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Dipolar gases like erbium and dysprosium have a dense spectrum of resonant loss features associated with their
strong anisotropic interaction potential. These resonances display various behaviours with density and temper-
ature, implying diverse microscopic properties. Here, we quantitatively investigate the low-field (B < 6G)
loss features in ultracold thermal samples of 162Dy, revealing two- and three-body dominated loss processes.
We investigate their temperature dependence and detect a feature compatible with a d-wave Fano-Feshbach
resonance, which has not been observed before. We also analyse the expansion of the dipolar Bose-Einstein
condensate as a function of the magnetic field and interpret the changes in size close to the resonances with a
variation in the scattering length.

I. INTRODUCTION

Quantum gases are by definition relatively short-lived, as
these systems are extremely sensitive to loss processes such
as collisions with residual gases, photo-association or inelas-
tic collisions. Three-body losses, for example, correspond to
inelastic recombination in which three particles interact suffi-
ciently strongly to form a two-body bound state (dimer), while
the third particle ensures energy conservation by acquiring a
kinetic energy equal to the potential energy difference. This
energy is usually much greater than the trap depth, resulting
in the effective loss of all three particles. Such a mechanism
is enhanced close to a scattering resonance. In inhomoge-
neous gases, three-body losses are particularly damaging as
they lead to the depletion of the denser part of the atomic
cloud, resulting in anti evaporative cooling [1, 2]. However,
while this process limits the timescales over which ultracold
dense systems can be studied, it also provides an insight into
the few-body physics of strongly interacting cold gases, which
remains a challenging and stimulating area of research [3–8].

Dipolar gases like chromium, dysprosium, erbium, and
thulium possess a large dipolar magnetic moment, resulting
in properties that markedly differ from those of alkali atoms.
In these systems, long-range anisotropic dipolar interactions
lead to new features of the collision potential, such as the
emergence of a 1/R4 potential [9] or the modification of the
van der Waals C6 coefficient [10]. This anisotropic dipolar
interaction can lead to striking new behaviours, such as low-
temperature d-wave Fano-Feshbach resonances [11]. Fur-
thermore, the anisotropic interaction potential is responsible
for the dense spectrum of loss resonances [12] in ultracold
gases of erbium, dysprosium and thulium [13–16]. A precise
characterization of loss features has recently regained inter-
est, triggered by the determination of the temperature depen-
dence of their chaotic statistics [16, 17], the optimization of
the evaporative cooling [18], and the identification of appro-
priate Fano-Feshbach resonances in dipolar mixtures [19].

In this article, we investigate the few-body processes driv-
ing the large number of low-field loss features in ultracold
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FIG. 1. Normalized atom number as a function of magnetic field
for a thermal sample with temperature T = 190 nK (top panel in
blue) and T = 2.4 µK (bottom panel in red). The red vertical lines
indicate the 11 loss features for which we characterize the density
and temperature dependence.

gases of 162 Dy. We recover the 9 previously reported reso-
nances for this isotope [13] as well as 10 extra features, and
quantitatively characterize the dependence on atom number
and temperature for 11 features, indicated by the red vertical
lines in Fig. 1. In addition, we identify a loss feature com-
patible with a d-wave Fano-Feshbach resonance, with similar
characteristics to those reported for chromium in Ref. [11].
We also measure the three-body loss rate parameter for a
Bose-Einstein condensate near zero magnetic field. This low-
field zone is especially interesting if the objective is to estab-
lish spin-orbit coupling in a dysprosium gas, similar to [20],
while preventing two-body spin relaxation at increased atomic
densities. Finally, we complement our analysis with a study
of the BEC expansion near the different loss features, inter-
preting the dilatation of the cloud as a signature of enhanced
two-body interactions.

II. LOW-FIELD LOSS FEATURES

Experimentally, we load about 4 × 106 dysprosium atoms
(162Dy) into a crossed dipole trap formed by laser beams
operating at a wavelength λ = 1064 nm. The atoms are
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loaded from a five-beam compressed MOT with atom num-
ber Na ≈ 1×108 and temperature T ≈ 15 µK (see Sec. 2 for
more details).

After forced evaporative cooling, we produce an ultracold
thermal gas, spin polarized in the Zeeman sublevel of lowest
energy |J,mJ = −J⟩, with atom number Na = 2 × 105 and
temperature T ∼ 190 nK, above the condensation threshold.
The evaporation is carried out with a fixed magnetic field of
1.660G, indicated by the green vertical line in Fig.1. We then
quench the magnetic field to a target value and hold the cloud
for 2 s. We measure the atom number and temperature after
time-of-flight absorption imaging, which gives us information
about both the losses and heating of the cloud. The magnetic
field is scanned from 0 to 6G and we measure the atom num-
ber variation as a function of the magnetic field B. For this
low temperature, we identify 10 loss features, corresponding
to the atom number drops in Fig. 1 top panel. These reso-
nances, except for one, have been reported in Ref. [13].

