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Saint-Jalm3, P.C.M. Castilho2, S. Nascimbene1, J. Dalibard1, J. Beugnon1
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1 - RAMAN BEAM SHAPING

We describe the procedure for preparing a two-
component gas with a specific spin pattern, as reported
in the main text. We start from a homogeneous sample of
atoms in state |1〉 filling a disk-shaped box potential of ra-
dius R = 20µm, with a 2D-density defined as n∞. Atoms
are transferred from state |1〉 to state |2〉 using a pair of
co-propagating Raman beams along the ẑ-direction, the
two beams having the same waist w ∼ 40µm. The fre-
quency difference between the two beams is resonant with
the hyperfine energy splitting of 6.8 GHz between the two
states. In addition, the wavelength of each beam is set to
λ ' 789.9 nm, in between the D1 and D2 lines of 87Rb.
This allows us to cancel the scalar light-shift induced by
the Raman beams which could, because of intensity gra-
dients, print a non-uniform phase on the atomic states
over the cloud size. The Raman pulse duration is short
enough (< 25µs for all data studied in the main text) so
that no dynamics occur during the transfer.

Before reaching the atomic plane, the Raman beams
reflect on a DMD (DLP7000 from Texas Instruments in-
terfaced by Vialux GmbH) which we use as an intensity
modulator to tune the intensity and hence the local Rabi
frequency of the Raman beams driving the atomic tran-
sition. Despite the fact that such a modulator displays
a binary image (“black or white”), we can create a grey-
level image on the atoms by averaging the contribution
of many pixels over a size of 1µm, which corresponds to
both our typical optical resolution and the effective pixel
size in the atomic plane of the camera used to image the
cloud. The protocol to create such spin patterns is based
on an iterative algorithm which minimizes the difference
between the measured spin distribution and the targeted
one and is discussed in more detail in Ref. [1].

2 - EFFECTIVE SINGLE-COMPONENT
DESCRIPTION

We present the derivation of an effective single-
component description of our two-component system,
focusing on the ground state wavefunction. The
atomic mixture is described by two coupled non-linear

Schrödinger equations (NLSEs)

µ̃1φ1 = −1

2
∇2φ1 + (g̃11n1 + g̃12n2)φ1, (1)

µ̃2φ2 = −1

2
∇2φ2 + (g̃12n1 + g̃22n2)φ2, (2)

where ni is the atomic density for the spin state i.
We also introduce the reduced chemical potentials µ̃i =
mµi/~2. We are interested in localized wavefunctions for
the component |2〉 immersed in a bath of atoms in state
|1〉 extending to infinity. Therefore, the chemical poten-
tial µ1 for the component |1〉 equals the mean field energy
shift g11n∞ at the asymptotic density n∞.

The effective single-component description relies on
the vicinity of the interaction coupling constants, i.e.

|g̃12 − g̃11|
g̃11

,
|g̃22 − g̃11|

g̃11
� 1, (3)

which allows one to simplify the NLSE at lowest or-
der in these small parameters. In this situation, we ex-
pect the low-energy dynamics to be dominated by spin
waves, such that the total density n1 + n2 = n∞ + δn
is weakly perturbed, with an excess density δn satisfying
|δn| � n∞. At low energy, the relevant spatial variations
occur on the scale of the spin healing length [2], which
largely exceeds the bath healing length ξ = 1/

√
g̃11n∞.

Therefore, the Laplacian operator can itself be considered
of order one in the small parameters defined in Eq. (3),
such that the term ∇2φ1 in Eq. (1) can be replaced, at or-
der one, by ∇2

√
n∞ − n2 (assuming a real-valued wave-

function). This approximation allows one to express the
excess density δn in terms of the second component only,
as

g̃11δn =
∇2
√
n∞ − n2

2
√
n∞ − n2

+ (g̃11 − g̃12)n2. (4)

Inserting this expression in Eq. (2), we obtain an effective
single-component equation for component |2〉. As we fo-
cus only on component |2〉 hereafter, we drop the index
2 (φ2, n2, µ̃2 → φ, n, µ̃) and write the effective equation

