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The dynamics of a many-body system can take many forms, from a purely reversible evolution to fast
thermalization. Here we show experimentally and numerically that an assembly of spin-1 atoms all in the
same spatial mode allows one to explore this wide variety of behaviors. When the system can be described
by a Bogoliubov analysis, the relevant energy spectrum is linear and leads to undamped oscillations of
many-body observables. Outside this regime, the nonlinearity of the spectrum leads to irreversibility,
characterized by a universal behavior. When the integrability of the Hamiltonian is broken, a chaotic
dynamics emerges and leads to thermalization, in agreement with the eigenstate thermalization hypothesis
paradigm.
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Introduction.—The temporal evolution of an isolated
quantum system is governed by Hamiltonian dynamics and
is, in principle, reversible. However, this apparently mun-
dane statement masks a large range of possible scenarios,
depending on the system size, its integrability (or lack
thereof), the number of degrees of freedom, and also the
observables under consideration. In practice, reversibility is
observed for two-level systems or harmonic oscillators, for
which the dynamics is time-periodic. When several Bohr
frequencies contribute significantly to the evolution, one
observes a rapid relaxation of initial oscillations, possibly
followed by partial revivals. The system then reaches a
quasistationary state that may be described by a generalized
Gibbs ensemble (GGE), which takes into account the
constants of motion on the considered timescale [1].
Finally, for sufficiently complex many-body systems, the
eigenstate thermal hypothesis (ETH) states that almost all
initial conditions evolve toward a state leading to predic-
tions indistinguishable from those of a thermal density
matrix, at least for few-body observables [2–4].
To explore this variety of scenarios, multiple experi-

mental platforms are usually required. Restricting for
simplicity to atomic and photonic systems, the time-
periodic behavior is typically observed using the resonant
drive of an atomic transition with a coherent radio-fre-
quency or light field [5]. The collapse and revival phe-
nomenon was evidenced with an electromagnetic cavity
containing a few photons [6] and with a few atoms trapped
at the same site of an optical lattice [7]. Moving to larger
systems for which the notion of GGE is relevant, relaxation
dynamics was probed in several experiments with cold
atoms [8–10] or with trapped ions [11]. Thermalization was
demonstrated to occur in small atom chains [12], in dipolar
atomic gases [13,14], and in superconducting circuits [15].
The ETHwas tested numerically for interacting particles on

a lattice (see, e.g., [2,16,17], and references therein).
Generally, the ETH is expected to hold for chaotic systems
with a large number of degrees of freedom. When facing
this diversity of platforms, a natural question arises whether
there exists a single system where all scenarios can be
explored simply by tuning a few control parameters.
In this Letter, we study experimentally and numerically

the dynamics of a collection of N spin-1 sodium atoms
(with N from 100 to 5000), all prepared in the same spatial
mode in a tight laser trap. We show that the whole range of
temporal behaviors mentioned above is accessible for the
spin degrees of freedom. Since all atoms share the same
spatial wave function, interactions between atoms are
described by the Hamiltonian (up to an additive constant)
[18–21]

Ĥint ¼
Us

2N

XN
i;j¼1

ŝi · ŝj ¼
Us

2N
Ŝ2; ð1Þ

where ŝi is the spin of atom i, Ŝ ¼ P
ŝi is the total spin, and

Us=N is the spin-spin interaction strength. For sodium
atoms, Us > 0 corresponds to antiferromagnetic inter-
actions. In particular, the Hamiltonian Ĥint describes the
elastic two-atom spin-mixing process

ðm ¼ 0Þ þ ðm ¼ 0Þ ⇆ ðm ¼ þ1Þ þ ðm ¼ −1Þ; ð2Þ

where m ¼ 0;�1 is the quantum number associated with
the component ŝz of the spin of a single atom. This process,
analog to optical parametric conversion [22], has been used
to generate entangled states [23–32]. Here, together with a
suitable one-body term, it generates a wide diversity of
scenarios, from quasipure oscillations to thermalizing
dynamics.
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Many-body oscillations.—In our setup, the atoms are
immersed in a magnetic field B aligned along z, which
shifts the energies of the jmi states. At first order in B, the
Zeeman shift is proportional to Ŝz ¼ N̂þ1 − N̂−1, whereNm
is the number of atoms in state jmi. It is a conserved
quantity since ½Ŝz; Ĥint� ¼ 0 and, thus, does not contribute
to the dynamics. For the relatively small field regime
explored here, the relevant term is the quadratic Zeeman
shift, which raises by q ∝ B2 the energy of jm ¼ �1i with
respect to jm ¼ 0i. This leads to a Hamiltonian [21]

