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I. ENERGY SCALES AND SPECTRUM

We recall the total Hamiltonian describing our spinor
BEC within the single mode approximation

Ĥ = q(N̂+1 + N̂−1) +
Us
2N

Ŝ2 , (1)

with

Ŝ2 = N + N̂0 + 2N̂0(N − N̂0) + Ŝ2
z

+ 2(â†+1â
†
−1â

2
0 + â†20 â+1â−1) . (2)

In our experiment, we studied the evolution after a
quench of the quadratic Zeeman energy q of a polar
BEC [1], where each atom initially occupies the |m = 0〉
Zeeman state. The energy Ei ≈ Us of the initial state
originates solely from the interaction term. Given that
the energy cost to produce a pair of atoms in (+1,−1)
state is 2q, we can distinguish three regimes depending
on the value of q after the quench :

(i) q � Us : we expect essentially no evolution of the
initial state, which is very close to the ground state
of the system.

(ii) Us/N � q � Us : the BEC is weakly depleted, and
the dynamics of a polar BEC is well captured by
the Bogoliubov approach (see Sec. II). In an energy
window around Ei, the many-body spectrum n~ωB
with n an integer is almost linear with the quantum
number n (the number of excitation quanta).

(iii) Us
N2 � q � Us/N : in that case the QZE is negli-
gible compared to the energy Ei of the initial state
and can thus be omitted. The spectrum is now
quadratic with the quantum number S (the total
spin angular momentum), leading to overdamped
dynamics.

For completeness, we mention the existence of a fourth
regime, not relevant for the dynamics of a polar BEC,
but for the lowest energy states.

(iv) q � Us/N
2 : the QZE is small compared to the

smallest gap (between the ground state and the
first excited state) of the interaction Hamiltonian.
Thus, the QZE can be neglected for all eigenstates,
not only for the relatively high energy ones that we
are considering in our experiment.

These four regimes are sketched in figure 1, with a table
of the experimental parameters. In figure 2, we present
an exact diagonalization of the Hamiltonian (1).

(iv)
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2
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FIG. 1. Energy scales for a spin-1 BEC with zero magnetiza-
tion in the SMA.

Data set q/~ [Hz] Us/~ [Hz] N Nq/Us

1 2.00(1) 17.5(1.4) 5700(600) 650

2 1.00(1) 17.5(1.4) 5400(700) 300

3 0.31(1) 17.5(1.4) 5400(700) 96

4 0.05(1) 17.5(1.4) 5100(700) 14.5

5 0.30(1) 16(2) 274(40) 5.2

6 0.14(1) 16(2) 287(43) 2.5

7 0.011(2) 64(7) 835(54) 0.14

8 0.011(2) 24(3) 230(24) 0.11

9 0.011(2) 17(2) 107(15) 0.070

TABLE I. Experimental parameters for the data presented in
the paper. The data sets 1→ 4 correspond to regime (ii) and
are used in figure 3 of the Supplemental. Data set 3 is used
in the figure 1 of the main text. Data sets 7→ 9 correspond
to regime (iii) and are used in the figure 2 of the main text.
All data sets, including 5 & 6 taken at the crossover from (i)
to (iii), are compared to the GGE predictions in figure 4 of
the Supplemental (see Sec. II B). The interaction strength Us

is calibrated using a fit of the oscillation of Np given Eq.(12).
It depends of N and on the trap frequencies.

II. BOGOLIUBOV REGIME

For q � Us/N [regimes (i) and (ii)], the condensate
is weakly depleted, and the Bogoliubov approximation
leads to the quadratic Hamiltonian

ĤB = (q + Us)
(
N̂+1 + N̂−1

)
+ Us

(
â+1â−1 + â†+1â

†
−1

)
+ Us , (3)
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FIG. 2. (a) Spectrum of the Hamiltonian (1), for N = 100
and Sz = 0 versus the QZE q (in log scale). The energies
En(q) are rescaled for each value of q so that the energy of
the ground state Emin and of the most excited state Emax

are constant. The initial state |ψ〉 = |m = 0〉⊗N belongs
to the low energy sector. In (b) we zoom on this section,
and here the brightness of the line En(q) is proportional to
〈n(q)|ψi〉, with |n(q)〉 the energy eigenstates. For Us/N � q,
the relevant part of the spectrum is almost linear, while for
q . Us/N it is essentially quadratic.

