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Dipolar gases like erbium and dysprosium have a dense spectrum of resonant loss features associated with

their strong anisotropic interaction potential. These resonances display various behaviors with density and
temperature, implying diverse microscopic properties. Here we quantitatively investigate the low-field (B < 6 G)
loss features in ultracold thermal samples of '%>Dy. The atoms are spin polarized in their lowest internal state
so that pure two-body losses due to spin relaxation are forbidden. However, our analysis reveals that some
resonances lead to a two-body-like decay law, while others show the expected three-body decay. We present
microscopic one-step and two-step models for these losses, investigate their temperature dependence, and detect
a feature compatible with a d-wave Fano-Feshbach resonance that has not been observed before. We also report
the variation of the scattering length around these resonances, inferred from the time-of-flight expansion of the

condensate.
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I. INTRODUCTION

Quantum gases are by definition relatively short lived, as
these systems are extremely sensitive to loss processes such
as collisions with residual gases, photoassociation, or inelas-
tic collisions. Three-body losses, for example, correspond to
inelastic recombination in which three particles interact suffi-
ciently strongly to form a two-body bound state (dimer), while
the third particle ensures energy conservation by acquiring a
kinetic energy equal to the potential energy difference. This
energy is usually much greater than the trap depth, resulting
in the effective loss of all three particles. Such a mechanism is
enhanced close to a scattering resonance. In inhomogeneous
gases, three-body losses are particularly damaging, as they
lead to the depletion of the denser part of the atomic cloud,
resulting in antievaporative cooling [1,2]. However, while
this process limits the timescales over which ultracold dense
systems can be studied, it also provides an insight into the
few-body physics of strongly interacting cold gases, which
remains a challenging and stimulating area of research [3-8].

Dipolar gases like chromium, dysprosium, erbium, and
thulium possess a large dipolar magnetic moment, resulting in
properties that markedly differ from those of alkali atoms. In
these systems, long-range anisotropic dipolar interactions lead
to new features of the collision potential, such as the emer-
gence of a 1/R* potential [9] or the modification of the van der
Waals Cg coefficient [10]. This anisotropic dipolar interaction
can lead to striking new behaviors, such as low-temperature
d-wave Fano-Feshbach resonances [11]. Furthermore, the
anisotropic interaction potential is responsible for the dense
spectrum of loss resonances' in ultracold gases of erbium,
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"Here we refer to these resonances as loss features instead of
Fano-Feshbach resonances to allow for the possibility that some loss
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dysprosium, and thulium [12-16]. A precise characterization
of loss features has recently regained interest, triggered by the
determination of the temperature dependence of their chaotic
statistics [15,17], the optimization of the evaporative cooling
[18], and the identification of appropriate Fano-Feshbach res-
onances in dipolar mixtures [19].

In this article we investigate the few-body processes driv-
ing the large number of low-field loss features in ultracold
gases of '®Dy. We recover the 9 previously reported reso-
nances for this isotope [12] as well as 10 extra features, and
quantitatively characterize the dependence on atom number
and temperature for 11 features, indicated by the red vertical
lines in Fig. 1. In addition, we identify a loss feature com-
patible with a d-wave Fano-Feshbach resonance, with similar
characteristics to those reported for chromium in Ref. [11].
We also measure the three-body loss rate parameter for a
Bose-Einstein condensate (BEC) near zero magnetic field.
This low-field zone is especially interesting if the objective is
to establish spin-orbit coupling in a dysprosium gas, similar to
[20], while preventing two-body spin relaxation at increased
atomic densities. Finally, we complement our analysis with
a study of the BEC expansion near the different loss fea-
tures, interpreting the dilatation of the cloud as a signature of
enhanced two-body interactions.

II. LOW-FIELD LOSS FEATURES

Experimentally, we load about 4 x 10° dysprosium atoms
('2Dy) into a crossed dipole trap formed by laser beams
operating at a wavelength A = 1064 nm. The atoms are loaded
from a five-beam compressed magneto-optical trap (MOT)

features are not associated with a change in the two-body scattering
length but are instead a genuine three-body effect.
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FIG. 1. Normalized atom number as a function of magnetic field
for a thermal sample with temperature 7 = 190nK (top panel in
blue) and 7 = 2.4 uK (bottom panel in red). The red vertical lines
indicate the 11 loss features for which we characterize the density
and temperature dependence.

with atom number N, &~ 1 x 10® and temperature T ~ 15 uK
(see Appendix B for more details).

