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I. DETAILS OF THE EXPERIMENTAL SETUP

A. Details of the experimental preparation

We prepare a Bose–Einstein condensate (BEC) of
sodium atoms in a crossed dipole trap, and perform flu-
orescence imaging after a time-of-flight expansion in a
magnetic field gradient. In detail, we suddenly (in less
than 100µs) switch off the optical trap. This marks the
beginning of the expansion t0 = 0. Before and during the
expansion, the atoms experience a horizontal bias mag-
netic field around 2 G and an additional magnetic field
gradient switched on at t0. The gradient ramps up to
its peak value (around 10 G/cm) in approximately 3 ms.
The atoms fall under gravity and also separate horizon-
tally due to the Stern–Gerlach (SG) force. We gradu-
ally switch off the magnetic gradient and bias field until
t2 = 10 ms. At t3 = 18 ms, we finally switch on the
optical molasses (OM) for a duration tmol. The separa-
tion between the m = 0 and the m = ±1 components is
dSG ∼1.32 mm.

The timing of this sequence results from a trade-off be-
tween several experimental constraints. Since the waist
(1/e2 radius) of the OM beams is limited (∼ 1 cm), atoms
eventually move out of the OM area. We limit the total
duration of the sequence to less than 30 ms to maintain
the atoms near the beam center during the whole OM
duration. In addition, the strength of the SG gradient
cannot be increased or decreased arbitrarily fast. Eddy
currents developing in the apparatus when the magnetic
fields are switched off are detrimental to the operation
of the OM. The empirically determined delay between t2
and t3 is inserted to ensure that the magnetic fields have
decayed to a sufficiently low value.

B. Optical molasses

The OM forms at the intersection of three mutually
orthogonal laser beam pairs. These beams induce res-
onant fluorescence on the F = 2 → F ′ = 3 transi-
tion of the D2 line of the Sodium atom (resonant wave-
length λ0 ≈ 589.2 nm) and simultaneously cool the atoms
in three dimensions. A repumper beam resonant with
F = 2→ F ′ = 2 is superimposed with each OM beam to
maintain cycling on the main cooling transition. We use
the same optical setup as for the magneto-optical trap
used in the beginning of the cooling sequence leading to

the production of the BEC.
We operate the OM with an intensity I = 3.1 mW/cm2

per beam. We optimize the detuning δmol/(2π) ≈
−9.9 MHz to limit the cloud expansion during the OM
phase while keeping a sizable fluorescence signal (see be-
low for a detailed analysis of both aspects).

C. Background light

Besides fluorescence photons, the imaging system
also collect spurious (“background”) signal from various
sources. The dominant part of this background light
comes from scattering of the OM beams from various
reflective parts of the apparatus, including the vacuum
chamber walls and viewports. The vacuum chamber
also hosts a background sodium gas at room tempera-
ture and very low pressure (< 10−11 mbar). The low-
energy tail of the atomic distribution can be captured in
the OM and contributes a spurious fluorescence signal.
Using “empty” images acquired without loading the op-
tical trap, we measure that the total background light
amounts to the total fluorescence from a cloud of about
one thousand ultracold atoms. Fortunately, the spatial
distribution of this background light is very broad and
easily distinguished from the fluorescence signal of inter-
est. Image processing discussed in Section II C allows us
to essentially cancel this contribution.

D. Estimation of the atomic fluorescence

We simplify the level structure of a sodium atom and
treat it as a two-level system with the same electric dipole
as the F = 2,mF = +2 → F ′ = 3,mF ′ = +3 transition.
We also assume that the contribution from each beam
can be added independently for simplicity. The mean
fluorescence rate per atom is then

Γsp =
Γ

2

s0

1 + ( 2δmol

Γ )2 + s0

≈ 1.2× 107 photons/s, (1)

with the natural linewidth Γ/(2π) ≈ 10.0 MHz, the satu-
ration intensity for a σ+ transition Isat ≈ 6.2 mW/cm2,
and the total saturation parameter s0 = 6I/Isat ≈ 3.0.
In principle this independent beam approximation should
only hold for very weak saturation levels, however it pro-
vides a relevant estimation of the expected signal in our
setup.
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II. ANALYSIS OF FLUORESCENCE SIGNAL

A. Detected photon flux

The fluorescence signal recorded on the camera results
from an integration of the collected photon flux over the
entire duration tmol of the OM phase. In our analysis,
we assume that the three Zeeman components are suffi-
ciently well separated, so that a given point r = (x, y)
in region Am of the image can be associated unambigu-
ously to a single component m (see below). We write the
fluorescence profile recorded by the camera in Am as

Ifluo,m(r, tmol) =

∫ tmol

0

dt φ̄m ρm(r, t) . (2)

To lighten notations, we use continuous coordinates r to
indicate the signal on each pixel of the camera, being un-
derstood that we are dealing with signals integrated over
each pixel area. The instantaneous atomic distribution
ρm(r, t) is normalized such that

∑
r∈Am

ρm(r, t) = Nm.

