(γ) on the ground state,
with γ a complex number indexing the CS. This defini-
tion can be generalized to other systems, in particular if
the Hilbert space H of the physical system under consider-
ation is an irreducible representation space for a particular
Lie group G = {Ĝ(γ)}γ indexed by a continuous label γ.
Following [1,2], generalized CS are then obtained by act-
ing with all elements of the group on some reference state
|ref⟩ in H. The operators Ĝ(γ) generalize the displacement
operators introduced above. The group structure ensures
that the family of generalized CS generated in this way is
closed. When the group is SU(2) and the representation
space the Fock space with N particles in two modes (which
describes, for instance, an ensemble of N two-level atoms
or spin-1/2 particles), this construction leads to the well-
known SU(2) CS, sometimes simply called “spin coherent
states”. Spin CS are used extensively in fields as diverse
as quantum optics [3] or magnetism [4]. Similarly, one
can introduce SU(3) CS to describe the collective state of

N three-level atoms [5–7], spin-1 lattice models of mag-
netic materials (e.g., [8,9]) and spin squeezing in spin-1
condensates [10].

In this paper, we apply the SU(3) CS formalism to
the study of the equilibrium properties of a spin-1 Bose-
Einstein condensate at finite temperature, where the three
modes are the three Zeeman states with magnetic quan-
tum numbers m = 0, ±1 along a given quantization axis
z. We assume the validity of the single-mode approxi-
mation (SMA), which considers that all atoms condense
in the same spatial mode. The SMA has been extensively
used to analyze equilibrium properties [11–19] and dynam-
ics [20] at T = 0. The SMA is valid for tightly confined
clouds and relatively small atom numbers, such that the
formation of spin domains is energetically prohibited [21].
Within the SMA, the resulting formalism allows one to
describe an arbitrary collective spin state of N bosons in
the same spatial mode, and is sufficiently simple to yield
explicit analytic predictions that can be used to analyze
experimental results. We discuss in detail the expected
thermal equilibrium for the situation of current experi-
mental relevance, where N is large and where the mag-
netization of the system is conserved [22]. We illustrate
the method by calculating the first moments of the m = 0
population as well as its probability density function in
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various cases of experimental interest. In the thermody-
namic limit N → ∞, the theory reduces to the usual mean-
field treatment [12,13,23]. When N is large but finite (as
in typical experiments, where N ∼ 103–105), we find that
fluctuations of the collective spin can be pronounced and
experimentally observable.

SU(3) coherent states. – In order to establish nota-
tions, we start by considering a single spin-1 particle. An
arbitrary pure state |ζ⟩ = U|m = +1⟩ can be obtained
by applying a SU(3) transformation U to the maximally
polarized state. We find convenient to express |ζ⟩ as

|ζ⟩ =

⎛

⎜

⎜

⎜

⎝

√

1−n0+mz

2 eiΘ+α

2

√
n0

√

1−n0−mz

2 eiΘ−α

2

⎞

⎟

⎟

⎟

⎠

. (1)

The global phase is chosen such that the m = 0 component
is real. Physically, n0 ∈ [0, 1] corresponds to the reduced
population in m = 0 and mz ∈ [−1, 1] to the reduced
longitudinal magnetization, both normalized to the total
particle number (0 ≤ 1−n0 − |mz| ≤ 1). We have also in-
troduced two relative phases, Θ = φ+1+φ−1−2φ0 ∈ [0, 2π]
and α = φ+1 −φ−1 ∈ [0, 4π], with φm the argument of the
component ζm. The phase α can be related to the orienta-
tion in the x-y plane of the average transverse spin vector
s⊥ = ⟨ŝx⟩ex + ⟨ŝy⟩ey, and the phase Θ to the magnitude
of s⊥,

s2
⊥ = 2n0

(

1 − n0 +
√

(1 − n0)2 − m2
z cosΘ

)

. (2)

We now turn to the case of N bosons. The Fock space
for N bosons with three possible internal states remains
a representation space for SU(3), and we can generate a
family of states |ζN ⟩ by a SU(3) transformation acting
on the maximally polarized state |N : m = +1⟩ [7]. The
states |ζN ⟩, explicitly given by

|ζN ⟩ =
1√
N !

(

ζ · â†
)N |∅⟩, (3)

in second quantized notation, describe an ensemble of N
bosons condensing simultaneously in the same spin state
|ζ⟩. Here â = (â+1, â0, â−1)T is a vector notation for the
annihilation operators in each Zeeman substate, and |∅⟩
is the vacuum state.

