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I. INITIAL STATE PREPARATION

A. Oscillating regime

We prepare the spinor BEC at t = 0 in a generalized

coherent spin state |ψini〉 = (
∑
m ζini,m|m〉)⊗N ,

ζini =


√
nseedei

θini+ηini
2√

1− 2nseed√
nseedei

θini−ηini
2

 .

We prepare this state starting from |m = 0〉 using a
combination of magnetic field ramps and resonant radio-
frequency (rf) pulses. In details, we first pulse a rf
field resonant with the Zeeman splitting to populate the
m = ±1 modes with a fraction nseed = sin2(Ωrft1)/2 of
the atoms. Here, Ωrf is the rf Rabi frequency and t1
the pulse duration. At this stage, we have prepared a
coherent spin state of the form (1) with θini ≈ π.

To change θini, we let the system evolve in a field
B = 0.5 G (q/h ≈ 70 Hz) for a time t2 < h/(2q), be-
fore quenching the magnetic field down to 28 ± 2 mG
(q/h ≈ 0.22 Hz) in t3 = 4 ms to achieve the desired
regime Us/N � q � Us. Interactions are negligible
(Us/h ≈ 10 Hz hence Ust2,3/h � 1), and the system
simply acquires a phase shift ∆θ2 = −2qt2/~ while the
magnetic field is held constant, and ∆θ3 = −2

∫
q(t)dt/~

during the quench. This results in an initial phase
θini = π − 2qt2/~ + ∆θ3 that is fully tunable from 0 to
2π by varying t2.

B. Relaxing regime

We prepare mesoscopic BECs of N ≈ 124 atoms in
the same initial spin state as before. We lower the mag-
netic field down to B = 4.2 ± 1.5 mG (q/h ≈ 5 mHz)
in t3 = 20 ms. The ramp time corresponds to the time
needed for the damping of eddy currents in the vacuum
chamber. Because of the small atom number, the effects
of the spin dependent interactions are negligible over the
ramp (Us/h ≈ 4 Hz, such that Ust3/h� 1) and the evo-
lution of the state is essentially another phase shift of θ,
which can be compensated for by varying t2. For these
experiments, we always choose t2 such that θini ≈ 0.

Finally, we trigger the dynamics by recompressing the
trap in 6 ms (Us/h ≈ 4 → 24 Hz). By performing nu-
merical simulations of the sequence with the many-body
Schrödinger equation, we have checked that the ramp can
be considered instantaneous to a good approximation.

II. CLASSICAL AND SEMI-CLASSICAL
DYNAMICS

We detail here the calculations of the dynamics of
Np(t) given in the main text. We use a classical (C)
approach based on the mean-field approximation and a
semi-classical (SC) approach inspired by the truncated
Wigner approximation (TWA). In both frameworks, the
annihilation operators âm are replaced by c-numbers
αm =

√
Nζm, with N the number of condensed atoms

and ζ a spin-1 wavefunction (normalized to unity) pa-
rameterized as

ζ =


√
npei

θ+η
2√

1− 2np√
npei

θ−η
2

 . (1)

Here np = (N+1 +N−1)/(2N) denotes the average num-
ber of m = ±1 pair normalized to the total atom number
(Np = Nnp), and we have restricted ourselves to the sit-
uation N+1 = N−1. We also have chosen ζ0 real without
loss of generality.

The mean field equations of motion for a spin-1 con-
densate in the single-mode regime take the form [1, 2]

~ṅp = −2Usnp(1− 2np) sin θ (2)

~θ̇ = −2q + 2Us(4np − 1)(1 + cos θ) . (3)

The mean-field energy per atom is given by

Es = 2Usnp(1− 2np)(1 + cos θ) + 2qnp . (4)

The energy Es is a constant of motion, a fact that we will
used repeatedly in the following.

A. Dynamics in the oscillating regime

In this section we derive the evolution of Np(t) for
the oscillating regime q � Us/N . We assume Nseed �



2

N , i.e. the situation where quantum fluctuations may
play a significant role. For Nseed ∼ N , a fully classical
treatment is accurate.

a. Classical solution : Assuming np � 1, we lin-
earize Eqs. (2) and (4),

~ṅp ≈ −2Usnp sin θ (5)

Es ≈
(

2Us(1 + cos θ) + 2q
)
np . (6)

We use the second equation to express cos θ as a function
of np and of the constants q, Us, Es. Substituting in the
first equation, we obtain a differential equation on np

only, ṅ2
p = −4ω2 [np − α]