After forced evaporative cooling, we produce an ultracold
thermal gas, spin polarized in the Zeeman sublevel of lowest
energy |J, my = —J), with atom number N, =2 x 10° and
temperature 7 ~ 190 nK, above the condensation threshold.
The evaporation is carried out with a fixed magnetic field of
1.660 G, indicated by the green vertical line in Fig. 1. We then
quench the magnetic field to a target value and hold the cloud
for 2 s. We measure the atom number and temperature after
time-of-flight absorption imaging, which gives us information
about both the losses and heating of the cloud. The magnetic
field is scanned from O to 6 G, and we measure the atom num-
ber variation as a function of the magnetic field B. For this low
temperature, we identify ten loss features, corresponding to
the atom number drops in Fig. 1, top panel. These resonances,
except for one, have been reported in Ref. [12].

A similar experiment is performed for a hotter thermal
cloud with temperature T = 2.4 uK. We recover the previous
resonances and observe several new loss features (lower panel
in Fig. 1), increasing the total number of loss features count
to 19. This result qualitatively demonstrates the nontrivial
emergence of temperature-dependent loss features in an ul-
tracold gas of dysprosium [12].

To probe different temperatures 7', we use a protocol that
differs from most previous investigations of resonant losses
in lanthanides by preparing all of our samples in the same
optical potential regardless of 7. We do this by (i) cooling
the atoms to very low temperature (~200 nK), (ii) adiabati-
cally recompressing the optical trap to a large depth, and (iii)
tuning the temperature by parametric heating of the trapped
gas. Before measuring the remaining atom number, we ensure
that the cloud is in thermal equilibrium by holding it for
0.5s, which is long compared to the elastic collision time.
By contrast, many previous studies adjusted temperature by
halting the evaporation process at varying laser intensities.
Our protocol addresses a potential bias resulting from differ-
ences in polarizability between free atoms and the bound state

involved in the loss process [17]. Additionally, it is advanta-
geous to operate at a high trap depth U, leading to a large
ratio n = Uy /kgT . This effectively reduces the losses due to
evaporation that could potentially obscure distinctive features
resulting from the loss resonances we seek to examine.

III. MICROSCOPIC DESCRIPTION OF LOSS FEATURES

Before continuing with our experimental analysis, let us
summarize the models developed in Refs. [5,11,14,21] that
have been used to characterize loss features in dipolar gases.
First we recall that for our polarized, low-temperature sample,
a pure two-body decay process

A+A— AP (D

where A';"““d is a bound dimer (negative energy), is impossible
because of energy-momentum conservation. The models of
Refs. [5,11,14,21] assume as an intermediate step the resonant
formation of a dimer or a trimer, and they lead to different
scaling laws of the maximal loss rate with density, as we show
now. To keep the analysis simple, we assume here a uniform
atomic density n,, but the following results can then be readily
transposed to the case of a harmonically trapped gas.

A. The resonant dimer model

We describe a sequential process involving two steps: (i) a
quasi-resonant coupling between a state with two free atoms
and a state where a dimer in some excited state A3 is formed,

A+A= AL )

and (ii) the decay of the dimer with a rate I';. This decay is
essentially induced by the collision with a third atom, A3 +
A — A + A, so that I'; is implicitly a function of n,, and
where A, is a deeply bound dimer.

In the following we restrict ourselves to the case of large
"4 so that the dimer A5 decays soon after its formation by
the direct process in (2), and the reverse process in (2) does
not play a significant role. This scenario can happen in the
case of a narrow Fano-Feshbach resonance and a sufficiently
large atomic density n,. We will see that it is the relevant
one for most of the resonances observed in our experimental
conditions, and we refer the reader to Refs. [5,11,21,23] for
a discussion of the general case and in the limit of small
Iy (see also Appendix A). Note that the situation considered
here is the opposite of that of Ref. [24], where the atoms
A formed a Bose-Einstein condensate and where the authors
could observe a coherent oscillation between the two mem-
bers of Eq. (2), thanks to bosonic stimulation.

To model the process (2), we consider a fictitious box con-
taining two atoms, whose typical volume is thus L3 = 2/n,,,
where 7, is the atomic density. We work in the center-of-mass
frame of the two atoms, and we denote E the energy of the
relative motion of the colliding atoms. We suppose that the
resonant process (2) occurs for an incident partial wave ¢,
and we introduce the coupling matrix element /ix between
the relative wave function of the two free atoms and the wave
function of the dimer state, of energy E; (see Fig. 2). Each
wave function is supposed to be normalized to unity in the
box L3. We will not try to provide here a detailed expression
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FIG. 2. Resonant dimer model. A pair of atoms, with relative
motion of energy E and angular momentum ¢, can resonantly form a
dimer state of energy E, &~ E, which then decays at a rate I';. In the
case of a narrow Fano-Feshbach resonance [22], this process leads to
a sharp energy feature described by the Lorentzian of Eq. (6).

for «, and we simply note its scaling with energy and box
size: k o< (EY/L?)'/? [25]. The Hamiltonian of this fictitious
two-level system is thus the 2 x 2 matrix

E hik
(h/c* E; — inFd/2>’ @)

where we have added the imaginary term —iil';/2 to the
dimer energy to account for its instability (see also Ap-
pendix A for an approach of the same problem with rate
equations). The two eigenvalues of this matrix are complex,
which expresses the fact that the scattering state A + A is now
also unstable because of its coupling to A3.

