
PHYSICAL REVIEW A 100, 023604 (2019)
Editors’ Suggestion

Relaxation and hysteresis near Shapiro resonances in a driven spinor condensate
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Driving a many-body quantum system in a periodic manner gives access to its fundamental properties, both
in terms of energy spectrum and relaxation mechanisms. It also leads to important applications, as shown by
superconducting Josephson junctions (SCJJs). Thanks to the so-called Shapiro resonances that occur in the
presence of a microwave drive, SCJJs constitute metrological devices relating the drive frequency to the voltage
across the junction. Here we present a detailed experimental study of an atomic analog of a driven SCJJ based
on a spinor Bose-Einstein condensate of sodium atoms. We analyze the short-time evolution of the system in
terms of a slow Hamiltonian dynamics superimposed with a rapid micromotion. After a long-time evolution, we
observe that the system may relax to a nonequilibrium steady state and exhibit a hysteretic behavior. We compare
our experimental results with simple phenomenological models of dissipation that can roughly be described as
amplitude or phase damping. We find that the amplitude damping model is able to reproduce quantitatively
our observations, while the phase-damping model fails qualitatively in certain regimes. Our study therefore
constitutes an accurate benchmark for the development of an ab initio microscopic theory of the relaxation
processes in this driven many-body system.
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I. INTRODUCTION

The Josephson effect is the hallmark of macroscopic quan-
tum phenomena in quantum fluids, from superconductors
[1–4] to superfluid helium [5–8], polariton systems [9–11],
and ultracold atoms in double-well potentials [12–17]. In
all variants, the phase of a macroscopic wave function is
controlled by an external bias parameter. In superconducting
Josephson Junctions (SCJJs), a voltage bias determines the
relative phase between the two superconducting order pa-
rameters on each side of the junction and the supercurrent
is proportional to the sine of this phase [1–3]. This leads
to some remarkable phenomena, such as the ac Josephson
effect, where a static voltage generates an oscillating current
at the characteristic Josephson frequency ω0. Conversely, in
the “inverse ac Josephson effect,” schematized in Fig. 1(a)
[2–4], an oscillating voltage V (t ) quasiresonant with ω0 can
carry a dc current across the junction.

In SCJJs, resonances occur when the drive frequency ω

fulfills kω = ω0 for integer k [2]. These resonances appear
in the form of Shapiro spikes in the voltage-current char-
acteristics of the driven junction at constant bias voltage or
steps at constant bias current [4]. Shapiro steps are at the core
of Josephson voltage standards, which are essentially perfect
frequency-voltage converters enabled by macroscopic quan-
tum effects [4]. Energy dissipation plays a crucial role in such
devices [4]. Indeed, without dissipation, the system would
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not relax towards the exact resonance where the macroscopic
phase locks to the drive.

Ultracold atoms exhibit two variants of the Josephson
effect. In the first variant (“external Josephson effect”),
two superfluids are coupled through a weak link [12–17],
in direct analogy with the SCJJs. In the second variant
(“internal Josephson effect”), coherent dynamics can occur
between internal degrees of freedom [18,19]. Here we focus
on the specific case of spin F = 1 atoms, with m = 0,±1 the
magnetic quantum number labeling the Zeeman components,
as illustrated in Fig. 1(b). An applied magnetic field plays
the role of the external bias. The Josephson-like internal
dynamics is generated by coherent, spin-changing collisions
of the form 2×(m = 0) ↔ (m = +1) + (m = −1) instead of
single-particle tunneling [20,21]. Compared to the original
SCJJ, cold-atom implementations of the Josephson effect have
an important asset when one tries to elucidate the microscopic
mechanisms at play in the device. The typical timescales
are on the order of milliseconds or longer, enabling a time-
resolved study of the dynamics that is difficult to access in
superconducting systems, where the microscopic timescales
are in the picosecond range.

So far most experimental studies on atomic spinor gases
have been performed with only a static bias and no modula-
tion [21–32]. The driven case was explored only recently, with
experiments demonstrating either the freezing of the evolu-
tion by frequent “kicks” in spin space [33], or spin-nematic
squeezing near a parametric resonance [34]. In this article, we
extend the analogy between SCJJs and atomic spinor gases
to the driven regime, where Shapiro resonances occur. Using
a spin-1 Bose-Einstein condensate (BEC) of sodium atoms,
we observe such resonances [see Fig. 1(c)] and characterize
them in the nonlinear regime, where the phase dynamics is
not solely controlled by the external static bias. We study
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(a) (b)
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FIG. 1. Analogy between two physical systems exhibiting
macroscopic quantum coherence: (a) superconducting Josephson
junction (SCJJ) and (b) a spin-1 atomic Bose-Einstein condensate
(BEC). For SCJJs (respectively, BECs), tunneling through the bar-
rier (resp., spin-mixing interactions) generates an electric current
(resp., a spin current) controlled by the relative phase across the
barrier (resp., between the Zeeman components of the spin-1 wave
function). An external energy bias E (t ) controls the rate of change
of the relative phase: the electrostatic energy E (t ) = 2 eV(t ) for
SCJJs, with V the voltage and 2e the charge of a Cooper pair, and
the quadratic Zeeman energy E (t ) = 2q(t ) of a pair of m = ±1
atoms for spin-1 BECs. If the energy bias is modulated around a
static value E0, a Shapiro resonance occurs when the modulation
frequency ω fulfills the resonance condition k0 h̄ω = E0, with k0

a positive integer. (c) Observation of several (k0 = 1 − 8) Shapiro
resonances in a spin-1 atomic condensate after a relaxation time
of 30 s. Here, n0 is the reduced population of the m = 0 Zeeman
state, and q0 is the static QZE. The experiment was performed with
a sodium Bose-Einstein condensate containing N ≈ 2×104 atoms,
with a magnetization per atom m|| = 0. We varied q0 for a fixed drive
frequency ω/2π = 100 Hz.

the coherent dynamics at short times and the relaxation at
long times (tens of seconds, corresponding to tens of thou-
sands of the drive oscillation period). Near resonance, in the
strongly driven regime, we find that the driven BEC relaxes to
asymptotic states that are not stable without drive [Fig. 1(c)].
In this sense, our system constitutes a many-body version
of the celebrated Kapitza pendulum [35–37]. The stationary
states correspond to phase-locked solutions of the Josephson
equation, generalized to include dissipation and analogous to
the stationary states of driven SCJJs [4].

In our experiments, dissipation presumably results from
interactions between condensed and noncondensed atoms that
lead to damping of coherent macroscopic phenomena and
thermalization. Thermalization of driven quantum systems
has been studied intensely in the past few years [38–40]. The
general expectation is that energy is absorbed from the drive,
eventually heating to infinite temperatures [41–43]. However,
the heating timescale τh can be extremely long. Rigorous
proofs are only available for high-frequency modulation and

systems with a bounded spectrum: Refs. [44–46] have shown
that τh = eO(ω/�), with �−1 the faster intrinsic timescale of
the nondriven system and ω � � the modulation frequency.
For times t � τh, the system may attain a prethermalized
“Floquet-Gibbs” state corresponding to the equilibrium state
of an effective, secular Hamiltonian. In this work we use
near-resonant modulation and probe a system with an a priori
unbounded spectrum [47]. We observe a long-time steady
state that differs from both the infinite-temperature state and a
Floquet-Gibbs state associated with the secular Hamiltonian.

We introduce in this article a phenomenological model
obtained by adding a suitable dissipative term to the coherent,
Josephson-like equations describing the spinor dynamics. We
compare its predictions with those of a former model used
in the literature to describe relaxation in atomic Josephson-
like settings. These two models can be roughly classified as
amplitude or phase damping, respectively. Their predictions
are barely distinguishable from each other without driving
but differ spectacularly in the strongly driven case. More pre-
cisely, the “phase-damping model” proposed in [26] is clearly
incompatible with the experimental observations, whereas our
“amplitude-damping model” agrees quantitatively with them.
This suggests that our experimental results can be used as a
benchmark for ab initio theories of a driven many-body sys-
tem, as they strongly constrain the form of damping prevalent
in experiments.

The paper is organized as follows. In Sec. II, we review
the main features of our experiment and of the theoretical
description of spinor condensates. We highlight the analogies
and differences with Josephson physics in superconducting
junctions. We also discuss for later reference spin-mixing
oscillations without driving, highlighting both the coherent
features [22–28] and the dissipative aspects [26]. In Sec. III,
we turn to the driven system and characterize experimentally
and theoretically the nonlinear secular dynamics in the vicin-
ity of the resonance. Measuring both the Zeeman population
and the relative phase of the atoms, we identify two regimes—
an “oscillating regime” where the atomic phase is locked to
the drive, and a “rotating regime” where the atomic phase
runs independently from the drive. In Sec. IV, we study
the relaxation of the driven spin-1 BEC for long evolution
times. In a narrow frequency window around each Shapiro
resonance, we observe relaxation to a nonequilibrium steady
state that has no analog in the nondriven system. We also show
that the system displays hysteresis when the drive frequency
is scanned across a Shapiro resonance. Finally, we conclude
and draw some perspectives of this work in Sec. V.

