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Abstract
We demonstrate the arbitrary control of the density profile of a two-dimensional Bose gas by
shaping the optical potential applied to the atoms. We use a digital micromirror device (DMD)
directly imaged onto the atomic cloud through a high resolution imaging system. Our
approach relies on averaging the response of many pixels of the DMD over the diffraction spot
of the imaging system, which allows us to create an optical potential with an arbitrary intensity
profile and with micron-scale resolution. The obtained density distribution is optimized with a
feedback loop based on the measured absorption images of the cloud. Using the same device,
we also engineer arbitrary spin distributions thanks to a two-photon Raman transfer between
internal ground states.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Ultracold quantum gases are ideal platforms to study physi-
cal phenomena, thanks to their high flexibility and their isola-
tion from the environment. They are widely used for quantum
simulations [1] and metrological applications [2]. Various trap
geometries have been realized to confine atomic clouds. His-
torically, harmonic confinements have been the norm in cold
atom experiments due to their ease of implementation [3, 4].

4 These authors contributed equally to this work.
∗ Author to whom any correspondence should be addressed.

The recent realization of uniform systems opened new per-
spectives to explore the thermodynamic properties and dynam-
ical behavior of quantum gases [5–8]. Other trap potentials
have been applied to explore physics in specific geometries,
such as supercurrents in ring potentials [9–12], analog sonic
black holes in more complex potentials [13], and low-entropy
phases in lattice systems [14].

In the past years, several approaches have been developed
to generate complex optical potential profiles [15–22]. Most
of them rely on the development of spatial light modula-
tors, which can modulate the phase or the intensity of a light
beam. Digital micromirror devices (DMDs) are one of the most
widely used in cold atom experiments thanks to their low cost,
simple use and high refresh rates. They consist of millions of
individual micromirrors which can be set in two different ori-
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Figure 1. Sketch of the experimental setup for arbitrary density
control. Two DMDs are used to project an optical potential onto the
atoms with a high NA microscope objective (objective 1). Both of
them are illuminated by a blue-detuned 532 nm laser. DMD1
provides the hard-wall potential, while DMD2 adds an additional
potential for density control. The light fields from the two DMDs are
mixed on a polarizing beam splitter with orthogonal polarizations so
that they do not interfere with each other. The atoms are imaged
onto the camera with a second identical objective (objective 2). We
use absorption imaging to measure the 2D density profiles on a CCD
camera.

entations, hence corresponding to a ‘black’ or ‘white’ signal in
a chosen image plane of the DMD chip. They have been used to
correct optical aberrations when working as a programmable
amplitude hologram in a Fourier plane [23], and to produce
different potential profiles by direct imaging [21, 24–26].

In this article, we demonstrate arbitrary control of the den-
sity profile of two-dimensional (2D) Bose gases by tailoring
the in-plane trapping potential using DMDs. We program a
pattern on the DMD chip and simply image it onto the atomic
cloud. The limitation due to the binary status of the DMD pix-
els (black or white) is overcome by realizing a spatial average
of the response of ∼25 pixels over the point spread function of
the imaging system. This gives us access to several levels of
grey for the optical potential at a given position in the atomic
plane. The DMD pattern is computed thanks to an error diffu-
sion algorithm combined with a feedback loop to directly opti-
mize the measured atomic density distribution. The method is
proved to be efficient and robust to optical imperfections. In
addition, we demonstrate the realization of arbitrary spin dis-
tributions with the same protocol by using spatially resolved
two-photon Raman transitions.

2. Apparatus and main results

We work with a degenerate 2D Bose gas of 87Rb atoms. The
main experimental setup has been described previously in
[27, 28]. Briefly, about 105 Rb atoms in the F = 1, m = 0
hyperfine ground state are loaded into a 2D box potential.
The vertical confinement is provided by a vertical lattice. All
atoms are trapped around a single node of the lattice in an
approximately harmonic potential with a measured trap fre-

quency ωz/2π = 4.1(1) kHz. The in-plane trap is provided
by a hard-wall potential created by a first DMD (DMD1 in
the following)5. All laser beams used for creating the 2D
box potential have a wavelength of 532 nm and thus repel
Rb atoms from high intensity regions. The cloud temperature
is controlled by lowering the in-plane potential height, thus
enabling evaporative cooling. We reach temperatures below
30 nK and an average 2D atom density of ∼80 μm−2, corre-
sponding to a regime where the cloud is well described by the
Thomas–Fermi approximation. Both the interaction energy
and thermal energy are smaller than the vertical trapping fre-
quency and the atom cloud is thus in the so-called quasi-2D
regime.

