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We present experiments revealing the competing effect of quantum fluctuations and of a coherent seed in
the dynamics of a spin-1 Bose-Einstein condensate and discuss the relevance of a mean-field description of our
system. We first explore a near-equilibrium situation, where the mean-field equations can be linearized around
a fixed point corresponding to all atoms in the same Zeeman state m = 0. Preparing the system at this classical
fixed point, we observe a reversible dynamics triggered by quantum fluctuations, which cannot be understood
within a classical framework. We demonstrate that the classical description becomes accurate provided a coherent
seed of a few atoms only is present in the other Zeeman states m = ±1. In a second regime characterized by a
strong nonlinearity of the mean-field equations, we observe a collapse dynamics driven by quantum fluctuations.
This behavior cannot be accounted for by a classical description and persists for a large range of initial states.
We show that all our experimental results can be explained with a semiclassical description (truncated Wigner
approximation), using stochastic classical variables to model the quantum noise.
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I. INTRODUCTION

The mean-field approximation is an essential tool of many-
body physics. In this approach, the interaction of a single
body with the rest of the system is treated in an averaged
way, neglecting fluctuations around the mean and erasing
any spatial correlations. The original many-body problem is
then reduced to a much simpler one-body problem, a tremen-
dous simplification enabling a basic analysis of the problem
at hand. The accuracy of the averaging improves with the
number of particles in direct interaction. Consequently, the
mean-field treatment is well suited for highly connected sys-
tems, while important deviations are common for systems
with short-range interactions in reduced dimensions.

When applied to bosonic quantum systems, a mean-field
approach often entails another important approximation
where intrinsic quantum fluctuations (and the correlations
they induce) are neglected. Since quantum fluctuations
are reflected in the noncommutativity of observables, field
operators in the second-quantization formalism are replaced
by commuting c-numbers. A possible improvement consists
in replacing the field operators by classical stochastic
fields [1–5], with a statistics properly chosen to be as
close as possible to the original quantum problem. Such a
semiclassical approach allows us to account quantitatively for
quantum fluctuations while keeping the inherent simplicity of
the mean-field equations.

In this Letter, we study the role of quantum fluctuations
and the emergence of mean-field behavior in a quantum spinor
Bose-Einstein condensate [6]. The atoms are condensed in
the same spatial mode and interact all-to-all. The mean-field
approach is thus well appropriate to study the dynamics in the
spin sector, and has indeed been successfully used to describe

several situations, either at [7,8] or out-of [9–14] equilibrium.
More recently, several experiments addressed the dynamics of
a condensate prepared in an unstable configuration, achieving
a high sensitivity to both classical and quantum fluctuations
[15–31].

Here, our goal is twofold. First, we reveal the effect of
quantum fluctuations in two different dynamical regimes,
corresponding to persistent oscillations or relaxation to a
stationary state [31]. Second, we address the relevance of
a classical field description by comparing our experimental
results systematically with three theoretical approaches. In the
fully classical picture (C), we derive mean-field equations of
motion and solve them for well-defined initial conditions, pos-
sibly including a coherent seed. In the semiclassical picture
(SC), we keep the same mean-field equations of motion but
for fluctuating initial conditions, with a probability distribu-
tion designed to model the quantum noise of the initial state.
Finally, we perform a fully quantum treatment (Q), consist-
ing in a numerical resolution of the many-body Schrödinger
equation.

II. SPINOR BOSE-EINSTEIN CONDENSATES

We work with Bose-Einstein condensates of N spin-1
sodium atoms in a tight optical trap. Due to the strong con-
finement, all atoms share the same spatial wave function ψ (r)
[32], such that the spin is the only relevant degree of freedom.
In this regime, the Hamiltonian describing the spin-spin inter-
action is (up to an additive constant) [6,32–34]

Ĥint = Us

2N

N∑
i, j=1

ŝi · ŝ j = Us

2N
Ŝ

2
. (1)
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Here ŝi denotes the spin of atom i, Ŝ = ∑
i ŝi is the to-

tal spin, and Us is the spin-spin interaction energy. In the
single-mode limit, the spin-spin interaction is given by Us =
(4π h̄2asN/M )

∫
d3r|ψ (r)|4, where as is a spin-dependent

scattering length, M is the mass of a sodium atom, and the
spin-independent spatial mode ψ is the lowest energy solution
of the time-independent Gross–Pitaevskii equation [35]. Note
that technical fluctuations of the atom number N translate into
fluctuations of Us (other factors, such as fluctuations of the
trap geometry, can also contribute to the latter). As will be dis-
cussed in more detail in Sec. IV, these technical fluctuations
add to the intrinsic relaxation due to quantum fluctuations
and thereby play a significant role in the interpretation of the
experiments.