A similar experiment is performed for a hotter thermal
cloud with temperature T = 2.4 µK. We recover the previ-
ous resonances and observe several new loss features (lower
panel in Fig. 1), increasing the total number of loss features
count to 19. This result qualitatively demonstrates the non-
trivial emergence of temperature-dependent loss features in
an ultracold gas of dysprosium [13].

To probe different temperatures T , we use a protocol that
differs from most previous investigations of resonant losses
in lanthanides, by preparing all of our samples in the same
optical potential regardless of T . We do this by (i) cooling
the atoms to very low temperature (∼ 200 nK), (ii) adiabati-
cally recompressing the optical trap to a large depth, and (iii)
tuning the temperature by parametric heating of the trapped
gas. Before measuring the remaining atom number, we en-
sure that the cloud is in thermal equilibrium by holding it for
0.5 s, which is long compared to the elastic collision time. By
contrast, many previous studies adjusted temperature by halt-
ing the evaporation process at varying laser intensities. Our
protocol addresses a potential bias resulting from differences
in polarizability between free atoms and the bound state in-
volved in the loss process [17]. Additionally, it is advanta-
geous to operate at a high trap depth U0, leading to a large
ratio η = U0/kBT . This effectively reduces the losses due to
evaporation that could potentially obscure distinctive features
resulting from the loss resonances we seek to examine.

III. MICROSCOPIC DESCRIPTION OF LOSS FEATURES

Before continuing with our experimental analysis, let us
summarize the models developed in Ref. [5, 11, 15, 21] that
have been used to characterize loss features in dipolar gases.
These models assume as an intermediate step the resonant for-
mation of a dimer or a trimer, and they lead to different scaling
laws of the maximal loss rate with density, as we show now.
To keep the analysis simple, we assume here a uniform atomic
density na, but the following results can then be readily trans-
posed to the case of a harmonically trapped gas.
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FIG. 2. Resonant dimer model. A pair of atoms, with relative motion
of energy E and angular momentum ℓ, can resonantly form a dimer
state of energy Ed ≈ E, which then decays at a rate Γd. In the case
of a narrow Fano-Feshbach resonance [22], this process leads to a
sharp energy feature described by the Lorentzian of Eq. 5.

A. The resonant dimer model

We describe a sequential process involving two steps (i) a
quasi-resonant coupling between a state with two free atoms
and a state where a dimer in some excited state A∗

2 is formed:

A+A ⇄ A∗
2 , (1)

(ii) the decay of the dimer with a rate Γd. Here, this decay is
essentially induced by the collision with a third atom: A∗

2 +
A → A2 + A so that Γd is implicitly a function of na, and
where A2 is a deeply bound dimer.

In the following we restrict ourselves to the case of large
Γd, so that the dimer A∗

2 decays soon after its formation by
the direct process in (1), and the reverse process in (1) does
not play a significant role. This scenario can happen in the
case of a narrow Fano-Feshbach resonance and a sufficiently
large atomic density na. We will see that it is the relevant
one for most of the resonances observed in our experimental
conditions and we refer the reader to Refs. [5, 11, 21, 23] for
a discussion of the general case and in the limit of small Γd.
Note that the situation considered here is the opposite of that
of Ref. [24], where the atoms A formed a Bose-Einstein con-
densate and where the authors could observe a coherent oscil-
lation between the two members of Eq. 1 thanks to bosonic
stimulation.

To model the process (1), we consider a fictitious box con-
taining two atoms, whose typical volume is thus L3 = 2/na,
where na is the atomic density. We work in the center-of-
mass frame of the two atoms and we denote E the energy of
the relative motion of the colliding atoms. We suppose that
the resonant process (1) occurs for an incident partial wave
ℓ and we introduce the coupling matrix element ℏκ between
the relative wave function of the two free atoms and the wave
function of the dimer state, of energy Ed (see Fig. 2). Each
wave function is supposed to be normalized to unity in the
box L3. We will not try to provide here a detailed expres-
sion for κ and we simply note its scaling with energy and box
size: κ ∝ (Eℓ/L3)1/2 [25]. The hamiltonian of this fictitious
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two-level system is thus the 2× 2 matrix(
E ℏκ
ℏκ∗ Ed − iℏΓd/2

)
(2)

where we have added the imaginary term −iℏΓd/2 to the
dimer energy to account for its instability. The two eigenval-
ues of this matrix are complex, which expresses the fact that
the scattering state A + A is now also unstable because of its
coupling to A∗

2.
The imaginary part of the energy of the A + A pair in the

presence of the coupling κ gives the decay rate of this pair,
which reads for Γd ≫ κ (Breit-Wigner formula):