up to terms of order 1/N . We introduce the Bogoliubov
operators

α̂ = cosh(θ)â+1 − sinh(θ)â†−1 , (4)

β̂ = sinh(θ)â†+1 − cosh(θ)â−1 , (5)

with

cosh(2θ) =
q + Us
~ωB

and sinh(2θ) = − Us
~ωB

, (6)

and the Bogoliubov energy ~ωB =
√
q(q + 2Us). This

transformation diagonalizes the Hamiltonian (3),

ĤB = ~ωB [α̂†α̂+ β̂†β̂ − 2 sinh2(θ)] + Us . (7)

The number of pairs N̂p = (N̂+1+N̂−1)/2 can be written
as a function of the Bogoliubov modes

N̂p =
cosh(2θ)− 1

2
+

cosh(2θ)

2

(
α̂†α̂+ β̂†β̂

)
− sinh(2θ)

2

(
α̂†β̂† + α̂β̂

)
. (8)

The magnetization along z is given by

Ŝz = α̂†α̂− β̂†β̂ . (9)

A. Dynamics

The time evolution of the Bogoliubov operators in the
Heisenberg picture is straigthforward, for instance α̂(t) =
exp(−iωBt)α̂(0). For our initial state |m = 0〉⊗N , we
have

〈α̂†α̂〉i = 〈β̂†β̂〉i = sinh2(θ) , (10)

〈α̂β̂〉i =
1

2
sinh(2θ) . (11)

As a result, the mean number of pairs N̄p oscillates [2]

N̄p(t) = sinh2(2θ) sin2(ωBt) =
U2
s

~2ω2
B

sin2(ωBt) . (12)

When q � Us, the interactions are negligible, the fre-
quency of the oscillation is trivially ωB ≈ q/~ and their
amplitude is (N̄p)max ≈ Us/q � 1. For Us/N � q �
Us, the frequency of the oscillations ωB ≈

√
2qUs/~

is modified by the interactions, and the amplitude
[Us/(2q)]

1/2 � 1 becomes substantial.
In order to verify these predictions, we measured the

evolution of N̄p for various q (keeping q � Us/N , Us
and N are fixed). We fit the evolution with a sinusoidal
function and report the value of the amplitude and of the
period of the oscillation in figure 3. We observe a very
good agreement with the Bogoliubov predictions.
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FIG. 3. Period (a) and amplitude (b) of the oscillation of N̄p

in the reversible regime q � Us/N . The red points are the
experimental data, the solid lines are the results of a numerical
resolution of the Schrödinger equation, and the dotted lines
are given by the Bogoliubov approach.
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B. Generalized Gibbs ensemble

In the main text, we have used the GGE to describe
the steady state reached in regime (iii), when q � Us/N
and relaxation occurs rapidly. More generally, numer-
ical resolution of the Schrödinger equation reveals that
at long times, relaxation always occurs, even in regime
(ii), due to small deviations to the Bogoliubov approxi-
mation that makes the spectrum slightly non-linear. In
that regime, we found numerically that the steady state
verifies the predictions of the GGE computed using the
Bogoliubov approximation. The constraint of vanishing
magnetization [given in (9)] imposes the same number of

excitations in each mode α̂ and β̂, such that the GGE
density matrix can be written as

ρ ∝
∑
Nex

1

(Nex!)2
(α̂†β̂†)Nex |vac〉〈vac|(α̂β̂)Nex (13)

where the sum is taken over the states in a small energy
window around the energy of the initial state Ei = Us, i.e.
with Nex ≈ sinh2(θ). Using Eq. (8) we find the number
of pairs in the GGE steady state,

〈N̂p〉GGE =
1

2
sinh2(θ) =

U2
s

2~2ω2
B

. (14)

The damping of the oscillations takes a very long time
when q � Us/N . While relaxation proceeds, the sys-
tem also undergoes atom losses due to collisions with
the background gas, evaporation in the optical trap, or
three-body relaxation. This forbids a direct experimental
verification of prediction (14). However, we notice that
in the Bogoliubov regime, the steady value of N̄p given
by Eq. (14) is equal to half the amplitude of the initial
oscillations of N̄p, given by Eq. (12). Based on this theo-
retical result, we analyze data taken in a broad range of
magnetic field, from regime (i) to (iii), as follows:

• If we observe the relaxation of N̄p(t) within 500 ms,
we directly measure the steady value.