We use a magnetic field B aligned along the z axis to
shift the energies of the individual Zeeman states |m〉, the
eigenstates of ŝz with eigenvalues m = 0,±1. Up to second
order in B, the Zeeman Hamiltonian is ĤZ = ∑N

i=1 pŝzi + qŝ2
zi,

where p ∝ B and q ∝ B2 are the linear and quadratic Zeeman
shifts, respectively. Noticing that [Ŝz, Ĥint] = 0, the first term
in ĤZ is a constant of motion that can be removed by a unitary
transformation. The total Hamiltonian thus reads [6]

Ĥ = Ĥint + ĤZ = Us

2N
Ŝ

2 + q(N̂+1 + N̂−1), (2)

where N̂m is the number of atoms in |m〉.
Under a mean-field approximation, the annihilation

operators âm are replaced by the c-numbers
√

Nζm =√
Nm exp(iφm). By convention we set φ0 = 0, and we fo-

cus on the situation Sz = 0. We define the mean number of
(+1,−1) pairs Np = (N+1 + N−1)/2, and take its normalized
value np = Np/N and the conjugate phase θ = φ+1 + φ−1 as
dynamical variables. In terms of these variables, the mean-
field equations of motion are [9]

h̄ṅp = −2Usnp(1 − 2np) sin θ, (3)

h̄θ̇ = −2q + 2Us(4np − 1)(1 + cos θ ). (4)

At t = 0, the BEC is prepared in a generalized coherent spin
state |ψini〉 = (

∑
m ζini,m|m〉)⊗N , with

ζini =

⎛
⎜⎜⎝

√
nseedei θini+ηini

2√
1 − 2nseed

√
nseedei θini−ηini

2

⎞
⎟⎟⎠, (5)

where nseed = Nseed/N and Nseed is the number of atoms in the
m = ±1 states. The Larmor phase η = φ+1 − φ−1 evolves as
η(t ) = ηini − 2pt/h̄ and does not play any important role in
the following. We focus on the behavior of Np(t ) as a function
of time.

We notice that the state with all atoms in m = 0 (i.e.,
Nseed = 0 and hence np = 0) is stationary according to
Eqs. (3) and (4). However, this state is not an eigenstate of
Ĥint and thus not a stationary state of the quantum equation
of motion. In the absence of a seed, we identified in Ref. [31]
two different regimes for the ensuing nonclassical dynamics:

(i) For Us/N � q, the dynamics is reversible: The number
of pairs Np(t ) oscillates with a small amplitude.

(ii) For q � Us/N , the dynamics is strongly damped and
Np(t ) relaxes to a stationary value.

Here, we revisit these experiments to investigate the effect
of a coherent seeding of the m = ±1 modes.

III. REVERSIBLE DYNAMICS

A. Theoretical predictions

We focus first on the situation where Us/N � q � Us and
nseed � 1. In this case, the reduced number of pairs np remains
small at all times. Linearizing the mean-field Eqs. (3) and (4),
we obtain [36]

N (C)
p (t ) ≈ 2Us

q
sin2 (ωt ) cos2

(
θini

2

)
Nseed, (6)

where ω ≈ √
2qUs. Note that the oscillation frequency ω is

independent of the initial conditions θini and Nseed. In Sec. IV,
we investigate a regime where the frequency of the classical
solution increases with Nseed, with dramatic consequences on
the semiclassical dynamics.

To improve the prediction (6) and account for quantum
fluctuations, we use a semiclassical approach: the truncated
Wigner approximation [2–5,30]. The probability amplitudes
ζini,m are treated as complex random variables which sample
the initial Wigner distribution of the initial state at t = 0. The
amplitudes are then propagated according to the mean-field
equations of motion. Averaging the mean-field predictions
over the fluctuations of ζini, we find [30,36]

N (SC)
p (t ) ≈ Us

2q
sin2 (ωt )

[
4 cos2

(
θini

2

)
Nseed + 1

]
. (7)

In analogy with quantum optics, the term ∝Nseed in Eqs. (6)
and (7) describes “stimulated emission” from the mode m = 0
to the modes m = ±1, while the additional term in Eq. (7) can
be interpreted as “spontaneous emission.” We have verified
numerically that the SC results are in good agreement with a
fully quantum treatment. Moreover, comparing Eqs. (6) and
(7), we notice that, unless the initial phase is chosen such
that θini ≈ π , a large seed Nseed � 1 makes the C and SC
treatments almost identical, irrespective of the precise value
of N . In fact, seeding with a few atoms Nseed ≈ 2–3 and with
θ = 0 is sufficient to reach a 90% agreement between the two
approaches.

