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Tan’s contact is a quantity that unifies many different properties of a low-temperature gas with
short-range interactions, from its momentum distribution to its spatial two-body correlation func-
tion. Here, we use a Ramsey interferometric method to realize experimentally the thermodynamic
definition of the two-body contact, i.e. the change of the internal energy in a small modification of
the scattering length. Our measurements are performed on a uniform two-dimensional Bose gas of
87Rb atoms across the Berezinskii–Kosterlitz–Thouless superfluid transition. They connect well to
the theoretical predictions in the limiting cases of a strongly degenerate fluid and of a normal gas.
They also provide the variation of this key quantity in the critical region, where further theoretical
efforts are needed to account for our findings.

The thermodynamic equilibrium of any homogeneous
fluid is characterized by its equation of state. This equa-
tion gives the variations of a thermodynamic potential,
e.g. the internal energy E, with respect to a set of ther-
modynamics variables such as the number of particles,
temperature, size and interaction potential. All items
in this list are mere real numbers, except for the interac-
tion potential whose characterization may require a large
number of independent variables, making the determina-
tion of a generic equation of state challenging.

A considerable simplification occurs for ultra-cold
atomic fluids, when the average distance between par-
ticles d is much larger than the range of the potential
between two atoms. Binary interactions can then be de-
scribed by a single number, the s-wave scattering length
a. Considering a as a thermodynamic variable, one can
define its thermodynamic conjugate, the so-called Tan’s
contact [1–9]

C ≡ 8πma2

~2
∂E

∂a
, (1)

where the derivative is taken at constant atom number,
volume and entropy, and m is the mass of an atom. For a
pseudo-spin 1/2 Fermi gas with zero-range interactions,
one can show that the conjugate pair (a,C) is sufficient to
account for all possible regimes for the gas, including the
strongly interacting case a & d [10, 11]. For a Bose gas,
the situation is more complicated: formally, one needs to
introduce also a parameter related to three-body interac-
tions, and in practice this three-body contact can play a
significant role in the strongly interacting regime [12–14].

Since the pioneering experimental works of [15, 16],
the two-body contact has been used to relate numerous
measurable quantities regarding interacting Fermi gases:
tail of the momentum distribution, short distance behav-
ior of the two-body correlation function, radio-frequency
spectrum in a magnetic resonance experiment, etc. (see
[17, 18] and refs. in). For the Bose gas case of inter-
est here, experimental determinations of two- and three-
body contacts are much more scarce, and concentrated

so far on either the quasi-pure BEC regime [19, 20] or the
thermal one [19, 21]. Here, we use a two-pulse Ramsey
interferometric scheme to map out the variations of the
two-body contact from the strongly degenerate, super-
fluid case to the non-degenerate, normal one.

We operate with a uniform, weakly-interacting two-
dimensional (2D) Bose gas where the superfluid tran-
sition is of Berezinskii–Kosterlitz–Thouless (BKT) type
[22, 23]. For our relatively low spatial density, effects
related to the three-body contact are negligible and we
focus on the two-body contact. It is well known that
for the BKT transition, all thermodynamic functions are
continuous at the critical point, except for the superfluid
density [24]. Our measurements confirm that the two-
body contact is indeed continuous at this point. We also
show that the (approximate) scale invariance in 2D al-
lows us to express it as a function of a single parameter,
the phase-space density D = nλ2, where n is the 2D den-
sity, λ = (2π~2/mkBT )1/2 the thermal wavelength and
T the temperature. Our measurements around the criti-
cal point of the BKT transition provides an experimental
milestone which shows the limits of the existing theoret-
ical predictions in the critical region.

RESULTS

Accessing Tan’s contact for a planar geometry. Our
ultra-cold Bose gas is well described by the Hamiltonian
Ĥ, sum of the kinetic energy operator, the confining po-
tential, and the interaction potential Ĥint = aK̂ with

K̂ =
2π~2

m

∫∫
ψ̂†(r) ψ̂†(r′) δ̂(r − r′) ψ̂(r′) ψ̂(r) d3r d3r′.