Γa ≈ Γd|κ|2
(E − Ed)2/ℏ2 + Γ2

d/4
, (3)

from which we deduce the scaling of the total loss rate in the
sample with Na atoms at a given energy E:

Ṅa ∝ −NaΓa ∝ −naNaE
ℓL(E − Ed) (4)

where L stands for the Lorentzian function:

L(x) = 1

2π

ℏΓd

x2 + (ℏΓd/2)2
. (5)

We now average the rate (4) over a thermal distribution of
temperature T , so that the loss rate Ṅa is proportional to∫ +∞

0
dE ρ(E) Eℓ L(E − Ed) e

−E/kBT∫ +∞
0

dE ρ(E) e−E/kBT
, (6)

with the density of states ρ(E) ∝
√
E for the relative motion

of the A + A pair. The expression (6) is in general a compli-
cated function of Ed and Γd (and thus na). An interesting lim-
iting case is obtained when the resonance width ℏΓd is very
small compared to kBT , in which case the Lorentzian function
L(E−Ed) can be replaced by a Dirac function δ(E−Ed) in
(6). In this case, we find that the decay rate corresponds to a
two-body loss process [11]:

Ṅa = −L2naNa (7)

with an effective two-body loss parameter L2 given by:

L2(Ed, T ) ∝ T−3/2 E
ℓ+1/2
d e−Ed/kBT . (8)

The experimental procedure involves scanning the value
of Ed by ramping the magnetic field at a given temperature
and searching for the maximal loss rate. From the scaling
of Eq. (8), we find that the maximum loss rate occurs for
Ed = (ℓ+ 1/2)kBT with

L
(max)
2 (T ) ∝ (kBT )

ℓ−1. (9)

Assuming the two hypotheses above are valid, i.e. ℏκ ≪
ℏΓd ≪ kBT , the variation of L(max)

2 with temperature thus
gives immediate access to the partial wave ℓ involved in the
resonant loss process. The validity of these hypotheses can be
checked by verifying that Ṅa/Na scales linearly with na (see
Eq.(7)).

B. The resonant trimer model

The second model consists in a pure three-body process
[15]. Three particles that do not have resonant pairwise in-
teractions arrive through a three-body open channel O1, with
the quantum number λ associated with the grand angular mo-
mentum, and an incoming energy E close to the energy Et of
an excited trimer state A∗

3, residing in a closed channel C:

A+A+A ⇄ A∗
3 . (10)

If we neglect atom interactions at long distance, the incoming
channel is purely repulsive, even for λ = 0, with the 3-body
centrifugal potential V (R) ∝

[
λ(λ+ 4) + 15

4

]
/R2, where R

is the hypergeometric radius [26, 27]. The closed channel C
is coupled to other channels Of that are not directly coupled
to the incoming open channel, thereby determining the decay
rate Γt of the trimer A∗

3. Note that since we do not assume
resonant two-body interactions, the trimer A∗

3 differs from Efi-
mov trimers. The latter play an important role in broad Fano-
Feshbach resonances and lead to the 1/T 2 dependence of the
three-body loss rate L3 [1, 28].

The analysis of this process follows along the same general
lines as for the resonant dimer model. We consider a fictitious
box of volume L3 ∼ 3/na containing three particles. The
coupling κ between the incoming state of energy E and the
resonant trimer state now scales as κ ∝ Eλ/2/L3 and the
width Γt of the trimer state A∗

3 induces a non-zero width for
the incoming state A+A+A, given by a formula similar to (3).
We are then led to Ṅa = −n2

aNaE
λL(E−Et) where L is the

Lorentzian function similar to (5) with width Γt [15, 29, 30]
[31]. The thermal average of this decay rate involves the three-
particle density-of-state ρ(E) ∝ E2 so that we obtain, in the
limit ℏΓt ≪ kBT :

Ṅa = −L3n
2
aNa (11)

with the scaling L3 ∝ T−3 Eλ+2
t e−Et/kBT . When scanning

the energy of Et by ramping the external magnetic field, the
maximum loss rate scales as

Lmax
3 (T ) ∝ (kBT )

λ−1 (12)

and it is obtained for Et = (λ+ 2) kBT .
Discussion. Although the scaling of the loss rate with

temperature is similar in both models of §III A and §III B, the
latter is a pure three-body process and therefore cannot pre-
dict two-body dominated features of the type Ṅa/Na ∝ −na.
The reverse statement may not be true: Refs. [5, 11, 23] in-
dicate that the resonant dimer model can lead to an effective
three-body loss rate Ṅa/Na ∝ −n2

a in the case where the ex-
cited bound state is long-lived relative to its coupling to the
incoming open channel. Let us also emphasize that the simple
scaling laws (9,12) hold only when ℏκ ≪ ℏΓd,t ≪ kBT . If
this is not the case, the variation of L(max)

2,3 with temperature
is non-trivial.
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IV. LOSSES VS. DENSITY AND TEMPERATURE

In this section, we present our experimental results regard-
ing the loss rates in a harmonically trapped 162Dy gas due to
inelastic processes. We first outline our methodology (§IV A),
and then investigate the variations of the loss rate with den-
sity at a given temperature (§IV B), and with temperature at a
given atom number (§IV C). We summarize our results for the
whole set of resonances in §IV D.