B. Experimental sequence

We prepare a BEC in the state m = 0 using evaporative
cooling in a crossed laser trap with a large magnetic field B =
1 G (q � Us). After evaporation, the BEC contains N ≈ 2000
atoms in the state m = 0, with Np ≈ 100 residual thermal
atoms in m = ±1. We then turn on a strong magnetic-field
gradient to pull the m = ±1 atoms out of the trap. After this
purification step, we measure Np � 1 [27].

We add a coherent seed using a combination of magnetic-
field ramps and resonant radio frequency (rf) pulses. In a first
step, a rf pulse is used to prepare the atoms in a coherent
superposition with a probability nseed to be in a given m = ±1
state. In a second step, the BEC is held in a large magnetic
field, such that q � Us and θini can be tuned, keeping np =
nseed (see the Supplemental Material [36] for more details).
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FIG. 1. Evolution of the number of (+1, −1) pairs Np (circles)
for q/h ≈ 0.22 ± 0.03 Hz, N ≈ 1880 ± 190 atoms and various seed
sizes: Nseed ≈ 0; 0.25; 1.8 from panels (a) to (c). The initial phase
is always set to θini ≈ 0. The solid lines are numerical solutions
of the Schrödinger equation with the many-body Hamiltonian in
Eq. (2) using Us/h = 9.9 Hz. The red dashed lines correspond to the
classical prediction (6). Here and in the following, error bars show
the statistical error corresponding to two standard errors.

In this way, we are able to prepare any coherent spin state
given by Eq. (5), up to the phase ηini, which is irrelevant for
the experiments described here. The main imperfection in the
preparation originates from the fluctuations of the total atom
number δN ≈ 0.1N , which induce ≈10% relative fluctuations
on Nseed. The magnetic field is then quenched to the desired
value, and we let the system evolve for a time t before measur-
ing the population of each Zeeman state using a combination
of Stern-Gerlach separation and fluorescence imaging with
a detection sensitivity around 1.6 atoms per spin compo-
nent [27].

C. Experimental results

In Fig. 1, we show the time evolution of Np(t ) for various
initial states. In Fig. 1(a), we do not seed the dynamics. We
observe an oscillation of Np(t ), not captured by the classical
description of Eq. (6) but in good agreement with the semi-
classical predictions (7) or with the numerical resolution of
the Schrödinger equation. In Fig. 1(b), we prepare a seed
with Nseed ≈ 0.25 ± 0.03 (inferred from a calibration of the
rf power) and θi ≈ 0. Compared with Fig. 1(a), the ampli-
tude of the oscillations is doubled, in good agreement with
Eq. (7). In Fig. 1(c), we set Nseed ≈ 1.8 ± 0.2 and θini ≈ 0.
The amplitude of the oscillations is further increased and now
also well reproduced by the fully classical treatment (6). In
all cases of Figs. 1(a)–1(c), the condition Np(t ) � N remains
fulfilled at all times. The validity of Eqs. (6) and (7) and the
independence of the oscillation frequency on Nseed (as can be
seen from Fig. 1) follow.
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FIG. 2. (a) Number of pairs produced after half a period of evo-
lution versus Nseed for q/h ≈ 0.33 ± 0.03 Hz and N ≈ 2920 ± 280.
The blue diamonds, green circles, and red squares correspond to
initial phases θini ≈ 0; 2.2; and 3.3 rad, respectively. For the three
smallest seeds, Nseed is inferred from the calibration of the rf power.
The solid lines are the semiclassical predictions given by Eq. (7) with
Us/h ≈ 12 Hz, assuming Np � N . For large Nseed, this approxima-
tion breaks down, but a numerical solution of the nonlinear classical
mean-field (3) and (4) with fixed initial conditions becomes relevant.
This fully classical treatment is shown as dashed lines. (b) Scan of
the initial phase θini after half a period of evolution for Nseed ≈ 6.0.