The imaginary part of the energy of the A + A pair in the
presence of the coupling « gives the decay rate of this pair,
which reads for I'y > « (Breit-Wigner formula),

N Tylic|?
(E —E /R +T2/4°

“4)

a

from which we deduce the scaling of the total loss rate in the
sample with N, atoms at a given energy E,

N, x —=N,I', o« —n N,E‘L(E — E,), (5)
where £ stands for the Lorentzian function,
_ 1 Al
© 27 X2+ (AT /2)%

We now average the rate (5) over a thermal distribution of
temperature 7 so that the loss rate N, is proportional to

L(x) (6)

[F°dE p(E) E' L(E — Eg) e E/BT

0
f(;roo dE p(E) e E/ksT

, )

with the density of states p(E) o VE for the relative motion
of the A + A pair. The expression (7) is in general a com-
plicated function of E; and I'; (and thus n,). An interesting
limiting case is obtained when the resonance width AT, is
very small compared to kg7, in which case the Lorentzian
function L(E — E;) can be replaced by a Dirac function
8(E — Ey) in (7). In this case, we find that the decay rate
resembles a two-body loss process [11],

N, = —Lon,N,, (8)

with an effective two-body loss parameter L, given by
Lo(Eq, T) o T2 ESH2 g7Ea/kaT )

The experimental procedure involves scanning the value
of E; by ramping the magnetic field at a given temperature
and searching for the maximal loss rate. From the scaling
of Eq. (9), we find that the maximum loss rate occurs for
E; = (L4 1/2)kgT with

L™(T) o< (kpT)* " (10

Assuming the two hypotheses above are valid, i.e., ik K
hTy < kgT, the variation of Lémax) with temperature thus
gives immediate access to the partial wave £ involved in the
resonant loss process. The validity of these hypotheses can be
checked by verifying that N,,/N, scales linearly with n, [see
Eq. (8)].

B. The resonant trimer model

The second model consists of a pure three-body process
[14]. Three particles that do not have resonant pairwise in-
teractions arrive through a three-body open channel Oy, with
the quantum number A associated with the grand angular
momentum, and an incoming energy E close to the energy
E; of an excited trimer state A}, residing in a closed channel

C:
A+A+A= AL (11)

If we neglect atom interactions at long distance, the incoming
channel is purely repulsive, even for A = 0, with the three-
body centrifugal potential V (R) o [A(A 4+ 4) + %] /R?, where
R is the hypergeometric radius [26,27]. The closed channel C
is coupled to other channels Oy that are not directly coupled
to the incoming open channel, thereby determining the decay
rate I'; of the trimer A3. Note that since we do not assume
resonant two-body interactions, the trimer A3 differs from
Efimov trimers. The latter play an important role in broad
Fano-Feshbach resonances and lead to the 1/72 dependence
of the three-body loss rate L3 [1,28].

The analysis of this process follows along the same gen-
eral lines as for the resonant dimer model. We consider a
fictitious box of volume L? ~ 3/n, containing three particles.
The coupling k between the incoming state of energy E and
the resonant trimer state now scales as k o< E*/2 /L3, and the
width I'; of the trimer state A5 induces a nonzero width for the
incoming state A + A + A, given by a formula similar to (4).
We are then led to N, = —nﬁNaE *C(E — E,), where L is the
Lorentzian function similar to (6) with width I, [14,29,30].2
The thermal average of this decay rate involves the three-
particle density of state p(E) o E2 so that we obtain, in the
limit 7I'; < kg™,

N, = —Lsn’N,, (12)

with the scaling L3 oc 773 E}2 ¢~E/kT 'When scanning the

energy of E, by ramping the external magnetic field, the max-

“Note, however, that the scaling in E* has been questioned for
nonzero values of A by [30] for some specific cases.
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imum loss rate scales as
LY™(T) oc (ksT)" ", (13)
and it is obtained for E; = (A + 2) kgT.

Discussion. Although the scaling of the loss rate with tem-
perature is similar in both models of Secs. III A and III B, the
latter is a pure three-body process and therefore cannot pre-
dict two-body dominated features of the type N, /N, o< —n,.
The reverse statement may not be true: References [5,11,23]
indicate that the resonant dimer model can lead to an effec-
tive three-body loss rate N, /N, x —ng in the case where the
excited bound state is long-lived relative to its coupling to the
incoming open channel. Let us also emphasize that the simple
scaling laws (10,13) hold only when /ix < Al'y, < kgT. If
this is not the case, the variation of ng“x) with temperature is
nontrivial.