A. Methodology

We recall that the microscopic nature of the process (2-
body or 3-body loss) of each resonance is unknown, as is
the temperature variation of the associated loss rate (L2(T )
or L3(T )). Therefore, for a gas prepared with a given atom
number Na and temperature T , we restrict our analysis of the
decay rate to a short time interval ∆t, during which Na and
T vary by less than 20% and 30%, respectively. A linear fit
Na(t) = N0(1−βt) to the decaying atom number over this in-
terval then allows us to derive the decay rate Ṅa ≈ ∆Na/∆t
for a density n̄a and a temperature T̄ taken equal to the aver-
age value of these quantities over the time interval ∆t. The
interval retained for the fit is indicated by a coloured zone in
Figs. 3 and 4.

In addition, we recall that the volume of a trapped
gas in a harmonic potential is a function of the tempera-
ture. If interactions play a negligible role, one finds V =

(2
√
3πkBT/mω̄2)3/2, where ω̄ = (ωxωyωz)

1/3 is the geo-
metric mean of the trapping frequencies, and kB the Boltz-
mann constant. In the following, we designate by na = Na/V
the average density in the trap. For a fixed temperature, the
volume does not vary, and β = −Ṅa/Na scales as β ∝ nγ

a

with γ = 1 (resp. γ = 2) in the case of a two-body (resp.
three-body) dominated loss process (7) [resp. (11)].

B. Examples at fixed T : 2- versus 3-body dominated losses

Here we describe a typical analysis procedure of one of the
resonances featured in Fig. 1, specifically the resonance oc-
curring at a magnetic field strength of 5.130G. As explained
in § II, we prepare a sample with an adjustable atom number at
the desired temperature. The depth of the trap is sufficient to
render losses due to evaporation insignificant [32]. We jump
the magnetic field from its initial value (B = 1.660G) to a
magnetic field close to the target loss feature (typically 100 -
200mG away from it). We then wait for 500ms and perform a
second quench towards the magnetic field for which the losses
are maximum. This sequence allows a better resolution of the
initial loss dynamics.

We show in Fig. 3a,c two decay curves Na(t) for two ini-
tial atom numbers, hence two atomic densities na. Figs. 3b,d
show the corresponding changes in temperature. A linear fit of
the short time variation of Na provides the decay rate β intro-
duced in § IV A. We summarize our results for β as a function
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FIG. 3. Atom loss dynamics for varying total atom number Na at a
magnetic field B = 5.130G. The averaged temperature is constant
and equal to T ≈ 2.0(1) µK. Panels (a) and (b) show the atom num-
ber and temperature evolution for the case of an initial atom number
N0 = 2.3× 105. Panels (c) and (d) show the atom number and tem-
perature evolution for N0 = 1.4 × 105. (e) Variation of the initial
loss rate, β = −Ṅa/Na, with the density n̄a ∝ N̄a/T̄

3/2. The solid
line is the fitting function β ∝ n̄γ

a with γ = 0.92(10).

of na in Fig. 3e. A fit β(na) = β1n
γ
a gives γ = 0.92(10),

an indication of a two-body dominated loss feature for this
particular resonance.

To cross-validate our methodology, we have performed a
similar loss measurement for a thermal gas at B = 1.660G
i.e. away from any loss resonance. We measure γ = 2.3(4),
which is consistent with a three-body loss process, as expected
for a gas with positive background scattering length. We find,
for a thermal gas, L3 = 1.2(2)× 10−40m6/s.

The same technique allows us to determine the three-body
loss coefficient of a Bose-Einstein condensate (BEC) either
close to B = 0 or at B = 1.660G away from any loss res-
onance. For that purpose we evaporate until we produce a
quasi-pure BEC, and then adiabatically recompress the trap
to a final trap depth of 2.16 µK, with frequencies equal to
{ωx, ωy, ωz} = 2π × {49, 152, 115}Hz. We find L3 =
2.9(3) × 10−41m3/s and L3 = 5.0(8) × 10−41m3/s, for the
background three-body loss rate, B = 1.660G, and the near-
zero field B ≲ 50mG, respectively. The values of L3 are
extracted for a BEC fraction going from near unity to 0.5.
Compared to a thermal sample, we find a reduction of L3

in qualitative agreement with the predicted 3! reduction for
a pure BEC [33].
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FIG. 4. Atom losses as a function of temperature T for a fixed atom
number Na ≈ 1.5 × 105, for the loss feature B = 5.130G. (a)
and (b) Atom number and temperature evolution, respectively, for a
thermal cloud with temperature T̄ = 1.1(1) µK. (c) and (d) Atom
number and temperature evolution for T̄ = 2.0(1) µK. (e) Variation
of the initial loss rate, β = −Ṅ/N , with temperature. The solid line
is the fitting function β ∝ Tα, with α = −2.2(3).