Ĥ ¼ Ĥint þ qðN̂þ1 þ N̂−1Þ: ð3Þ

We start from the situation where each atom is in the
Zeeman state jm ¼ 0i. In this paragraph, we assume that
N0 remains large compared to N�1 at all times. In the spirit
of the Bogoliubov approach for a scalar Bose gas, we treat
the creation (â†0) and annihilation (â0) operators for the
jm ¼ 0i state as c-numbers ≈

ffiffiffiffi
N

p
in the second-quantized

expression of Ĥint. We are left with a Hamiltonian quadratic
with respect to the creation and annihilation operators in the
weakly populated states jm ¼ �1i:

Ĥ ≈Usðâ†þ1â
†
−1 þ â−1âþ1Þ

þ ðqþ UsÞðâ†þ1âþ1 þ â†−1â−1Þ: ð4Þ

It can be diagonalized using the Bogoliubov method [33],
and one finds a linear spectrum of frequency [21,34,35]

ℏωB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðqþ 2UsÞ

p
: ð5Þ

In the Bogoliubov regime, the dynamics is reversible,
and the mean number of pairs ðþ1;−1Þ varies as [34,38]

N̄pðtÞ ¼
U2

s

ℏ2ω2
B
sin2ðωBtÞ: ð6Þ

More precisely, the system is predicted to periodically
evolve into a two-mode squeezed vacuum state, where the
number of pairs follows the Bose-Einstein distribution
[22,34]:

PðNpÞ ≃
1

N̄p
exp

�
−
Np

N̄p

�
; ð7Þ

with the standard deviation ΔNp ≃ N̄p. Note that the self-
consistency of the approximation of the undepleted m ¼ 0

state requires N̄p ≪ N; hence, q ≫ Us=N.
To test this prediction, we prepared a Bose-Einstein

condensate (BEC) with N ∼ 5000 atoms in jm ¼ 0i. We
performed standard evaporative cooling in a field of ∼1 G
in the presence of a magnetic force that removes all atoms
in jm ¼ �1i. The magnetic field was then suddenly

quenched to a lower value (34 mG) to trigger the spin-
mixing dynamics. Finally, we measured the populations
Nm in the three Zeeman states using fluorescence imaging,
with a detection noise ΔNm ≈ 1.6 atoms [32].
We show in Figs. 1(a) and 1(b) the evolution of the mean

value and standard deviation of Np ¼ ðNþ1 þ N−1Þ=2 and
Sz ¼ Nþ1 − N−1. We observe the predicted oscillations of
N̄p and verify that ΔNp is almost equal to N̄p, as expected
for a Bose distribution. The solid line in Fig. 1(a) shows a
fit of the expression (6) to the data, with Us as the only fit
parameter. We also varied q keeping Us constant and
verified the prediction (5) in Fig. 1(c). The magnetization
Sz remains compatible with zero at all times given our
experimental resolution [Fig. 1(b)], which confirms that
m ¼ �1 atoms are produced in pairs. The nonclassical
character of the spin state can be inferred from the
squeezing parameter ζ2s ¼ ΔŜ2z=ð2N̄pÞ [32,39,40]. At
t ¼ 80 ms, we have N̄p ≈ 26.6, ΔŜz ≈ 2.45, and ζ2s ≈
0.11 (9.5 dB).
In Figs. 1(d)–1(f), we investigate the evolution of the

distribution of Np and show that it is well reproduced by a
Bose distribution. It broadens for the first 80 ms, which
could be interpreted naively as a growth of entropy.