II. SPIN-MIXING OSCILLATIONS

This section is devoted to the theoretical modeling of a
spinor Bose-Einstein condensate, as well as its experimental
implementation and characterization. We first focus on the
coherent dynamics of the system in the mean-field and single-
mode approximations, and we show that it can be viewed
as a classical one-dimensional Hamiltonian system. Here the
relevant canonically conjugate variables are n0 and θ , where
n0 is the population of the m = 0 Zeeman state and θ a
particular combination of the phase of the three Zeeman
states. We emphasize the deep analogies that exist between
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the equations of motion of the spinor gas and those of a
driven SCJJ, with n0 playing the role of the supercurrent and
θ the role of the phase difference across the junction. We then
present our experimental setup and explain how we access
these two relevant variables n0 and θ . Finally, we describe two
simple models for the relaxation of the dynamics of the spinor
BEC. In particular, we show experimental results that indicate
that in the nondriven case, it is not possible to discriminate
between these two relaxation models.

A. Coherent dynamic of spinor condensates

1. Relevant contributions to the energy

We consider spin F = 1 atoms immersed in a spatially uni-
form magnetic field B = Bu, where the orientation u is taken
as quantization axis. The atoms can occupy all three Zeeman
states |F, m〉u, where m = 0,±1 refers to the eigenvalue of
f̂ · u and where f̂x,y,z are the spin-1 matrices.

As for most magnetic materials, the dynamics and equilib-
rium properties of spinor condensates are governed by (i) the
Zeeman energy ∼μBB in the applied magnetic field, where μB

is the Bohr magneton, and (ii) the spin-dependent interactions.
In this work, the direction of the applied magnetic field
varies in time but only on a timescale much longer than the
Larmor period h/μBB. The single-particle spin states then
follow adiabatically the changes of the direction of B(t ) (see
Appendix A for more details). For relatively low values of B,
the Zeeman energy of a single atom is thus given by

ĥZ = p(t ) f̂z + q(t )
[

f̂ 2
z − 1

] + O(B3). (1)

In this expression, the linear Zeeman term proportional to
p(t ) = gF μBB(t ) (gF = −1/2, the Landé factor) is essentially
the contribution of the spin of the valence electron, and the
quadratic Zeeman energy (QZE) proportional to q(t ) = αqB2

(with αq ≈ h×277 Hz/G2 for sodium atoms) gives the first
correction due to the nuclear spin [19].

Interactions between alkali atoms are mainly due to short-
range van der Waals interactions. Magnetic dipole-dipole
interactions are usually much weaker [48]. Neglecting the
latter, the interaction potential between two atoms is invariant
under spin rotations. On the other hand, the Zeeman term
is invariant only by rotations around the quantization axis
u, which thus constitutes the symmetry axis of the problem.
For a many-atom system, this symmetry implies that the
longitudinal magnetization per atom, m|| = 〈F̂ · u〉/N , with
F̂ the total spin operator and N the total atom number, is
a conserved quantity [19,20,22]. The linear Zeeman energy,
proportional to m||, can then be eliminated without loss of
generality by transforming to a frame rotating around the
quantization axis u at the Larmor frequency (see Sec. II A 2).
The Zeeman energy then reduces to the QZE alone, ĥZ =
q(t )[ f̂ 2

z − 1] + O(B3).

2. Single-mode regime

We focus in this work on the so-called single-mode regime
of spinor condensates [20,49,50]. This regime is realized for a
condensate confined in a tight trap, such that spin excitations
correspond to energies much lower than the confinement
energy associated with the spatial variations of the wave func-

tion. In this situation, the lowest energy states correspond to
various spin states but to the same single-mode spatial orbital
φ(r). It is convenient to use a second-quantized notation and
to introduce the operator âm annihilating a boson in the single-
particle state |F, m〉u ⊗ |φ〉. The spin physics is then described
by an effective low-energy spin Hamiltonian [19,51],

Ĥs = Us

2N
F̂

2 − qN̂0. (2)

Here N is the total atom number, Us is a spin-dependent
interaction energy determined by the single-mode orbital,
Us = (4π h̄2Nas)/mNa×

∫ |φ(r)|4 d3r, with as ≈ 0.13 nm the
spin-dependent scattering length [52], and mNa the mass of a
sodium atom. The QZE is proportional to q and to the operator
N̂0 = â†

0â0 counting the population in the Zeeman state m = 0.
The procedure for calibrating Us experimentaly is described
in Appendix B. Note that by construction the Hamiltonian in
Eq. (2) is valid only at low energies. In particular, it cannot
describe the noncondensed modes involving orbital degrees
of freedom other than φ(r).

In the single-mode regime, almost all atoms condense at
low temperature into the same single-particle state � = ζ ⊗
φ̄(r), with ζ a complex vector independent of space. The
component ζm = √

nmeiφm are not independent. Here nm is
the fractional (normalized to the atom number) population of
Zeeman state m. Accounting for (i) an overall normalization,
(ii) an irrelevant global phase, and (iii) the conservation of
magnetization leaves only three independent real variables. A
convenient choice for these variables are the relative popula-
tion n0 of the m = 0 state and the two relative phases

θ = φ+1 + φ−1 − 2φ0, η = φ+1 − φ−1. (3)

The rate of change h̄θ̇ can be interpreted as a chemical
potential difference driving the “reaction” (m = +1) + (m =
−1) ↔ 2×(m = 0), with a “chemical equilibrium” reached
for θ = 0 or π [see Eq. (9) below]. The phase η would
describe the Larmor precession due to the linear Zeeman
term in the original Zeeman Hamiltonian. The transformation
ζm → ζme−i mpt

h̄ to a frame rotating at the Larmor frequency
around the quantization axis u removes the contribution ∝p
to the Zeeman Hamiltonian, without loss of generality, so that
η̇ = 0.

In this work, we focus on the case m|| = 0 so that n+1 =
n−1. The spin energy for a condensate in the state � is then

Es(n0, θ, t ) = Usn0(1 − n0)(1 + cos θ ) − q(t )n0. (4)

Note that this energy does not depend on the phase η. For a
static QZE, q > 0 and antiferromagnetic interactions Us > 0,
it is minimal for the so-called polar state [53] with n0 = 1
that minimizes separately the Zeeman and interaction terms
in Eq. (4).

3. Spin-mixing oscillations and Josephson physics

The equations of motion for a spin-1 BEC in the single-
mode approximation can be derived from the Gross-Pitaevskii
energy functional (see [19] and references therein). We start
with the dynamical part of the Lagrangian for the Schrödinger
equation ih̄

∫
�∗ · �̇ and expresses it in terms of the spin vari-

ables. Subtracting the Zeeman and interaction energies (4), we
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obtain the Lagrangian for m|| = 0 :

L(n0, θ, θ̇ , t ) = h̄

2
n0θ̇ − Es(n0, θ, t ). (5)

The two Euler-Lagrange equations for n0 and θ ,

d

dt

∂L
∂θ̇

= ∂L
∂θ

,
d

dt

∂L
∂ ṅ0

= ∂L
∂n0

, (6)

read in this particular case

h̄

2
ṅ0 = −∂Es

∂θ
,

h̄

2
θ̇ = ∂Es

∂n0
. (7)

The explicit form of these equations of motion is thus [21]

h̄ṅ0 = 2Us n0(1 − n0) sin θ , (8)

h̄θ̇ = −2q(t ) + 2Us (1 − 2n0) (1 + cos θ ). (9)

For this choice of the Lagrange function, the conjugate mo-
mentum of the phase θ is

pθ ≡ ∂L
∂θ̇

= h̄

2
n0. (10)

The Hamilton formulation of the dynamics corresponds,
therefore, to a one-dimensional system, with the classical
Hamiltonian H = pθ θ̇ − L defined as

H(pθ , θ, t ) ≡ Es(n0 = 2pθ /h̄, θ, t ). (11)

The corresponding Hamilton-Jacobi equations are identical to
Eq. (7). Note that in this formulation, Es represents the total
energy (kinetic plus potential) of the one-dimensional system.

Equations (8) and (9) contain the two main ingredients
for Josephson physics [18]. Consider first Eq. (8): the “spin
current” ṅ0 is generated by coherent spin-mixing interaction
processes controlled by the phase θ . This is analogous to the
celebrated Josephson relation Is ∝ sin φ, linking the super-
current Is in a SCJJ to the relative phase φ between the two
superconductors on each side of the junction. The additional
factor n0(1 − n0) enforces that the population n0 stays in
the interval [0,1] and corresponds to a slowing down of the
dynamics when the BEC reaches one of the extreme points
n0 = 0 or n0 = 1.

Consider now the second equation of motion, Eq. (9): the
external bias q(t )—analogous to the voltage drop V (t ) across
the junction—controls the rate of change θ̇ of the relative
phase. This is analogous to the second Josephson relation
h̄φ̇ = 2 eV, with 2e the charge of a Cooper pair. Here, we
also find an additional term [the last term of Eq. (9)], which
describes how interactions can alter the resonance and the
dynamics of the phase.