C. Example at fixed Na: T -dependent loss rate

We now turn to the temperature dependence of the atom
loss rate, still taking the resonance at B = 5.130G as an ex-
ample. Following the procedure outlined in §II and §IV B,
we prepare thermal samples at different temperatures but with
the same atom number. We plot in Fig. 4a (resp. Fig. 4c) the
atom number decay for the initial temperature T = 0.9 µK
(resp. T = 1.8 µK). We show in Fig. 4b,d the corresponding
time evolution of the temperature.

As explained in § IV A, we restrict to the short time evo-
lution and extract the rate β = −Ṅa/Na from a linear fit
to the measured decay of Na(t). The values of β for dif-
ferent temperatures are shown in Fig. 4e. We fit the rela-
tion β(T ) = β2T

α to the temperature dependence of the
loss rate, with α = −2.2(3). From the analysis of §IV B,
we know that this particular resonance is likely to be due to
a two-body loss decay Ṅa = −L2naNa, hence β ∝ L2/V
for a given Na. Recalling that the volume in a harmonic
trap scales as V ∝ T 3/2, we infer that L2(T ) ∝ Tχ2 with
χ2 = α+ 3/2 ≈ −0.7(3) for this particular resonance.

D. Analysis of all loss resonances

The same procedure regarding the dependence with density
and temperature is applied to the 10 loss features observed
in Fig. 1 (top panel) plus the loss feature at 1.755G which

emerges for hotter clouds (see Fig. 1 bottom panel). These 11
loss features are identified by the red vertical lines in Fig. 1.
We report in Fig. 5a the exponent γ for each loss feature (with
β = −Ṅa/Na ∝ nγ

a at a fixed averaged temperature T̄ ) and
in Fig. 5b the exponent α (with β ∝ Tα at a fixed initial Na).

From the results shown in Fig. 5a, we identify 7 loss fea-
tures for which the measured value of γ is compatible, within
error bars, with a two-body dominated process, i.e. γ = 1.
We identify a single loss feature for which γ is compatible,
within error bars, with a three-body dominated process, i.e.
γ = 2. We also identify three loss features that are not clearly
described by either two- or three-body processes. This be-
haviour can emerge, for example, in the case of the two-step
process discussed in § III A when the decay rate of the dimer
Γd is comparable to the rate of the process (1) producing this
dimer. We will not attempt to describe the temperature depen-
dence of those three lines.

Once the assignment of a two-body or three-body reso-
nance has been made from the variation of β with na, we de-
termine the temperature dependence of the associated two- or
three-body loss rates, L2 ∝ βV or L3 ∝ βV 2 for a given Na.
Since the volume scales as T 3/2, we write the temperature de-
pendence of the two- and three-body loss rates as L2 ∝ Tχ2

and L3 ∝ Tχ3 , where χ2 = α+ 3/2 and χ3 = α+ 3.
In Fig. 5d we observe that six out of the seven identified

two-body processes have a rate L2 compatible with a 1/T de-
pendence, as expected for s-wave resonances (see Eq. (9) for
ℓ = 0). These resonances are marked with blue circles in the
various panels of Fig.5.

The only exception is the previously unobserved Fano-
Feshbach resonance at B = 1.755G, marked as a blue square
in the various panels of Fig.5. Its rate scales as L2 ∝ T 0.5.
Although the scaling with temperature is strictly speaking not
compatible with a d-wave resonance for which we would ex-
pect L2 ∝ T , as observed for chromium [11], we suggest that
the deviation of χ2 ≈ 0.5 from 1 is due to the weakness of the
loss feature. As shown in Fig. 5c this resonance is an order
of magnitude weaker than the other resonances, and there-
fore our measurements may be contaminated by other loss
processes, such as forced evaporation, which could tend to
weaken the observed temperature dependence.

For the six two-body loss features compatible with a s-
wave resonance (blue circles in Fig.5), one might expect a
shift of the center of the resonance with temperature, given by
∆B = kB∆T/δµ, where δµ, the differential magnetic mo-
ment between open and closed channels, is a priori unknown.
Given the recent determination of δµ ≈ 1000 µK/G for the
case of thulium [17] we would expect a magnetic field shift
∼ mG, for our temperature range. This shift is comparable to
our magnetic field stability and thus difficult to detect on our
platform [34].