The quantity φ̄m is the detected photon flux per atom
in the Zeeman component m collected in region Am
(see Fig. 2 of the main article). Generally, this flux
is proportional to Γsp. The proportionality factor de-
pends on many experimental details, such as the solid
angle of collection of the front-end microscope objective,
the camera efficiency, and the optical losses along the
imaging path. A best-case estimate for this factor is
0.73 × NA2/4 ≈ 0.016, where the first number is the
measured efficiency of the CCD camera and the second
is a geometric collection factor for the numerical aper-
ture NA ' 0.30 [1]. This gives an upper bound for the
detected photon flux per atom

φ̄(th)
m . 195 photons/ms. (3)

Integrating Ifluo,m over the ROI Am, we obtain the
number of detected fluorescence photons,

S(fluo)
m =

∑
r∈Am

Ifluo,m(r, tmol) = Nmφ̄mtmol. (4)

In the following, we discuss the various steps leading from
the recorded fluorescence profile to the final estimation
of the atomic population Nm. We explain how the pa-
rameters tmol and the optimized region of integration A′m
are chosen. We describe image processing techniques es-
sential to reject the average contribution of background
light and to calibrate the fluxes φ̄m. We finally discuss
the noise and the sensitivity of the measurement of the
Zeeman populations.

B. Spatial diffusion in the optical molasses

We first address the spatial distribution of the fluores-
cence signal. In the remainder of this Section, we consider
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FIG. 1. Spatial variances R2(tmol) of the fluorescence distri-
bution for each Zeeman component m = +1, 0,−1. The color
points with error bars are data. A fit to the data (grey curves)
using Eq. (6) provides the arithmetic average D̄ and V̄ of the
diffusion coefficients and of the velocity. The fitted values are
given in the table.

one particular component and drop the Zeeman index m
for simplicity.

The atomic profile ρ is not stationary due to spa-
tial diffusion in the OM [2]. We model the density pro-
file ρ(r, t) by an isotropic Gaussian distribution cen-
tered at r0 = (x0, y0) and with a standard deviation
σi(t)

2 = σ2
0 + 2Dit+Cit

2 along directions i = x, y. Here,
σ0 represents the size of the initial distribution, Di is the
diffusion coefficient and Ci accounts for a ballistic com-
ponent in the expansion due to inhomogeneous forces.
The latter would not occur in an ideal OM, but may
arise due to experimental imperfections such as a resid-
ual magnetic field or a small imbalance between the OM
beams.

The variance R2 of the fluorescence distribution is

R2(tmol) =
1

S(fluo)
m

∑
r∈Am

(r − r0)2Ifluo(r, tmol). (5)

Using Eq. (2), this can be rewritten as

R2 =
1

tmol

∫ tmol

0

dt σ2(t) = 2σ2
0 + D̄tmol +

C̄t2mol

3
(6)

with D̄ = Dx +Dy and C̄ = Cx + Cy.
We show in Fig. 1 the measured spatial variances R2

for each spin component. For the typical OM time tmol =
5 ms used in our measurements, the maximum standard
deviation of the clouds is ≈ 0.27 mm, much smaller than
the separation distance dSG ≈ 1.3 mm.

The rate of false assignments, i.e. the probability to
find an atom in Zeeman state m in the wrong region Am′ ,
can be estimated from the Gaussian model and the mea-
sured diffusion coefficients. For the raw square regions
of interest (ROIs) Am shown in Fig. 1 of the main paper,
the probability to find a m = +1 atom in the m = 0 re-
gion A0 is less than 1 %. Using the optimized ROIs A′m
(see the main article and Section II C) further reduces the
probability to less than 0.1 %.
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FIG. 2. (a). The red solid line shows the average fluorescence
flux versus the ROI size for tmol = 5 ms. The horizontal grey
line is the total signal collected in the squared ROI Am. The
vertical line is the cutoff size of the optimized ROI A′m. (b).
Optimized ROI A′0 for the cut-off threshold 99%.