(2)

Here δ̂(r) is the regularized Dirac function entering in the
definition of the pseudo-potential [25] and the field oper-

ator ψ̂(r) annihilates a particle in r. Using Hellmann–
Feynman theorem, one can rewrite the contact defined in
Eq. (1) as C = 8πma2〈K̂〉/~2.
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In our experiment, the gas is uniform in the horizon-
tal xy plane, and it is confined with a harmonic poten-
tial of frequency ωz along the vertical direction. We
choose ~ωz larger than both the interaction energy and
the temperature, so that the gas is thermodynamically
two-dimensional (2D). On the other hand, the extension
of the gas az = (~/mωz)1/2 along the direction z is still
large compared to the scattering length a, so that the
collisions keep their 3D character and Eq. (2) remains
relevant [26]. Suppose first that the zero-range potential

δ̂(r−r′) appearing in (2) does not need to be regularized.
Then, after integration over z, C can be related to the
in-plane two-body correlation function g2:

C

C0

?
= g2(0), C0 ≡ 4(2π)3/2

a2n̄N

az
, (3)

where we introduced the average in normal order:

g2(r) =
1

n̄2
〈: n̂(r)n̂(0) :〉, (4)

with n̂(r) the operator associated with the 2D density,
n̄ its average value and N the atom number. For an
ideal Bose gas, the value of g2(0) varies from 2 to 1 when
one goes from the non-condensed regime to the fully con-
densed one [27], so that C0 sets the scale of Tan’s contact.

However, it is well known that g2(0) is generally an
ill-defined quantity for an interacting fluid. For example
in a Bose gas with zero-range interactions, one expects
g2(r) to diverge as 1/r2 in 3D and (log r)2 in 2D when
r → 0 [12, 13]. On the other hand, when one properly

regularizes the zero-range potential δ̂ in Eq. (2), Tan’s
contact is well-behaved and measurable. Here, we ap-
proach it by measuring the change in energy per atom
h∆ν = ∆E/N when the scattering length is changed by
the small amount ∆a. Replacing ∂E/∂a by ∆E/∆a in
the definition (1), we obtain

C

C0
≈
√

2π
maz
~n̄

∆ν

∆a
. (5)

To measure the energy change h∆ν resulting for a
small modification of the scattering length, we take ad-
vantage of a particular feature of the 87Rb atom: All scat-
tering lengths aij , with (i, j) any pair of states belong-
ing to the ground-level manifold, take very similar val-
ues [28]. For example, Ref. [29] predicts a11 = 100.9 a0,
a22 = 94.9 a0 and a12 = 98.9 a0, where the indices 1
and 2 refer to the two states |1〉 ≡ |F = 1,mz = 0〉
and |2〉 ≡ |F = 2,mz = 0〉 used in this work and a0
is the Bohr radius. For an isolated atom, this pair of
states forms the so-called clock transition at frequency
ν0 ' 6.8 GHz, which is insensitive (at first order) to the
ambiant magnetic field. Starting from a gas at equilib-
rium in |1〉, we use a Ramsey interferometric scheme to
measure the microwave frequency required to transfer all
atoms to the state |2〉. The displacement of this fre-
quency with respect to ν0 provides the shift ∆ν due to the
small modification of scattering length ∆a = a22 − a11.
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FIG. 1. Example of an interferometric Ramsey signal showing
the optical density of the fraction of the gas in state |2〉 after
the second Ramsey pulse, as a function of the microwave fre-
quency ν. These data were recorded for n̄ ≈ 40 atoms/µm2

and T ∼ 22 nK, τ1 = 10 ms. Here, τ2 has been increased to
1 ms to limit the number of fringes for a better visibility. In-
set. Filled black disks (resp. open red circles): central fringe
for atoms in |2〉 (resp. |1〉) in the “standard” configuration
τ2 = 0.1 ms. The density in |1〉 is obtained by applying a
microwave π-pulse just before the absorption imaging phase.
Blue squares: single-atom response measured during the bal-
listic expansion of the cloud by imaging atoms in |2〉. The
lines in the inset are sinusoidal fits to the data. The vertical
error bars of the inset correspond to the standard deviation
of the 3 repetitions made for this measurement.

Ramsey spectroscopy on the clock transition. The
Ramsey scheme consists in two identical microwave
pulses, separated by a duration τ1 = 10 ms. Their dura-
tion τ2 ∼ 100 µs is adjusted to have π/2 pulses, i.e. each
pulse brings an atom initially in |1〉 or |2〉 into a coher-
ent superposition of these two states with equal weights.
Just after the second Ramsey pulse, we measure the 2D
spatial density n̄ in state |2〉 in a disk-shaped region of
radius 9 µm and using the absorption of a probe beam
nearly resonant with the optical transition connecting |2〉
to the excited state 5P3/2, F

′ = 3. We infer from this
measurement the fraction of atoms transferred into |2〉
by the Ramsey sequence, and we look for the microwave
frequency νm that maximises this fraction.

An example of spectroscopic signal is shown in Fig. 1.
In order to determine the “bare” transition frequency ν0,
we also perform a similar measurement on a cloud in bal-
listic expansion, for which the 3D spatial density has been
divided by more than 100 and interactions play a negli-
gible role. The uncertainty on the measured interaction-
induced shift ∆ν = νm − ν0 is on the order of 1 Hz. In
principle, the precision of our measurements could be in-
creased further by using a larger τ1. In practice however,
we have to restrict τ1 to a value such that the spatial dy-



3

namics of the cloud, originating from the non-miscibility
of the 1−2 mixture (a212 > a11a22), plays a negligible role
[30]. Another limitation to τ1 comes from atom losses,
mostly due to 2-body inelastic processes involving atoms
in |2〉. For τ1 = 10 ms, these losses affect less than 5% of
the total population and can be safely neglected.