2
+A, where

~ω =
√
q(q + 2Us), α =

Es(q + Us)

2(~ω)2
, (7)

and where A is constant. Differentiating one more time,
we find that either np is constant or it obeys the harmonic
equation n̈p + 4ω2 (np − α) = 0. The evolution is thus a
harmonic motion at frequency 2ω,

np(t) ≈ nseed + 2(α− nseed) sin2(ωt) , (8)

with the initial conditions np(0) = nseed and θ(0) = θini.
If we further assume (as in the experiments

we performed) that q � Us, we have Es ≈
4Usnseed cos2(θini/2) � q, and α ≈ Es/(4q) � 1. Eq. (8)
then reduces to

np(t) ≈ nseed +
2Usnseed

q
cos2(θini/2) sin2(ωt) ,

i.e. to Eq. (6) in the main text.
b. Semi-classical picture : We now consider the ef-

fect of quantum fluctuations within the TWA [3–7]. In
this method, the c-numbers αm used instead of the an-
nihilation operators âm in the mean-field approximation
are treated as complex random variables. At t = 0, these
variables sample the Wigner distribution of the initial
state |ψi〉. Their mean values are given by

ᾱini = N


√
nseed ei

θini+ηini
2√

1− 2nseed√
nseed ei

θini−ηini
2

 . (9)

In the limit Nseed � N , the calculation can be simplified
by neglecting the depletion of the mode m = 0. For the
m = ±1 modes, this approximation amounts to replac-
ing coherent spin states by harmonic oscillator coherent
states, which are considerably easier to handle. The ini-
tial quantum state is thus taken to be

|ψini〉 ≈
1√
N !

∏
m=±1

eᾱm,iniâ
†
m−ᾱ

∗
m,iniâm â†N0 |vac〉 . (10)

For t > 0, the equations of evolution (2,3) remain
valid in the TWA. The solution for initial conditions

α±1,ini is thus given by Eq. (8) with the substitution
4Nseed cos2(θini/2)→ |α+1,ini + α∗−1,ini|2.

To average over the initial distribution of α±1,ini,
we recall that the Wigner distribution average
〈O(αm, α

∗
m)〉Wig of an operator O is equal to the expec-

tation value 〈Osym(âm, â
†
m)〉 of the corresponding sym-

metrically ordered operator Osym [3]. We obtain

〈α+1,iniα
∗
−1,ini〉Wig = 〈â+1â

†
−1〉 = ᾱ+1,iniᾱ

∗
−1,ini , (11)

〈|αm,ini|2〉Wig =
1

2
〈â†mâm + âmâ

†
m〉 = |ᾱm,ini|2 +

1

2
.

(12)

This leads to

〈Np(t)〉 ≈ Us
2q

sin2(ωt)
(
|ᾱ+1,ini + |ᾱ∗−1,ini|2 + 1

)
,

which gives Eq. (7) in the main text.
As a final remark, we note that the Bogoliubov method

is also well suited to study the regime that we investi-
gated here, and leads to the same result [8–10].

B. Relaxation dynamics

We now discuss the regime q � Us/N , in which we
observe a relaxation of the number of pairs Np to a sta-
tionary value. In this regime, the quantum fluctuations
play an important role even for Nseed � 1. We will thus
consider that Nseed � 1 and N − Nseed � 1. For sim-
plicity, we will focus on the situation θini = 0, for which
the effect of the seed is maximal. The case with no seed
has been treated using an exact diagonalization of the
Hamiltonian [10] or the TWA [6].

a. Classical solution In order to simplify the calcu-
lation, we neglect completely the quadratic Zeeman shift.
In this regime q � Us/N , the Zeeman term indeed plays
no significant role even for the fully quantum model. In-
troducing the auxiliary variable x = 4np − 1, the equa-
tions of motion and the energy become

~ẋ = −Us(1− x2) sin θ , (13)

~θ̇ = 2Usx(1 + cos θ) , (14)

Es =
Us
4

(1− x2)(1 + cos θ) = cst . (15)

We combine the first and last equations to obtain

ẋ = −4Es
~

sin θ

1 + cos θ
. (16)

Differentiating this equation, we eliminate the phase θ
and obtain a simple harmonic equation, ẍ = −Ω2x, with
an oscillation frequency ~Ω =

√
8UsEs. For the initial

conditions np(0) = nseed and θ(0) = 0, we have ~Ω =

2Us
√

1− x2
0 and x(t) = x0 cos(Ωt) with x0 = 4nseed − 1.