IV. LOSSES VS DENSITY AND TEMPERATURE

In this section we present our experimental results re-
garding the loss rates in a harmonically trapped '’Dy gas
due to inelastic processes. We first outline our methodology
(Sec. IV A), then investigate the variations of the loss rate with
density at a given temperature (Sec. IV B), and then with tem-
perature at a given atom number (Sec. IV C). We summarize
our results for the whole set of resonances in Sec. IV D.

A. Methodology

We recall that the microscopic nature of the process (two
or three-body loss) of each resonance is unknown, as is the
temperature variation of the associated loss rate [L,(T) or
Ls;(T)]. Therefore, for a gas prepared with a given atom
number N, and temperature 7', we restrict our analysis of the
decay rate to a short time interval At, during which N, and
T vary by less than 20% and 30%, respectively. A linear fit
N,(t) = Ny(1 — Bt) to the decaying atom number over this
interval then allows us to derive the decay rate N, ~ AN, /At
for a density 7i, and a temperature T taken equal to the average
value of these quantities over the time interval A¢. The interval
retained for the fit is indicated by a colored zone in Figs. 3
and 4.

In addition, we recall that the volume of a trapped
gas in a harmonic potential is a function of the tempera-
ture. If interactions play a negligible role, one finds V =
(2V/3ksT /m@?)>/?, where & = (w,w,w,)'/? is the geomet-
ric mean of the trapping frequencies and kg the Boltzmann
constant. In the following, we designate by n, = N,/V the
average density in the trap. For a fixed temperature, the vol-
ume does not vary, and g = —N, /N, scales as B o n); with
y =1 (resp. y = 2) in the case of a two-body (resp. three-
body) dominated loss process (8) [resp. (12)].

B. Examples at fixed T': Two- versus three-body
dominated losses

Here we describe a typical analysis procedure of one
of the resonances featured in Fig. 1, specifically, the
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FIG. 3. Atom loss dynamics for varying total atom number N,
at a magnetic field B = 5.130 G. The averaged temperature is con-
stant and equal to 7' & 2.0(1) uK. Panels (a) and (b) show the atom
number and temperature evolution for the case of an initial atom
number N = 2.3 x 10°. Panels (c) and (d) show the atom number
and temperature evolution for Ny = 1.4 x 10°. (e) Variation of the
initial loss rate, 8 = —N,/N,, with the density 7, &< N,/T>/*. The
solid line is the fitting function B o 77 with y = 0.92(10).

resonance occurring at a magnetic field strength of 5.130G.
As explained in Sec. II, we prepare a sample with an ad-
justable atom number at the desired temperature. The depth
of the trap is sufficient to render losses due to evaporation
insignificant.> We jump the magnetic field from its initial
value (B = 1.660 G) to a magnetic field close to the target loss
feature (typically 100200 mG away from it). We then wait for
500 ms and perform a second quench towards the magnetic
field for which the losses are maximum. This sequence allows
a better resolution of the initial loss dynamics.

We show in Figs. 3(a) and 3(c) two decay curves N,(t)
for two initial atom numbers, hence two atomic densities
n,. Figures 3(b) and 3(d) show the corresponding changes
in temperature. A linear fit of the short-time variation of
N, provides the decay rate § introduced in Sec. IV A. We
summarize our results for 8 as a function of n, in Fig. 3(e).
A fit B(n,) = Binl, gives y = 0.92(10), an indication of a
two-body dominated loss feature for this particular resonance.

To cross-validate our methodology, we have performed a
similar loss measurement for a thermal gas at B = 1.660 G,
i.e., away from any loss resonance. We measure y = 2.3(4),
which is consistent with a three-body loss process, as expected

3We have independently estimated the lifetime of our vacuum sys-
temtobe T 2> 15s.
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FIG. 4. Atom losses as a function of temperature 7 for a fixed
atom number N, ~ 1.5 x 10°, for the loss feature B = 5.130G.
(a) and (b) Atom number and temperature evolution, respectively, for
a thermal cloud with temperature 7 = 1.1(1) uK. (c) and (d) Atom
number and temperature evolution for 7 = 2.0(1) uK. (¢) Variation
of the initial loss rate, 8 = —N /N, with temperature. The solid line
is the fitting function 8 o T¢, with o = —2.2(3).

for a gas with positive background scattering length. We find,
for a thermal gas, Ly = 1.2(2) x 10740 mﬁ/s.