We see in Fig. 1 that there indeed exists a frequency
νm for which nearly all atoms are transferred from |1〉
to |2〉, so that E(N, a22) − E(N, a11) = N h(νm − ν0)
(see [31] for details). We note that for an interacting
system, the existence of such a frequency is by no means
to be taken for granted. Here, it is made possible by the
fact that the inter-species scattering length a12 is close
to a11 and a22. We are thus close to the SU(2) symmetry
point where all three scattering lengths coincide. The
modeling of the Ramsey process detailed in [31] shows
that this quasi-coincidence allows one to perform a Taylor
expansion of the energy E(N1, N2) (with N1 +N2 = N)
of the mixed system between the two Ramsey pulses, and
to expect a quasi-complete rephasing of the contributions
of all possible couples (N1, N2) for the second Ramsey
pulse. The present situation is thus quite different from
the one exploited in [21] for example, where a11 and a12
were vanishingly small. It also differs from the generic
situation prevailing in the spectroscopic measurements
of Tan’s contact in two-component Fermi gases, where
a microwave pulse transfers the atoms to a third, non-
interacting state [15].

Resonance shift ∆ν and contact C. We show in Fig. 2
our measurements of the shift ∆ν for densities ranging
from 10 to 40 atoms/µm2, and temperatures from 10 to
170 nK. Since ~ωz/kB = 210 nK, all data shown here are
in the thermodynamic 2D regime kBT < ~ωz. More pre-
cisely, the population of the ground state of the motion
along z, estimated from the ideal Bose gas model [32], is
always & 90 %. All shifts are negative as a consequence
of a22 < a11: the interaction energy of the gas in state |2〉
is slightly lower than in state |1〉. For a given density, the
measured shift increases in absolute value with tempera-
ture. This is in line with the naive prediction of Eq. (3),
since density fluctuations are expected to be an increas-
ing function of T . Conversely for a given temperature,
the shift is (in absolute value) an increasing function of
density.

For the lowest temperatures investigated here, we
reach the fully condensed regime in spite of the 2D
character of the sample, as a result of finite size ef-
fects. In this case, the mean-field prediction for the shift
reads ∆ν = n̄ ~∆a/(

√
2πmaz) [i.e. C = C0 in Eq. (5)].

Our measurements confirm the linear variation of ∆ν
with n̄, as shown in the inset of Fig. 2 summarizing the
data for T = 22 nK. A linear fit to these data gives
∆a/a0 = −5.7 (1.0) where the error mostly originates
from the uncertainty on the density calibration. In the
following, we use this value of ∆a for inferring the value
of C/C0 from the measured shift at any temperature, us-
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FIG. 2. Variations of the shift ∆ν with temperature for var-
ious 2D spatial densities. Violet disks: n̄ = 10.4 (2) µm−2,
blue squares: n̄ = 21.0 (3) µm−2, green diamonds: n̄ =
31.5 (3) µm−2, orange pentagons: n̄ = 42.0 (1) µm−2. The
horizontal error bars represent the statistical uncertainty on
the temperature calibration, except for the points at very low
temperature (10-22 nK). These ultracold points are deeply in
the Thomas-Fermi regime, where thermometry based on the
known equation of state of the gas is not sensitive enough.
The temperature is thus inferred from an extrapolation with
evaporation barrier height of the higher temperature points.
The error on the frequency measurement is below 1 Hz and
is not shown in this graph. Inset: Variations of the shift ∆ν
with density at low temperature T ∼ 22 nK, i.e. a strongly
degenerate gas. The straight line is the mean-field prediction
corresponding to ∆a = −5.7 a0.

ing Eq. (5). We note that this estimate for ∆a is in good
agreement with the prediction ∆a/a0 = −6 quoted in
[29], as well as with our recent measurement [33] which
is independent of the density calibration. The first cor-
rections to the linear mean-field prediction were derived
(in the 3D case) by Lee, Huang and Yang in [34]. For our
densities, they have a relative contribution on the order
of 5 % of the main signal (∆ν . 1 Hz) [31], and their
detection is borderline for our current precision.

We summarize all our data in Fig. 3, where we show the
normalized contact C/C0 defined in Eq. (5) as a function
of the phase-space density D. All data points collapse on
a single curve within the experimental error, which is a
manifestation of the approximate scale invariance of the
Bose gas, valid for a relatively weak interaction strength
g̃ . 1 [37, 38].