• Otherwise, if we observe oscillations, we extract
from a fit the time-average of N̄p(t).

We report the results in figure 4 on a universal curve
np = N̄p/N versus Nq/Us. We found an excellent agree-
ment with the predictions of the GGE over four orders
of magnitude.

III. CHAOTIC HAMILTONIAN

In the last section of the main text, we discuss the
possibility to observe a chaotic behavior leading to ther-
malization. We introduce a modified Hamiltonian

Ĥ ′ = q(N̂+1 + N̂−1) +
Us
2N

Ŝ2 + ΩŜx , (15)
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FIG. 4. Inferred steady-state values of the observable np, the
mean fraction of m = ±1 pairs. The blue circles are the av-
erage of oscillations observed in the reversible regime, where
relaxation occurs on a time scale longer than the coherence
time of our samples. For the blue squares, we observed re-
laxation on a shorter time scale and directly measured the
steady state value of np. The red dashed line corresponds
to the GGE prediction and the black solid line is the steady
state extracted from a numerical resolution of the Schrödinger
equation.

where

Ŝx =
1√
2

[
â0(â†+1 + â†−1) + â†0(â+1 + â−1)

]
, (16)

is the x component of the collective spin.
Here, we briefly discuss a few important features of

this Hamiltonian. It has also been studied in [3].
a. Discrete symmetry : The single-particle coupling

term ∝ Ω in the Hamiltonian (15) breaks the SO(2) sym-
metry present in the original Hamiltonian (1). However,

the discrete symmetry [Ĥ ′, R̂] = 0 is preserved, where

R̂ = exp
(
iπŜx

)
, (17)

performs a rotation of angle π around the x axis.
The action of R̂ in the basis of the collective spin-states

is

R̂|S,M〉 = (−1)S |S,−M〉 . (18)

We recall that due to the exchange symmetry, the only
possible states are those for which S and N have the
same parity. We have R2 = Id, such that R can have
two eigenvalues (−1)N and −(−1)N , which we will refer
to as even and odd parity, respectively. The eigenvectors
with even parity are the states |S, 0〉 and the symmetric
superpositions

|ψ+
S,M 〉 =

1√
2

(|S,M〉+ |S,−M〉) , (19)

for M > 0. The dimension of the even-parity sector is
thus (N/2 + 1)2. The eigenvectors with odd parity are
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the antisymmetric superpositions

|ψ−S,M 〉 =
1√
2

(|S,M〉 − |S,−M〉) , (20)

with M > 0 . They span a subspace of dimension (N/2)×
(N/2 + 1). We call Ĥ ′+ (respectively, Ĥ ′−) the restriction

of Ĥ ′ to the even (resp. odd) parity sector.
b. Numerical diagonalization : To perform numeri-

cal computations, we first write Ĥ ′ in the Fock state basis
|N0,M〉 characterized by the three quantum numbers N ,
N0 and M = N+1 − N−1. We then perform the basis
change

|N0,±M〉 →
1√
2

(|N0,M〉 ± |N0,−M〉) , (21)

for M > 0. In the new basis, Ĥ ′ is block diagonal and
the blocks give directly Ĥ ′±. We finally diagonalize Ĥ ′±
numerically to obtain the even- and odd-parity energies
and eigenvectors separately.

c. Level statistics : In the chaotic regime achieved
for instance when q/Us = 0.8 and Ω/Us = 0.6, the spec-

trum of Ĥ ′± features level repulsion. The statistics of the
level spacing is well reproduced by the Wigner-Dyson dis-
tribution, as shown for Ĥ ′+ in figure 3 of the main text

(we find similar features for Ĥ ′−). For the full Hamil-

tonian Ĥ ′, approximate degeneracies between eigensates
with opposite parity are possible due to the absence of
coupling between the even and odd parity sectors. With-
out sorting the eigenvalues according to their parity, we
do not observe the Wigner-Dyson distribution and level
repulsion.