To summarize, the equations of motion describing the
coherent dynamics of a driven spinor condensate present a
deep analogy with those of a driven SCJJ. There exist, how-
ever, differences between Eqs. (8) and (9) and the “standard”
Josephson relations, which essentially reflect the fact that
atomic gases can be viewed as closed interacting systems;
therefore Josephson-like phenomena typically lead, in the
present case, to population oscillations of large amplitude
(comparable to the total atom number) and not to a steady
current as for superconducting circuits connected to charge
reservoirs.

B. Experimental setup and protocol

In this paper, we focus on the situation where the static
bias q0/h ∼ 300 Hz is much larger than Us/h ∼ 30 Hz. We
present in this section the experimental protocol from which
we infer the relevant variables n0 and θ , and we illustrate
it on the static case, i.e., when q = q0 is constant in time.
In the regime q0 � Us (called Zeeman regime in [23]), the
QZE determines the phase evolution up to small corrections,
θ (t ) ≈ θ (0) − 2q0t/h̄. Equation (8) then predicts harmonic
oscillations of n0 at the frequency ≈2q0/h̄, with a small
amplitude ∝Us/q0 [21–25]. These oscillations constitute the
analog for spinor gases of the ac-Josephson effect: a constant
dc bias induces a periodic ac current.

1. Condensate preparation

In order to observe experimentally the ac spin oscillations
induced by a static bias q0, we prepare a quasipure condensate
of spin-1 sodium atoms in a crossed optical dipole trap.
The condensate contains N ≈ 104 atoms, with a condensed
fraction �0.9. The condensate is initially polarized in the
m = +1 state (except in Sec. IV D). Our main observables
are the relative populations nm of the Zeeman sublevels
m = 0,±1. We measure these populations using absorption
imaging after a time-of-flight in a magnetic field gradient
separating the different Zeeman components (“Stern-Gerlach
imaging”). The experimental setup, preparation steps, and
Stern-Gerlach imaging were described in detail in previous
publications [54,55].

In the experiments described in the following, we initiate
spin-mixing dynamics by rotating the internal state of the
spin-polarized BEC. This spin rotation is the only exception
to the adiabaticity condition indicated above. Experimentally,
we apply a radio-frequency field resonant at the Larmor
frequency for a time tπ/2 ≈ 40 μs, resulting in a rotation by
an angle of π/2 around an axis orthogonal to the quantization
axis u. With the Zeeman state |m = +1〉 as a starting point,
the internal state after rotation is 1

2 (|m = +1〉 + |m = −1〉) +
1√
2
|m = 0〉. Hence the initial m = 0 population and longitudi-

nal magnetization are n0,i = 1/2 and m|| = 0, respectively.

2. Measurement of the phase θ

The spin-mixing dynamics is characterized by oscillations
of both the population n0 and the phase θ . The Stern-Gerlach
imaging procedure mentioned above readily provides the
value of n0. An example is given in Fig. 2(a), which shows
the expected sinusoidal evolution of n0(t ) in the undriven
case. We use the method introduced in [55] to measure the
phase θ . This method relies on the fact that the orientation of
the transverse magnetization per atom m⊥ (controlled by the
phase η, see Sec. II A) varies randomly for each realization
of the experiment. Indeed, the spin energy Es depends only
on the magnitude of m⊥ but not on its orientation. After
averaging over many realizations, the distribution of m⊥ has a
zero mean but a nonzero variance,

〈m2
⊥〉 = 2n0(1 − n0)(1 + cos θ ), (12)

that depends explicitly on cos θ . Here 〈·〉 denotes a statistical
average over the realizations.
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(a)

(b) (c)

FIG. 2. (a, b) Spin-mixing oscillations without driving in the
Zeeman regime q0 � Us. The time evolution of the population n0

in (a) and the relative phase θ in (b). (c) Relaxation of n0 at long
times. The red points correspond to the experimental data, and the
lines show the fit results for the two dissipative models DM 1 (dotted
green line) and DM 2 (dashed purple line) introduced in Sec. II C 2.
The values of the fit parameters are given in Sec. II C 3.

In practice, we apply a radio-frequency pulse to induce a
spin rotation of π/2 around the y axis and measure the magne-
tization m′

|| after rotation. We repeat the experiment typically
Nmes = 10–20 times and calculate the variance 〈m′2

|| 〉 of the
experimental results. Using 〈m′2

|| 〉 = 〈m2
⊥〉/2 + O(1/Nmes), we

infer the value of cos θ . In order to determine unambiguously
the phase θ itself, we assume that θ wraps monotonically
around the unit circle to obtain the illustrative result shown
in Fig. 2(b).

C. Relaxation of spin-mixing oscillations

1. Experimental observation of a dissipative behavior

In the undriven case, we observe experimentally that for
long evolution times, the spin-mixing oscillations are damped
and the population n0(t ) eventually relaxes to the expected
equilibrium value n0 ≈ 1. An example of this dissipative
behavior is shown in Fig. 2(c). The characteristic timescale is
a few seconds, to be contrasted with the millisecond timescale
of the coherent oscillations shown in Fig. 2(a).

This relaxation, first observed in [26], corresponds to a loss
of energy of the spinor BEC. Equations (8) and (9) describe
a Hamiltonian dynamics where the energy Es(n0, θ ) is a con-
stant of motion [21]. As a result, a point or an orbit of the clas-
sical phase space (n0, θ ) cannot be attractive, and relaxation
cannot occur within this framework. However, experimental
systems are never perfectly isolated, and their coupling to
(many) other degrees of freedom playing the role of an energy
reservoir enables energy dissipation and thermalization. In
experiments with ultracold atoms, noncondensed particles
forming a bath of collective excitations are inevitably present
at nonzero temperature and constitute a primary candidate to
explain relaxation. We expect that the interaction of the BEC
with this bath acts to restore thermodynamic equilibrium, i.e.,
a BEC with all atoms in m = 0 for q0 > 0, with a small
decrease of the condensed fraction fc. This is indeed what we

observe in Fig. 2(c), with a typical relaxation time (∼1 s) that
depends on q0 [26].

2. Phenomenological modeling of the dissipation

An ab initio theoretical description of the thermalization
dynamics in a spinor BEC would require to go beyond the
Bogoliubov [51,56,57] or classical field [39] descriptions that
are applicable only at short times. In this work, we study relax-
ation over several seconds, i.e., several hundred or thousands
of times the intrinsic timescales h/Us ∼ 30 ms and h/2q0 ∼
1 ms set by interactions and QZE, respectively. To the best of
our knowledge, no general framework is available to describe
strongly out-of-equilibrium dynamics for single-component
gases, let alone spin-1 systems.

Therefore, in order to describe the experimental observa-
tions and gain some insight on the dynamics, we take in this
work a phenomenological approach. Following [13,17,26,58],
we add “by hand” a dissipative term to the coherent spin-
mixing equations of motions, Eqs. (8) and (9):

ṅ0 = ṅ0|coh + ṅ0|diss, (13)

θ̇ = θ̇ |coh + θ̇ |diss. (14)

The first dissipative model (DM 1) that we consider was
originally proposed in Ref. [26]:

DM 1: ṅ0|diss = 0, θ̇0|diss = β1ṅ0. (15)

Liu et al. argue that the dissipative term in Eq. (15) is
the only term linear in n0, θ, ṅ0 or θ̇ that can explain their
measurements [26]. Anticipating the results in the driven case
that will be presented later, we have found that the dissipative
model 1 can reproduce our experimental results without driv-
ing but fails to predict the observed steady state in the strongly
driven case. This motivated us to explore other dissipative
models, not necessarily linear in n0, θ or their derivatives. We
propose in this article the alternative

DM 2: ṅ0|diss = −β2n0(1 − n0)θ̇ , θ̇0|diss = 0. (16)

In the context of cold atoms, similar dissipative terms have
been proposed [13,17,58], mainly in analogy with those de-
scribing Ohmic dissipation in SCJJs. The DM 1 corresponds
to a resistor connected in series with the junction, and the
DM 2 to a resistor in parallel with the junction (“resistively
shunted junction model”). The dimensionless phenomeno-
logical constants β1, β2 are real numbers, which are chosen
positive to ensure that the energy Es always decreases. Indeed,
the dissipated power reads for a time-independent QZE

Pdiss = dEs

dt
= ṅ0

∣∣∣∣
diss

∂Es

∂n0
+ θ̇

∣∣∣∣
diss

∂Es

∂θ
, (17)

which simplifies into P (1)
diss = − h̄

2 β1ṅ2
0 for DM 1 and P (2)

diss =
− h̄

2 β2n0(1 − n0)θ̇2 for DM 2. In both cases we find energy
dissipation provided that the phenomenological damping co-
efficients β1/2 � 0.