C. Image processing

We process fluorescence images in two successive steps.
a. Choice of optimized ROI A′m. For each “raw”

ROI Am, we order the pixels by brightness in decreas-
ing order. We then decide on a cut-off level and reject all
pixels below that level. We choose the cutoff so that the
signal after selection is 99% of the total signal, which de-
fines A′m. This procedure excludes about 1/2 of the pixels
from the original raw ROI Am. We show in Fig.(2 (a))
the measured photon flux for the optimized ROI for var-
ious cutoff levels. The flux inside A′m reaches the thresh-
old at a size of 200 pixels. This behavior gives another
confirmation that the support of the spatial distribution
of fluorescence is indeed much smaller than the size of
the integration region Am. We conclude that the dis-
carded pixels contain little information about the atoms.
Effectively, we discard pixels which are mostly collect-
ing background light and select pixels which are mostly
collecting atomic fluorescence.

b. Background substraction: In a second step, we
apply a normalization algorithm to remove the mean sig-
nal due to background light, effectively cancelling it from
each image. We use an algorithm known as “eigenface
method” in the image processing literature, and intro-
duced to the field of cold atoms in [3]. Below, we use
the term “Best reference picture” (BRP) algorithm to
refer to this method. The BRP method uses all pixels
outside of the ROIs Am to determine the distribution of
background light inside the ROIs. The algorithm uses
a set of “empty” images (i.e. without atoms) to deter-
mine the mean distribution of background light. For a
given image (with atoms), the BRP algorithm seeks for
the best linear combination of the images in the “empty”
set that reproduces the observed signal. This determines
the background that we subsequently subtract from the
actual image. Because of the broad and smooth spa-
tial distribution of background light, the BRP algorithm
is very efficient at suppressing the average background
contribution, as illustrated in Fig.(3) and discussed in
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FIG. 3. Illustration of the BRP algorithm on a typical
image. (a) Raw image to be processed. The rectangle zone
and the dashed contours are respectively ROIs Am and A′m.
The hatched zone is used for the BRP algorithm. (b) The
green dashed profile comes from the raw image with atoms.
The three peaks correspond to three clouds, but the signal is
mixed with stray light. The red solid profile represents the
fluorescence signal after removing the stray light by the BRP
algorithm. The background stray light profile obtained by the
BRP algorithm is shown by the large dotted grey profile. It is
calculated from a linear combination of the series of “empty”
images.

the next Section.

D. Estimation of Zeeman state populations

We now turn to the estimation of the total number
of atoms contributing to the photon signal collected in
region Am. The contribution from background light (in-
tegrated photon flux φ̄bg in A′m) is a priori independent
of the atom number Nm to be determined. The total
integrated photon count over the optimized ROI A′m can
be written as

S̄m = (Nmφ̄m + φ̄bg)tmol. (7)

Using the BRP algorithm allows us to essentially sup-
press the second contribution. We tested the algorithm
on a set of empty images. Without processing, we typi-
cally find φ̄bg ≈ 8.7× 104 photons/ms (the equivalent of
the fluorescence signal from ∼ 1000 atoms, see below).
Applying the BRP algorithm, we find that the contri-
butions are reduced to very small levels compatible with
zero with an uncertainty of ∼ 4 photons/ms (much less
than the signal of a single atom, see below). We finally
obtain an (almost) unbiased estimator of the true Zee-
man population Nm from

Nm =
S̄m

φ̄mtmol
, (8)
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FIG. 4. a Evolution of the populations N0 (blue circles),
N+1 (red circles) and N−1 (red dots) over a Rabi oscillation.
The fluorescence fluxes are determined as to make the total
atom number N (green stars) constant and equal to the value
measured using absorption imaging. Alternatively, on can
use the evolution of the partition noise ∆S2

z (b, red stars) to
calibrate all fluorescence fluxes without relying on absorption
imaging. The solid lines are fits to the data.

with S̄m the sum over the processed images.