d. Eigenstates thermalization We show in figure 5
the diagonal matrix elements for the observables N̂0 and
Ŝ2
x in the basis of the even eigenstates of Ĥ ′. The ETH

states that those matrix elements take comparable value
for eigenstates sufficiently close in energy. We observe
this behavior for both observables in the region A iden-
tified as chaotic in the main text. Outsize this zone, the
dispersion of the matrix elements increases, in particu-
lar for Ŝ2

x. These observations explain why we observed
thermalization for a state in zone A and not for a state
in B. We looked at other one- and two-body observables
and always found that the ETH holds in the chaotic re-
gion of the spectrum. We also verified that it holds for
eigenstates with odd parity.

e. Dynamics We focus on the dynamics of even-
parity states obtained by a rotation around x of a polar
BEC with each atom in |m = 0〉,

|ψi(θ)〉 = exp
(
−iθŜx

)
|m = 0〉⊗N . (22)

The parity of |m = 0〉⊗N is even and a rotation around
x preserves the parity since the rotation operator com-
mutes with R̂. In figure 3 of the main text, we show the

evolution of initial states with θ = 0.6 rad (blue, “non-
chaotic” regime) and θ = 1.2 rad (red, “chaotic” regime).
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FIG. 5. Diagonal matrix elements of the observables N̂0 (a)

and Ŝ2
x (b) in the basis of the eigenstates of Ĥ ′ with q = 0.8Us

and Ω = 0.6Us. The red and blue area correspond to the
zones A and B introduced in the main text, and identified as
chaotic and integrable, respectively. In zone A, eigenstates
close in energy have similar expectation values for few body
observables, in good agreement with the ETH. Outside this
zone, we observe a larger dispersion, especially for Ŝ2

x.

IV. MEAN-FIELD APPROXIMATION

In a mean-field approximation, our system is described
by a state |ζ〉⊗N , where

|ζ〉 =


√
n+1e

iφ+1

√
n0√

n−1e
iφ−1

 =


√

1−n0+m
2 ei

θ+η
2

√
n0√

1−n0−m
2 ei

θ−η
2

 , (23)

is a generic state for a spin-1 particle. In the follow-
ing, to shorten the equations, we sometime use the vari-
ables n±1 and φ±1, but our set of independent variables
is (n0,θ,m,η). The mean-field energy per atom given the
Hamiltonian (15) is (up to terms ∼ 1/N)

Es =− qn0 + Us

[
n0(1− n0) + 2n0

√
n+1n−1 cos θ +

m2

2

]
+ Ω
√

2n0
(√
n+1 cosφ+1 +

√
n−1 cosφ−1

)
. (24)

The equations of motion can be derived starting from the
Lagrangian density for the Schrödinger equation

L(n0, θ,m, η, ...) =
i

2
(ζ∗ζ̇ − c.c.)− Es , (25)

= −1− n0
2

θ̇ − 1

2
mη̇ − Es . (26)

The Euler-Lagrange equations yield

~ṅ0 = −2
∂Es
∂θ

, ~θ̇ = 2
∂Es
∂n0

,

~ṁ = 2
∂Es
∂η

, ~η̇ = −2
∂Es
∂m

. (27)

After some algebra we arrive at
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~ṅ0 =4Usn0
√
n+1n−1 sin θ + Ω

√
2n0

(√
n+1 sinφ+1 +

√
n−1 sinφ−1

)
, (28)

~θ̇ =− 2q + 2Us(1− 2n0) + Us
(1− n0)(1− 2n0)−m2

√
n+1n−1

cos θ

+ Ω

(
2n+1 − n0√

2n0n+1
cosφ+1 +

2n−1 − n0√
2n0n−1

cosφ−1

)
, (29)

~ṁ =Ω
√

2n0(−√n+1 sinφ+1 +
√
n−1 sinφ−1) , (30)

~η̇ =Us
n0m√
n+1n−1

cos θ − 2Usm− 2pz − Ω

√
n0
2

(
1√
n+1

cosφ+1 −
1√
n−1

cosφ−1

)
. (31)

A. Integrable regime

Let us first consider the case Ω = 0, describing a spin-1
BEC in a static magnetic field. From Eq. (30), we imme-
diately see that m is constant, and that Eqs.(28,29) form
a closed set of equations for the variables (n0, θ). Ac-
cording to the Poincaré-Bendixson theorem, chaos can-
not occur in this situation.

We also remark that n0 = 1 (implying n±1 = 0) is
a solution of Eq. (28). The initial state for the experi-
ment presented in Fig. 1 and Fig. 2 of the main text cor-
responds to n0 = 1. Therefore, the dynamics that we
observed cannot be captured within a mean-field approx-
imation. More generally, irregardless of the initial state,
the solutions of Eqs. (28,29) are periodic when Ω = 0 [4],
and thus incompatible with a relaxation of n0.