3. Relaxation in the nondriven case

For long times, the population n0 displays oscillations on
top of a slowly varying envelope n0, where the double bar
denotes a coarse-grained average over a time long compared
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to the period of the spin-mixing oscillation h/(2q0) but short
compared to the relaxation time τ1/2. In Appendix C, we
show that the solution of the DM 1 is well approximated
at long time by

DM 1: n0 ≈ 1 − τ1

t
, (18)

with τ1 = h̄q0/(β1U 2
s ). The DM 2 predicts

DM 2: n0 = n0,i

n0,i + (1 − n0,i )e−t/τ2
, (19)

with τ2 = 2h̄/(β2q0). Here n0,i is the initial value of n0.
We have compared the predictions of the two models to the

experimental results shown in Fig. 2(c). For this comparison,
we account for a small but nonzero thermal fraction. The
measured population in m = 0 can be written

n0 = fcn0,c + n′
0, (20)

with n0,c = N0,c/Nc (resp. n′
0) the fraction of condensed (resp.

noncondensed) atoms in m = 0. Here Nm,c denotes the popu-
lation of condensed atoms in the m state, Nc = ∑

m Nm,c the
number of condensed atoms, fc = Nc/N the condensed frac-
tion, and N the total atom number. We assume for simplicity
that thermal atoms are distributed equally among all Zeeman
sublevels, so that n′

0 = (1 − fc)/3.
We use Eq. (20) in combination with the dissipative models

1 or 2 for n0,c to fit the experimental data in Fig. 2(c), using
fc and the relaxation times τ1/2 as free parameters. We find
comparable best-fit parameters for both models: fc ≈ 0.85(2),
τ1 ≈ 0.18(2) s for DM 1, fc ≈ 0.80(2), τ2 ≈ 0.86(10) s for
DM 2. The corresponding phenomenological damping pa-
rameters are β1 ≈ 0.20(2) and β2 ≈ 1.30(15)×10−3. The two
dissipative models fit well our measurements in Fig. 2(c), with
a small difference that appears at long times but which is
not statistically significant. We conclude that discriminating
between the two models is difficult in the undriven case. We
will see later in the article that this is no longer the case in
the driven case, where the differences are spectacular at long
times.

III. NONLINEAR SHAPIRO RESONANCES

We now turn to the main topic of this paper, where a
sinusoidal modulation of the QZE with frequency ω drives
the spinor dynamics. We are interested in the case where h̄ω

and q0 are comparable, allowing for a resonant behavior of the
system (Sec. III A). We focus in this section on the short-time
dynamics, where the effect of dissipation is negligible. In
Sec. III B, we model the evolution close to a resonance by sec-
ular equations of motion, which depend on two time-averaged
variables n0 and φ. The quantity n0 is the average of the
population n0 over the time period 2π/ω. The definition of the
secular phase φ is more involved and will be made explicit in
Sec. III B. We then explain how to access experimentally the
value of φ (Sec. III C). We finally show that our experimental
results in this short-time regime are in excellent agreement
with the prediction of the secular equations (Sec. III D).

A. Observation of Shapiro resonances

In all what follows we use a sinusoidal modulation of the
QZE around a bias value q0 according to

q(t ) = q0 + �q sin(ωt + ϕmod) �(t ), (21)

with �(t ) the Heaviside step function. Experimentally, the x
component Bx of the magnetic field is static, and the y compo-
nent By = �B cos[(ωt + ϕmod)/2 + π/4] �(t ) is modulated
in a sinusoidal fashion. The QZE is given by Eq. (21), with
q0 = αq(B2

x + �B2/2) and �q = αq�B2/2.
In a perturbative picture, spin-mixing resonances occur

when a pair of atoms in m = 0 can be resonantly transferred to
a pair m = ±1 by absorbing an integer number k of modula-
tion quanta, i.e., when kh̄ω = 2q0. We define the detuning by

h̄δ = 2q0 − k0 h̄ω, (22)

with k0 the closest integer to 2q0/(h̄ω).
The left column of Fig. 3 shows how the population n0

evolves in time for several values of the modulation frequency
ω close to the first resonance with k0 = 1, such that δ � q0.
The dynamics of n0 can be described as the combination of
(i) a fast (frequency ω � 2q0/h̄) micromotion with a small
amplitude, visible in the inset of Fig. 3(a1), and (ii) a slow
oscillation with a large amplitude. The period of the slow
oscillation is a hundred milliseconds or more, much longer
than the intrinsic timescales set by the drive period, the QZE,
or the spin-dependent interactions. This slow dynamics is the
result of the coherent buildup over hundreds of periods of the
micromotion. The slow “Shapiro oscillations” observed near
resonance can be viewed as the counterpart for our closed
system of the dc current observed near Shapiro resonances in
modulated SCJJs.

Figure 4 shows the generic behavior observed for longer
times, where we observe (i) a damping of the contrast of
the oscillations on a timescale of several hundred millisec-
onds, and (ii) a drift of the baseline value of n0 towards
the equilibrium value without driving, n0 = 1. We attribute
the damping (i) mainly to fluctuations of the experimental
parameters, leading to shot-to-shot fluctuations of the pe-
riod and amplitude of the oscillations and therefore to their
dephasing after averaging over several realizations of the
experiment. We believe that the main contribution comes
from small (�N/N ∼ 8 %) fluctuations of the atom number.
These fluctuations induce fluctuations �Us/Us ∼ 6 % of the
N-dependent interaction strength Us [see Appendix B for the
calibration of the dependence Us(N )].

We show in Figs. 3 and 4 the theoretical results obtained
by solving numerically Eqs. (8) and (9) with the dissipative
term (16) for different interaction strengths Us, and aver-
aging over a Gaussian distribution of Us with mean and
variance deduced from the measured atom number statistics.
We checked that for relatively short times (say, <200 ms), the
dissipation plays a negligible role and the observed damp-
ing of the oscillations is essentially due to the fluctuations
of Us.

In the remainder of this section, we focus on the initial
oscillations shown in Fig. 3, neglecting the role of dissipation,
and postpone the discussion of relaxation at long times to
Sec. IV.
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FIG. 3. Observation of secular oscillations near the first Shapiro
resonance k0 = 1. We show the relative population n0 (a-c1) and
phase φ (a-c2) vs time. The parameters in (a1-2, b1-2) correspond
to the oscillating regime of the pendulum model, while (c1-2)
corresponds to the clockwise-rotating regime. The lines show the
numerical solutions of the dissipative model 2 [Eq. (16)] with β2 =
1.3×10−3. The calculated curves are further averaged to account for
experimental fluctuations of Us (see text). The last panel (d) shows
a phase-space portrait of the trajectories in the (φ, φ̇) plane, with
φ̇ calculated from Eq. (24). The dashed blue, solid purple, and
dashed-dotted green line correspond to (a1-2), (b1-2), and (c1-2),
respectively. The shaded area covers the phase-space region explored
in the oscillating regime of the pendulum model. In the main pan-
els, the observation times are integer multiple of the modulation
period T = 2π/ω. The data are thus a stroboscopic observation of
the secular dynamics, free of the additional micromotion. The two
insets in (a1) (with a smaller time sampling) show the micromotion
around the main secular oscillation. The static bias is q0/h = 276 Hz,
the modulation amplitude �q/h = 43.6 Hz (κ � 0.08), and Us/h ≈
30 Hz. The detuning is δ/2π = −5.7 Hz (a1-2, b1-2) and 18 Hz
(c1-2). For curves (b1-2), we varied the initial phase (see text) to be
in the harmonic regime: θ (0) = −0.5(2) rad for (a1-2), (c1-2) and
1.45(2) rad for (b1-2).

B. Secular equations for near-resonant driving

For our experimental situation with q0 � Us and for a
modulation frequency close to the k0 Shapiro resonance
(|δ| � q0), we derive in Appendix D 1 effective equations of
motion for the slowly evolving components by averaging over

(a) (b)

FIG. 4. (a) Damping of Shapiro oscillations. The solid blue curve
is calculated from the dissipative model 2 (DM 2) and averaged
over the fluctuations of Us caused by atom number fluctuations (see
text). The shaded area corresponds to the standard deviation of the
distribution of n0 induced by these initial fluctuations. The static bias
is q0/h = 276 Hz, the detuning δ/2π = −18 Hz, and the modulation
amplitude �q/h = 218 Hz (κ � 0.36). The interaction strength is
Us/h ≈ 32 Hz for t = 0 and decays to ≈20 Hz for t = 40 s due to
atom losses during the hold time in the optical trap. (b) Long-time
relaxation of the secular population n0 to a steady state. We attribute
the small upward drift of the steady-state population to the decay
of Us.

the fast micromotion. These secular equations of motion read

h̄ṅ0 = 2κUsn0(1 − n0) sin φ, (23)

h̄φ̇ = −h̄δ + 2Us(1 − 2n0)(1 + κ cos φ). (24)

Here, n0 is the time average of n0 over one modulation period
T = 2π/ω, and the secular phase φ is related to the time
average θ of the phase by

φ = θ + k0(ωt + ϕmod + π/2). (25)

The interaction terms driving the spin dynamics are renormal-
ized by a factor

κ = Jk0

(
2�q

h̄ω

)
, (26)

with Jk the kth-order Bessel function of the first kind. Note
that our modulation scheme is limited to �q < q0. Together
with the secular approximation, this implies that 0 < κ < 1.