µ̃φ = g̃12n∞φ−
1

2
∇2φ+ g̃enφ+

∇2
√
n∞ − n

2
√
n∞ − n

φ, (5)
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where we introduce the effective coupling constant

g̃e = g̃22 −
g̃212
g̃11

. (6)

The term g̃12n∞φ corresponds to the interaction energy
cost for adding a single particle of component |2〉 into
the bath. Such a global energy shift plays no role in the
following, and we absorb it in the chemical potential here-
after. Eq. (5) is a non-linear Schrödinger equation with
two non-linear terms. The term g̃enφ is a standard cu-
bic nonlinearity, corresponding to an effective system of
bosonic particles with contact interactions and coupling
constant g̃e [3]. The second term is more complex and
plays a significant role when the density n becomes com-
parable to the asymptotic bath density n∞. To be more
precise, one can expand, in the limit of large bath den-
sity, Eq. (5) in powers of the depletion n/n∞. At minimal
order we obtain the NLSE used in the main text

µ̃φ = −1

2
∇2φ+ g̃enφ, (7)

with the coupling constant g̃e.
In the case g̃e < 0 relevant for our experiments, this

equation has, for each negative value of the chemical
potential, a localized stationary solution – the so-called
Townes soliton – that can be written as

φ`(r) =
1

`
√
GT

R(r/`), (8)

where we introduce the length ` = 1/
√
|µ̃| and R is the

zero-node solution of the differential equation(
1

2
∇2 +R2 − 1

)
R = 0. (9)

This function is normalized to the value GT =∫
d2r R2(r) ' 5.850. The wave functions φ`(r) corre-

spond to zero-energy states that have the same atom
number, equal to

N = NT =
GT
|g̃e|

. (10)

The self-similar nature of this family of solutions reflects
the scale invariance of the NLSE in two dimensions given
in Eq. (7).

At next order in the perturbation, we obtain the equa-
tion

µ̃φ = −1

2
∇2φ+ g̃enφ−

∇2n

4n∞
φ. (11)

The additional term, which was considered in [4], can
be viewed as a weakly non-local interaction. Since it in-
volves an explicit length scale 1/

√
n∞, it breaks scale in-

variance, and we no longer expect self-similarity between
stationary states. In a linear perturbative treatment, the

stationary state is written as a weakly deformed Townes
soliton

φ(r) ∝ 1

`
R(r/`) +

1

2n∞`3
R2(r/`), (12)

where R is defined in Eq. (9) and R2 is the solution of(
1

2
∇2 + 3R2 − 1

)
R2 = −1

2
R∇2R2. (13)

The atom number contained in the perturbed state is
always larger than NT and is pertubatively given by

N ' NT
(

1 + 0.23
NT
n∞`2

)
. (14)

This prediction is in good agreement with the results of
numerical simulations described in the following Section.

3 - BEYOND THE WEAK DEPLETION LIMIT:
SIMULATIONS

We explore here the ground-state properties of our two-
component system beyond the weak depletion regime.
We compare the different approaches introduced in Sec-
tion 2 of these Supplemental materials:

– The two coupled NLSEs given by Eqs. (1)-(2).

– The single component effective equation given in
Eq.(5), valid for arbitrary depletion and close gij ’s.

– The low depletion limit of the previous equation
given by Eq. (11) including the first order correction
to the scale invariant attractive NLSE.

We show in Fig. 1(a) how the ground state atom num-
ber varies with respect to NT when increasing the deple-
tion for these three models. We also show the analytical
prediction of Eq. (14) that we rewrite as

N/NT = 1 + 0.27 ε. (15)

We have introduced the depletion parameter

ε =
NT /σ

2

n∞
, (16)

with σ the rms size of the corresponding state, which is
related to the length ` as σ ' 1.09 ` for the Townes pro-
file of Eq. (8). This quantity can be viewed as the ratio
between the typical peak density NT /σ

2 in the impu-
rity component |2〉 and the atom density n∞ in the bath
component |1〉. All models predict a similar shift of the
ground state atom number for values of ε . 0.25, which
is the maximum value of all data presented in the main
text. We also note that the single component effective
model gives a faithful description of the two-component
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FIG. 1. Numerical study of the ground state for different
models. (a) Deviation of the ground state atom number N
with respect to NT as a function of the depletion parame-
ter ε for different models: two-component NLSE (red) with
g̃11 = 0.16 and (g̃12, g̃22) = (0.98, 0.94) g̃11, effective one-
component NLSE (green), weak depletion expansion of the
effective one-component NLSE (blue), analytical prediction
of Eq. (15) (dashed black). (b) Radial profiles for ε = 1 and
n∞ = 100µm−2 for the three models with the same color
code.

system for both the ground state atom number and the
density profile showed in Fig. 1b.