DISCUSSION

We now compare our results in Fig. 3 to three theoret-
ical predictions. The first one is derived from the Bogoli-
ubov approximation applied to a 2D quasi-condensate
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FIG. 3. Variations of the normalized Tan’s contact C/C0 with
the phase-space density D. The encoding of the experimental
points is the same as in Fig. 2. The colored zone indicates the
non-superfluid region, corresponding to D < Dc ≈ 7.7. The
continuous black line shows the prediction derived within Bo-
goliubov approximation. Inset: Zoom on the critical region.
The dashed blue line is the prediction from [35], resulting
from a virial expansion for the 2D Bose gas. The dotted red
line shows the results of the classical field simulation of [36].

[39]. This prediction is expected to be valid only for D
notably larger than the phase-space density at the critical
point Dc (see methods), but it gives a fair account of our
data over the whole superfluid region. Within this ap-
proximation, one can also calculate the two-body correla-
tion function and write it as g2(r) = gT=0

2 (r)+gthermal
2 (r).

One can then show the result [31]

C

C0
= 1 + gthermal

2 (0), (6)

which provides a quantitative relation between the con-
tact and the pair correlation function, in spite of the
already mentioned singularity of gT=0

2 (r) in r = 0.
For low phase-space densities, one can perform a sys-

tematic expansion of various thermodynamic functions
in powers of the (properly renormalized) interaction
strength [35], and obtain a prediction for C (dashed blue
line in the inset of Fig. 3). By comparing the 0th, 1st
and 2nd orders of this virial-type expansion, one can esti-
mate that it is valid for D . 3 for our parameters. When
D → 0, the result of [35] gives C/C0 → 2, which is the ex-
pected result for an ideal, non-degenerate Bose gas. The
prediction of [35] for D ∼ 3 compares favourably with
our results in the weakly-degenerate case.

Finally we also show in Fig. 3 the results of the classi-
cal field simulation of [36] (red dotted line), which are in
principle valid both below and above the critical point.
Contrary to the quantum case, this classical analysis does
not lead to any singularity for 〈n2(0)〉, so that we can

directly plot this quantity as it is provided in [36] in
terms of the quasi-condensate density. For our interac-
tion strength, we obtain a non-monotonic variation of
C. This unexpected behavior, which does not match
the experimental observations, probably signals that the
present interaction strength g̃ = 0.16 (see Methods) is
too large for using these classical field predictions, as al-
ready suggested in [36].

Using the Ramsey interferometric scheme on a many-
body system, we have measured the two-body contact of
a 2D Bose gas over a wide range of phase-space den-
sities. We could implement this scheme on our fluid
thanks to the similarities of the three scattering lengths
in play, a11, a22, a12, corresponding to an approximate
SU(2) symmetry for interactions. Our method can be
generalized to the strongly interacting case aij & az, as
long as a Fano-Feshbach resonance allows one to stay
close to the SU(2) point. One could then address si-
multaneously the LHY-type corrections at zero tempera-
ture [40, 41], the contribution of the three-body contact
[13, 14], and the breaking of scale invariance expected
at non-zero temperature. Finally we note that even for
our moderate interaction strength, classical field simu-
lations seem to fail to reproduce our results, although
they could properly account for the measurement of the
equation of state itself [37, 38]. The semi-classical treat-
ment of Ref. [42] and quantum Monte Carlo approaches
of Refs. [43, 44] should provide a reliable path to the mod-
elling of this system. This would be particularly interest-
ing in the vicinity of the BKT transition point where the
usual approach based on the XY model [45], which ne-
glects any density fluctuation, does not provide a relevant
information on the behavior of Tan’s contact.

METHODS

Preparation of the two-dimensional gas. The prepa-
ration and the characterization of our sample have been
detailed in [46, 47] and we briefly outline the main prop-
erties of the clouds explored in this work. In the xy
plane, the atoms are confined in a disk of radius 12 µm
by a box-like potential, created by a laser beam properly
shaped with a digital micromirror device. We use the in-
tensity of this beam, which determines the height of the
potential barrier around the disk, as a control parameter
for the temperature. The confinement along the z di-
rection is provided by a large-period optical lattice, with
a single node occupied and ωz/(2π) = 4.41 (1) kHz. We
set a magnetic field B = 0.701 (1) G along the vertical
direction z, which defines the quantization axis. We use
the expression Dc = ln(380/g̃) for the phase-space den-
sity at the critical point of the superfluid transition [48].
Here, g̃ =

√
8π a11/az = 0.16 is the dimensionless inter-

action strength in 2D, leading to Dc = 7.7. We study
Bose gases from the normal regime (D = 0.3Dc) to the
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strongly degenerate, superfluid regime (D > 3Dc).
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Supplementary Material

Ramsey interferometry in a many-body system close
the SU(2) symmetry point

In this section, we explain why the vicinity of the SU(2)
symmetry point where all three scattering lengths are
equal (a11 = a12 = a22) allows one to reach a full transfer
from |1〉 to |2〉 in the Ramsey sequence, in spite of the
interactions between the particles. We first explore a
two-particle model before turning to the general N -atom
case.