The secular equations (23) and (24) have a structure sim-
ilar to the original spin-mixing equations (8) and (9) with
the replacements q → −h̄δ/2 and eiθ → κeiφ . Accordingly,
Eqs. (23) and (24) derive from the classical Hamiltonian of the
secular motion with the canonical momentum pφ = h̄n0/2,

Hsec(pφ, φ) = Esec(n0 = 2pφ/h̄, φ) (27)

and

Esec(n0, φ) = − h̄δ

2
n0 + Usn0(1 − n0)(1 + κ cos φ). (28)

The different dynamical regimes are best understood in the
limit of small driving, κ � 1. We show in Appendix D 2 that
the secular equations (23) and (24) reduce for κ → 0 to those
describing the motion of a one-dimensional rigid pendulum
of natural frequency � = √

2κUs/h̄, with the secular phase
φ representing the angle of the pendulum. The pendulum
admits two dynamical regimes, either oscillations around the
stable equilibrium point φ = 0 or full-swing rotations with φ
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running from 0 to 2π . The period of the oscillations diverges
at the transition between the two regimes.

The same qualitative conclusions hold outside of the weak
driving limit. A numerical solution of the equations of mo-
tion shows that the positions of the resonance and of the
separatrix shift to slightly higher frequencies with increasing
driving strength. From Eq. (25), we note that the regime of
small oscillations (φ ≈ 0) corresponds to an atomic phase
θ ≈ −k0(ωt + ϕmod + π/2) locked to the drive. Conversely,
the regime of full-swing rotations (φ ≈ −δt) corresponds to
a free-running atomic phase θ ≈ −2q0t/h̄, barely affected by
the drive.

C. Measurement of the secular phase φ

In order to observe the two dynamical regimes, we now
concentrate on the evolution of phase φ, since the population
n0 oscillates in both cases. We measure the secular phase
using a variant of the method of Sec. II B 2 that allows us
to lift the phase ambiguity. We measure cos θ as before for
stroboscopic times tp = pT and a quarter of period later tp +
T/4, with p a positive integer and T = 2π/ω the period of the
modulation. Assuming φ(tp) ≈ φ(tp + T/4) (in accordance
with the secular approximation), we obtain, after converting
θ to φ using the definition of the latter in Eq. (25), a simulta-
neous measurement of sin φ(tp) and cos φ(tp) at stroboscopic
times tp.

Obtaining confidence intervals on the measurement of φ

is far from obvious. The statistical spread of sin φ(tp) and
cos φ(tp) can be quantified using the quantity S = 〈cos φ〉2 +
〈sin φ〉2, equal to 1 if φ is perfectly determined and vanishing
for φ completely random. We find that S decreases with a
characteristic timescale ∼200 ms. Physically, we attribute this
decay essentially to the fluctuations of Us coming from atom
number fluctuations translating into a phase spread increasing
with time. Mathematically, the probability distribution P (φ)
of φ that derives from our expected distribution of Us has
a complicated shape due to the nonlinearities of the spin-
mixing equations. We did not pursue a sophisticated statistical
analysis accounting for the peculiarities of P (φ) and use
instead the quantity S introduced above to estimate when the
measurement of the phase is reliable. We arbitrarily choose
the criterion S � 1/2 corresponding to measurement times
t � 200 ms.

In an ideal experiment strictly described by Eq. (21), the
modulation would be turned on instantaneously at t = 0. The
initial phase θ (0) = 0 would then be determined by the prepa-
ration of the initial state. In practice, a small delay of �t =
100 μs is present between the preparation and the beginning
of the modulation. In addition, the modulation settles to the
form in Eq. (21) after 1–2 ms due to the transient response of
the coils used to generate the modulation By. During this short
transient (�h̄/Us) the populations barely evolve, but the phase
changes because of the QZE. Both effects can be incorporated
as an initial phase shift

θ0 = −2

h̄
×

[
q0�t +

∫ +∞

0
[q̃(t ) − q(t )]dt

]
. (29)

Here q̃ denotes the instantaneous QZE actually experienced
by the atoms and q(t ) the ideal steplike profile. The extra

(a) (b)

FIG. 5. Period (a) and amplitude (b) of the secular oscillations vs
detuning δ for the same parameters as in Fig. 3. The solid blue lines
show the numerical solutions of Eqs. (8) and (9), and the dotted black
lines the analytical solution of the pendulum model.

phase shift is θ0 ≈ −0.5 rad for the data in Figs. 3(a1-2).
We can also purposely insert a variable delay between the
preparation step and the start of the modulation to tune the
initial phase θ0. We used this technique to record the data
in Fig. 3(b1-2), which are otherwise obtained for identical
conditions as in Fig. 3(a1-2).

We plot in Fig. 3 (right column) the results for φ for the
first resonance k0 = 1. For small detuning, the phase oscillates
around φ = 0, i.e., the dynamics of the BEC phase is phase-
locked with the drive [Fig. 3(a1-2) and (b1-2)]. The excursion
of the phase away from φ = 0 depends on the detuning and
the initial phase, which we can tune [Fig. 3(b1-2)] to have
φ(t = 0) � 0. For a given initial phase, when δ exceeds a
critical value corresponding to the transition between the two
dynamical regimes, phase locking no longer occurs and the
BEC phase runs freely from 0 to 2π , corresponding to the
“rotating pendulum” case [Fig. (c1-2)].

D. Period and amplitude of the secular oscillations

We extract the amplitude and period of the secu-
lar oscillations by fitting a periodic function n0(t ) =∑3

j=0 a j cos( jt/Tsec + φ0) to the data. We restrict the fit to
the first two periods of the secular motion, with the amplitude
a j ∈ R of the harmonics and the initial phase φ0 as free
parameters. Figure 5 shows the period Tsec and amplitude for
the first resonance k0 = 1 versus detuning. The results agree
well with a numerical solution of Eqs. (8) and (9) (i.e., without
taking dissipation into account) and with the pendulum model.
Close to resonance, the measured amplitude is systematically
lower than the theoretical prediction. This can be qualitatively
explained by the presence of noncondensed atoms that do not
participate in the coherent secular dynamics.

IV. LONG-TIME RELAXATION AND STEADY STATE

In this section, we focus on the state reached for long
evolution times, after relaxation has taken place. We observe
that after the damping of the slow, large-amplitude Shapiro
oscillations, the population n̄0 reaches a steady state that
persists for tens of seconds [59]. We characterize this steady
state and show that it can differ from the equilibrium points of
either the undriven Hamiltonian H or the secular Hamiltonian
Hsec. We then take explicitly into account the dissipation using
the two models DM 1 and DM 2 introduced in Sec. II C 2. We
show that DM 2 leads to predictions in good agreement with
our observations, whereas DM 1 is clearly excluded. Then we
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(a)

(b)

FIG. 6. (a) Measured population n0 as a function of detuning δ

after a relaxation time of 10 s. The experiment is performed near the
first resonance k0 = 1 (h̄ω ≈ 2q0) with n0,i = 0.5. The static bias is
q0/h ≈ 277 Hz, the modulation amplitude is �q/h ≈ 227 Hz (κ �
0.4), and the interaction strength is Us/h ≈ 26 Hz. (b) Numerical
solutions of the dissipative models 1 [Eq. (15), brown squares] and
2 [Eq. (16), black empty diamonds]. In both panels, the horizontal
blue (respectively oblique green) line corresponds to the stationary
state S1 (resp. S+). The solid (resp. dotted) segments correspond to
the stable (resp. unstable) region according to DM 2 (see Sec. IV B).

study the new fixed points that can appear in the presence of
this dissipation, and discuss their stability. In particular, there
exist some regions of parameter space where two dissipative
fixed points can be simultaneously stable or metastable. This
leads to hysteretic behavior observe experimentally.

A. Observation of a nonequilibrium steady state

Figure 6 shows a typical measurement for strong driving
(κ = 0.38) near the first resonance k0 = 1. We monitor how
the steady-state value changes as a function of detuning δ.
We find that the system relaxes to n0 ≈ 1, except in a range
of negative detunings close to the resonance where the popu-
lation n0 takes values between ∼0.5 and 1. The steady state
reached in this strongly driven situation does not correspond
to the thermodynamic equilibrium point in the absence of
modulation, i.e., the ground state of H defined in Eq. (11) with
q(t ) = q0, obtained for n0 = 1. It does not correspond either
to the minimum of the secular Hamiltonian Hsec defined in
Eq. (27), obtained for n0 = 1 for δ > 0 and n0 = 0 for δ < 0.
This contrasts strongly with the nondriven case where the
thermodynamic equilibrium state n0 ≈ 1 is always observed
at long times.