The same technique allows us to determine the three-
body loss coefficient of a BEC either close to B =0 or
at B=1.660G away from any loss resonance. For that
purpose we evaporate until we produce a quasi-pure BEC
and then adiabatically recompress the trap to a final trap
depth of 2.16 uK, with frequencies equal to {w,, w,, 0.} =
27 x {49, 152, 115} Hz. We find L3 = 2.9(3) x 107*! m?/s
and L3 = 5.0(8) x 10~*! m?3/s for the background three-body
loss rate, B = 1.660 G, and the near-zero field B < 50 mG,
respectively. The values of L3 are extracted for a BEC fraction
going from near unity to 0.5. Compared to a thermal sample,
we find a reduction of L3 in qualitative agreement with the
predicted 3! reduction for a pure BEC [31].

C. Example at fixed N,: T-dependent loss rate

We now turn to the temperature dependence of the atom
loss rate, still taking the resonance at B = 5.130G as an
example. Following the procedure outlined in Secs. II and
IV B, we prepare thermal samples at different temperatures
but with the same atom number. We plot in Fig. 4(a) [resp.
Fig. 4(c)] the atom number decay for the initial temperature
T =0.9uK [resp. T = 1.8 uK]. We show in Figs. 4(b) and
4(d) the corresponding time evolution of the temperature.

As explained in Sec. IV A, we restrict our analysis to the
short time evolution and extract the rate 8 = —N,,/N, from
a linear fit to the measured decay of N,(¢). The values of 8

(c) (d)
o I
= < 30 .
T ° of t = 0 + ¢
S 10 o }
== 3 | —qft §H i
SIS 0 2 4 6 0 2 4 6

B(G) B(G)

FIG. 5. Summary of density and temperature dependence for
11 loss features between 0 and 6 G. (a) Determination of two- vs
three-body dominated loss features. A value of y compatible with
1 indicates a two-body dominated loss feature, while a value of
y = 2 indicates a three-body dominated feature. These values are
represented by dashed horizontal lines. Loss features characterized
by s(d)-wave two-body dominated loss processes correspond to
blue circles (squares), while red circles correspond to three-body
processes. The green circles indicate loss features in a transitional
regime where it is not possible to determine a two- or three-body
loss rate. (b) Temperature dependence of the loss rate S(7T') ox T“.
(c) Strength of the different loss features. From the results shown
in (a) and (b) we derive the two-body and three-body loss rates for
a nominal density of 7 = 1 x 102 m~ and temperature T = 1 uK.
(d) Temperature dependence of the two- and three-body loss co-
efficients y, =« + 3/2 (blue) and x3; = « + 3 (red). The 11 loss
features studied in this article are marked by vertical bars.

for different temperatures are shown in Fig. 4(e). We fit the
relation B(T) = B,T“ to the temperature dependence of the
loss rate, with @« = —2.2(3). From the analysis of Sec. IV B,
we know that this particular resonance is likely to be due to a
two-body loss decay N, = —L,n,N,, and hence B o« L,/V for
a given N,. Recalling that the volume in a harmonic trap scales
asV o T3/, we infer that L,(T) o« T with x» = o +3/2 &~
—0.7(3) for this particular resonance.

D. Analysis of all loss resonances

The same procedure regarding the dependence with density
and temperature is applied to the ten loss features observed
in Fig. 1 (top panel) plus the loss feature at 1.755 G, which
emerges for hotter clouds (see Fig. 1, bottom panel). These 11
loss features are identified by the red vertical lines in Fig. 1.
We report in Fig. 5(a) the exponent y for each loss feature
(with B = —N,/N, o« n}; at a fixed averaged temperature T)
and in Fig. 5(b) the exponent « (with 8 o« T* at a fixed initial
Ny).

From the results shown in Fig. 5(a), we identify seven
loss features for which the measured value of y is compat-
ible, within error bars, with a two-body dominated process,
ie., y = 1. We identify a single loss feature for which y is
compatible, within error bars, with a three-body dominated
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process, i.e., y = 2. We also identify three loss features that
are not clearly described by either two- or three-body pro-
cesses. This behavior can emerge, for example, in the case
of the two-step process discussed in Sec. IIT A when the decay
rate of the dimer I'; is comparable to the rate of the process
(2) producing this dimer. We will not attempt to describe the
temperature dependence of those three lines.

Once the assignment of a two-body or three-body reso-
nance has been made from the variation of 8 with n,, we
determine the temperature dependence of the associated two-
or three-body loss rates, L, o BV or L3 « ,8V2, for a given
N,. Since the volume scales as 73/2, we write the temperature
dependence of the two- and three-body loss rates as L, ox TX2
and L3 o« T*3, where y» = a +3/2 and x3 = o + 3.

In Fig. 5(d) we observe that six out of the seven identified
two-body processes have a rate L, compatible with a 1/T
dependence, as expected for s-wave resonances [see Eq. (10)
for £ = 0]. These resonances are marked with blue circles in
the various panels of Fig. 5.