The SU(3) CS |ζN ⟩ are generalized CS in the sense
described in the introduction. They provide a resolution of
the identity operator [1,2,5–7,24],

∫

dζ |ζN ⟩⟨ζN | = 1, with
the measure dζ = (N + 1)(N + 2)/8π2 × dn0dmzdΘdα.
This implies that SU(3) CS form a basis of Fock space,
which is overcomplete since CS are not orthogonal to each
other. Operators acting in Fock space can be represented
as diagonal operators in the CS basis [1,2].

Classical limit N → ∞. The main interest of using the
basis of coherent states is the simplicity of the resulting
theory in the large-N limit, as discussed in details by

Yaffe [24] (see also [16] for a discussion focusing on Bose-
Einstein condensates). In this limit, the scalar product
⟨ζN |ζ′N ⟩ = (ζ · ζ′)N becomes very peaked around ζ = ζ′

due to the large-N power. This allows one to perform the
approximation

⟨ζN |ζ′N ⟩ ≈ Aδ(N)(ζ − ζ′), (4)

with A a normalization coefficient. The function δ(N) is
normalized to unity with the measure dζ and vanishes
very quickly (on a typical scale ∼ 1/

√
N in each gen-

eralized coordinate) when ζ′ moves away from ζ. As a
result, δ(N) tends to a Dirac distribution δ(ζ − ζ′) when
N → ∞. The normalization of the CS implies the relation
∫

dζ′
[

Aδ(N)(ζ − ζ′)
]2

= 1, which can be used to evaluate
the normalization coefficient.

In the large-N limit, the quasi-orthogonality between
two CS expressed in eq. (4) greatly simplifies the com-
putation of expectation values. In the CS states basis, a
k-body normally ordered operator Ô with k ≪ N can be
approximated as

⟨ζN |Ô|ζ′N ⟩ ≈ ⟨ζN |Ô|ζN ⟩A δ(N)(ζ − ζ′). (5)

As a result, the expectation value in a CS of a prod-
uct of two (few-body) operators obeys a simple rule,
⟨ζN |ÔP̂ |ζN ⟩ ≈ ⟨ζN |Ô|ζN ⟩⟨ζN |P̂ |ζN ⟩. This property al-
lows one to compute thermodynamic averages in a thermal
state described by a density operator ρ̂ using the intu-
itively appealing formula,

⟨Ô⟩ ≈
∫

dζ⟨ζN |Ô|ζN ⟩ × ⟨ζN |ρ̂|ζN ⟩. (6)

Effectively, ⟨ζN |ρ̂|ζN ⟩ plays the role of a classical distri-
bution function in ζ space. For the canonical ensemble,
for instance, we have

⟨ζN |ρ̂|ζN ⟩ ≈
1

Z
e−β⟨ζN |Ĥ|ζN ⟩, (7)

with Z =
∫

dζe−β⟨ζN |Ĥ|ζN ⟩ the partition function and
with β = 1/kBT the inverse temperature.

In this paper, we consider particle numbers N which are
large but finite, so that the orthogonality relation between
two coherent states holds only approximately. In the fol-
lowing, we use systematically the large-N limit, which
should thus be understood as the dominant power of N in
a 1/N expansion.

Application to the statistical mechanics of a

spin-1 BEC with constrained magnetization. – We
now apply this formalism to the description of the low-
temperature properties of a trapped gas of ultracold spin-1
bosons. As indicated in the introduction, we assume that
all atoms occupy the same spatial mode φ(r) (but not
necessarily the same spin state) [21]. The Hamiltonian
describing the spin dynamics is then [11]

Ĥ =
Us

2N
Ŝ2 − qN̂0, (8)

26001-p2



Spin-1 condensates at thermal equilibrium: A SU(3) coherent state approach

where Us is the spin interaction energy per atom, q > 0 is
the quadratic Zeeman energy, Ŝ is the total spin operator,
and N̂m is the number operator for the Zeeman state m.

In most experiments with spinor gases (e.g. [25–31]), the
system is prepared with a prior distribution that depends
on the particular experimental sequence, noted as pM

(M being the eigenvalues of Ŝz). Typically, pM is peaked
around the average value Mz = Nmz. Because Ŝz com-
mutes with the interaction Hamiltonian, the prior distri-
bution is essentially preserved by binary collisions driving
the gas towards kinetic equilibrium. In order to account
for the experimental situation, we use a generalized sta-
tistical ensemble, where the energy and the probabilities
pM are conserved. Maximizing the entropy following the
standard Gibbs procedure leads to the density matrix

ρ̂ =
1

Z

M=N
∑

M=−N

e−µM P̂Me−βĤ P̂M , (9)

where P̂M is the projector on the subspace M and where
the µM ’s are Lagrange multipliers introduced to enforce
the conservation of the probabilities pM = ⟨P̂M ⟩.