In the experimental results shown in Fig. 1(c), we observe
the same behavior for higher resonances, up to k0 = 8 (limited
by the maximal magnetic field we can produce). In order to
record this set of data, we set ω/2π = 100 Hz and scanned
simultaneously the bias value q0 and driving strength �q,
keeping �q/q0 and therefore the secular renormalization fac-
tor κ approximately constant. After a wait time of 30 s, we ob-
served that the system relaxes for all k0 to the same stationary
state as for the first resonance. In the following, we therefore
concentrate on the case k0 = 1 as in the previous section.

We use the same dissipative models introduced in
Sec. II C 2 to explain the experimental observations. We show
in Fig. 6(b) the result of a direct numerical solution (with no
secular approximation) of Eqs. (13) and (14) for the dissipa-
tive models 1 and 2. We observe that DM 1 fails to reproduce
the measured steady-state populations, while DM 2 predicts
a long-time behavior consistent with the experimental results.
This contrasts with the undriven case, where both models lead
to similar predictions. In the following, we specialize to the
DM 2 and explore its consequences for the long-time steady
state.

B. The fixed points and their stability

We now look for (possibly metastable) secular solutions
of dissipative model 2 where the population n0 is stationary.
We derive generalized secular equations as in Sec. III, starting
from Eqs. (13), (14), and (16) defining the DM 2. Observing
from Eq. (25) that θ̇ ≈ −ω + φ̇, we find

h̄ṅ0 = n0(1 − n0)(2κUs sin φ + β2h̄ω − β2h̄φ̇). (30)

The phase dynamics is still determined by Eq. (24). From
Eq. (30), we identify four possible states for which ṅ0 = 0.

The first two states correspond to n0 = 0, 1. In these two
limiting cases, the relative phase θ (and thus φ) is physically
irrelevant and can take any value. These two solutions, labeled
S0, S1 in the following, correspond to “limit cycles” in the
language of dynamical systems [60]. The other two stationary
states, labeled S±, correspond to fixed points of the dissipative
equations of motion where ṅ0 = φ̇ = 0. They correspond to
the secular phases φ+ = ε, φ− = π − ε, where the angle ε

obeys sin ε = −β2 h̄ω/(2κUs). The populations at the fixed
points are

n0,± = 1

2

(
1 − δ

δ±

)
, (31)

h̄δ± = 2Us(1 ± κ cos ε) . (32)

(a) (b)

FIG. 7. Fixed points of the dissipative spin-mixing model 2.
(a) Phase-space portrait of the stationary solutions of Eqs. (23)
and (24). The two limit cycles are labeled S0 (n0 = 0, solid orange
line) and S1 (n0 = 1, solid blue line) and the two fixed points
S+ (green dot) and S− (red diamond). The black lines show typ-
ical trajectories in the oscillating (dashed line) or rotating (dash-
dotted lines) regimes. The shaded area covers the oscillating regime.
The plot is shown for δ/2π = −10 Hz, Us/h = 25 Hz, κ � 0.38
(δ−/2π � 32 Hz), and a damping coefficient β2 → 0+. (b) Table
summarizing for β2 → 0+ the ranges of detuning where each sta-
tionary solution is stable (“s”) or unstable (“u”). The boundaries δ±
are defined after Eq. (31).
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Figure 7(a) shows the location of the stationary solutions in
a secular phase-space portrait (n0, φ). For each sign of the
detuning δ, one of the two limit cycles S0,1 corresponds to
the minimum of the secular energy Esec. The fixed point S+ is
always the maximum of Esec and S− is a saddle point.

Dissipation must be present, but not too strong, in order
to ensure the existence of an attractive fixed point of the
dynamics. Indeed, the fixed points S± disappear when β2 �
2κUs/(h̄ω). If the dissipation strength β2 is too large or the
driving strength too small, the drive cannot provide enough
energy to overcome the dissipation and create a metastable
state. This is confirmed by other experiments that we per-
formed with a weaker driving strength κ ∼ 0.08, where we
found that the relaxation to the fixed point was less robust
than that shown in Fig. 6.

For the experiments shown in Fig. 6, we find φ+ ≈ 0.04
corresponding to the weak dissipation limit, ε ∝ β2 → 0+.
In this situation, the positions of the fixed points are well
approximated by h̄δ± ≈ 2Us(1 ± κ ). They are therefore
independent of the precise value of β2 to first order in the
small parameter ε.

We study the dynamical stability of the stationary solutions
in Appendix F for a phenomenological damping coefficient
β2 → 0+. We summarize the results in Fig. 7(b). The drive
destabilizes S1 in a small region of positive detunings around
the resonance, while S0 is always unstable because of the
dissipation. The fixed point S+ is stable only for δ < 0, while
S− is always unstable.

At first glance, one may expect that energy dissipation
always induces relaxation to an energy minimum. In fact, at
the fixed point S±, the atomic phase locks to the drive with a
small phase lag such that the power absorbed from the drive
exactly compensates the power loss due to dissipation. This
phase-locking enabled by dissipation stabilizes the system
in a highly excited state (Appendix D 3), reminiscent of the
dissipative phenomenon leading to Shapiro steps in SCJJs [4].

C. Interpretation of experimental results

We can now interpret the experimental findings of Fig. 6.
The position of the stable fixed point S+ in the limit β2 → 0+
is shown in Fig. 6 and explains well the observed steady-
state populations for δ ∈ [−δ+, 0]. Outside this window, the
system relaxes to the equilibrium state S1 with n0 ≈ 1. We
interpret the observed “trapping” in the state S+ as follows. A
system prepared with n0,i ≈ 0.5 tends to relax to the ground
state S1 of H, as observed for |δ| > δ+ where there is no
fixed point. For δ ∈ [−δ+, 0], the derivative of the phase φ̇

diminishes in absolute value as n0 increases because of the
dissipation, and it progressively vanishes. At this point, which
corresponds to S+, ṅ0 also vanishes and the system remains
trapped in this state. On the contrary, for δ ∈ [0, δ+], S+
corresponds to n0,+ � 1/2 and |φ̇| increases as n0 increases.
The trajectory tends to move the system away from S+. As a
result, dissipation acts as in the undriven case and the system
eventually reaches S1.

The scenario described above explains all observations
but one. In Fig. 1(c), for very small but negative δ near
the first resonance, the system relaxes to n0 � 0.16. This
observation is consistent with thermalization in the secular

FIG. 8. Observation of hysteresis in the relative population n0

after a detuning ramp. We prepare a spinor BEC with n0,i � 1, and
scan the detuning by changing q0 for fixed ω/2π = 277 Hz and
�q/h = 227 Hz. In (a) [respectively, (b)], the ramp decreases (resp.,
increases) from δi ≈ 2.0Us/h̄ (resp., δi ≈ −3.3Us/h̄). The horizon-
tal blue (resp., oblique green) line correspond to S1 (resp., S+).
The solid (resp., dotted) segments correspond to the stability (resp.,
instability) regions. The small dots show individual measurements,
the squares their average, and the error bars their standard deviation.

Hamiltonian where the lowest energy state is n0 = 0 when
δ < 0. The residual deviation with respect to n0 = 0 observed
experimentally may be due to a nonzero thermal fraction or
an incomplete thermalization.

D. Hysteretic behavior

According to the stability diagram of Fig. 7(b), there is no
single stationary solution that would be stable for all detunings
δ. Furthermore, there are two stable solutions S+ and S1 in the
interval [−δ−, 0]. In such a situation, one can expect some
hysteretic behavior, which we searched for using a slightly
different procedure than in the rest of the article.

We prepared a BEC in the state m = 0 such that n0,i ∼ 1
(up to thermal atoms in m = ±1). We apply the modulation
as before but slowly ramp the static bias q0 over a ramp time
of 3 s and then hold the driven system at the final q0 value for
7 s. This amounts to a slow ramp of the detuning δ decreasing
(respectively, increasing) from δi to δ f in Fig. 8(a) [resp.,
Fig. 8(b)]. For decreasing ramps with δi > δ+, the system
remains in S1 in the domain δ > −δ− where S1 is stable. Con-
tinuing the ramp further, S1 becomes unstable and we find that
the system relaxes to S+ as in the previous experiments. Con-
versely, for an increasing ramp starting from δi < −δ+, the
system follows S+ while it is stable, i.e., for δ f ∈ [−δ+, 0] and
S1 otherwise. We therefore observe a hysteresis cycle span-
ning the interval δ ∈ [−δ−, 0] where both S1 and S+ are stable.

V. CONCLUSION

In conclusion, we have observed the analog for a driven
spin-1 BEC of the Shapiro resonances characteristic of the
ac Josephson effect in SCJJs. The population dynamics near
each resonance corresponds to a slow and nonlinear secular
oscillation on top of a rapid micromotion. We have found that
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the driven spin-1 BEC relaxes at long times to asymptotic
states phase-locked to the drive and that are not stable without
it. We proposed a phenomenological model of dissipation
that describes quantitatively the relaxation process and its
outcome. The dynamics in the driven case allows us to
discriminate between different phenomenological models, in
contrast to the situation without driving where these different
models lead to similar predictions.