The only exception is the previously unobserved Fano-
Feshbach resonance at B = 1.755 G, marked as a blue square
in the various panels of Fig. 5. Its rate scales as L, oc T%7.
Although the scaling with temperature is strictly speaking
not compatible with a d-wave resonance for which we would
expect Ly o< T, as observed for chromium [11], we suggest
that the deviation of x, ~ 0.5 from 1 is due to the weakness
of the loss feature. As shown in Fig. 5(c), this resonance is
an order of magnitude weaker than the other resonances, and
therefore our measurements may be contaminated by other
loss processes, such as forced evaporation, which could tend
to weaken the observed temperature dependence.

For the six two-body loss features compatible with an s-
wave resonance (blue circles in Fig. 5), one might expect a
shift of the center of the resonance with temperature, given
by AB = kg AT /54, where S, the differential magnetic mo-
ment between open and closed channels, is a priori unknown.
Given the recent determination of §u ~ 1000 uK/G for the
case of thulium [17], we would expect a magnetic field shift
~mG for our temperature range. This shift is comparable to
our magnetic field stability and thus is difficult to detect on
our platform.*

Finally, for the three-body dominated loss feature, identi-
fied in red in Fig. 5, we report a small positive temperature
dependence. At this stage we cannot conclude whether this
feature is caused by a direct three-body resonance, as de-
scribed in Sec. III B, or whether it corresponds to an effective
three-body decay resulting from a particular parameter set-
ting in a two-step two-body loss process as proposed in
[5,11,21,23].

4We calibrate the magnetic field by transferring a small population
in different Zeeman sublevels with a radio-frequency antenna. Due
to dipolar relaxation, this process leads to losses when the frequency
is resonant with the Zeeman splitting energy o B. We observed a
small drift ~# 1 mG between different days, which may be due to
the stability of our magnetic field or the resolution of the calibration
technique.

(a) (b)
400 % 400
S &o
2000 L ++¢°m° 200 ocons §,7 0%
0 0
260 2.65 270 310 3.14 3.18
(c) (d)
300 ) 300
o ¢
g 200 ppemnd Tsootopsiord  200(ason 000, ossbeis
100 100
0 0
© 384 388 3.92 " 458 4.62  4.66
e
900 ¢ 300 |
g 600 6 200 {
é @ (00009 00%00g | 00 20000 |
0 100
000 50 5.1 U552 556  5.60
B(G) B(G)

FIG. 6. Variation of the scattering length with magnetic field,
in the vicinity of six loss features. Central magnetic field: (a) B =
2.655G, (b) B=3.138G, (c) B=3.881G, (d) B=4.620G, (e)
B =5.130G, and (f) B = 5.561G.

V. BEC EXPANSION NEAR A LOSS FEATURE

Finally, we report a complementary measurement that
allows us to determine the s-wave scattering length if we
suppose that the interactions are of a two-body nature, as it
seems to be the case for at least 7 out of 11 resonances. We
perform a long time-of-flight expansion of a BEC of ®*Dy
and infer the scattering length from its area in the x—y plane
orthogonal to the bias magnetic field pointing along z.
The BEC is created in a trap with angular frequencies
{wy, wy, 0.} =27 x {28, 88, 66} Hz. We then quench the
magnetic field to the desired value and hold the cloud for
20 ms before performing a 30-ms-long time-of-flight. A mag-
netic field gradient ensures that the cloud does not fall due to
gravity.

The scattering length is derived from a mean-field ap-
proach that incorporates dipolar interactions [32]. We write

3RR,\"? 1
X ==,
2 CN

a =~ dasgp, + ( (14)
where ag,p. & 100 ag is the scattering length below which the
BEC is no longer a stable solution in our trap geometry, ay is
the Bohr radius, and C aﬁo.s

We study the variation of the cloud size for different mag-
netic fields and show in Fig. 6 the resonances for which a clear
dilatation is observed. We interpret this variation as a change
in the scattering length using Eq. (14). Of the 11 loss features
studied in this article, only 6 show a clear change in the size of

@* )5/2

wywy

>Within the Thomas-Fermi approximation, C = 154;, (

where an, = % is the harmonic oscillator length. For our trap

frequencies we get C ~ 31.54 um*.
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the BEC. These resonances are also the ones with the highest
loss rate. Since the measurements are performed with a BEC,
we cannot extract negative scattering lengths and report only
positive values of a. We compare our measurements with
those reported in Ref. [33] and find a good agreement for
the scattering length evolution near the B = 5.130 G Fano-
Feshbach resonance.