B. Chaotic regime

When the parameters Us, q and Ω take comparable val-
ues, some regions of the phase space (n0,θ,m,η) become
chaotic [3]. A convenient way to visualize chaotic trajec-
tories relies on Poincaré sections, as shown in Fig. 6. We
chose to look at the variables (n0, θ) when the trajectory
crosses the subspace defined by m = 0. For the initial

state, we use θ = π, m = 0, η = π/2 and n0 = 0.1 (a)
or n0 = 0.6 (b). The energies of those states, given by
Es = −qn0, belong to the chaotic region A (a) or the
regular one, B (b). We found that the region of quantum
chaos identified by the energy level statistics (see main
text) coincides with the region of classical chaos identified
with Poincaré sections.
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FIG. 6. Poincaré section (n0,θ) for the intersection surface
m = 0. Here, q = 0.8Us and Ω = 0.6Us. For our choice of
initial state, with θ = π, m = 0 and η = π/2, the energy is
Es = −qn0. The red and blue lines indicate the energy win-
dows A and B identified as chaotic and integrable in the main
text, respectively. In (a) (resp. b) the initial state, shown by
a dark square, corresponds to n0 = 0.1 (resp. n0 = 0.6) and
belongs to zone A (resp. B). Accordingly, the Poincaré sec-
tion spreads over a surface (resp. a line), and is characteristic
of a chaotic (resp. regular) trajectory.

V. POPULATIONS DISTRIBUTION FOR THE STATISTICAL ENSEMBLES

In this section, we derive the distribution P (N0) of N0 for the microcanonical ensemble (ME) and for the generalized
Gibbs ensemble (GGE). We focus on the situation where we observed relaxation, i.e. when we can neglect the
quadratic Zeeman shift. In this case the Hamiltonian eigenstates are the collective spin states |S,M〉. The density
matrix associated to the two ensembles are

ρME ∝
∑
ES∈W

S∑
M=−S

|S,M〉〈S,M | , (32)
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and

ρGGE ∝
∑
ES∈W

|S, 0〉〈S, 0| , (33)

where the sums are taken over the spin manifolds whose energy ES = S(S + 1)Us/(2N) sits in a window W centered
on the energy of the initial polar state Ei = Us. The precise value of the width of the energy window is unimportant.
In fact, we will see that all spin manifolds correspond to the same distribution P (N0), provided that the average
over M for the ME, or a coarse-graining average for the GGE, are performed. It is thus sufficient to perform the
calculation for the particular spin manifold with S∗ ≈

√
2N , such that ES∗ = Ei.

A. Preliminary

To obtain the desired distribution function, we need to compute the expansion of the collective spin states |S,M〉
in the basis of Fock states |N0,M〉 with well-defined populations N0 and N±1 = (N − N0 ± M)/2. To perform

this calculation, it is convenient to introduce the overcomplete family of spin-nematic states |N : Ω〉 = |m = 0〉⊗NΩ ,
obtained as rotations of the polar state |m = 0〉Ω=ez .

In the Fock basis, the spin-nematic states read

|N : Ω〉 =
1√
N !

(Ω+1â
†
+1 + Ω0â

†
0 + Ω−1â

†
−1)N |vac〉 , (34)

with Ω±1 = ∓ 1√
2

sin θe∓iφ and Ω0 = cos θ. Expanding the product, we have

|N : Ω〉 =
∑
N0,M

(−1)N+1fN0
(θ)e−iMφ |N0,M〉 . (35)

with a coefficient

fN0
(θ) =

1

2
N−N0

2

√
N !

N+1!N0!N−1!
cos θN0 sin θN−N0 . (36)

In the limit N � 1, these coefficients become narrow functions of θ centered around the value θ0 ∈ [0, π/2], such that

sin θ0 =

√
N −N0

N
, cos θ0 =

√
N0

N
. (37)

Using Stirling’s formula and expanding the sinusoidal functions, we find that

fN0
(θ) ≈ 1√

2π

(
N

N+1N0N−1

)1/4

e
− M2

4(N−N0)

[
e−N(θ−θ0)2 + (−1)N0e−N(θ+θ0−π)2

]
. (38)

We use this approximate expression in actual calculations below.
Collective spin states and spin-nematic states are related by [5]

|S,M〉 =
1√
fNS

∫
S
d2Ω YSM (Ω) |N : Ω〉 . (39)

Here the integral is taken over the unit sphere S, the YSM are the spherical harmonics and the normalization factor
is

fNS =
4π 2S N ! (N+S

2 )!