The microscopic origin of the dissipation remains to
be investigated. While dissipation probably comes from in-
teractions between condensed and noncondensed atoms, a
quantitative description of these interactions and of the re-
sulting thermalization process is lacking. The procedure we
used in this paper led to a set of dissipative equations which
are essentially generalized Gross-Pitaevskii equations. While
we have found excellent agreement between the experimental
results and the predictions of these equations, our procedure
is purely phenomenological, and whether these generalized
Gross-Pitaevskii equations can be derived from first principles
or not remains an open question. A detailed microscopic study
of dissipation in this setup would also be useful to understand
other types of driven quantum gases where an optical lattice
potential [61] or the interaction strength [62] are modulated.

Another interesting question is related to the occurrence
of deterministic chaos in a spinor BEC [63]. Without driving,
chaotic behavior can be ruled out for a spin-1 BEC on the
basis of the Poincaré-Bendixson theorem [60]: the dynamics
is indeed obtained from the one-dimensional Hamiltonian H,
with only two variables θ and pθ ∼ n0. To allow for a chaotic
behavior, one needs to consider higher spin BECs [64] or
driven spin-1 BECs [63], with time playing the role of a third
variable. However, when the secular approximation holds, we
recover an effective time-independent one-dimensional prob-
lem with the Hamiltonian Hsec(pφ ∼ n0, φ), which excludes
again a chaotic behavior. One thus expects to find chaos only
in situations where the secular approximation breaks down.
Using the nondissipative spin-mixing equations and adapting
the methods of [63] to our system, we have found numerically
that chaos can be present in the vicinity of Shapiro resonances
for strong modulation and small bias, �q ∼ q0 ∼ Us. For
almost all experiments reported in this paper, where q0 � Us,
we did not find any evidence of chaotic behavior. The only
exception is the situation investigated in Fig. 1(c), where
q0 � h×100 Hz is only 3 times larger than Us. The deviation
from the fixed point near δ = 0 for the first resonance could
be connected to the onset of chaotic behavior, which is an
interesting direction to explore in future work.

Finally, a promising application of driven spinor gases
is the dynamical control of the strength of spin-mixing in-
teractions, viewed as a matter-wave equivalent of paramet-
ric amplifiers in quantum optics. Such parametric ampli-
fiers are phase sensitive and are also known to generate
squeezing (see [30,32,65] for the spinor case). This enables
interferometric measurements below the standard quantum
limit [29,31,66,67]. A promising direction for the develop-
ment of devices operating at the Heisenberg limit are the
so-called SU (1, 1) interferometers [31,67], which can be
viewed as Mach-Zehnder interferometers where the beam
splitters are replaced by parametric amplifiers. As shown in
Appendix E, the quantum version of the secular single-mode

Hamiltonian [20] is renormalized by driving as in the mean-
field Gross-Pitaevskii framework. This implies that spin-
mixing collisions can be enabled by moving close to a
Shapiro resonance for a controllable duration and then dis-
abled by detuning the system away from resonance. Such
dynamical control over the spin-mixing process could sig-
nificantly improve the performances of matter-wave SU (1, 1)
interferometers [31].
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APPENDIX A: ADIABATIC FOLLOWING

We consider a gas of spin-1 atoms in a magnetic field
B = B(t )u(t ) with time-dependent amplitude B and orienta-
tion u. We take the instantaneous direction u(t ) of B as the
quantization axis. The label m = 0,±1 then corresponds to
the instantaneous Zeeman state |m〉u, i.e., the eigenstate of
f̂ · u with eigenvalue m, with f̂x,y,z the spin-1 matrices. The
atomic spins precess around u at the characteristic Larmor
frequency ωL = μBB/2. The atom internal state follows adia-
batically changes of B and u if the adiabatic condition ω̇L �
ω2

L holds at all times. Here the dot denotes a time derivative.
In our experiment, this condition can also be written ωBy �
ωL|B|. In most of this work, the Larmor frequency is around
ωL ∼ 2π×0.7 MHz. Since By � |B|, the sufficient condition
ω/ωL ∼ 10−3 � 1 is always fulfilled.

APPENDIX B: CALIBRATION OF Us

We calibrate the interaction strength Us using the well-
established behavior of spin-mixing oscillations without driv-
ing [21–25]. For a given total atom number N , we fit the
observed population oscillations with the numerical solutions
of Eqs. (8) and (9), treating Us as a free parameter, all other
parameters being kept constant. We show the fitted values
of Us versus N in Fig. 9. The dependence on atom number
reflects the fact that our experiments are in the crossover

FIG. 9. Interaction strength Us measured for different atom num-
bers. The black solid line is a heuristic fit (see main text). The QZE
is static and equal to q0/h ≈ 0.7 Hz � Us (Bx ≈ 50 mG).
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between the ideal gas (where Us is independent of N) and
the Thomas-Fermi regime (where Us ∝ N2/5). We use the
heuristic function Us(N )/h = a[1 + (N/N0)b] to calibrate the
dependence, with best-fit parameters a � 20 Hz, b � 3.5, and
N0 � 19 000. Small fluctuations of N induce fluctuations of
Us according to δUs = ab(N/N0)bδN/〈N〉. In our experiment,
we have typically 〈N〉 � 13 000 and δN � 1 000, which cor-
respond to 〈Us〉/h̄ � 25 Hz and δUs/h̄ � 1.5 Hz.

APPENDIX C: RELAXATION OF SPIN OSCILLATIONS
WITHOUT DRIVING

The spin dynamics without driving consists of a “fast” evo-
lution of the population and of the relative phase θ superim-
posed on a slowly varying envelope n0. In the limit q0 � Us,
the envelope of n0 relaxes to n0 = 1 over times long compared
to the period ∼h̄/(2q0) of spin-mixing oscillations. Averaging
in a time window long compared to this period, we obtain
effective equations for n0 that can be solved analytically. For
the dissipative model 1 with the initial condition n0(0) = n0,i,
we find that n0 obeys the implicit equation f (n0) = f (n0,i ) +
t/τ1, with f (x) = 2 ln[x/(1 − x)] + (2x − 1)/[x(x − 1)] and
τ1 = h̄q0/(β1U 2

s ). For t � τ1, the solution is well approxi-
mated by Eq. (18). For the dissipative model 2, we obtain
Eq. (19) by direct integration.

APPENDIX D: SECULAR DYNAMICS

1. Derivation of the secular equations

In this section, we derive the secular equations (23)
and (24). Integrating formally Eq. (9), we rewrite θ = α − 2p,
where

p(t ) = 1

h̄

∫ t

0
q(t ′)dt ′ = p − η

2
cos(ωt + ϕmod). (D1)

Here p = q0t
h̄ + χ

2 , and α verifies h̄α̇ = 2Us(1 − 2n0)(1 +
cos θ ). We introduced a modulation index η = 2�q/(h̄ω) and
an initial phase χ = η cos ϕmod.

We now assume that the driving frequency is close to a
parametric resonance, i.e., ω ∼ 2q0/(h̄k0), for some integer
k0, and that q0 � Us. All physical variables feature in general
a large-amplitude secular motion occurring on timescales
much longer than the modulation period, plus rapidly varying
terms oscillating at harmonics of 2q0/h̄ that describe the
micromotion. In the regime q0 � Us, the amplitude ∼Us/q0 of
the micromotion of n0 and α is small. Taking the time average
over one period of the modulation, · = 1

T

∫ T
0 dt ·, eliminates

the micromotion in Eqs. (8) and (9),

h̄ṅ0 ≈ 2Usn0(1 − n0)sin θ, (D2)

h̄α̇ ≈ 2Us(1 − 2n0)(1 + cos θ ). (D3)

We compute the time average of trigonometric func-
tions of θ using the Jacobi-Anger expansion, eia sin(θ ) =∑+∞

k=−∞ Jk (a)eikθ , with Jk a Bessel function of the first kind.

Neglecting the micromotion of α, we can write eiθ ≈ eiαe−2ip,
with

e−2ip =
+∞∑

k=−∞
Jk (η)e

i
(
− 2q0

h̄ +kω
)

t+ik(φmod+π/2)−iχ
. (D4)

The term k = k0 in the expansion gives rise to a slowly
varying secular contribution, while all other terms average
out over one period of the modulation. Neglecting the non-
resonant terms, we obtain e−2ip = κeiζ (t ) , with h̄δ = 2q0 −
k0 h̄ω, ζ (t ) = k0(φmod + π/2) − χ − δt , and κ = Jk0 (η). This
finally leads to

eiθ ≈ κeiφ, (D5)

where the secular phase φ = ζ + α is defined as

φ = −δt + α + k0(ϕmod + π/2) − χ. (D6)

Equations (23) and (24) follow from Eqs. (D2), (D3), (D5),
and (D6).

From Eq. (D6), we can relate φ to the atomic phase, θ =
φ − k0(ωt + ϕmod + π/2) . This equality shows that when φ

is oscillating, θ also oscillates around the phase of the drive
−k0(ωt + ϕmod + π/2), up to a constant.