E. Calibration of fluorescence flux

So far, the photon fluxes per atom φ̄m are unknown.
We calibrate them against absorption imaging, which
is itself calibrated by comparing the measured spatial
atomic distribution with the one calculated from the
Gross–Pitaevskii equation. We first measure the mean
atom number N̄abs

0 for a BEC polarized in the m = 0
Zeeman component using absorption imaging, and the
total fluorescence signal S̄0 in the same conditions. We
get

φ̄0 =
S̄0

N̄abs
0 tmol

≈ 93± 3 photons/at/ms. (9)

Second, we calibrate φ̄±1/φ̄0. We start from the same
initial cloud with all atoms in m = 0 and apply a spin
rotation of angle θ along y. The Zeeman populations
evolve as

N0(θ) = N cos2 θ , (10)

N±1(θ) =
N

2
sin2 θ . (11)

We measure the fluorescence signal for different values of
θ, and find φ̄±1 as the values that make the total atom
number independent of θ. The results are shown in fig-
ure 4a. This procedure gives

φ̄+1 = 89± 3 photons/at/ms, (12)

φ̄−1 = 86± 3 photons/at/ms. (13)

The measured fluxes are almost independent of the Zee-
man state and their value is about half of the estima-
tion in Eq. (3). The difference presumably comes from
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FIG. 5. Measured standard deviation (red circles) of Jz as a
function of tmol. The dashed black line is the estimated best
achievable number resolution given by Eq.(15).

the multi-level structure of the Sodium atom, leading to
optical pumping effects that lower the absorption and
emission cross-sections.

An analysis of the partition noise during a Rabi os-
cillation [4], shown in figure 4b, allows one to check the
previous calibration without relying on absorption imag-
ing. Indeed, the variance of Sz = N+1−N−1 evolves over
the rotation as

∆S2
z (θ) = N+1 +N−1 . (14)

The equation, together with Eqs.(10,11), constitutes a
sufficient set to determine the three fluxes φ̄m and the
total atom number N . This alternative method gives
identical results within error bars, and leads to a similar
uncertainty.

F. Imaging noise and detection sensitivity

We now discuss the noise level associated with the flu-
orescence signal. We have identified three possibly rel-
evant sources of noise, namely the shot noise of fluores-
cence and background light, and the electronic noise of
the camera.

We first discuss the contribution of the electronic noise
ηcamA

′
m and show that it can be essentially eliminated

using hardware binning. In our imaging procedure, we
bin B2 adjacent pixels, defining thus a “macro-pixel”,
and we process them together in the readout stage of the
camera. We have checked that the camera noise is uni-
form across the entire CCD, with a standard deviation
per macro-pixel

√
η̄cam ≈ 3.6 + 0.36B photons. For our

choice of B = 8 and A′m = 200 macro-pixels, we find that
the camera noise corresponds to 90 counts, i.e. equiva-
lent to the signal from ≈ 0.2 atom for tmol = 5 ms and
negligible compared to the photonic noise. We thus ne-
glect this contribution from now on.

The atom number estimator after background subtrac-
tionNm is a random variable. Its distribution reflects the
combined distributions of fluorescence and background
photons, which are a priori independent Poisson pro-
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cesses. The variance of Nm is thus given by

∆N 2
m ≈

Nm
φ̄mtmol

+
φ̄m,bg

φ̄2
mtmol

. (15)

This expression is useful for the optimization of the OM
duration tmol. The first contribution in the right-hand
side is clearly a decreasing function of tmol. The be-
havior of the second contribution is more subtle, because
there is actually an implicit dependence on tmol hidden in
φ̄m,bg. Since the background light signal is spatially very
broad, we expect the mean flux (and thus the associated
shot noise) to scale as the integration area, φ̄m,bg ∝ A′m.
Since this area is optimized to track the cloud radius, it
scales with the cloud area Dmtmol, with Dm the spatial
diffusion coefficient determined in § II B. As a result, we
expect that φ̄m,bg also scales as tmol. In this situation,
the contribution of the background light shot noise [sec-
ond term in Eq. (15)] is approximately independent of
tmol.

In order to choose the optimal value of tmol, one must
also consider atom losses during the molasses phase,
which create a bias of the detected atom number. The
most relevant processes are the inelastic collisions as-
sisted by the quasi-resonant light of the molasses beams,
and we expect the corresponding losses to increase with
tmol. The combination of the two contributions of
Eq. (15) and of the atom losses results in an optimal value
of tmol. This is illustrated in Fig. 5 where we plot the
standard deviation ∆J2

z = (∆N 2
+1 + ∆N 2

−1)/4. For a
long OM duration tmol, we expect the variance of Nm to
increase with the mean number of lost atoms and thus
also with tmol. This is indeed observed in Fig. 5, with a
minimal value around tmol = 5 ms. We therefore choose
tmol = 5 ms in all measurements discussed in the article
to minimize the detection noise.