(N−S2 )! (N + S + 1)!
≈ 4π

N
e−

S2

2N , (40)

where the approximate expression holds for 1 � S � N . Using |N : −Ω〉 = (−1)N |N : Ω〉, YSM (−Ω) =
(−1)SYSM (Ω), and given that S and N have the same parity, we can restrict the integral over the upper hemi-
sphere S ′ of the unit sphere

|S,M〉 =
2√
fNS

∫
S′
d2Ω YSM (Ω) |N : Ω〉 . (41)
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B. Generalized Gibbs Ensemble

For S � 1 and M = 0, the spherical harmonics can be approximated by the leading term of their asymptotic
expansion ,

YS,0(Ω) ≈ (−1)S

π

sin(Sθ + π
4 )√

sin θ
. (42)

We substitute Eqs. (35,38,42) in (41) and obtain after integration over φ

〈N0, 0|S, 0〉 ≈
4(−1)N+1+S√

πfNS

(
N

N0(N −N0)2

)1/4 ∫ π/2

0

dθ
√

sin θ sin
(
Sθ +

π

4

) [
e−N(θ−θ0)2 + (−1)N0e−N(θ+θ0−π)2

]
.

(43)

The integrand is sharply peaked on θ0 and π − θ0. Since θ0 ∈ [0, π/2], only the first term contributes significantly.
Using a stationary phase approximation we obtain∫ π/2

0

dθ
√

sin θ sin
(
Sθ +

π

4

)
e−N(θ−θ0)2 ≈

√
sin θ0 Im

[
eiSθ0+

π
4

∫ +∞

−∞
dθeiSθe−Nθ

2

]
(44)

=

√
π

N

√
sin θ0 sin

(
Sθ0 +

π

4

)
e−

S2

4N . (45)

Using Eq. (40) and sin θ0 =
√

(N −N0)/N , we have

〈N0, 0|S, 0〉 ≈ (−1)N+1+S
2√
π

sin(Sθ0 + π
4 )

[N0(N −N0)]
1/4

. (46)

The associated probability distribution |〈N0, 0|S, 0〉|2 therefore oscillates very rapidly with N0 (recall that S � 1)
around a mean enveloppe function.

To extract this enveloppe (which is the experimentally relevant observable), we perform a coarse-graining average
of the distribution PGGE(N̄0) over an interval I = [N̄0 − δN0, N̄0 + δN0],

P̄GGE(N̄0) ≈ 4

π

1

2δN0

∑
N0∈I

sin2(Sθ0 + π
4 )

[N0(N −N0)]1/2
, (47)

where the sum runs for N0 ∈ I and of the same parity as N (thus, N0 varies by increment of 2). For N � 1, the
discrete sum can be approximated by an integral over the variable x = (N0 − N̄0)/N ,

1

2δN0

∑
N0∈I

sin2(Sθ0 + π
4 )

[N0(N −N0)]1/2
≈ 1

4δx

∫ +δx

−δx
dx

sin2
(
Sθ0(x) + π

4

)
[(N̄0 +Nx)(N − N̄0 −Nx)]1/2

,

with θ0(x) ≈ θ̄0−x/ sin(2θ̄0) to first order in x. For a width δN0 � N of the coarse-graining interval, the denominator
is essentially constant and can be removed from the integral (this approximation breaks down on the edges of the
distribution, where N0 ∼ δN0 or N0 ∼ N − δN0). Furthermore, if we choose δN0 � N/S, i.e. δx � 1/S, the
integration interval spans over several periods of the oscillating term in the numerator and this term averages to
≈ 1/2. After coarse-graining, we thus obtain

P̄GGE(N̄0) ≈ 1

π[N̄0(N − N̄0)]1/2
. (48)

As announced in the beginning, this formula holds without an average over S: it is valid for each individual |S, 0〉
state with 1� S � N .