Finally, for the three-body dominated loss feature, identi-
fied in red in Fig. 5, we report a small positive temperature-
dependence. At this stage, we cannot conclude whether this
feature is caused by a direct three-body resonance as described
in §III B, or whether it corresponds to an effective three-body
decay resulting from a particular parameter setting in a two-
step two-body loss process as proposed in [5, 11, 21, 23].
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FIG. 5. Summary of density- and temperature-dependence for 11
loss features between 0-6G. (a) Determination of two- versus three-
body dominated loss features. A value of γ compatible with 1 indi-
cates a two-body dominated loss feature, while a value of γ = 2 in-
dicates a three-body dominated feature. These values are represented
by dashed horizontal lines. Loss features characterized by s(d)-
wave two-body dominated loss processes correspond to blue circles
(squares), while red circles correspond to three-body processes. The
green circles indicate loss features in a transitional regime where it
is not possible to determine a 2-body or 3-body loss rate. (b) Tem-
perature dependence of the loss rate β(T ) ∝ Tα. (c) Strength of the
different loss features. From the results shown in (a) and (b) we de-
rive the two-body and three-body loss rates for a nominal density of
n̄ = 1× 1020 m−3 and temperature T̄ = 1 µK. (d) Temperature de-
pendence of the two- and three-body loss coefficients χ2 = α+3/2
(blue) and χ3 = α + 3 (red). The 11 loss features studied in this
article are marked by vertical bars.

V. BEC EXPANSION NEAR A LOSS FEATURE

Finally, we report a complementary measurement that al-
lows us to determine the s-wave scattering length if we sup-
pose that the interactions are of a two-body nature, as it seems
to be the case for at least 7 out of 11 resonances. We perform
a long time-of-flight expansion of a Bose-Einstein condensate
(BEC) of 162Dy and infer the scattering length from its area in
the x–y plane orthogonal to the bias magnetic field pointing
along z. The BEC is created in a trap with angular frequen-
cies {ωx, ωy, ωz} = 2π × {28, 88, 66}Hz. We then quench
the magnetic field to the desired value and hold the cloud for
20ms before performing a 30ms long time of flight. A mag-
netic field gradient ensures that the cloud does not fall due to
gravity.

The scattering length is derived from a mean-field approach
that incorporates dipolar interactions [35]. We write

a ≈ astab. +

(
3RxRy

2

)5/2

× 1

CN (13)

where astab. ≈ 100 a0 is the scattering length below which the
BEC is no longer a stable solution in our trap geometry, a0 is
the Bohr radius and C ∝ a4ho [36].
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FIG. 6. Variation of the scattering length with magnetic field, in
the vicinity of six loss features. Central magnetic field: (a) B =
2.655G, (b) B = 3.138G, (c) B = 3.881G, (d) B = 4.620G, (e)
B = 5.130G, (f) B = 5.561G.

We study the variation of the cloud size for different mag-
netic fields and show in Fig. 6 the resonances for which a clear
dilatation is observed. We interpret this variation as a change
in the scattering length using Eq. 13. Of the 11 loss features
studied in this article, only 6 show a clear change in the size
of the BEC. These resonances are also the ones with the high-
est loss rate. Since the measurements are performed with a
BEC, we cannot extract negative scattering lengths and re-
port only positive values of a. We compare our measurements
with those reported in Ref. [37] and find a good agreement for
the scattering length evolution near the B = 5.130G Fano-
Feshbach resonance.

Regarding the only three-body dominated loss feature at
B = 5.561G (see Fig. 6f), we draw the reader’s attention
to the interpretation of a BEC size change due to a variation
of a. Since we do not exclude the existence of a pure three-
body microscopic process for this resonance, a change in BEC
size could also be due to pure three-body interactions and thus
not to a change in scattering length. For harmonic traps this
implies a change in the total area ∝ N1/2 (instead of N2/5

for two-body interactions). We have tested this hypothesis by
varying the number of atoms in the BEC. Although our results
are consistent with N2/5 scaling, we cannot exclude the N1/2

result within our experimental uncertainties. It will be partic-
ularly interesting to study this resonance in a flat-bottom trap,
where the size of the BEC area after time-of-flight will be pro-
portional to N3 for three-body interactions instead of N2 for
two-body interactions, leading to an easier lift of ambiguity.
However, this study is beyond the scope of this article.
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VI. CONCLUSION

We have characterized 11 low-field resonant loss features of
an ultracold thermal sample of dysprosium. From the analysis
of their density and temperature dependence, we conclude that
most loss features result from a resonant s-wave pairwise in-
teraction. We also measured the corresponding change in scat-
tering length through the expansion of a BEC. Additionally,
we measured the three-body loss rate of a quasi-pure BEC
near zero magnetic field, which provides valuable informa-
tion for future studies aimed at exploiting spin-orbit coupling
in a dense condensate of dysprosium atoms [20].