Regarding the only three-body dominated loss feature at
B = 5.561G [see Fig. 6(f)], we draw the reader’s attention to
the interpretation of a BEC size change due to a variation of
a. Since we do not exclude the existence of a pure three-body
microscopic process for this resonance, a change in BEC size
could also be due to pure three-body interactions and thus
not to a change in scattering length. For harmonic traps this
implies a change in the total area oc N'/? (instead of N?/°
for two-body interactions). We have tested this hypothesis
by varying the number of atoms in the BEC. Although our
results are consistent with N%/° scaling, we cannot exclude the
N'/2 result within our experimental uncertainties. It would be
particularly interesting to study this resonance in a flat-bottom
trap, where the size of the BEC area after time-of-flight will
be proportional to N* for three-body interactions instead of
N? for two-body interactions, leading to an easier lift of ambi-
guity. However, this study is beyond the scope of this article.

VI. CONCLUSION

We have characterized 11 low-field resonant loss features
of an ultracold thermal sample of dysprosium. From the analy-
sis of their density and temperature dependence, we conclude
that most loss features result from a resonant s-wave pairwise
interaction. We also measured the corresponding change in
scattering length through the expansion of a BEC. Addition-
ally, we measured the three-body loss rate of a quasi-pure
BEC near zero magnetic field, which provides valuable in-
formation for future studies aimed at exploiting spin-orbit
coupling in a dense condensate of dysprosium atoms [20].

Furthermore, we have evidenced (i) a possible two-body
d-wave resonance, unobserved so far, highlighting the com-
plex nature of interactions in strongly dipolar gases, and (ii)
a loss resonance that may be controlled by pure three-body
interactions. To go further in our quantitative description of
three-body resonances, whether driven by two-body or three-
body processes, we will need to better disentangle the roles
of temperature and density, which should be possible with
the preparation of a homogeneous sample of dysprosium in
a boxlike trap [34].
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APPENDIX A: TWO-VERSUS THREE-BODY LOSS RATES
TRIGGERED BY THREE-BODY RECOMBINATION
PROCESSES

We consider the three-body recombination process at the
core of our loss features. In particular, we consider the fol-
lowing consecutive pairwise reactions:

r
(HA+A fA;

QDAL +A S Ay + A

Dismissing the coherence of process (1), we can express the
“free” atomic and dimer dynamics by the coupled equations

fy = —2Tn? 4 20'n¥ — Tynn;

nh =Tn —T'n} — Tangnj, (A1)

where I' is the volume rate to form an excited dimer from
two free atoms, I’ is the reverse process rate, and I, is the
volume loss rate to deeply bound dimers. The atomic density
in the box is given by n = n, + 2n;, and for 'y = 0 there
are no losses. We emphasize that we consider three-body
recombination processes as the only loss mechanism.

These equations can be further simplified by introducing
the volume Vo = I'/T” and the renormalization time ty =
1/T. We introduce the dimensionless quantities A = Vyn, and
D = Von}; such that the rate equations can be expressed in a
dimensionless form,

A = —2A% 42D — bAD, (A2)

D =A% —D — bAD, (A3)

where b = T';/T.

Assuming that the population of excited dimers is zero at
t = 0, we find numerically two different behaviors:

(1) For b > 1, the population in the excited dimers con-
verges to D(t) =~ A(t)/b, as long as bA > 2. Since b > 1 we
conclude that D(t) < A(t) and thus the total atomic density,
N = A + 2D, evolves as

N~ A~ —3A% ~ —3N2. (A4)

Although three-body losses are still the underlying process
causing losses, the feature has a characteristic two-body loss
behavior, i.e., N o« —N?2, leading to 1/N(t) o Lyt, as shown
in Fig. 7(a).

(2) For b« 1, and A <« 1, the population in excited
dimers quickly locks to the atomic density squared, such
that D(r) = A(r)?. Since D(t) < A(¢) for all times, we then

recover the time evolution for the total atomic density,
N =A 42D ~ —3bA> ~ —3bN?, (A5)

which has a characteristic three-body loss behavior, i.e., N
—N3, leading to 1/N?(t) o Lst [see Fig. 7(b)].

APPENDIX B: DETAILS OF THE EXPERIMENTAL SETUP
1. Production of a 1Dy MOT

We load 3x10® atoms in a magneto-optical trap (MOT),
with a loading rate of 1 x 10%atoms/s, composed of five
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FIG. 7. (a) 1/N(¢) (blue) and 1/N?(¢) (red) as a function of time
t/ty for A(0) = 1 and b = 100. (b) 1/N(¢) (blue) and 1/N?(t) (red)
as a function of time ¢ /7, for A(0) = 0.01 and b = 0.01.