We show in figure 1 a sketch of the experimental setup
for arbitrary density control. We modify the density distribu-
tion by using another DMD (DMD2) to impose an additional
repulsive optical potential to the hard-wall potential made by
DMD1. The pattern on DMD2 is imaged onto the atomic
plane thanks to an imaging system of magnification ≈1/70.
The pixel size of DMD2 is 13.7 μm, leading to an effective
size of 0.2 μm in the atomic plane. The numerical aperture
(NA ∼ 0.4) is limited by a microscope objective above the
vacuum glass cell containing the atoms and leads to a spatial
resolution around 1 μm. Consequently, the area defined by the
diffraction spot of the imaging system typically corresponds to
a region where 5× 5 pixels of DMD2 are imaged, which makes
possible the realization of grey levels of light intensity. DMD2
is illuminated by a blue-detuned 532 nm laser with a waist of
w ∼ 55 μm in the atomic plane. The intensity of the beam is
set to provide a maximum repulsive potential around 2μ where
μ is the chemical potential of the gas for a density of 80 μm−2.
The potential is added before the final evaporation stage in the
box potential.

The 2D atomic density profile is obtained by absorption
imaging with a second identical microscope objective placed
below the glass cell. This imaging system has a similar opti-
cal resolution and the effective pixel size of the camera in
the atomic plane is 1.15 μm. We probe the atoms in the trap
using a 10 μs pulse of light on the D2 line resonant between
the F = 2 ground state and the F′ = 3 excited state. Before
detection, a microwave pulse is applied to transfer a controlled
fraction of atoms into the ground level from F = 1, m = 0
to F = 2, m = 0, which thus absorbs light from the imaging
beam. The transferred fraction is controlled so that the mea-
sured optical depth (OD) is always smaller than 1.5 to reduce
nonlinear imaging effects.

Figure 2 presents a selection of 2D density profiles
realized in our experiment. For each example, we show
in figures 2(a)–(d) averaged absorption images and in
figures 2(e)–(h) the corresponding mean OD integrated along
one or two spatial directions. Figure 2(a) shows a uniform pro-
file in which we have corrected the inhomogeneities caused by
residual defects of the overall box potential created by the com-
bination of DMD1 and vertical lattice beams. Figures 2(b)–(d)

5 All DMDs used in this work are DLP7000 from Texas Instruments and
interfaced by Vialux GmbH.
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Figure 2. Various density profiles realized in our experiment. From left to right, we show a uniform profile and linearly varying density
profiles along x, along the radial direction and along the azimuthal direction. (a)–(d) Averaged absorption images (50, 99, 50, 20 shots
respectively). (e)–(h) Corresponding OD profiles integrated over one direction (x and y in (e) and (f), azimuthal in (g) and radial in (h)). The
solid lines represent the OD profiles of the target density distributions. Error bars show the statistical error corresponding to one standard
error of the mean.

Figure 3. (a) Diagram of the iterative algorithm. (b) Example of
grey-level profile Gn obtained during the optimization loop used to
create the linearly varying profile shown in figure 2(b).
(c) Corresponding dithered image computed with the error diffusion
algorithm and programmed on the DMD. The grey level ranges from
0 to 1, with an effective pixel size of 1.15 μm equal to the one of the
absorption image. The DMD pattern is binary with an effective pixel
size of 0.2 μm.

correspond to linearly varying density distributions respec-
tively along the x direction, along the radial direction and along
the azimuthal direction.

3. Detailed implementation

One could naively think that for a given target density pro-
file, the suitable pattern on DMD2 could be directly computed
and imaged onto the atoms. However, several features prevent
such a simple protocol. First, the DMD is a binary modulator.
Then, for a finite number of pixels, it is not possible to create
an arbitrary grey-level pattern with perfect accuracy. Here, we
use the well-known error diffusion technique to generate the
binary pattern for a given grey-level profile [29, 30] (see the
appendix for a short description). Second, the imaging system
from DMD2 to the atoms has an optical response that leads to
a modification of the ideal image, mainly because of the finite
aperture of the optical elements. Third, any imperfection on the
optical setup (inhomogeneity of the laser beam, optical aber-
rations. . . ) also degrades the imaging of the DMD pattern onto
the atomic cloud. Finally, the atomic density distribution is
obtained through absorption imaging, which adds noise mostly
coming from the photonic shot noise induced by the imaging
beam. Hence, an iterative method is needed to obtain the opti-
mal DMD pattern that gives a density distribution as close as
possible to the target. The working principle of the optimiza-
tion loop is simply to add (remove) light at the positions where
there are more (fewer) atoms than the target until the density
profile converges to the target one.