Furthermore, we have evidenced (i) a possible two-body
d-wave resonance, unobserved so far, highlighting the com-
plex nature of interactions in strongly dipolar gases, and (ii)
a loss resonance that may be controlled by pure three-body
interactions. To go further in our quantitative description of
three-body resonances, whether driven by two-body or three-
body processes, we will need to better disentangle the roles
of temperature and density, which should be possible with the
preparation of a homogeneous sample of dysprosium in a box-
like trap [38].
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Appendix: Details of the experimental setup

1. Production of a 162Dy MOT

We load 3×108 atoms in a magneto-optical-trap (MOT),
with a loading rate of 1 × 108 atoms, composed of five red-
detuned beams (four in the x–y plane and one vertical), with
detuning ∆MOT = −43 × Γred, with respect to the intercom-
bination line with vacuum wavelength λ = 626.08 nm (red
transition) and linewidth Γred ≈ 2π×136 kHz [39]. The MOT
is produced with a saturation parameter s0 = I0/Isat. ≈ 185
(the vertical beam has a tenth of this intensity) and a mag-
netic field gradient ∂zBz = 1.72G/cm. The cloud lies a
few mm below the zero-field, which makes it fully polar-
ized in the Zeeman sublevel of lowest energy |J,mJ = −J⟩.
The MOT capture velocity, determined by the linewidth of
the transition and the MOT beam waist, wMOT = 15mm, is
equal to vc ≈ 7m/s. We maximize the atomic flux reach-
ing the main science chamber using an optical collimation.
It is achieved through the cooling provided by a transverse
molasses consisting of two retroreflected laser beams with
orthogonal propagation with respect to the oven’s exit axis.
The molasses laser beams are red-detuned, with detuning
∆Coll. = −0.4 × Γblue, with respect to the optical transition
with vacuum wavelength of 421.29 nm (blue transition) and

FIG. 7. Schematic representation of the experimental setup. The
atoms are optically collimated at the output of the oven (transverse
cooling) and then decelerated in a spin-flip Zeeman slower. The
atoms are then confined in a magneto-optical trap (MOT), which
comprises 5 laser beams and a magnetic field gradient. We compress
the MOT and capture approximately 4 × 106 atoms into a crossed
dipole trap (CDT) made up of two beams (ODT1 and ODT2) with a
relative angle of 144◦.

linewidth Γblue ≈ 2π × 32MHz. A saturation parameter of
s0 = 4 is used, leading to a five-fold increase in the loading
rate of the MOT. The longitudinal velocity of the atomic flux
exiting the oven is reduced from vx ≈ 400m/s to ≈ 7m/s in
a 500mm Zeeman slower in a spin-flip configuration, with a
laser beam detuning of ∆Zeeman = −14×Γblue and a saturation
parameter of s0 ≈ 1. The blue and red laser beams are fre-
quency stabilized through modulation frequency transfer us-
ing either the atomic flux at the output of the oven (for the
blue transition), or an iodine cell (for the red transition) [40].

0 2 4 6 8

sMOT

-∆MOT

|∇B|

Bz

ODT1

ODT2

(1) (2) (3) (4) (5) ToF

t (s)

FIG. 8. Schematic representation of the experimental sequence used
to produce a degenerate gas of dysprosium. (1) MOT loading stage.
(2) Compressed MOT. (3) First stage of evaporative cooling. (4) Sec-
ond stage of evaporative cooling. (5) Plain evaporation in the CDT
to purify the quantum gas. (ToF) Time-of-flight expansion and ab-
sorption imaging acquisition.
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FIG. 9. Efficiency of evaporative cooling. (a) Temperature as a func-
tion of time in log-linear scale. (b) Atom number as a function of
time in log-linear scale. (c) Phase-space-density (D) as a function of
atom number, Na, in log-log scale. We fit our data with D ∝ N−ϑ

a

and retrieve ϑ ≈ 4.0. The gray region indicates the points for which
a non-negligible condensed fraction is already present and the esti-
mation of D is no longer quantitative. The horizontal dashed line
corresponds to the non-interacting prediction for the emergence of a
BEC at D ≈ 2.612.

2. Compressed MOT and transfer into a crossed dipole trap

To further cool the atomic cloud, we reduce the saturation
parameter of the red lasers to s0 = 5.7, decrease the detun-
ing to ∆cMOT = −21 × Γred, and increase the gradient to
∂zBz = 4.31G/cm, which stabilizes the position of the cloud
against small fluctuations in the laser frequency and magnetic
field. Although it leads to a compressed MOT (cMOT) with
a temperature T ≈ 15 µK, higher than the Doppler temper-
ature, it ensures a stable overlap with the crossed dipole trap
(CDT). The cMOT has a typical size at 1/