Although this procedure would be the most rigorous
one, it leads to a rather complicated formalism, where N
constants of motion are required to describe the ensemble.
Instead of constraining the full distribution, we choose in
the following to constrain only the first two moments mz

and ∆m2
z = m2

z −m2
z. We expect that the differences from

the more rigorous formalism will not be significant as long
as only few-body observables are computed. Constraining
the first two moments of mz leads to a density matrix

ρ̂ =
1

Z
e−βĤ−λ1Ŝz−λ2Ŝ2

z =
1

Z
e−βK̂ , (10)

where λ1/2 are two Lagrange multipliers.
In the large-N limit, the partition function is deter-

mined by the free energy K ≡ ⟨ζN |K̂|ζN ⟩. Using eqs. (2),
(8) and the properties of CS, we rewrite K as

βK =
β′

z

2
(mz − m∗

z)
2 − ηn0

+β′n0

(

1 − n0 +
√

(1 − n0)2 − m2
z cos(Θ)

)

. (11)

We have introduced two dimensionless parameters,

η = Nβq, β′ = NβUs, (12)

as well as two new Lagrange multipliers, β′
z = β′ + 2N2λ2

and m∗
z = −Nλ1/β′

z determined by the two constraints
mz = 1

Z

∫

dζmze−βK and ∆m2
z = 1

Z

∫

dζ (mz − mz)
2

e−βK . The parameter m∗
z is approximately equal to the

average magnetization (but not exactly, unless mz = 0).
In the natural energy unit of NUs, the parameter β′

z can
be interpreted as the inverse of a longitudinal pseudo-
temperature characterizing the fluctuations of Ŝz in the
prior distribution defining our generalized ensemble. In
comparison, the inverse temperature β′ characterizes the

fluctuations of the transverse components Ŝx, Ŝy. A purely
thermal prior distribution of mz is characterized by β′

z =
β′, a narrow prior distribution by β′

z ≫ β′ and a broad one
by β′

z ≪ β′. The two dimensionless parameters η and β′

allow us to specify the thermodynamic state completely
given the two constraints on mz and ∆mz. We empha-
size that η and β′ are both proportional to the total atom
number N , which reflects the fact that we are dealing with
fluctuations of a collective variable.

In principle, the set of equations above can be used to
characterize the collective thermodynamic state for any
values of the parameters, mz , ∆mz, η, β′. In the following,
we will illustrate the usefulness of the SU(3) CS approach
in particular regimes, where analytical results can be ob-
tained: the mean-field regime (where differences from the
T = 0 mean-field theory are small), the regime of small
n0 for antiferromagnetic interactions, and the regime of
strong spin fluctuations when mz = 0. For simplicity,
we restrict ourselves to the experimentally relevant case
where the distribution of mz fulfills ∆mz ≪ 1 (mz can
be chosen arbitrarily). To reduce the number of varying
parameters, we consider a system at a fixed temperature
T , atom number N and interaction strength Us (so that
β′ is constant). We vary the quadratic Zeeman energy (or
equivalently η) and the average magnetization.

Mean-field regime at T ̸= 0. – The thermodynamics
is controlled by the behavior of the free energy K. For all
choices of the parameters mz and q, K has a well-defined
minimum which depends on the sign of the spin-exchange
interaction Us. At T = 0 the atoms condense in that mini-
mum [23], which determines the phase diagram [23,28,31].
For Us < 0 (ferromagnetic interactions), the minimum is
obtained for Θ = 0 and a certain value n∗

0 > 0 which max-
imizes the magnitude of the transverse spin. For Us > 0
(antiferromagnetic interactions), the minimum is obtained
for Θ = π and the value n∗