Figure 3(a) shows the steps of the iterative loop. The
basic idea of each step n consists in computing the difference
between the measured density distribution An and the target
image Tn, and adding it with a suitable gain K to the previous
grey-level intensity profile Gn. This gives the grey-level profile
of iteration n + 1 (see figure 3(b)),

Gn+1 = Gn + K(An − Tn), (1)
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Figure 4. Convergence of the iterative algorithm. (a) Plot of Fm, Nd

and F with iteration number. Target profile is a linear density
distribution along x in a square box (of figure 2(b)). F converges
very fast and stays around 0.06 after iteration 6. Nd decreases
suddenly at iteration 8 and 15 because Na (number of absorption
images for averaging) changes from 5 to 10 at iteration 8 and to 99
at iteration 15. For Fm, we show the estimated statistical error bars
to give an illustrative indication of our typical uncertainties. These
error bars are obtained from a bootstrap approach on the different
repetitions of the experiment in the same conditions. (b) For the last
iteration (iteration 15), we plot Fm, Nd and F versus the number of
images Na used for averaging. Both Fm and Nd decrease with Na
while F does not depend on Na. (c) Evolution of F for different K′

0s.

which is then discretized thanks to the error diffusion
algorithm (see figure 3(c)) and imaged onto the atoms. Besides
this general idea, we detail below some specific features of our
loop:

• We initialize the optimization with a grey-level profile G0

which can either be uniformly 0 or 1.
• To avoid border effects, we select on the absorption

images a region slightly inside the box potential (two pix-
els smaller in each direction) for density control and we
extrapolate the grey-level profile Gn outside the box. The
extrapolation is done by simply duplicating the value of
the outermost pixels of Gn by three more pixels along each
side for a square box or along the radial direction for a
disk.

• The image An of the density distribution is obtained from
the average of several repetitions of the experiment with

the same parameters to limit the contribution of detection
noise.

• The measured image of the atomic distribution is convo-
luted with a Gaussian function of rms width 1 pixel of the
camera of the imaging system. This convolution acts as a
low pass filter which reduces high spatial frequency noise,
especially detection noise.

• Considering the Gaussian shape of the beam illuminated
on DMD, we choose K to be position dependent K(x, y) =

K0 × e
2[(x−x0)2+(y−y0)2]

w2 , where w is the waist of the beam
in the atomic plane and x0 and y0 are the coordinates
of the center of the beam. It makes the effective gain
approximately the same for all the pixels.

• At each iteration, we rescale the amplitude of the target
profile to obtain the same mean OD as the one of An. This
avoids taking into account errors coming from the shot-
to-shot variation of the atom number which would lead
to a global error that we are not interested in. Note that
this variation is smaller than 10% during the optimization
loop.

4. Characterization of the loop

We stop the optimization loop when the measured density
distribution has converged to the target one, up to a prede-
fined precision. To estimate the deviation from the target, we
define a figure of merit Fm corresponding to the measured
root-mean-square deviation:

Fm =

√
Npix

∑
(i, j)∈A(OD(i, j) − ODT (i, j))2

(
∑

(i, j)∈AOD(i, j))2
, (2)

where A is the region of interest containing Npix pixels and
OD(i, j) (resp. ODT(i, j)) is the measured average OD (resp.
target OD). The value of the figure of merit Fm results from
two kinds of contributions. Obviously, there is the actual devi-
ation of the density distribution from the target. In addition,
several features of the measurement method give an unde-
sired contribution to Fm. Indeed, thermal fluctuations of the
atomic cloud, projection noise due the partial transfer imag-
ing discussed above and photonic shot noise in absorption
imaging lead to unavoidable residual noise. For our parame-
ters, we computed in a separate work that the two dominant
mechanisms are photonic and projection noise with a similar
weight, whose exact values depend on the studied density dis-
tribution. In the low temperature regime explored here thermal
fluctuations are almost negligible.

The contributions coming from photonic shot noise and
projection noise can be reduced by averaging more images.
However, for the typical repetition rate of our experiment (∼
30 s), the number of averaged images has to be limited to a few
tens for realistic applications. To characterize the optimization
loop, we compute this noise contributionNd so as to remove it
from the measuredFm. We directly estimateNd from the set of
images taken with the same parameters by computing the dis-
persion of the measured absorption images from the averaged
image,
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Nd =

√
Npix

∑
k

∑
(i, j)∈A(ODk(i, j) − OD(i, j))2

N2
a (
∑

(i, j)∈AOD(i, j))2
, (3)

where the index k refers to the kth absorption image among
the Na pictures taken for the average. We thus define the
corrected figure of merit:

F =
√
F2

m −N 2
d , (4)

which quantifies the distance of the density profile from the
target while removing measurement noise.