(a)

(b)

(d) (e) (f)(c)

FIG. 1. Experimental observation of many-body oscillations.
(a) Evolution of the mean number of pairs (circles) and its
standard deviation (squares) in a sudden quench from qi ¼
277ð3Þ Hz to qf ¼ 0.31ð1Þ Hz. Here N ≈ 5400ð740Þ. The solid
line is the result of a fit of the Bogoliubov prediction (6) to the
experimental data, with Us ¼ 17.5ð1.4Þ Hz as a single free
parameter. (b) Mean (circles) and standard deviation (squares)
of the magnetization Sz. The shaded region indicates the detection
noise level. (c) Oscillation frequency obtained from a fit to the
measured N̄pðtÞ (circles) for various q, compared to the pre-
diction (5) (line). (d)–(f) Measured distribution of the number of
pairs for t ¼ 10, 80, and 160 ms, with the solid lines correspond-
ing to the prediction (7).
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However, this evolution is subsequently reversed almost
perfectly, and the system returns close to its initial state
after 160 ms.
The observation of beyond mean-field reversible evolu-

tion in a closed many-body system is an important result of
this Letter. For comparison, a partial reversal of time
evolution was achieved in a dynamically unstable BEC
with modulated interactions [41], using a sudden change of
the relative phase between the various modes of the system.
Combinations of closed, beyond mean-field evolution in an
unstable regime and externally driven rephasing sequences
are also at the core of the SU(1,1) interferometers dem-
onstrated in spinor BECs [42–44]. In contrast, our experi-
ment was performed with a stable system (ωB real and
positive) and no action was needed to reverse the dynamics.
The isolated character of our system is essential for the
subsequent discussion of relaxation and thermalization.
Relaxation and generalized Gibbs ensemble.—The oscil-

lating behavior discussed above relies on the linearity of the
many-body spectrum ∼nℏωB (n integer) in the Bogoliubov
approximation. Outside this regime, the spectrum exhibits a
significant nonlinearity, and the sum over several oscil-
lation functions causes dephasing, as for the prethermal-
ization phenomenon [45]. The expectation value of a
physical observable relaxes to a steady-state value, possibly
accompanied by revivals at some specific times. The spin-1
atomic assembly at zero magnetic field is well suited to
observe such a behavior, since the spectrum of Ĥint is ES ¼
SðSþ 1ÞUs=2N and, hence, quadratic with the quantum
number S associated with the total spin [46–48]. In
practice, the magnetic field should be such that q ≪
Us=N to ensure that the Zeeman energy is negligible for
the states that we consider hereafter.
We first investigate theoretically the relaxation associ-

ated with this quadratic spectrum. We consider again the
initial state jψ ii ¼ jm ¼ 0i⊗N and study its evolution for a
zero magnetic field. For N ≫ 1, the decomposition of jψ ii
on the basis states jS;Mi, whereM is the quantum number
associated with Ŝz, reads [49]

jψ ii ¼
X
S

cSjS; 0i; cS ≈
ffiffiffiffiffiffi
2S
N

r
e−S

2=4N: ð8Þ

Here, the sum runs on even (respectively, odd) values of S
for N even (respectively, odd), and the most populated spin
states are S ∼

ffiffiffiffi
N

p
. Using the matrix elements of N̂0

between spin states for S ≪ N,

hS; 0jN̂0jS0; 0i ≈
N
2
δS;S0 þ

N
4
ðδS;S0−2 þ δS;S0þ2Þ; ð9Þ

and treating S as a continuous variable, we find that the
evolution of the population n0 ¼ hN0i=N obeys [50]

n0ðtÞ ¼ 1 − τDðτÞ; τ ¼
ffiffiffiffi
2

N

r
Ust
ℏ

; ð10Þ

where DðτÞ ¼ Rþ∞
0 sinð2xτÞe−x2dx is the Dawson func-

tion. At long times, n0ðtÞ tends to 1=2.
We now turn to the experimental investigation of

this relaxation dynamics, with atom numbers in the range
100–1000 . The spin interaction was calibrated using the

oscillations of N�1 at relatively large q (see Fig. 1) and
ranges from Us=h ¼ 17 Hz for N ¼ 110 up to 50 Hz for
N ¼ 840. We performed a sudden quench to q ¼ 11 mHz
(B ¼ 6.2 mG) so that the inequality Nq < Us is well
satisfied for all atom numbers. We show in Fig. 2 the
evolution of n0. The agreement with the prediction (10) is
excellent. In particular, the collapse of data acquired with
notably different atom numbers shows that the relaxation
dynamics is entirely characterized by the “universal”
function τDðτÞ. We checked for all data in Fig. 2(a) that
the magnetization Sz remains compatible with zero, as in
Fig. 1(c).
Figure 2(a) shows no sign of revival, neither for the

experimental data nor for the theoretical prediction (10).
The lack of revival in the theory is an artifact of the
replacement of the discrete sum over S in Eq. (8) by an
integral. Keeping S as a discrete quantum number, the
time-dependent phase factors e−iESt=ℏ appearing in jψðtÞi
rephase at times multiple of hN=Us [49]. In practice, this