We investigate the role of the initial phase θini in Fig. 2.
In Fig. 2(a), we plot the variation of Np(T/2), with T = π/ω

the period of oscillations, against Nseed for three values of θini.
For Nseed � 1, we observe a saturation of Np(T/2) at a value
independent of θini, consistent with the SC prediction (7).
For such small seeds, the dynamics is triggered by quantum
fluctuations. For larger seeds, unless the antiphase-matching
condition θini ≈ π is fulfilled (red curves), stimulated emis-
sion becomes dominant and the fully classical description is
accurate. We observe a linear increase of Np(T/2) until the
small-depletion approximation used to derive Eqs. (6) and (7)
becomes inconsistent. For our data, this occurs for the point
Nseed ≈ 100, θini ≈ 0. In this case, an exact resolution of the
mean-field equations (3) and (4) provides accurate results. In
Fig. 2(b), we set Nseed ≈ 6.0 and scan the phase θini. We mea-
sure oscillations of Np(T/2) in good agreement with Eqs. (6)
and (7).

IV. RELAXATION DYNAMICS

A. Theoretical prediction

We now investigate the relaxation dynamics in a very
small magnetic field, such that q � Us/N . In this regime, the
quadratic Zeeman shift q is negligible and we set it to zero
for the calculation. However, the assumption np � 1 used to
derive Eq. (6) is not valid and the mean-field Eqs. (3) and (4)
cannot be linearized. For q = 0, the mean-field equations of
motion can be solved directly. Taking for simplicity θini = 0,
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we find [36]

n(C)
p (t ) = 1

4
− 1 − 4nseed

4
cos (
t ), (8)

with an oscillation frequency


 = 4Us

h̄

√
2nseed(1 − 2nseed ). (9)

The nonlinear dependence of 
 with nseed reflects the
nonlinearity of the mean-field equations and has dramatic con-
sequences when one takes into account quantum fluctuations.
The seeds spontaneously created from the vacuum of pairs
induce random shifts of the oscillation frequency around its
mean-field value. Averaging over many realizations therefore
results in an intrinsic dephasing of the oscillations predicted in
Eq. (8). More precisely, for the generalized coherent spin state
prepared in our experiment, the initial number of atoms in
the m = ±1 modes N+1,ini + N−1,ini = � follows a binomial
distribution of mean 2Nseed (quantum partition noise). We use
the random variable � as an initial condition to solve the
mean-field Eqs. (3) and (4), i.e., substituting nseed in Eq. (8)
with �/(2N ). After averaging over the partition noise, we
obtain for Nseed � 1 [36]

n(SC)
p (t ) ≈ 1

4
− 1 − 4nseed

4
cos (
t )e− 1

2 (γct )2
, (10)

with a collapse rate

γc = 2Us√
Nh̄

|1 − 4nseed|. (11)

The analytic formula (10) agrees very well with the numerical
solution of the many-body Schrödinger equation for Nseed �
1. The case Nseed � 1 can be treated using the truncated
Wigner approximation [5] or an exact diagonalization of the
interaction Hamiltonian (1) [31,37]. The dynamics also dis-
plays a relaxation of np to 1/4, but with a different asymptotic
behavior, np − 1/4 ∝ 1/t . In a related work [38], it was shown
that Poissonian fluctuations of the atom number in each mode
of a two-component BEC caused a Gaussian decay of the two-
time correlation function. For the spin-1 and two-component
cases, a similar mechanism is at work. The combination of
nonlinearities due to interactions and of quantum partition
noise leads to dephasing and relaxation.

In an actual experiment, the relaxation of Np is also en-
hanced by purely classical noise sources of technical origin.
In our case, we identify shot-to-shot fluctuations of Us (see
Sec. II) as a significant additional mechanism contributing
to the blurring of the oscillations. To account for this phe-
nomenon, we average Eq. (10) over a Gaussian distribution
of Us with variance δU 2

s . The resulting np(t ) has the same
functional form as in Eq. (10) with the replacement

γc → 
 =
√

γ 2
c + γ 2

t , (12)

with a technical blurring rate

γt = 4δUs

h̄

√
2nseed(1 − 2nseed ). (13)
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FIG. 3. Evolution of the fraction of (+1,−1) pairs np = Np/N
in a negligible magnetic field, for N ≈ 124 ± 12 atoms and various
seedings: Nseed = 0; 0.54; 2.1; 4.9; 12.8; from panel (a) to (e). The
initial phase is always set to θini ≈ 0. The solid lines are numerical
solutions of the Schrödinger equation for Us/h = 24.5 Hz. In panel
(e), the red dashed line is the classical prediction from Eqs. (3),
and (4).

For small enough seeds nseed � 1/4, the total dephasing rate
can be written


 ≈ γc

√
1 + 2

(
2δUs

Us

)2

Nseed. (14)

This indicates a crossover from quantum to classical dephas-
ing for seed sizes N∗ ≈ U 2

s /(2δUs)2.