2. Rigid pendulum model

In the weak driving regime, κ � 1, the κ cos φ term in
Eq. (24) is negligible. Moreover, the amplitude of variation
of n0 is small. To prove the last point, we integrate Eqs. (23)
and (24) and obtain the implicit equation [g(x)]n0(t )

n0,i
=

−κ[ cos x]φ(t )
φi

, with g(x) = (1 − h̄δ
2Us

) ln ( x
1−x ) + 2 ln(1 − x) .

This implies that the amplitude of variation of n0 is indeed
small when κ � 1. This allows us to linearize Eq. (23).

With the initial condition n0,i = 1/2, we obtain h̄ṅ0 �
κUs

2 sin φ. Taking the time derivative of Eq. (24), we then find
that the phase obeys the pendulum equation

φ̈ + �2 sin φ = 0 , (D7)

with natural frequency � = √
2κUs/h̄. The angular velocity

of the pendulum φ̇ is determined by φ̇ = −δ + 2Us(1 − 2n0).

3. Energy balance

In this section, we compute the power delivered by the
drive in the framework of DM 2. In particular, we show that at
the fixed points S±, it compensates for the dissipated energy.
For simplicity, we focus on the first resonance k0 = 1 and
assume κ � 1.

The time derivative of the total energy is

dEspin

dt
= Pdrive + P (2)

diss , (D8)

with Pdrive = −q̇n0 , and P (2)
diss = − h̄

2 β2n0(1 − n0)θ̇2. We in-
troduce ñ0, the component of n0 oscillating at ∼ω. The
product q̇ñ0 does not vanish after taking the time average in
the expression for Pdrive.

From Eq. (D4), the k = 0 component of sin θ oscillating
at ∼ω is s̃in θ = − cos(ωt + ϕmod − φ). The amplitudes of
the sidebands near resonant with the drive [term k = 2 in
Eq. (D4)] are negligible in the limit κ � 1. Using ñ0 =
O(Us/q0) � 1 to simplify Eq. (8), we find

ñ0 = −2Us

h̄ω
n0(1 − n0) sin(ωt + ϕmod − φ) . (D9)
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Using κ � �q/(h̄ω) (true if κ � 1), the average power deliv-
ered by the drive is finally

Pdrive = −ωκUsn0(1 − n0) sin φ . (D10)

When there is no dissipation, this expression can be writ-
ten as Pdrive = −h̄ωṅ0/2. This result has a microscopic
interpretation if one treats the driving field as a quantized
electromagnetic field. One photon is absorbed to promote a
pair of atoms in the m = 0 state to a pair with one atom in
m = +1 and another in m = −1. The energy in the field is,
up to a constant, Efield = Nh̄ωn0/2 , and Pdrive corresponds to
the energy per unit time transferred back and forth from the
field to the atoms. Equation (D8) can also be interpreted as a
statement that NE spin + Efield is constant.

With dissipation, the system relaxes to the dissipative fixed
point S+ or to S0. The second case is trivial, since the drive and
dissipated power both vanish. Let us discuss the first case. At
the fixed points S+, the atomic phase is locked to the drive, i.e.,

θ̇ ≈ −ω and P (2)
diss ≈ − h̄ω2

2 β2n0(1 − n0) . The energy balance
can be rewritten as

dEspin

dt

∣∣∣∣
S+

≈ −ωn0(1 − n0)

[
κUs sin φ+ + β2h̄ω

2

]
. (D11)

The term in brackets in the right-hand side of Eq. (D11)
vanishes exactly, as the secular phase takes the value sin φ+ =
−β2h̄ω/(2κUs) at S+ (see Sec. IV B). At the dissipative fixed
point, the phase lag between the atomic phase and the drive
is therefore such that the power delivered by the drive exactly
compensates for the energy dissipation.

APPENDIX E: QUANTUM TREATMENT
OF THE MODULATED SMA HAMILTONIAN

We start from the SMA Hamiltonian in Eq. (2), which we
rewrite as

Ĥspin = −q(t )N̂0 + Us

2N
(V̂ + Ŵ + Ŵ †).

We defined the operators V̂ = Ŝ2
z + 2N̂0(N − N̂0) and Ŵ =

2(â†
0)2â+1â−1. Applying the unitary transformation

Û1 = e−i
∫ t

0
q(t ′ )dt ′

h̄ N̂0 = e−ipN̂0 , (E1)

the transformed Hamiltonian Ĥ ′ = Û1ĤÛ †
1 + ih̄ dÛ1

dt Û †
1 reads

Ĥ1 = Us

2N
[V̂ + Û1(Ŵ + Ŵ †)Û †

1 ]. (E2)

We introduce the Fock basis |N0, Mz〉 with N±1 = (N − N0 ±
Mz )/2. The operators Ŵ (respectively Ŵ †) only couple states
with Mz = M ′

z and N0 = N ′
0 + 2 (resp. N0 = N ′

0 − 2). As a
result, the matrix elements of Û1ŴÛ †

1 in the Fock basis are
the same as those of e−2ipŴ , implying the equality of both
operators.

We now derive an effective Hamiltonian describing the
slow secular dynamics. We proceed as in Appendix D 1,
using the Jacobi-Anger expansion to rewrite the phase factors
and taking the time average over one period of the mod-
ulation assuming small detuning δ. We obtain an effective

time-averaged Hamiltonian,

Ĥ1 = Us

2N
V̂ + κUs

2N
(eiζ (t )Ŵ + e−iζ (t )Ŵ †). (E3)

We finish the calculation with a second unitary transforma-
tion Û2 = e−i ζ (t )

2 N̂0 to obtain an effective time-independent
Hamiltonian

Ĥeff = − h̄δ

2
N̂0 + Us

2N
V̂ + κUs

2N
(Ŵ + Ŵ †). (E4)

With a mean-field ansatz for the many-body spin state, we ob-
tain from this effective Hamiltonian the same secular energy
Esec [Eq. (28)] as in the classical treatment, i.e., the mean-field
approximation and time averaging can be done in any order.

APPENDIX F: STABILITY OF THE STATIONARY
SOLUTIONS OF DISSIPATIVE MODEL 2

1. Stability of the fixed points S±

To discuss the stability of the fixed points S±, we linearize
Eqs. (30) and (24) using n0 = n0,± + δn0,± and φ = φ± +
δφ±. We find

h̄

(
δṅ0,±
δφ̇±

)
= M±

(
δn0,±
δφ±

)
,

M± =
(

0 ±2κUsn0,±(1 − n0,±) cos ε

−2h̄δ± −2κUs
δ
δ±

sin ε

)
. (F1)

The solutions are stable if the eigenvalues of the matrices
M± have negative real parts. For simplicity, we consider the
situation | sin ε| = β2h̄ω/(2κUs) � 1. One can show that the
results below hold as long as β2h̄ω/(2κUs) < 1, the same
condition as for the existence of the fixed points.

In the limit ε � 1, the eigenvalues of M+ are approxi-
mately given by X+,1 � β2h̄ω δ

2δ+
+ i

√
� , and X+,2 = X ∗

+,1 ,

with � = 8n0,+(1 − n0,+)κ (1 + κ )U 2
s . Therefore, S+ is stable

for δ < 0 and unstable otherwise. Turning to S−, the eigen-
values are X−,1 � √

� and X−,2 � −X−,1 to leading order
in β2, and S− is therefore always unstable. Note that our
conclusions are established for the experimentally relevant
case 0 � κ < 1. The roles of S± would be reversed for κ < 0.

2. Stability of the limit cycles S0,1

We focus first on S1. We consider small deviations, i.e.,
n0 = 1 − ε, and linearize Eqs. (30) and (24) to the lowest
order in ε,

−h̄ε̇ = 2κUs sin φε + 2β2q0ε , (F2)

h̄φ̇ = −h̄δ − 2Us(1 + κ cos φ) . (F3)

We integrate Eq. (F2),

[ln ε]ε(t )
ε(0) = −2κUs

h̄

∫ t

0
sin φ(t ′)dt ′ − 2β2q0t

h̄
.
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Making the change of variable t → φ and using Eq. (F3),
we find

ε(t ) = ε(0)e−4t/τ2
1 + a1 cos φ(0)

1 + a1 cos φ(t )
, (F4)

h̄φ̇ = −(2Us + h̄δ)[1 + a1 cos φ(t )] , (F5)

with a1 = 2κUs/[2Us + h̄δ] and τ2 = 2h̄/(β2q0). If |a1| < 1,
ε is bound to a vicinity of ε(0). If |a1| > 1, Eq. (F5) shows that
φ must vanish, which results in a divergency of ε. Therefore,

ε(t ) diverges iif |a1| > 1. This defines the instability region
of S1 as δ ∈ [−2Us(1 + κ ),−2Us(1 − κ )]. This result is in-
dependent of the precise value of β2 as long as it is strictly
positive. A similar calculation for S0 with ε = n0 yields

ε(t ) = ε(0)e4t/τ2
1 + a0 cos φ(0)

1 + a0 cos φ(t )
, (F6)

with a0 = 2κUs/[2Us − h̄δ]. Due to the exponential diver-
gency, we find that S0 is always unstable.
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