(a)

(b) (c) (d) (e)

FIG. 2. Experimental observation of relaxation near zero
magnetic field. (a) Evolution of the population n0ðtÞ following
a fast quench of q to a negligible value, for various atom numbers
N. Disks: N ¼ 107, Us ¼ 17.2 Hz; squares: N ¼ 230,
Us ¼ 24.2 Hz; lozenges: N ¼ 835, Us ¼ 64.7 Hz. The initial
state is jm ¼ 0i⊗N . For τ ¼ 9, the “real” time spanned is t ¼ 609,
635, and 452 ms for the three atom numbers. The solid line is the
universal prediction (10). (b)–(e) Distribution of the population
n0 at t ¼ 30, 100, 200, and 500 ms for N ¼ 107 atoms. In (b)–
(d), the solid lines are the results of a numerical simulation. In (e),
the green dotted line is the prediction from the microcanonical
ensemble [51], and the red dashed line is the prediction from the
GGE with the constraint Sz ¼ 0 [35].
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time is much larger than 1 s even for our lowest atom
number, and parasitic effects such as atom losses prevented
us from observing these revivals.
In spite of the SO(3) symmetry of Ĥint, the three

populations nm are not all equal to 1=3 after relaxation
is complete. This implies that the final state of the spin
assembly cannot be described by a thermal density matrix
such as ρ̂ ∝ expð−Ĥint=kBTÞ associated with an effective
temperature T. This nonthermal character is readily
explained by the fact that Sz is a conserved quantity. For
a given Sz, the system has essentially a single degree of
freedom characterized by the value of the quantum number
S and is, thus, integrable [52].
In order to apply the statistical physics formalism to

such a case, one has to consider a GGE that takes into
account the conservation of magnetization [1,2,10,53,54].
For our choice of initial state, with mean energy Ē ¼
hψ ijĤintjψ ii ≈Us and vanishing average magnetization,
the density matrix associated with this GGE is

ρ̂GGE ∝
X
ES∈W

jS; 0ihS; 0j: ð11Þ

Here the sum runs over the spin states jS; 0i whose energy
ES sits in a narrow window W centered on Ē. From the
matrix elements given in Eq. (9), one deduces that the GGE
average population n̄0 ¼ ð1=NÞTrðρ̂GGEN̂0Þ ¼ 1=2, which
coincides with the asymptotic result predicted in Eq. (10)
and measured experimentally.
To comparemore precisely our results with the predictions

of the GGE, we consider the distribution PðN0Þ plotted in
Figs. 2(b)–2(e) at four different times for N ¼ 107. We
observe that this distribution reaches a steady-state value in
excellent agreement with the one calculated with ρ̂GGE,
plotted as a dashed line in Fig. 2(e). To the contrary, the
prediction for “true” thermal equilibrium, which is obtained
by extending the sum (11) to all spin states jS;Mi in the
energy windowW, differs significantly from the experimen-
tal result [dotted line in Fig. 2(e)].
In practice, the relaxation of macroscopic observables in

spinor BECs may also originate from fluctuating initial
states or from couplings between spin and spatial modes
[55–60]. Here, these processes are negligible compared to
the self-relaxation due to the nonlinearity of the energy
spectrum and characterized by the universal law (10).
Chaotic dynamics and thermalization.—For a generic

many-body system, the eigenstate thermalization hypoth-
esis (a term coined in Ref. [61]) states that essentially any
energy eigenstate jψEi is “typical,” in the sense that the
statistical properties of a few-body observable Ô evaluated
with jψEi are close to their expectation value for thermal
equilibrium, calculated, for example, using the micro-
canonical density matrix ρ̂E at the energy E (for a review,
see [2–4]). A consequence of the ETH is thermalization: If
we consider an initial wave packet jψðt ¼ 0Þi formed by a

combination of many energy eigenstates all around the
energy E, the time average of hψðtÞjÔjψðtÞiwill be close to
the thermal equilibrium average Trðρ̂EÔÞ.
The justification of the ETH is closely related to the

theory of random matrices [61–63]. More precisely, the
validity of the ETH is established for systems with a large
number of degrees of freedom whose level statistics
corresponds to a chaotic behavior such as the spectrum
of random matrices from the grand orthogonal or grand
unitary ensembles. On the contrary, when the level statistics
corresponds to a regular motion, the ETH does not hold.
To address the connection between thermalization and

chaos for a spin-1 ensemble, we consider the following
Hamiltonian:

Ĥ0 ¼ Ĥ þΩŜx: ð12Þ

The second term in Ĥ0 breaks the integrability of Ĥ by
ensuring that Ŝz is not conserved anymore, so that the two
degrees of freedom associated with the quantum numbers S
and Sz are now coupled. The one-body term ΩŜx describes
(in the rotating frame) the effect of a resonant coupling
induced by a rotating radio-frequency field that drives the
transitions jmi ↔ jm� 1i. Note that the implementation of
Ĥ0 requires an excellent control of the ambient magnetic
field in order to keep the fluctuations of the first-order
Zeeman effect small compared to Us [64].
The matrix of Ĥ0 in the particle number basis

jN−1; N0; Nþ1i [with N�1 ¼ ðN − N0 �MÞ=2] is real
and symmetric. We diagonalized it numerically for N ¼
100 and studied its level statistics as a function of the
control parameters Us, q, and Ω. While the spectrum
corresponds to a regular motion when one of the three
parameters is either large or small compared to the two
others, a chaotic behavior emerges when they are all
comparable [65].
We show in Fig. 3(a) the density of states calculated for

q=Us ¼ 0.8 and Ω=Us ¼ 0.6. In Figs. 3(b) and 3(c), we
give the distributions of the splittings between adjacent
energy levels, for eigenstates inside the two shaded zones
of Fig. 3(a). In zone A (in red, centered on E=Us ¼ −10),
adjacent levels show a clear antibunching, close to the one
expected for random real symmetric matrices, an indicator
of chaotic dynamics [66]. On the contrary, for zone B (in
blue, centered on E=Us ¼ −53), the level statistics is close
to a Poisson law, characteristic of a regular motion. This
diagnostic is confirmed by a resolution of the mean-field
equations, which shows chaotic (respectively, regular)
trajectories, for initial conditions corresponding to an
energy in zone A (respectively, B) [35]. Another chaotic
feature of Ĥ0, the growth of out-of-time-ordered correlators
at short times, was also evidenced in Ref. [65].
To analyze the relationship between the emergence of a

chaotic behavior and the ETH for our spin system, we
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calculated the evolution of various physical quantities for
a wave packet inside zone A or B. The initial state is
R̂xðθÞjm ¼ 0i⊗N , where R̂xðθÞ is the rotation around the x
axis, with the angle θ adjusted such that the average energy
of the state sits in the middle of the desired zone. We show
in Figs. 3(d) and 3(e) the evolution of the expectation
values of the one-body observable N̂0 and the two-body
observable Ŝ2x, together with the thermal averaged value of
these quantities, using the microcanonical density matrices
for zones A and B. The results fully confirm the prediction
of the ETH: For the wave packet prepared inside the chaotic
region (A), full thermalization does occur, whereas for the
wave packet in region B, the asymptotic value of hŜ2xi
differs significantly from the thermodynamic average. In
addition, relaxation is notably faster in the chaotic sector
than in the regular one, a hierarchy that also occurs in the
model developed in Ref. [67] for a quasi-one-dimensional
Bose gas.
In summary, a collection of spin-1 atoms in the same

spatial mode allows one to study the large variety of time
evolutions that are accessible to an isolated many-body

system. Depending on the applied magnetic field, we could
observe either a beyond mean-field oscillating dynamics or
an irreversible relaxation characterized by a universal
function. We also showed that this system is well suited
to test the ETH, as it provides the minimal number of
degrees of freedom for the emergence of a chaotic behavior
in a closed system.
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Naylor, E. Maréchal, O. Gorceix, A. Rey, L. Vernac, and B.
Laburthe-Tolra, Nat. Commun. 10, 1714 (2019).

[15] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z.
Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro
et al., Nat. Phys. 12, 1037 (2016).

[16] C. Kollath, A. M. Läuchli, and E. Altman, Phys. Rev. Lett.
98, 180601 (2007).

[17] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)
452, 854 (2008).

[18] T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).

(a)

(b) (c)

(d) (e)

FIG. 3. Numerical exploration of chaotic behavior and thermal-
ization. (a) Density of states (dashed line) for the Hamiltonian Ĥ0
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