G. Correction of systematic errors on Jz

The uncertainty of absorption imaging as well as its
spatial inhomogeneity are at the level of a few percent.
This leads to a systematic error on the absolute val-
ues of the individual Zeeman populations Nm. Indeed

φ̄
(true)
m = φ̄m(1 + εm), where the φ̄

(true)
m are the true val-

ues of the photon flux and φ̄m the values inferred from the
comparison between fluorescence and absorption imaging
[cf. Eqs (12-13)]. This issue may be problematic when we
estimate the angular momentum along z,

J̄z =
1

2

(
S̄+1

φ̄+1
− S̄−1

φ̄−1

)
≈ (1 + ε̄) J̄z +

εd
2
N̄p, (16)

where we have expanded the right hand side to lowest
order in ε±1 and introduced the mean and the difference
of the εm’s:

ε̄ =
1

2
(ε+ + ε−) , εd = ε+ − ε−. (17)
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FIG. 6. (a) Measured value of N+1 as a function of N−1 for
the TMSV state at tosc = 150 ms. The atom numbers are
converted from photon signal using the average fluorescent
fluxes φ̄m. A linear fit to these data gives the slope 1.021.
(b) ∆Jz and J̄z as a function of the correction factor. The
closeness of the minimum of ∆Jz (εd = 0.017) and of the
zero point of J̄z (εd = 0.021) is a check of the validity of our
modelling of systematic errors.

Here J̄z is the measured value affected by systematic
errors and Jz, Np are the true values.

In practice, for the TMSV state of interest in this work,
only the term εdN̄p/2 is significant in (16), because it
injects the contribution of a large number (N̄p) into a
quantity that is a priori expected to be very small (J̄z).
Therefore we take εd as the relevant correction factor and
we arbitrarily set the other independent factor ε̄ to zero.
This only entails an error of 1 − 2 % on the number of
pairs Np, which has no impact on our results.

Fig. 6(a) demonstrates the expected linear relation be-
tween N±1 for the TMSV state produced at tosc =
150 ms, measured without correcting for the calibration
factors. A linear fit to the data provides the slope
1.021 ≈ 1 + εd, hence εd = 0.021. The same data are
used for the blue line in Fig. 6(b), where we plot J̄z as
a function of εd and we find it to vanish for εd = 0.021.
The slope of this line ∼ 51 is in good agreement with the
prediction (16), with N̄p = 105 for the TMSV state at
tosc = 150 ms.

Even for a perfectly balanced sample with Jz = 0 but
a fluctuating Np (as for the TMSV state), small system-
atic errors ε±1 result not only in a non-zero detected J̄z,
but also in an increase of the detected variance ∆Jz. We
confirm this prediction by plotting in Fig. 6(b) the varia-
tion of ∆Jz as a function of the correction factor εd (red
dashed line). We check that ∆Jz is minimal around the
same value of εd as the one inferred from the variation of
J̄z, which is a good sanity check of our modelling.

Here we used a TMSV state obtain at tosc = 150 ms
(N̄p ∼ 100) to evaluate the correcting factor εd. We have
checked that the value of εd – and thus the squeezing
factor obtained in the article – is unchanged (within error
bars) if we use a TMSV at tosc = 50 ms (N̄p ∼ 5.2) and
tosc = 100 ms (N̄p ∼ 23) for the calibration described
above.
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FIG. 7. Blue histograms: characterization of the initial state.
(a) Distribution of Jz = (N+1 −N−1)/2. (b) Distribution of
the number of pairs Np = (N+1 +N−1)/2. The red lines are
reference measurements taken on empty images.

III. CHARACTERIZATION OF A FOCK STATE

Fig. 7 shows the characterization of the initial state in
terms of probability distributions for Jz andNp, obtained
from 1026 runs of the experiment. We recall that for
this initial state, we aim at having all atoms in the state
m = 0. Therefore for comparison, we show on the same
figure the histograms obtained with “empty” reference
images, taken using the same experimental sequence, but
without loading any atom (627 runs). Since the two dis-
tributions, with or without atoms, do not show any sta-
tistically significant difference, we infer that the m = ±1
counts for our initial state can be accounted for by de-
tection noise only (mean pair number Np = 0.112±0.046
without atoms and Np = −0.050± 0.040 with atoms).