0 which minimizes S⊥. Differ-
ently from the ferromagnetic case, n∗

0 is zero until a criti-

cal value qc = Us

(

1 −
√

1 − m2
z

)

above which it becomes

positive.
One normally expects that for sufficiently low temper-

atures, the system only explores the vicinity of the min-
imum. The free energy then equals its value K∗ at the
minimum plus small additional terms, corresponding to
Gaussian fluctuations around the minimum with a typ-
ical spread ∆n0, ∆Θ ∼ 1/β′ (up to coefficients depend-
ing on q/Us and mz). This describes well the case of
ferromagnetic systems, where the finite-T solution is al-
ways close to the zero-temperature one as shown in fig. 1.
The small differences are due to the combined effects of
fluctuations and of the spread of mz, which are included
in the finite-T calculation but not in the T = 0 one.
The Gaussian expansion is valid provided β′ ≫ 1, or
kBT ≪ NUs. For typical experimental values in [28,31],
N ∼ 104, Us/kB ∼ 2 nK and T ∼ 100 nK, β′ ∼ 200 is
indeed large. This leads to results for the thermodynamic
observables essentially identical to the ones obtained at
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Fig. 1: (Colour on-line) (a) Moments of n0 vs. η = Nq/kBT in
the ferromagnetic case (Us < 0) for magnetizations mz = 0.1
(red lines and symbols) and mz = 0.3 (black lines and sym-
bols). The solid lines show the average populations, the dashed
lines the standard deviations, and the small dots the expected
behavior at T = 0. (b) Magnitude of the transverse spin.
The graphic conventions are the same as in (a). The values
β′ = NβUS = 200 and ∆mz = 0.02 were used for all plots.

zero temperatures, up to small corrections of magnitude
∼ 1/β′.

Antiferromagnetic systems behave differently (see
fig. 2). For q < qc, the value of n0 is not zero and fluc-
tuations are comparable to the mean value. This strongly
differs from the conclusion drawn from the T = 0 theory.
Both effects become larger when mz → 0.

Antiferromagnetic systems with small n0. – In
order to understand the regime with q < qc and T ̸= 0
better, we assume that n0 remains small (which requires
a finite magnetization mz, see below) and expand the
free energy around Θ = π and n0 = 0. This gives (af-
ter integration over mz and Θ) the partition function as

Z ′ ∝
∫ 1
0 dn0 e−βKeff/

√
n0, with an effective free energy

βKeff = Bn2
0 − A

(

q

qc
− 1

)

n0 + O
(

n3
0

)

, (13)

with A = Nβqc and B = A
√

1 − m2
z . For q > qc, the

free energy has a minimum for n∗
0 ≈ A(q/qc − 1)/2B > 0,

where the first derivative of Keff vanishes: We retrieve the
mean-field regime.

The equilibrium population in m = 0 is given by
n0|q=0 ≈ 1/A for q = 0 and by n0|q=qc

≈ a1(1 −
m2

z)
1/4/A1/2(a1 ≈ 0.34) for q = qc. For high mz , we

Fig. 2: (Colour on-line) (a) Moments of n0 vs. η = Nq/kBT
in the antiferromagnetic case (Us > 0) for magnetizations
mz = 0.1 (red lines and symbols) and mz = 0.3 (black lines
and symbols). The solid lines show the average populations,
the dashed lines the standard deviations, and the small dots
the expected behavior at T = 0. The larger white dot
shows the analytical limit for q = qc, n0|q=qc

≈ 0.34(1 −
m2

z)
1/4/A1/2 for mz = 0.3. (b) Magnitude of the transverse

spin. The graphic conventions are the same as in (a). The val-
ues β′ = NβUS = 200 and ∆mz = 0.02 were used for all plots.

have A ≈ β′ ≫ 1, and correspondingly small population
in m = 0. For small mz , we have A ≈ β′m2

z/2: the pop-
ulation in m = 0 is small only if mz ! 1/

√
β′. Note that

when this is not fulfilled (A ∼ 1), the expansion in eq. (13)
is not valid. The average transverse spin per atom also be-
comes finite at T ̸= 0. In the limit where n0 remains small,
we find from eq. (2)

s2
⊥ ≈

2n0qc

Us
+ O

(

n2
0, n0Θ

2
)

. (14)

In the limit q → 0, we find s2
⊥ ≈ 2/β′ independent of

mz. For the typical values of β′ = 200 given above, s2
⊥

reaches a few percent below qc (see fig. 2(b)), which is
experimentally measurable.