This corresponds to the results announce in Eqs. (8,9) of
the main text.
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b. Quantum partition noise: The initial state

|ψini〉 =
1√
N !

[ ∑
m=0,±1

ζm â
†
m

]N
|vac〉 ,

is characterized by fluctuations of the number of ±1
atoms. We consider again the states with |ζ+1| =
|ζ−1| =

√
Nseed and θi = 0. We introduce the sum

Σ = N+1 + N−1, its relative value s = Σ/N and the
difference ∆ = N+1 − N−1. The components of ζ are
related to the average Σ̄ of Σ by

|ζ±1|2 =
Σ̄

2
, |ζ0|2 = N − Σ̄. (17)

The joint distribution of Σ and ∆ in the initial coherent
spin state is

P(Σ,∆) =
N !(

Σ+∆
2

)
!
(

Σ−∆
2

)
!(N − Σ)!

( s̄
2

)Σ

(1− s̄)N−Σ.

(18)

We deduce from Eq. (18) the marginal distribution of Σ,

P(Σ) =
N !

Σ!(N − Σ)!
s̄Σ(1− s̄)N−Σ. (19)

with Σ ∈ [0, N ]. The normalization follows from the
binomial formula.

For large N and Σ away from the extreme values 0, N ,
the binomial distribution is well approximated by a con-
tinuous Gaussian distribution

P(Σ) ≈ 1

N

1√
2πσ

e−
(s−s̄)2

2σ2 = p(s)ds. (20)

with a step size ds = 1/N and a standard deviation

σ =

√
s̄(1− s̄)
N

=

√
2nseed(1− 2nseed)

N
. (21)

One can check the normalization of both distributions,

N∑
Σ=0

P(Σ)→
∫ 1

0

f(s)ds ≈
∫ +∞

−∞

1√
2π

e−
u2

2 du = 1.

To extend the lower boundary to −∞, we require s̄/σ =√
N ×

√
s̄/(1− s̄)� 1, or Ns̄ = 2Nseed � 1.

c. Semi-classical picture of the dynamics: Similarly
to what we have done in Sec. II A, we average the mean
field solution (2,3) with 2nseed → s over the probability

distribution p(s) in Eq. (20). This amounts to compute
the integral

I =
1

2

∫ 1

0

s cos[Ω(s)t] p(s) ds. (22)

We use the fact that p(s) is sharply peaked around s̄,
with a width ∼ 1/N much narrower than the scale of
variation of the rest of the integrand s cos[Ω(s)t]. As
a result, we extend the integral boundaries to ±∞, set
s ≈ s̄ and expand the frequency Ω(s) to first order,

Ω(s) ≈ Ω̄ + Ω̄′(s− s̄) +O(ε2) , (23)

where Ω̄ = Ω(s̄) and Ω̄′ = Ω′(s̄) = (2Us/~) × (1 −
2s̄)/

√
s̄(1− s̄).

With straightforward manipulations, we cast I in the
form of the Fourier transform of a Gaussian function,
which is readily calculated. We find

I =
1

2
s̄ cos[Ω̄t] e−

1
2 (γct)

2

, (24)

with a damping rate

γc = |Ω̄′σ| = 2Us√
N~
|1− 2s̄|. (25)

Using s̄ = 2nseed, this gives Eq. (11) in the main text.
d. Classical fluctuations of Ω: In addition to the in-

trinsic dephasing originating from quantum fluctuations,
any technical fluctuations of Ω will also contribute to
the observed relaxation. We consider here the dominant
source of classical blurring in our experiment, namely
fluctuations of the interaction strength Us mainly due to
shot-to-shot atom number fluctuations.

We model these fluctuations by considering a fluctu-
ating interaction strength U ′s = Us + δUsx, with Us the
average value, δUs the standard deviation of the noise,
and x a centered Gaussian random variable of variance
unity. This leads to a fluctuating oscillation frequency
Ω(x) = Ω̄(1 + x · δUs/Us). We neglect the fluctua-
tions of γc, which is legitimate for Nseed � 1 and hence
γc � Ω̄. Averaging over the Gaussian probability distri-
bution p(x), we find that

I2 =
〈

cos[Ω(x)t]e−
1
2 (γct)

2
〉
x

= cos[Ω̄t]e−
1
2 (γtt)

2− 1
2 (γct)

2

,

(26)

with a classical (technical) damping rate given by

γt = Ω̄
δUs
Us

. (27)

From Eqs. (26,27) we obtain Eqs. (12,13) given in the
main text.
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