In figure 4(a), we show the evolution of Fm, Nd and F as
a function of the number of iterations in the example case of a
linear profile in a square box (as shown in figure 2(b)). We ini-
tialize the loop with a grey-level profile equal to zero and we
choose K0 = 0.2. The number of pictures which are averaged
is 5 for the first 7 iterations, 10 up to iteration 14 and 99 for
the last iteration. This leads to clear jumps of Nd with the iter-
ation number. Interestingly, we see that F converges almost
monotonously to about 0.06 after the first 6 iterations and then
stays approximately constant whatever the value of Na is. This
indicates that the contribution of measurement noise is well
subtracted. This is confirmed in figure 4(b), where we plot Fm,
Nd and F as a function of Na using the data of the final itera-
tion of figure 4(a). As expected, both Fm andNd decrease with
Na while F does not change.

We also studied the behavior of the iterative loop with dif-
ferent K′

0s varying from 0.1 to 0.6. The convergence of F is
plotted in figure 4(c). The iterative algorithm works well for
a large range of values of K0. We observe that increasing K0

speeds up the convergence, but too large values of K0 lead
to strong local variations in the measured images. In prac-
tice, for most target distributions, we use K0 = 0.2 as a good
compromise between these two trends.

In the appendix, we study through simple numerical simu-
lations the remaining limitations that contribute to the exper-
imentally obtained F . The main limitation comes from the
number of iterations used in the experiment (∼15). We show
that the figure of merit F decreases slowly down to ∼0.02
for larger iteration numbers but reaching such a limit would
require prohibitively long experimental times.

5. Arbitrary spin distribution

Using a similar protocol, we also demonstrate arbitrary spin
distributions by shaping a pair of copropagating Raman beams
which couple the |F = 1, m = 0〉 (|1〉) and |F = 2, m = 0〉
(|2〉) states by a two-photon Raman transition. The two Raman
beams originate from the same laser and have a wavelength
of ∼790 nm, in between the D1 and D2 line of 87Rb atoms.
One beam is frequency shifted with respect to the other by
∼6.8 GHz to fulfill the two-photon resonance between the
two states. The two beams are coupled into the same single-
mode optical fiber with orthogonal linear polarizations. After
reflection on a third DMD (DMD3, not shown in figure 1)
they are overlapped with the two beams coming from DMD1
and DMD2 and are imaged onto the atomic plane with a
magnification of ≈1/40 and a waist of 40 μm.

Figure 5. Imprinting a spatial spin texture. We show the density
distribution of atoms in |2〉 immersed in a bath of atoms in |1〉.
The total density of the gas is uniform in a 20 μm radius disk
(∼ 80 μm−2, corresponding to OD ∼ 8). The main figures show the
radial profiles of component |2〉 in semilog scale for (a) a Gaussian
profile and (b) a solitary Townes profile. The solid lines are the
target radial profiles. Error bars show the statistical error
corresponding to one standard error of the mean. Insets show the
corresponding averaged absorption images (20 shots). The dashed
lines represent the edges of the bath of atoms in |1〉.

Starting from a cloud of atoms in state |1〉 of uniform den-
sity, we pulse the Raman beams with a duration of a few tens
of μs to coherently transfer a controlled fraction of atoms to
state |2〉. In this protocol, the total density of the cloud remains
uniform. We then image the density distribution of atoms in
state |2〉 prior to any spin dynamics and apply an optimization
protocol identical to the one developed for creating arbitrary
density distributions. We show in figure 5 two examples of
spin profiles realized in our system at the end of the optimiza-
tion loop: a Gaussian profile (figure 5(a)) and the so-called
Townes profile (figure 5(b)), which is a solitonic solution of the
2D attractive non-linear Schrödinger equation that decreases
almost exponentially with r at large r [31]. The measured pro-
files are very close to the target over typically two orders of
magnitude in density.