B. Experimental considerations

To achieve the “zero field” regime Nq � Us experimen-
tally, the best option is to reduce the atom number. Indeed, the
density and therefore Us cannot be arbitrarily increased due to
undesired inelastic processes. Reducing the applied magnetic
field further is not feasible due to ambient stray fields and
environment-induced fluctuations (at the sub-mG level in our
experiment). Therefore, we lower N by more than one order
of magnitude with respect to the previous sections and prepare
mesoscopic BECs of N ≈ 124 ± 12 atoms. We also slightly
tighten the trap in order to achieve Us/h ≈ 24.5 Hz. In this
case, the central spatial density remains low enough to avoid
inelastic collisions (more details in the Supplemental Material
[36]).
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FIG. 4. (a) Frequency and (b) relaxation rate of the spin-mixing
dynamics in a negligible magnetic field. The circles are obtained
from a fit to the data of Fig. 3, with the error bars indicating the 95%
confidence interval. In panel (a), the red dashed line corresponds to
the frequency ω predicted by the mean-field treatment. In panel (b),
the dash-dotted blue line corresponds to the rate γc of the collapse
driven by quantum fluctuations, the red dashed line is the damping
rate γt due to technical fluctuations, and the solid purple line corre-
sponds to the total damping rate 
 = [γ 2

c + γ 2
t ]1/2. We use the value

δUs/Us = 0.13 ± 0.04, obtained from a fit to the data.

C. Experimental results

We show in Fig. 3 the relaxation dynamics of np for various
seed sizes nseed. We observe an acceleration of the initial
dynamics for increasing nseed and the emergence of rapidly
damped oscillations. Eventually, np relaxes to the stationary
value ≈1/4 in all cases. Numerical simulations with Us taken
as a fit parameter are overall in good agreement with the data,
although they slightly underestimate the damping rate for the
largest seed Nseed = 12.8.

To compare these experiments with the theoretical pre-
dictions, we fit a function of the form (10) to the data of
Fig. 3, leaving 
 and 
 as free parameters. We report in
Figs. 4(a) and 4(b) the fitted frequency and relaxation rate.
The frequency is essentially insensitive to quantum or classi-
cal fluctuations, and the measured values agree well with the C
or SC predictions. The relaxation rate varies little with Nseed in
the range we have explored experimentally. This observation
is explained by the SC theory including technical fluctuations.
Indeed, the slow decrease of γc with Nseed is compensated
by the increase of γt . Using δUs/Us ≈ 0.13 as determined in

Fig. 4, we find a “quantum-classical crossover” for seed sizes
around N∗ ≈ 15, close to the largest value we explored exper-
imentally. For small seeds Nseed � 5, our measurements are
consistent with a collapse driven primarily by quantum fluctu-
ations. On the contrary, for the largest Nseed ≈ 12.8, classical
technical dephasing is the dominant damping mechanism.

V. CONCLUSION

We investigated the dynamics of a spin-1 BEC prepared
with a majority of atoms in the Zeeman state m = 0 and pos-
sibly small coherent seeds in the m = ±1 modes. For a small
but non-negligible magnetic field, we observe oscillations of
the spin populations. This dynamics is triggered by quantum
fluctuations in the absence of a seed and cannot be captured
in a completely classical approach. Adding a coherent seed is
phase-sensitive [30]. In general it corresponds to a dramatic
increase of the oscillation amplitude, and the classical pre-
dictions become accurate as soon as a few atoms (typically
Nseed � 2) are used to seed the dynamics.

We also studied the dynamics in a negligible magnetic
field. In this second regime, the combination of nonlin-
ear mean-field equations and quantum noise leads to the
relaxation of the spin populations. When the size of the
seed increases, the intrinsic damping rate γc decreases and
the mean-field picture becomes more and more relevant.
However, it eventually fails for sufficiently long times.
Experimentally, technical noise sources provide additional
dephasing mechanisms of purely classical origin that can be
completely described in the mean-field approach. In our ex-
periment, we identify the fluctuations of the total atom number
as the leading blurring mechanism when the seed size exceeds
a dozen atoms.

All the experiments presented in this Letter are well cap-
tured by a semiclassical theory, where quantum fluctuations
are modeled using stochastic classical variables. An interest-
ing direction for future work would be to test experimentally
the validity of such a semiclassical description in other con-
texts, in particular in a chaotic regime [31,39,40].
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