The two-particle toy model

The analysis of a system with two particles only, which
was pioneered by [49], is often used to gain insight in the
N -body case, see e.g. [21, 50] in the context of microwave
spectroscopy. Here we consider a pair of atoms each with
two internal states |1〉 and |2〉 (Fig.4). The initial state
of the two-particle system is

|11〉 ⊗ |ψ0〉, (7)

where |ψ0〉 describes the external state of the pair and is
symmetric by exchange of the two (bosonic) particles.

The two-body state just after the first π/2 pulse of the
Ramsey sequence is[

1

2
|A〉+

1√
2
|B〉+

1

2
|C〉
]
⊗ |ψ0〉. (8)

Here we have introduced the three states

|A〉 = |11〉 |B〉 =
1√
2

(|12〉+ |21〉) |C〉 = |22〉
(9)

−4 −2 0 2 4

0

−5

5 •◦◦

a11
a12
a22

√
2 az/a

E
/
h̄
ω

FIG. 4. Energy levels of the relative motion of zero angular
momentum for a two-particle system in a 3D harmonic trap
of frequency ω, as function of the scattering length. To model
properly the experimental situation, the characteristic length
az =

√
~/mω is chosen equal to the interparticle distance d =

n̄−1/2 (d ∼ az ∼ 160 nm for n̄ = 40 µm−2, i.e. ~ω = ~2n̄/m.
Therefore the spacing ∼ 2~ω between adjacent levels is large
compared to the interaction energy per particle, ∼ ~2n̄g̃/m,
since g̃ � 1. The initial state |ψ0〉 considered in the text is
marked as • and the two other relevant states |φ0〉 and |χ0〉
are marked as ◦. All three scattering lengths a11, a12, a22 are
close to each other (figure not to scale for actual Rb values).

which correspond to the triplet states, resulting from the
coupling of the two internal states viewed as pseudo-spins
1/2.

The time evolution is described by three operators
Ûij(t) and the state of the system reads at time t:

1

2
|A〉 ⊗

(
Û11(t)|ψ0〉

)
+

1√
2
|B〉 ⊗

(
Û12(t)|ψ0〉

)
+

1

2
|C〉 ⊗

(
Û22(t)|ψ0〉

)
. (10)

The action of the second π/2 pulse at time t reads:

|1〉 → 1√
2

(
|1〉+ eiα|2〉

)
|2〉 → 1√

2

(
|2〉 − e−iα|1〉

)
,

(11)
where α = 2πνt is the phase of the microwave at this
time. After the second pulse, we find the fraction f2(t)
transferred to internal state |2〉:

f2(t, α) =
1

2
+

1

4
<
[
eiα
(
〈Û†12Û11〉+ 〈Û†22Û12〉

)]
, (12)

where the averages are taken in state |ψ0〉.
The contact is calculated as the derivative with respect

to the scattering length of the energy of the system (here
the pair of atoms) at constant entropy and in thermal
equilibrium. Therefore we can suppose that |ψ0〉 is an
eigenstate of the two-particle system for the scattering
length a11 and eventually perform a statistical average
over |ψ0〉 at the end of the analysis.
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To calculate the various matrix elements 〈Û†ijÛkl〉 en-
tering in the expression (12) of the Ramsey signal, we
introduce the eigenbases of the two-particle system for
the scattering lengths a12 and a22, denoted respectively
{|φn〉} and {|χn〉}. For 87Rb, the three scattering lengths
a11, a12, a22 are close to each other (5% difference at
most). This means that essentially one state contributes
to the expansion of |ψ0〉 on the basis {|φn〉} or {|χn〉}:

|ψ0〉 ≈ |φ0〉 ≈ |χ0〉. (13)

This validates the assumption of constant entropy needed
for the calculation of the contact: the populations of the
eigenstates of the external motion of the two-particle sys-
tem are quasi-unchanged by the Ramsey pulses (Fig.4).

With this assumption, we find

〈Û†12Û11〉 ≈ ei(E12−E11)t/~, 〈Û†22Û12〉 ≈ ei(E22−E12)t/~

(14)
where Eij includes both the single atom energy ±hν0/2
and the interaction energy of the atom pair. The Ramsey
signal now reads:

f2(t) ≈ 1

2
+

1

4
cos [α+ (E12 − E11)t/~]

+
1

4
cos [α+ (E22 − E12)t/~] . (15)

It is maximal for

2hν = E22 − E11 (16)

as announced in the main text, and it reaches f2 = 1
when a12 is equal to the arithmetic mean of a11 and a22.
These conclusions are unchanged when one subsequently
performs a statistical average over |ψ0〉.