It is interesting to note that our work at small and
intermediate depletions connects in the limit of full-
depletion of the bath (n→ n∞ at the center of the bub-
ble) to the physics of spin domains in an immiscible mix-
ture, a situation in which the single-component effective
equation introduced in this work may be of interest.

4 - EXPERIMENTAL DETERMINATION OF THE
RMS SIZE

The results presented in the main text exploit the mea-
sured rms size σ2 defined as

σ2 =
1

N

∫
d2r n(r) r2 − 〈r〉2, (17)

where n is the atomic density in state |2〉. Direct deter-
mination of the rms size is challenging experimentally.
Indeed, the contribution of the points at large r is impor-
tant for a 2D integral and our signal to noise ratio is poor
in this region. Consequently, we use a fit to the data to
determine the rms size. We detail below the choice of the
fitting function and the fitting procedure. We confirmed
the validity of this method by applying it to the results
of numerical simulations of the two-component NLSEs.

Determination of the fitting function. We use time-
dependent perturbation theory to extract a suitable fit-
ting function for the deformation of the density profile.
We consider the evolution of a wave function φ under the
time-dependent NLSE

i
∂φ

∂τ
= −1

2
∇2φ−G|φ|2φ, (18)

with τ = (m/~)t. From Section 2, we know that for
G = GT , the stationary solution of Eq. (18) with chemi-
cal potential µ̃ < 0 is given by

φ(r, τ) = φ`(r)e
−iµ̃τ , (19)

with ` = 1/
√
|µ̃|. We consider a wave function φ given

by a Townes profile φ`(r) at τ = 0, with an interaction
parameter G that is slightly different from GT . We define
the small parameter of the expansion η such that G =
(1 + η)GT . At short times, the deformation of the wave
function with respect to the Townes profile is expected
to be small, and we can expand the solution with respect
to η:

φ(r, τ) = [φ`(r) + ηε(r, τ) + . . .]e−iµ̃τ . (20)

We restrict here to the first-order correction in η, and
consider the first terms of the Taylor expansion of ε(r, τ)
with respect to τ :

ε(r, τ) = ε0(r) + ε1(r)τ + ε2(r)τ2 + . . . (21)

The initial condition gives directly ε0(r) = 0, and by
injecting the expansion given in Eq. (21) in Eq. (18), we
identify

ε1(r) = iφ3`(r)

ε2(r) =
GT
2

(
−µ̃− 1

2
∇2 −GTφ2`

)
φ3` .

(22)
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FIG. 2. Townes profile φ`(r)/φ`(0) (blue dashed line) and
χ(r)/χ(0) (green solid line) deduced from perturbation theory
and expressed in Eq. (24).

Interestingly, this last identity can be further simplified
using Eq. (9) and we obtain

ε2(r) = GT

(
GTφ

5
` + µ̃φ3` −

3

2
φ`φ
′
`
2
)
. (23)

Related approches were introduced in Refs. [5, 6]. More
precisely, the authors of Ref. [6] studied the elementary
excitations of the NLSE given in Eq. (18) and looked for
exact solutions that were at most polynomials on t, while
here we do not impose such a constraint but restrict to
a short time expansion.

When computing the density profile n(r, t) = |φ(r, t)|2,
only the real term ε2 contributes at first order in η (the
imaginary term ε1 contributes to the phase of the wave-
function). We deduce the expected deformation of the
density profile at first order and at short times

δn(r, t) = n(r, t)− n(r, 0)

' 2ηφ`(r)ε2(r)t2 ≡ ηχ(r)t2, (24)

where we have defined χ(r) = 2φ`(r)ε2(r). We checked
that the 2D integral of χ is zero, as the norm of φ should
be conserved by the evolution under Eq. (18). In Fig. 2
we show the profiles φ`(r) and χ(r).