√
e of 400 µm and

atom number ∼ 1× 108.
The CDT is composed of two single-mode laser beams at

a wavelength of 1064 nm, with a relative angle of 144◦ in the
x–y plane, and a frequency difference of 180MHz, which en-
sures that residual interference patterns are averaged out. As
we reduce the detuning of the MOT beams, light-induced loss
processes are enhanced, resulting in a short lifetime of the
cMOT (∼ 200ms). The loading of the cMOT into the CDT
is therefore fast ∼ 50ms, which allows us to load 4 × 106

atoms at a temperature of 60 µK. The two beams that make
up the CDT, hereafter identified as ODT1 and ODT2 (see
Fig. 7), have waists wODT1 ≈ 30 µm and wODT2 ≈ 20 µm.
To optimize the loading, we enlarge the waist of ODT1 in the
x–y plane by a factor of 2 with an acousto-optic deflector [41].
The two optical dipole trap beams have maximum powers of
30W (ODT1) and 5W (ODT2) and the forced evaporative
cooling is performed in the presence of a bias field aligned
along the z-direction and with magnitude Bz = 1.660G. The
maximum loading efficiency is achieved for horizontally po-
larized dipole beams. This is because the difference in polariz-

4.9 5.0 5.1
0

300

600

900

B (G)

a
(a

0
)

(a)

(b)

(c)

(a) (b) (c)

100 µm

FIG. 10. Scattering length in the vicinity of the B0 = 5.130G reso-
nance (vertical red line). Expansion of a BEC in the x–y plane after
30ms time-of-flight, (a) far from the Feshbach resonance and near
the resonance with B < B0 (b) or B > B0 (c). We interpret the
strong expansion of the BEC for B < B0 resulting from a large
scattering length, while for B > B0 we observe a dense cloud com-
patible with the formation of a quantum droplet.

ability between the ground and excited states of the intercom-
bination line, ∆α = αexc.−αground, is negative at 1064 nm for
a linear horizontal polarization [42]. This guarantees that the
detuning of the cMOT cooling beam remains negative. After
loading the CDT and prior to evaporative cooling, we rotate
the polarization of ODT2 by 90◦.

3. Crossed dipole trap evaporative cooling

The first evaporation stage lasts for 1 s, during which we
suppress the spatial modulation of ODT1 and reduce its power
so that the two beams forming the crossed dipole trap have
similar trap depths. We focus here on the second stage of
forced evaporative cooling, which lasts for 3.5 s (see Fig. 8).
At the beginning of this evaporation, we switch on a magnetic
field gradient to partially compensate for gravity, which plays
an important role in the optimization of the evaporative cool-
ing [43].

We measure both temperature, atom number and trap
frequencies at different times during the second evaporative
cooling stage. In Fig. 9a, b we show the evolution of tem-
perature and atom number as a function of time. Combined
with our measurements of the trap frequencies, we compute
the evolution of the averaged phase-space density D = naλ

3,
where na takes into account the averaging over the inhomo-
geneous density in the harmonic potential (see main text).
We show in Fig. 9c the evolution of D as a function of Na in
log-log scale. From the fit function D ∝ N−ϑ

a , we determine
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the evaporative cooling efficiency ϑ ≈ 4, at the upper end of
typical values in optical dipole traps (2 ≲ ϑ ≲ 5) [43].

Appendix: Examples of expanded clouds in the vicinity of the
5.130G Feshbach resonance

We here present some examples for the BEC expansion near
the B0 = 5.130G Feshbach resonance discussed in Fig. 6(e).
We deduce the change in scattering length from the cloud
dilatation in the x–y plane after a 30ms time-of-flight. As

shown in Fig. 10a, the expansion of the BEC far from the reso-
nance, for instance B = 4.886G (yellow dot), leads to radii of
30 - 45 µm, along the two orthogonal axes of the optical dipole
trap in the x–y plane. As the scattering length increases, the
cloud expands significantly more, as shown in Fig. 10b for a
magnetic field of B = 5.109G. Interestingly, for B > B0,
where the scattering length passes from large negative values
to its background value, and thus crosses zero, we observe
a cloud that does not expand even after a long time-of-flight
(see Fig. 10c), which is a hallmark of quantum droplets [44].
Our procedure for determining the scattering length cannot be
used in this case, as one would need to incorporate beyond-
mean-field corrections to explain the stability of the cloud.
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body physics and cluster formation,” Rev. Mod. Phys., vol. 89,
p. 035006, Aug 2017.

[5] J. Li, J. Liu, L. Luo, and B. Gao, “Three-body recombination
near a narrow Feshbach resonance in 6Li,” Phys. Rev. Lett.,
vol. 120, p. 193402, May 2018.

[6] Y. Yudkin, R. Elbaz, P. Giannakeas, C. H. Greene, and
L. Khaykovich, “Coherent superposition of Feshbach dimers
and Efimov trimers,” Phys. Rev. Lett., vol. 122, p. 200402, May
2019.

[7] Y. Ji, G. L. Schumacher, G. G. Assumpção, J. Chen, J. T.
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