6. Discussion and outlook

In conclusion, we have demonstrated the arbitrary control of
the density profile of an ultracold 2D quantum gas by tai-
loring a repulsive optical potential. We have also demon-
strated the arbitrary creation of spin textures using spatially
resolved Raman transitions. An iterative method was applied,
making the method robust to technical imperfections. The
approach described here can be straightforwardly applied to
other atomic species. It opens new possibilities for studying the
dynamics of single or multi-component low-dimensional gases
where, for instance, the presence of scale-invariance or inte-
grability leads to a rich variety of non-trivial time evolutions
[32–35].
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Appendix A

A.1. Error diffusion algorithm

We briefly recall in this paragraph the main features of the error
diffusion algorithm, which we use to compute the pattern pro-
grammed on the DMD. Error diffusion is used to convert a
grey-level image where each pixel takes arbitrary values into
an image with only zeros and ones. Starting for instance from
the top left pixel of the image, one chooses the status of the cor-
responding DMD pixel by rounding to 0 or 1 the targeted grey
level . This binary choice results in an error which is ‘diffused’
to the remaining neighboring pixels with a given weight. In
this work, we use the method developed in reference [29]. We
process the pixels from left to right and from top to bottom.
The error made when choosing the state of a pixel (denoted by
a � in equation (5)) is diffused to its first right neighbor and
the three nearest neighbors of the following line with weights
given by ⎛

⎜⎝ − �
7
16

. . .

. . .
3
16

5
16

1
16

. . .

⎞
⎟⎠ . (5)

A.2. Simulations

In this section, we simulate the experiment to understand
the various contributions to the obtained value of the figure
of merit F for the density correction. In the simulation,
we start with a ‘test’ density profile A0, which is obtained
from an experiment with DMD2 being off. It is an averaged
image of 100 experimental shots so that the detection noise
is mostly averaged out. We follow the same procedure which
was described in figure 3(a) but in a ‘numerical experiment’.
We simulate the action of the potential shaped by the DMD by
using the local density approximation in the Thomas–Fermi
regime. Thus, for each iteration n of the loop we compute the
density profile as

An = A0 − αCn, (6)

where Cn is the light intensity profile given by the DMD pat-
tern after a convolution step that simulates the finite numerical
aperture of the optical system. We use here a Gaussian profile
with an rms width σ = 0.5 μm. The parameter α is introduced
to represent the effect of the light potential on the atomic den-
sity. We use as an input to the simulation experimental images
of the OD distribution (OD ∼ 1) and we choose α = 2 to be
as close as possible to the calibrated experimental parameters.
We add an offset to An to keep the mean OD constant. We also
have the possibility to add some noise to An to simulate the
experimental fluctuations.

We show in figure 6 the simulated evolution of F as a func-
tion of the iteration number. The target is a linear profile along
the x direction, same as the one studied in figures 2(b) and 4.
The blue and red curves show the simulated results with the
parameters used in the experiment: K0 = 0.2 and the absorp-
tion image is convolved with a Gaussian function of an rms
width 1 pixel. For the blue curve, we add independently on
each pixel of An a Gaussian noise corresponding toNd = 0.09,

Figure 6. Numerical simulation of the experiment. Evolution of F
as a function of iteration number with (blue) or without (red) noise.
The target distribution is a linear density profile along x. The
diamond corresponds to the number of iterations used in figure 4(a).
The inset shows the same curves at large iteration number.

which is the typical noise obtained in the experiment for the
average of 10 repetitions of the sequence. For the red curve,
no detection noise is added, i.e.Nd = 0. The marker on the red
curve corresponds to the point when the iterative loop is ter-
minated for the experimental data shown in figure 4(a). Here,
F = 0.046, in qualitative good agreement with the obtained
experimental value of 0.06.

We finally discuss the limitations to the obtained figure of
merit. We show in the inset of figure 6 the evolution of the
figure of merit at large iteration number. Better values (∼0.02)
are obtained for larger number of iterations (∼600) but with a
slow convergence largely hidden by the typical experimental
noise. This regime is not reachable in practice with our typical
experimental cycle time. The residual value could be explained
by the filtering made when convolving the absorption image
and also by the residual defects coming from the error diffusion
protocol.

ORCID iDs

S Nascimbene https://orcid.org/0000-0002-3931-9436
J Beugnon https://orcid.org/0000-0003-1701-8533

References

[1] Bloch I, Dalibard J and Nascimbène S 2012 Quantum
simulations with ultracold quantum gases Nat. Phys. 8
267–76

[2] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Optics and
interferometry with atoms and molecules Rev. Mod. Phys. 81
1051–129

[3] Pritchard D E 1983 Cooling neutral atoms in a magnetic trap for
precision spectroscopy Phys. Rev. Lett. 51 1336–9

[4] Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Optical
dipole traps for neutral atoms Adv. At. Mol. Opt. Phys. 42
95–170

[5] Gaunt A L, Schmidutz T F, Gotlibovych I, Smith R P and
Hadzibabic Z 2013 Bose–Einstein condensation of atoms in
a uniform potential Phys. Rev. Lett. 110 200406

[6] Chomaz L, Corman L, Bienaimé T, Desbuquois R, Weitenberg
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