Fitting procedure. The first step of the data analysis
consists in obtaining averaged 1D radial density profiles
n(r, t). The averaging is performed after recentering the
individual images. Indeed, we observe random drifts of
the wave packet from one shot to another, which we at-
tribute to thermal fluctuations.

In a second step, we fit the initial profile to a Townes
density profile with a free amplitude and size, which we
denote n0(r). For each time of the evolution we compute
the deformation of the density profile with respect to the
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FIG. 3. Difference δn(r, t) as defined in equation (25), for
various times t of the experimental runs presented in Fig. 2a
(N = 250) (a) and Fig. 2c (N = 1200) (b) of the main text.
We also plot the best fit of χ(r) to the data.

fitted initial one

δn(r, t) = n(r, t)− βn0(r), (25)

where β is a correction factor to make the two terms
of the right-hand-side of Eq. (25) have the same atom
number.

The last step consists in fitting this profile with the
function χ(r) determined in Eq. (24) with a free ampli-
tude and size. This fit is performed on a radial region
that extends from 0 to 1.75 σ0, with σ0 the initial rms
size (obtained from the Townes fit). Examples of such fits
are reported in Fig. 3. We compute σ using this fitting
function over the full plane. Additionally, we estimate
the error on σ by performing a bootstrap analysis.

It is interesting to note that we observe in Fig. 2a of
the main text an important variation of the central den-
sity n0(t) (divided by more than a factor 2 in 40 ms)
while the signal in the wings varies little and the evo-
lution of the rms size remains small (from ∼6µm to
∼7µm). These two observations, which could be surpris-
ing are first sight, are nevertheless fully compatible with
the time evolution of a Townes-shaped wave packet with
a conserved atom number. To illustrate these points, we
show in Fig. 4 the simulated time evolution of a single-
component attractive Bose gas with g̃ = 0.0077, an atom
number N=250 and an initial rms size σ0 = 5.8µm, sim-
ilar to the experimental parameters of Fig. 2a in the main
text. The density profile in linear scale shown in Fig. 4a
qualitatively confirms the decrease of the central den-
sity. We also see that a small increase of the density
in the wings (more visible in semilog scale in Fig. 4b) is
enough to keep constant the area of the profile, which is
given in 2D by 2π

∫
n(r)rdr. Finally, Fig. 4c also con-

firms the moderate increase of the rms size observed in
the experiments. This is specific to the studied profile.
For instance, for a 2D Gaussian profile of rms size σ,
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FIG. 4. Time evolution under the NLSE of an attractive
Bose gas of 250 particles with an initial size σ0 = 5.8µm.
The density distribution in linear (a) and semilog (b) scale
and the rms size (c) are shown.

one would expect n0σ
2 to be constant during the time

evolution and thus an increase of σ by a factor
√

2.

5 - CONTROL OF THE CRITICAL ATOM
NUMBER

We studied in Ref. [7] the dependence of a12 with the
orientation of the quantization axis given by the mag-
netic field B. More precisely, if we denote Θ the angle
between B and the vertical (strongly confining-)axis ẑ,
we can model the 2D inter-component interactions with
a dimensionless parameter g̃12 =

√
8πa12/`z where the

effective scattering-length has to be corrected from the
bare (3D-)value a012 = 98.9 a0, such that

a12 = a012 + δa12 δa12 = add
(
3 cos2 Θ− 1

)
, (26)

where add = µ0µ
2
Bm/(12π~2) = 0.7 a0 is the dipole

length. Despite the smallness of this shift compared
to a012, it has a strong influence on the effective crit-
ical atom number NT = GT /|g̃e|, which varies from
NT (Θ = 0◦) ∼ 750 to NT (Θ = 90◦) ∼ 5000 with our
experimental parameters. In Fig. 5, we report our mea-
surements of the expansion coefficient γ(N) for different
orientations Θ of the magnetic field. We restrict our-
selves to N < 2200 to ensure the bath stays in the weak
depletion limit for the sizes σ . 9µm imposed by the
geometry of the experiment. From a linear fit of γ, with
γ(N = 0) = 1.19 fixed at the expected value, we deduce

the stationary atom number N exp
T (Θ) at which this ex-

pansion coefficient vanishes, which is shown in the inset
of Fig. 3 of the main text.