IV. NON-SEPARABILITY CRITERION

Consider an assembly of N particles with pseudo-spin
j = 1/2, described by the collective spin operators Ĵ =∑N
i=1 ĵ. If the N -spin state is separable, the following

inequality holds [5]:

〈Ĵ2
x〉+ 〈Ĵ2

y 〉 −
N

2
≤ (N − 1) (∆Jz)

2
. (18)

Therefore one can define the entanglement parameter (or
generalized spin-squeezing parameter) [6]

ξ2
os =

(N − 1) (∆Jz)
2

〈Ĵ2
x〉+ 〈Ĵ2

y 〉 − N
2

(19)

and infer from (18) that any result ξ2
os < 1 signals a

non-separable state. This indicator was used in [7] to
detect entanglement of Dicke states. The Hilbert space
of the N -spin system has a dimension 2N . If the N spins
are prepared in a fully symmetric state, the size of the
Hilbert space is only N + 1 since it corresponds to that
of an angular momentum J = N/2. In this completely

symmetric subspace Ĵ2
x + Ĵ2

y + Ĵ2
z = N(N + 2)/4 and the

inequality (18) can be written [8, 9]

N2

4
− 〈Ĵ2

z 〉 ≤ (N − 1) (∆Jz)
2
. (20)

In our experiment, we assume that the state of the Ntot

spin-1 atoms is described within the single spatial mode
approximation. The spin state of the Ntot atoms must
therefore be fully symmetric with respect to exchange of
any two particles and it can be written using the formal-
ism of second quantization:

|Ψ〉 =

Ntot∑
N=0

CN
(â†0)Ntot−N√
(Ntot −N)!

FN
(
â†1, â

†
−1

)
|vac〉 (21)

(or as a statistical mixture of such states). Here â†m cre-
ates a particle in the Zeeman state m and in the spatial
mode of the condensate, and the state

|ΦN 〉 ≡ FN
(
â†1, â

†
−1

)
|vac〉 (22)

describes a normalized, fully symmetric state of N par-
ticles in the two Zeeman states m = ±1, which can be
viewed as a collection of N pseudo-spins 1/2 particles.
The quantity |CN |2 gives the probability to have N par-
ticles in m = ±1 and Ntot − N particles in m = 0.
For any measurement of a quantity O dealing only with
the m = ±1 Zeeman states, the expectation value is the
weighted average:

〈Ψ|Ô|Ψ〉 =
∑
N

|CN |2 〈ΦN |Ô|ΦN 〉. (23)

Suppose now that each |ΦN 〉 (which is by construction
fully symmetric) is also separable. Then (20) applies to
each of them and it also applies to their average over N
with the weights |CN |2. Since one can divide (20) by any
power of N before averaging, this allows one to derive
a set of inequalities that must be satisfied for separable
states, such as:

ξ2
os,1 ≡

〈(N − 1) (∆Jz)
2
∣∣
ΦN
〉

〈N2〉
4 − 〈Ĵ2

z 〉
> 1 (24)

and

ξ2
os,2 ≡

〈(1− 1
N ) (∆Jz)

2
∣∣
ΦN
〉

〈N〉
4 − 〈

Ĵ2
z

N 〉
> 1. (25)

We used the generalized spin-squeezing parameter ξos,2 in
the main text, with the simplification valid for the large
N = 2Np values that are relevant in our experiment:

ξ2
os,2 ≈ 4

〈(∆Jz)2〉
〈N〉

, (26)

with the N -average taken over bins of width ∆N = 100
(i.e. ∆Np = 50). This parameter was also used in [10–
12] to detect number-squeezing in spinor BECs.

V. INTERFEROMETRIC SENSITIVITY OF A
TWO-MODE SQUEEZED VACUUM STATE

INCLUDING DETECTION ERRORS

Two-mode Mach-Zehnder interferometric measure-
ments with twin Fock states or two-mode squeezed vac-



7

uum (TMSV) states have been studied in detail in the
context of quantum optics [13–15]. Each mode (here
m = ±1) is injected in one of the two input ports, and one
measures the difference between the intensities of the two
output ports. The signal of the interferometer is charac-
terized by the operator Ĵ ′z = cos θĴz + sin θĴx with θ the

phase shift between the two paths and Ĵ the pseudo-spin
operator describing the input [15].