Achieving a full transfer in the N-body Ramsey
sequence

We consider a collection of N two-level atoms with
internal states |1〉, |2〉, and we assume that the initial
state for the Ramsey sequence corresponds to having all
atoms in the internal state |1〉:

|Ψ0〉 =
1√
N !

(
â†1

)N
|0〉, (17)

with a given external many-body state |ψ0〉.
After the first π/2 pulse, the collective internal state

is

|Ψ1〉 =
1√

2N N !

(
â†1 + â†2

)N
|0〉

=
1√

2N N !

N∑
N1=0

(
N

N1

)(
â†1

)N1
(
â†2

)N2

|0〉. (18)

We denote E(N1, N2) the energy of the system with N1

particles in |1〉 and N2 = N −N1 particles in |2〉. After
the evolution for a duration t, the state becomes:

1√
2N N !

N∑
N1=0

(
N

N1

)
e−iE(N1,N2)t/~

(
â†1

)N1
(
â†2

)N2

|0〉.

(19)
The second π/2 pulse at time t corresponds to

â†1 →
1√
2

(
â†1 + eiαâ†2

)
, â†2 →

1√
2

(
â†2 − e−iαâ†1

)
,

(20)
where α = 2πνt is the phase of the microwave at time t.

In the binomial expansion (18), only the terms
(N1, N2) that are close to (N/2, N/2) contribute signifi-
cantly. Therefore we perform a Taylor expansion of the
energy of each term at first order in q = (N1 −N2)/2:

E

(
N

2
+ q,

N

2
− q
)
≈ E

(
N

2
,
N

2

)
+ (µ1 − µ2)q (21)

where

µ1 =

(
∂E

∂N1

)
N2

, µ2 =

(
∂E

∂N2

)
N1

. (22)

With this approximation, each term in the sum (19) has
a phase that is proportional to (N1−N2)t and we expect
a full transfer to level |2〉 after the second Ramsey pulse
for :

hν = µ1 − µ2. (23)

Validity of the expansion (21). In order to give a nec-
essary condition on the parameters of the problem for
(21) to hold, we consider the T = 0 case and use the
expression for the mean-field energy:

E(N1, N2) =
1

2
(N2 −N1)hν0 + (24)

~2

2mL2

(
g̃11N

2
1 + 2g̃12N1N2 + g̃22N

2
2

)
,

where L2 is the area of the box confining the gas. One
then has the exact result:

E

(
N

2
+ q,

N

2
− q
)

= E

(
N

2
,
N

2

)
(25)

+

[
−hν0 +

~2

2m
(g̃11 − g̃22)n̄

]
q

+
~2

2mL2
(g̃11 + g̃22 − 2g̃12)q2.

In practice, we operate the Ramsey scheme in the regime

~t
2m
|g̃11 − g̃22|n̄ ∼ 1 (26)

to obtain a good precision on the determination of
g̃11 − g̃22. Using the fact that for the binomial distri-
bution, 〈q2〉 = N/4, we deduce that the contribution of
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the last line of (25) [which was omitted in Eq. (21)] can
be neglected if:

1

4
|g̃11 + g̃22 − 2g̃12| . |g̃11 − g̃22| (27)

meaning that the interspecies scattering length a12 has
to be close to the average of the intraspecies ones, a11
and a22. This condition is well fulfilled for 87Rb.

Using the approximate SU(2) symmetry

We have seen above that provided the inequality (27)
is satisfied, one can achieve a full transfer from |1〉 to
|2〉 in the Ramsey sequence operating in the regime (26),
provided the microwave frequency is chosen such that

hν =

(
∂E

∂N1

)
N2

−
(
∂E

∂N2

)
N1

. (28)

Here, the energy E is calculated for the parameters N1 =
N2 = N/2 and the 3 scattering lengths a11, a12 and a22.
Suppose now that all three scattering lengths are close
to each other, so that we can expand:

E(N1, N2, a11, a12, a22) ≈ E(N1, N2, a, a, a) +

(a12 − a11)
∂E

∂a12
+ (a22 − a11)

∂E

∂a22
(29)

where we have set a ≡ a11. The SU(2) symmetry is exact
at the point in parameter space where a12 = a22 = a.

We note that:

∂2E

∂N1 ∂a12

(
N

2
,
N

2
, a, a, a

)
=

∂2E

∂N2 ∂a12

(
N

2
,
N

2
, a, a, a

)
(30)

so that the term ∝ (a12 − a11) does not contribute to
(28). This leads to

h∆ν = (a22−a11)

[
∂2E

∂N1 ∂a22
− ∂2E

∂N2 ∂a22

](
N

2
,
N

2
, a, a, a

)
.