Spin fragmentation for antiferromagnetic inter-

actions and small magnetizations. – For antiferro-
magnetic interactions (Us > 0), a special situation occurs
near mz = 0 where the critical qc vanishes. In this regime,
arbitrary large fluctuations of n0 are possible, which makes
the approximation used in the previous paragraph in-
valid. Going back to the spin-dependent free energy
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equation (11), we expand around Θ = π and mz = 0,

βK ≈
1

2

m2
z

σ2
+ β′n0(1 − n0)

(Θ − π)2

2
− ηn0, (15)

with

σ =

√

1 − n0

β′n0 + β′
z(1 − n0)

. (16)

The overall minimum, determined by the quadratic Zee-
man energy (last term in eq. (15)), is at n∗

0 = 1, Θ = π
and mz = 0. The curvature near the minimum along the
n0 direction vanishes. In this case, the condition β′ ≫ 1
is not sufficient to ensure that the distribution is peaked
around the mean-field solution: One must also have η ≫ 1.
When q = 0, this is never fulfilled and instead of a sin-
gle minimum, one finds instead a family of degenerate
minima, corresponding to the so-called polar (or “spin-
nematic”) states with vanishing spin [12,13,16,32]. Be-
cause of the broad distribution, the system displays in the
limit η ≪ 1 large fluctuations in the individual popula-
tions n0, n+1, n−1. As discussed in refs. [14–16,18,32,33],
this is a signature for fragmentation of the condensate
which can occupy any of the quasi-degenerate states or
an arbitrary superposition of them. We stress again that
these fluctuations are a mesoscopic effect, and disappear
in the thermodynamic limit where they are confined to a
vanishingly small window around η = 0. For β′

z = β′,
we recover the previous results obtained at finite temper-
atures [32]. The present theory is able to go further by
accounting for the most general situation where β′

z ̸= β′.
After integration over Θ, mz, we obtain the (unnormal-

ized) marginal distribution function of n0 in a simple form,

P (n0) ∝
eηn0

√

n0(β′n0 + β′
z(1 − n0))

. (17)

Other marginal distributions (e.g. for mz) could be ob-
tained in a similar way. For q = 0 (see fig. 3), the dis-
tribution of n0 changes from an asymmetric characteristic
square-root shape, P (n0) ∝ 1/

√
n0 [34], to a symmetric

shape P (n0) ∝ 1/
√

n0(1 − n0) when β′
z changes from 1

(unconstrained prior distribution of mz) to +∞ (narrow
prior distribution of mz). For small η ≪ 1, the distribu-
tion P (n0) is always broad, so that the qualitative con-
clusions about spin fragmentation and large population
fluctuations are unchanged.

To discuss the influence of the prior distribution of mz,
we set q = 0 and plot in fig. 4 the first two moments of
n0 vs. β′

z. For β′
z = 1, which corresponds to the situation

without constraint where n0 = 1/3, we find ∆n0 ≈ 0.30
and ∆mz = 2/(3β′). With increasing β′

z, the prior distri-
bution of mz becomes narrower: n0 goes from 1/3 to 1/2
and ∆n0 increases slightly [32]. Conversely, β′

z < 1 corre-
sponds to a prior distribution of mz broader than the one
without constraint: the average n0 decreases below 1/3
(the fluctuations of n0 decrease as well).

Fig. 3: (Colour on-line) Probability density P (n0) for the re-
duced population in m = 0 (the densities are not normalized).
The red solid line shows the distribution for β′

z = β′ and the
blue dashed line the one for β′

z = 100β′.

Fig. 4: (Colour on-line) Approximate theory in the case mz = 0
and q = 0: average (solid line) and standard deviation (dashed
line) of the population n0. The vertical dotted line marks the
unconstrained case (β′

z = β′).

Conclusion. – In conclusion, we have proposed a de-
scription of the collective equilibrium state of a spin-1
Bose-Einstein condensate based on SU(3) coherent states.
Using this formalism, the conservation of the magnetiza-
tion is accounted for by introducing a prior distribution
for mz and constructing a generalized statistical ensem-
ble that preserves its first moments. We have computed
moments of various quantities, and their probability dis-
tribution function (for example, for the population in the
m = 0 Zeeman substate), that can be directly compared
to experiments. Going beyond thermodynamics as studied
in this paper, we expect, in analogy with what has been
done with SU(2) coherent states, that the SU(3) coherent
state formalism can be used to study the collective dy-
namics leading to spin oscillations [35–38] or spin-nematic
squeezing [10,39–41]. Another interesting direction is to
extend the formalism to larger groups SU(N) with N > 3
to describe condensates with higher spin. This is relevant,
for instance, for experiments with chromium atoms with
spin 3 [42,43], where spin exchange and magnetic dipole-
dipole interactions both play an important role.
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