For input twin Fock states or TMSV states, the out-
put of the interferometer is always balanced on average,
〈J ′z〉 = 0. The phase information is contained in the

variance 〈J ′z
2〉. The corresponding phase sensitivity is,

taking S ≡ J ′z
2

as the observable,

∆θ =
∆S(θ)

d〈S(θ)〉/dθ
=

√
〈J ′z

4〉 − 〈J ′z
2〉2

d〈J ′z
2〉/dθ

. (27)

Following Ref. [15], we have computed the interfero-
metric sensitivity of a TMSV state. To leading order in
N̄p � 1, we find for an ideal, noiseless experiment that

〈S(θ)〉 ≈ N̄2
p sin2 θ, (28)

∆S2(θ) ≈ 8N̄4
p sin4 θ + N̄2

p sin2 θ cos2 θ. (29)

These expressions have the same structure as in Ref. [15],
but with different numerical factors. This comes from the
fact that here, the pair number is distributed according
to a Bose–Einstein law of mean N̄p, whereas the pair
number is fixed in Ref. [15].

The interferometric sensitivity

∆θ ≈

(
2 tan2 θ +

1

4N̄2
p

)1/2

(30)

is minimum at θ∗ = 0, where its value is ∆θ∗ = 1/(2N̄p),
thus achieving the Heisenberg limit.

To determine the sensitivity in realistic conditions, we
take the finite experimental resolution into account. We
assume that the output signal of the interferometer is
contaminated by an additive noise ξ, statistically inde-
pendent of the atomic distribution. We readily find the
moments of the measured signal Ĵ ′′z = Ĵ ′z + ξ as

〈Ĵ ′′2z 〉 = 〈Ĵ ′2z 〉+ 〈ξ2〉, (31)

〈Ĵ ′′4z 〉 − 〈Ĵ ′′2z 〉2 = 〈Ĵ ′4z 〉 − 〈Ĵ ′2z 〉2 + 4∆ξ2〈Ĵ ′2z 〉+ (∆ξ)4.
(32)

where ∆ξ2 = 〈ξ2〉 and (∆ξ)4 = 〈ξ4〉 − 〈ξ2〉2 characterize
the measurement noise. The interferometric sensitivity
is finally given by

∆θ ≈

(
2 tan2 θ +

1

4N̄2
p

+
∆ξ2

N̄2
p cos2 θ

+
(∆ξ)4

N̄4
p sin2(2θ)

)1/2

.

(33)

For small noise levels where ∆ξ2, (∆ξ)4 are of order one
and therefore small compared to N̄p � 1, the best sen-
sitivity point is slightly shifted from θ = 0 to θ∗ ≈

[(∆ξ)4/8]1/4/N̄p. The best sensitivity still obeys Heisen-
berg scaling with N̄p, albeit with a numerical prefactor
larger than the one obtained in the ideal situation. If
we further assume that ξ obeys Gaussian statistics with
∆ξ2 = σ2 and (∆ξ)4 = 3σ4, we find

∆θ∗ ≈ 1

2N̄p

[
1 + 4(1 +

√
6)σ2

]1/2
. (34)

Using the mean pair number N̄p ≈ 105 and the additive
noise σ = 1.6 as in our experiment, we obtain a phase
resolution of ∆θ∗ ≈ 0.029. The standard quantum limit
is ∆θSQL = 1/

√
2N̄p ≈ 0.069, leading to a potential

metrological gain ∆θ2
SQL/∆θ

∗2 ≈ 5.8, i.e. 7.6 dB.

VI. INTERACTING PARAMETRIC
AMPLIFIER

In this paragraph we detail the dynamics of pair pro-
duction and we explain the observed deviations from the
predictions derived within the Bogoliubov approxima-
tion. As discussed in the main text, while one expects
the increasing depletion of the pump mode m = 0 to
slow down the dynamics, interactions between the pump
and the output modes m = ±1 lead in fact to a counter-
intuitive speed-up in our driven system.

A. Qualitative discussion within the Bogoliubov
approximation

For completeness, we recall first the main ingredients
of the physics under discussion described by the generic
two-mode squeezing Hamiltonian,

Ĥ =
∑
α=±1

V â†αâα +W (â+1â−1 + h.c.) (35)

with V,W real numbers. The squeezing Hamiltonian
is relevant to several physical systems, for instance an
ideal optical parametric amplifier, a spinor BEC in a
static magnetic field, or a driven spinor BEC where the
magnetic field is modulated near-resonantly around a
bias value. In quantum optics, the two-mode squeezing
Hamiltonian in Eq. (35) is derived from a more general
Hamiltonian by making the “undepleted pump” approx-
imation (UPA). For quantum fluids, one reaches (35) by
a systematic expansion in terms of the creation and anni-
hilation operators for the initially empty modes, restrict-
ing to second order terms (Bogoliubov approximation).
In the context of spinor BECs, the diagonal term ∝ V
in (35) includes single-particle energy offsets and spin-
conserving interactions, while the off-diagonal term ∝W
describes spin-changing interactions [see Eq. (4) of the
article].