(31)
Now, the Hamiltonian of the binary system for a reg-

ularized zero-range potential is

Ĥ = Ĥ0 +
∑
i,j

aijK̂ij (32)

where

K̂ij =
2π~2

m

∫∫
ψ̂†i (r) ψ̂†j (r

′) δ̂(r−r′) ψ̂j(r′) ψ̂i(r) d3r d3r′.

(33)
Hellmann–Feynman theorem thus leads to:

h∆ν ≈ (a22−a11)

[
∂〈K̂22〉
∂N1

− ∂〈K̂22〉
∂N2

](
N

2
,
N

2
, a, a, a

)
(34)

At the SU(2) point, we can connect the two-component
system with the single component system with the same
scattering length:

〈K̂22〉 =
N2

2

(N1 +N2)2
〈K̂〉 (35)

We then find:

N h∆ν ≈ (a22 − a11) 〈K̂〉, (36)

which also reads, setting ∆a = a22 − a11:

C =
16π2ma2N

~
∆ν

∆a
, (37)

and which coincides with the expressions (3,5) of the
main text.

Contact and two-body correlation within
Bogoliubov approach

Bogoliubov operators and contact

We consider a 2D Bose gas confined in a square box
L × L with periodic boundary conditions. We denote
âk the operator that annihilates a particle with momen-
tum ~k. We assume that the temperature is low enough
so that most of the particles accumulate in the ground
state of the box k = 0. Since the confining box has a
finite size, this does not violate Mermin-Wagner theo-
rem, which holds for a gas in the thermodynamic limit.
Note that instead of assuming a macroscopic population
of k = 0, one may also use another version of the Bogoli-
ubov approach in terms of phase and density fluctuations
(see e.g. [39]). In that approach, which leads to the same
results as the one used here, one assumes that the density
fluctuations are small and that the phase fluctuations can
be expanded as a Fourier series (no isolated vortex).

The Bogoliubov Hamiltonian is diagonalized by intro-
ducing the bosonic operators b̂k = ukâk − vkâ†−k with

uk, vk = ±
[

k2 + 2g̃n̄

2k(k2 + 4g̃n̄)1/2
± 1

2

]1/2
, (38)

and the energy of the Bogoliubov modes

εk =
~2k
2m

[
k2 + 4g̃n̄

]1/2
. (39)

The Bogoliubov Hamiltonian reads:

Ĥ = E0 +
∑
k

εk b̂
†
kb̂k. (40)

In the case studied in the paper, where the thickness az
of the gas is large compared to the scattering length, the
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ground-state energy E0 can be estimated by averaging
the mean-field 3D result:

E
(3D)
0 =

2π~2a
m

n(3D)N (41)

over the Gaussian density profile n(3D)(z) =

n̄ e−z
2/a2z/

√
πa2z along the z direction:

E0 =

∫
E

(3D)
0 (z) n(z) dz∫

n(z) dz
=

~2g̃
2m

n̄N (42)

The thermal averages are 〈b̂k〉 = 0 and 〈b̂†kb̂k′〉 =
δk,k′ Nk, where Nk is the Bose–Einstein distribution

Nk =
[
eεk/kBT − 1

]−1
. (43)

The internal energy in thermal equilibrium thus reads:

E = E0 +
∑
k

εkNk. (44)

The contact is by definition proportional to the derivative
of this energy with respect to a at constant entropy, i.e.
at constant populations Nk of the modes, which gives:

C = CT=0 + Cthermal (45)

with

CT=0 =
8πma2

~2
∂E0

∂a
= C0 (46)

and

Cthermal =
8πma2

~2

[∑
k

∂εk
∂a
Nk
]

= C0
2

N

∑
k

k√
k2 + 4g̃n̄

Nk. (47)

Density fluctuations

Average density. The average density of the gas is
calculated from n̄ = 〈n̂(r)〉 with n̂(r) = ψ̂†(r)ψ̂(r), and
it can be split into a T = 0 and a thermal component:

n̄T=0 =
N0

L2
+

1

L2

∑
k 6=0

v2k (48)

and

n̄thermal =
1

L2

∑
k 6=0

(u2k + v2k) Nk. (49)

Density correlations. We start from the 4-field cor-
relation function written in normal order G2(r) =

〈ψ̂†(0)ψ̂†(r)ψ̂(r)ψ̂(0)〉, which we expand up to first or-
der in nthermal/n̄:

G2(r) =
N2

0

L4
+

N0

L4
× (50)∑

k 6=0

eik·r
(
〈â−kâk〉+ 〈â†−kâ

†
k〉+ 2〈â†kâk〉

)
+ 2〈â†kâk〉

We can then calculate the g2 function used in the main
text:

g2(r) =
G2(r)

n̄2
= gT=0

2 (r) + gthermal
2 (r) (51)

and we find by at first order in (n̄− n̄0)/n̄ [see e.g. [39]]:

gT=0
2 (r) = 1 +

2

N

∑
k 6=0

eik·rvk(uk + vk) (52)

and

gthermal
2 (r) =

2

N0

∑
k 6=0

eik·r (uk + vk)
2 Nk. (53)

We notice that

(uk + vk)2 =
k√

k2 + 4g̃n̄
(54)

which shows the relation (6) of the main text:

Cthermal

C0
= gthermal

2 (0). (55)

On the other hand, the integral giving gT=0
2 in r = 0 is

UV divergent since vk ∝ 1/k2 and uk+vk ∼ 1 at infinity.

Lee-Huang-Yang (LHY) correction [34]

In 3D and at zero-temperature, the first beyond-mean-
field correction to the contact is (see e.g. Eq.(2) in [19])

δC

C
=

5

2
× 128

15
√
π

√
n(3D)a3. (56)

In our setup, the average 3D density is n(3D) =
n̄/(az

√
2π). For a 2D density n̄ = 40 atoms/µm2 and

az = 160 nm, this gives n̄(3D) ≈ 1.0×1014 atoms/cm3 and
δC/C ≈ 4.7 %. For this n̄, the mean-field contribution to
the contact corresponds to a shift ∆ν = −22 Hz (Fig. 2 of
the main text), and the LHY correction is ≈ 1 Hz, within
the uncertainty of our measurements. Note that a more
precise theoretical estimate of the LHY correction for our
planar geometry should start from the general expression
of the ground-state energy of a 2D Bose gas [40, 41, 51]
and the relation between the 2D scattering length and
the 3D one [26].
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Estimate for the contribution of the 3-body contact

Using the transition rates derived in [12], Fletcher et
al. [21] have shown that the contribution of the 3-body
contact to the many-body resonance shift is related to
the shift due to the 2-body contact by:

∆ν3
∆ν2

= 5.0π2 a
C3

C2
. (57)

Now an estimate of C3/C2 for a dilute BEC is provided
by [14]:

C3

C2
∼ 0.02 n(3D)a2 (58)

so that the contribution of the 3-body contact is reduced
by a factor ∼ n(3D)a3 ∼ 10−5 with respect to the contri-
bution of the 2-body contact. Even though the 2D nature
of the thermodynamics of our gas may bring some sig-
nificant corrections to this crude estimate, we can safely
assume that effects related to the 3-body contact cannot
be detected with our experimental protocol.

Virial expansion for a 2D Bose gas

In [35], H.c Ren gives the result of perturbative ther-
modynamics applied to a regularized contact potential in
2D. Strictly speaking, this is not a virial expansion, i.e.
an expansion in powers of density or fugacity, since the
author takes exactly into account all powers of n̄ in the
ideal gas case.

Starting from the 2D scattering length a2, Ren intro-
duces the dimensionless coupling

α(T ) =
1

ln
(

λ2

2πa22

)
+ γ

(59)

where λ(T ) is the thermal wavelength and γ the Euler
constant, which is related to g̃ by g̃ ≈ 4πα. He then per-
forms a systematic expansion of various thermodynamic
functions in powers of α. Note that the T dependence of
α explicitly breaks the scale invariance of the problem,
as expected after regularization of the contact interaction
in 2D. However for our experimental parameters, this T -
dependence plays a negligible role.

The value of the free energy F reads at order 2 in α:

F (N,L2, T, a2) = F0(N,L2, T ) + α
4π~2N2

mL2

− α2 8πL2~2

mλ4
φ
[
1− e−Nλ

2/L2
]
,(60)

where F0 is the ideal Bose gas result and where the func-
tion φ(z) is defined by:

φ(z) = B(z) +
1

2
D(z) (61)

with

B(z) =

∞∑
r,s,t=1

zr+s+t√
rs(r + t)(s+ t)

ln

√
(r + t)(s+ t) +

√
rs√

(r + t)(s+ t)−√rs
(62)

and

D(z) =

∞∑
r,s=1

zr+s

rs
ln

2rs

r + s
. (63)

Tan’s contact

C =
8πma2

~2

(
∂F

∂a

)
N,L2,T

(64)

can then be calculated using (59) together with the link
between the 2D (a2) and 3D (a) scattering lengths and
the size of the ground state along the z direction (az)
[26, 52]

a2 ≈ 2.092 az exp

(
−
√
π

2

az
a

)
. (65)

The result is plotted in Fig. 3 of the article.
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