C. Microcanonical ensemble

As for the GGE, we establish below that we do not need to average over a small energy window for the microcanonical
ensemble as well, because the result for a given S actually does not depend on S. Thus, we consider for simplicity
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the following density matrix, where S ∼
√

2N is fixed,

ρME =
1

2S + 1

S∑
M=−S

|S,M〉〈S,M | , (49)

=
4

(2S + 1)fNS

∫∫
S′
d2Ω1d

2Ω2

S∑
M=−S

YSM (Ω1)Y ∗SM (Ω2)|N : Ω1〉〈N : Ω2| , (50)

=
1

πfNS

∫∫
S′
d2Ω1d

2Ω2PS(Ω1 ·Ω2)|N : Ω1〉〈N : Ω2| , (51)

where we have used the addition theorem for spherical harmonics, with PS the Legendre polynomial of degree S. We
want to compute

PME(N0) =
1

πfNS

∫∫
S′
d2Ω1d

2Ω2PS(Ω1 ·Ω2)
∑
M

〈N0,M |N : Ω1〉〈N : Ω2|N0,M〉 , (52)

where the sum runs over M ∈ [−(N −N0), N −N0], with the same parity as N −N0. We use the expressions (35,38),
keeping only the terms that are significant in the upper sphere S ′,

PME(N0) ≈ 1

2π2fNS

∫∫
S′
d2Ω1d

2Ω2PS(Ω1 ·Ω2)
∑
M

(
N

N+1N0N−1

)1/2

e
− M2

2(N−N0) e−N(θ1−θ0)2e−N(θ2−θ0)2e−iM(φ1−φ2) .

(53)

The dependence on M of N+1N−1 = [(N −N0)2 −M2]/4 can be neglected because of the exponential factor cutting
off terms with M larger than ∼ √N −N0. We can then evaluate the sum using a continuum approximation, valid
for N0, N −N0 � 1,

∑
M

e
− M2

2(N−N0) e−iM(φ1−φ2) ≈
√
π

2
(N −N0) e−

1
2 (N−N0)(φ1−φ2)

2

. (54)

We now introduce the variables ϕ = φ1 − φ2, ε1,2 = θ1,2 − θ0. The integral in Eq.(53) takes significant values for

ϕ ∼ 1/
√
N −N0 and ε1,2 ∼ 1/

√
N . As a result, we use the following approximations

sin(θ1,2) ≈ sin(θ0) =
√

(N −N0)/N ,

Ω1 ·Ω2 = cos(θ0 + ε1) cos(θ0 + ε2) + sin(θ0 + ε1) sin(θ0 + ε1) cos(ϕ) ≈ 1− 1

2
(ε1 − ε2)2 − 1

2
sin2 θ0ϕ

2 .

Introducing the variables ρ =
√

1
2 (ε1 − ε2)2 + 1

2 sin2 θ0ϕ2, γ = arctan[sin θ0ϕ/(ε1 − ε2)] and ε = ε1 + ε2 and using

Eq. (54), Eq. (53) becomes

PME(N0) ≈
√
N

N0
e
S2

2N

∫ +∞

0

dρρPS(1− ρ2)e−Nρ
2

. (55)

The last integral does not depends on N0, and is thus a mere normalization factor. It can be computed by expanding
the Legendre polynomials

PS(1− ρ2) =
1

2S

S∑
k=0

(
S

k

)2

(−ρ2)k(2− ρ2)S−k ≈
S∑
k=0

S2k

k!2
(−1)k

2k
ρ2k , (56)

where we have used ρ2 . 1/N , such that only the terms of the sum with k ∼ 1 are significant. We can then proceed
to the integration∫ +∞

0

dρρPS(1− ρ2)e−Nρ
2 ≈

S∑
k=0

S2k

k!2
(−1)k

2k

∫ +∞

0

dρρ2k+1e−Nρ
2 ≈

S∑
k=0

S2k

k!2
(−1)k

2k
k!

2Nk+1
≈ e−

S2

2N

2N
. (57)
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Inserting this expression into Eq. (55), we finally arrive at

PME(N0) ≈ 1

2
√
NN0

. (58)

Let us again remark that we did not use any average over S in order to derive this formula, and we only assumed
1 � S � N . This ensures the equivalence between the microcanonical and canonical ensembles. We also point out
that the distribution PME(N0) is smooth without the need for coarse-graining, in contrast with the GGE.
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