The squeezing Hamiltonian is diagonalized by a Bogoli-

ubov transformation, Ĥ = E0 +~ωB(α̂†α̂+β̂†β̂), with E0
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FIG. 8. Effect of pump depletion on the pair pro-
duction rate. The rate is calculated in the Bogoliubov de-
pleted pump approximation, where the effective interaction
decreases when the mean number of pairs increases. a. Static
case, κ = 1. b. Driven case, κ = 0.34. The gray vertical line
indicates a particular detuning where the instability rate de-
creases as np increases in the static case, but instead increases
with np in the driven case.

a constant and α̂, β̂ the Bogoliubov modes annihilation
operators. The Bogoliubov energy is given by

~ωB =
√
λ+λ− (36)

with λ± = V ±W . A dynamical instability arises when
ωB is purely imaginary, i.e. |V | < |W |. This regime
corresponds to an exponential production of pairs from
the vacuum state at an initial rate |ωB|.

In the UPA or Bogoliubov approximation, both static
and driven spinor BECs can be described by V = Us +
~δ/2 and W = κUs > 0, so that λ± = ~δ/2 + Us(1± κ).
The region of instability occurs for negative detunings
δ+ ≤ δ ≤ δ−, with δ± = −2Us(1 ± κ) [16]. Here Us is
the bare spin-dependent interaction energy. In the static
case, ~δ/2 corresponds to the quadratic Zeeman energy
and κ = 1: spin-conserving and spin-mixing interactions
have the same strength. In the driven case, the detuning
δ and the renormalization factor κ < 1 characterize the

secular dynamics, much slower than the drive frequency
(see main text and [16]). Since κ < 1, the effective spin-
mixing interactions are weaker than the spin-conserving
ones.

In order to qualitatively understand the role of satu-
ration and interaction effects beyond the UPA, we pro-
pose a mean-field extension of the UPA where â0 ≈√
N(1− 2n̄p), with n̄p = 〈N̂p〉/N the normalized av-

erage number of ±1 pairs. This “depleted pump ap-
proximation” amounts to a renormalization of Us to
Ũs = Us(1 − 2n̄p). To understand how this impacts the
dynamics, we plot in Fig. 8 the pair production rate |ωB|
versus detuning for several depletion levels. For the cho-
sen detuning indicated by the gray line, the static and
driven systems behave completely differently, with a rate
decreasing with n̄p in the first case, but increasing with
n̄p in the second.

The difference can be traced back to the different roles
of spin-conserving and spin-mixing interactions in deter-
mining the Bogoliubov rate |ωB | =

√
|λ+λ−|. As a func-

tion of δ, the rate looks like an inverted parabola centered
around ~δ = −2Ũs (determined by the spin-conserving

interactions) and with a maximal value κŨs (determined

by the spin-mixing interactions). As Ũs decreases (n̄p

increases), the maximum is pushed towards positive de-
tunings and its value decreases. In the static case, the
two phenomena happen exactly at the same rate and the
dynamics always becomes slower with increasing deple-
tion. In the driven case, the shift of the position of the
maximum is larger than the decrease of the peak value,
due to the renormalization factor κ. As a result, one
can find a range of detuning close to the upper edge δ−
where the derivative ∂|ωB|/∂Ũs becomes negative, imply-
ing an “amplification” of pair production with depletion
in comparison with the UPA prediction.

B. Numerical resolution

In Fig. 9, we compare the predictions derived from the
Bogoliubov Hamiltonian (35) with those obtained numer-
ically without approximation, beyond those leading to
the secular Hamiltonian [Eq. (6) in the main text]. We
introduce the variables δ′ = δ+ 2Us/~ and U ′ = κUs. In
Fig. 9a, we plot the maximal number of pairs produced
over a time t = 5~/U ′ versus δ′. In Fig. 9b, we show the
time evolution of Np for ~δ′ = 2U ′, on the upper bound-
ary of the instability domain. The competition between
the depletion of the pump and the pump-output interac-
tion explains qualitatively all observed features.
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