Anisotropic effects due to magnetic dipole-dipole inter-
actions are not expected to modify the properties of the
system as long as σ � `z, where `z is the vertical con-
finement length [7]. We checked that the modification of
NT should remain smaller than 5% for all data presented
here.

6 - UNIVERSAL PROPERTIES OF 2D
ATTRACTIVE BOSONS

In Ref. [8], the authors studied the ground state proper-
ties of weakly interacting bosons in two dimensions using
a classical field formalism with a regularized contact po-
tential. In the following, we recall their main results and
show that the expected corrections in our experimental
situation are not observable.

One considers bosons in two dimensions interacting
via an attractive contact potential (~2/m)g̃ δ(r), with a
dimensionless coupling constant g̃ < 0. The quantum
treatment of the collisions is mathematically ill-defined
for such a contact potential. For |g̃| � 1, a more accurate
description of the system can be obtained by substitut-
ing the bare parameter g̃ by a running coupling constant
defined by

1

g̃(k)
=

1

g̃
+

1

2π
ln

(
kc
k

)
, (27)

which depends on the relative momentum k of the two
particles involved in the collision. The introduction of a
cut-off in momentum space kc is a signature of an intrin-
sic length scale 1/kc of the physical system given by the
van der Waals length scale RvdW ≈ 5 nm for 87Rb. The
ground state properties of the system are derived using
a variational approach. Here, one considers trial wave
functions with a Townes profile of extension `. The en-
ergy per particle of the classical field with N atoms then
writes

EN (`) ∝ 1

`2
+ C

g̃(`−1)N

`2
, (28)

where C > 0 is a numerical factor and g̃(k) is evaluated
at the typical momentum `−1.

In contrast to Eq. (2) of the main text, EN has now a
non trivial dependence on ` because of the non-constant
parameter g̃(`−1). This term breaks scale invariance and
gives rise to an equilibrium size and a binding energy
(`N , EN ) that follow a geometrical law

`N+1 ∼ 0.34 `N EN+1 ∼
1

(0.34)2
EN . (29)

Note that `N and EN vary extremely rapidly with N .
For example, one can rewrite `N as

`N ∼ RvdW exp [−ζ(N −NT )] , (30)
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FIG. 5. Expansion coefficient γ as a function of the atom
number N for varied orientations Θ of the magnetic field.
The rms size of the imprinted cloud is set to σ = 8.6µm for
all data considered here, and the bath density is n∞ = 90
atom/µm2. For each set of points we also plot the linear fit
of γ(N) from which we deduce Nexp

T .

with ζ ≈ 1. For N = NT = GT /|g̃|, this size is ∼ RvdW,
which is 3 orders of magnitude smaller than the size of
our system. A small shift of only a few atoms, typically
from NT to N∗ ≡ NT − 6, gives a size of ≈ few microns,
compatible with the extension of our system. Experi-
mentally, we cannot resolve the difference between these
two atom numbers, as it would require single-particle res-
olution. Going further away from NT , the corresponding
sizes are either much too large or much too small to be
experimentally relevant. For this reason, we do not ex-
pect to observe a stable state for atom numbers differing
significantly from NT on our experiment.

Finally, we remark that the breakdown of scale-
invariance close to N∗ is too weak to be observed with

our experimental setup. Indeed, consider a system with
N = N∗ atoms. At equilibrium, Hammer & Son [8]
predict an energy per particle EN∗(`∗) ∼ −~2/(N∗m`2∗),
which is 1/N∗ smaller than the usual energy associated
with the length scale `∗ ≡ `N∗ . Therefore, if the system
is prepared in a Townes profile of size ` slightly differing
from `∗, the typical energy scale governing the dynamics
is

EN∗(`)− EN∗(`∗) ∼
1

NT

∆`

`∗

~2

m`2∗
, (31)

with ∆` = ` − `∗. This energy difference ∝ 1/NT =
|g̃|/GT is thus negligible for g̃ � 1 and the typical time
scale considered in this work.
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