red-detuned beams (four in the x—y plane and one vertical),
with detuning Apor = —43 X [Meq, With respect to the in-
tercombination line with vacuum wavelength A = 626.08 nm
(red transition) and linewidth I'req ~ 27 x 136 kHz [35]. The
MOT is produced with a saturation parameter so = Iy/lsy. =
185 (the vertical beam has a tenth of this intensity) and a
magnetic field gradient 9,B, = 1.72 G/cm. The cloud lies a
few millimeters below the zero field, which makes it fully
polarized in the Zeeman sublevel of lowest energy |J, m; =
—J). The MOT capture velocity, determined by the linewidth
of the transition and the MOT beam waist, wyor = 15 mm,
is equal to v, & 7m/s. We maximize the atomic flux reach-
ing the main science chamber using an optical collimation.
It is achieved through the cooling provided by a transverse
molasses consisting of two retroreflected laser beams with
orthogonal propagation with respect to the oven’s exit axis.
The molasses laser beams are red detuned, with detuning
Acon. = —0.4 x I'pe, With respect to the optical transition
with vacuum wavelength of 421.29 nm (blue transition) and
linewidth T'pe &~ 2 x 32 MHz. A saturation parameter of
so = 4 is used, leading to a fivefold increase in the loading
rate of the MOT. The longitudinal velocity of the atomic flux
exiting the oven is reduced from v, & 400m/s to ~7m/s
in a 500-mm Zeeman slower in a spin-flip configuration,
with a laser beam detuning of Azeeman = —14 X Ippe and
a saturation parameter of sy) &~ 1. The blue and red laser
beams are frequency stabilized through modulation frequency
transfer using either the atomic flux at the output of the
oven (for the blue transition) or an iodine cell (for the red
transition) [36].

Transverse
cooling

beam x‘/Ly

Zeeman slower

FIG. 8. Schematic representation of the experimental setup. The
atoms are optically collimated at the output of the oven (transverse
cooling) and then decelerated in a spin-flip Zeeman slower. The
atoms are then confined in a magneto-optical trap (MOT) that com-
prises five laser beams and a magnetic field gradient. We compress
the MOT and capture approximately 4 x 10° atoms into a crossed
dipole trap (CDT) made up of two beams (ODT1 and ODT2) with a
relative angle of 144°.

2. Compressed MOT and transfer into a crossed dipole trap

To further cool the atomic cloud, we reduce the satura-
tion parameter of the red lasers to so = 5.7, decrease the
detuning to Acvor = —21 X Iteq, and increase the gradient to
0.B, = 4.31 G/cm, which stabilizes the position of the cloud
against small fluctuations in the laser frequency and magnetic
field. Although it leads to a compressed MOT (cMOT) with a
temperature 7 &~ 15 uK, higher than the Doppler temperature,
it ensures a stable overlap with the crossed dipole trap (CDT).
The ¢cMOT has a typical size at 1/,/e of 400 um and atom
number ~1 x 108.

The CDT is composed of two single-mode laser beams at
a wavelength of 1064 nm, with a relative angle of 144° in
the x—y plane, and a frequency difference of 180 MHz, which
ensures that residual interference patterns are averaged out.
As we reduce the detuning of the MOT beams, light-induced
loss processes are enhanced, resulting in a short lifetime of
the cMOT (~200 ms). The loading of the cMOT into the CDT
is therefore fast, ~50 ms, which allows us to load 4 x 10°
atoms at a temperature of 60 uK. The two beams that make
up the CDT, hereafter identified as ODT1 and ODT2 (see
Fig. 8), have waists wopr; ~ 30 um and wopr, &~ 20 um. To
optimize the loading, we enlarge the waist of ODT1 in the x—y
plane by a factor of 2 with an acousto-optic deflector [37]. The
two optical dipole trap beams have maximum powers of 30 W
(ODT1) and 5 W (ODT?2), and the forced evaporative cooling
is performed in the presence of a bias field aligned along
the z direction and with magnitude B, = 1.660 G. The maxi-
mum loading efficiency is achieved for horizontally polarized
dipole beams. This is because the difference in polarizability
between the ground and excited states of the intercombination
line, Aot = Ofexe. — Clground, 1S Negative at 1064 nm for a linear
horizontal polarization [38]. This guarantees that the detuning
of the cMOT cooling beam remains negative. After loading
the CDT and prior to evaporative cooling, we rotate the polar-
ization of ODT2 by 90°.
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FIG. 9. Schematic representation of the experimental sequence
used to produce a degenerate gas of dysprosium. (1) MOT loading
stage. (2) Compressed MOT. (3) First stage of evaporative cooling.
(4) Second stage of evaporative cooling. (5) Plain evaporation in the
CDT to purify the quantum gas. (ToF) Time-of-flight expansion and
absorption imaging acquisition.

3. Crossed dipole trap evaporative cooling

The first evaporation stage lasts for 1 s, during which we
suppress the spatial modulation of ODT1 and reduce its power
so that the two beams forming the crossed dipole trap have
similar trap depths. We focus here on the second stage of
forced evaporative cooling, which lasts for 3.5 s (see Fig. 9).
At the beginning of this evaporation, we switch on a magnetic
field gradient to partially compensate for gravity, which plays
an important role in the optimization of the evaporative cool-
ing [39].

We measure both temperature, atom number, and trap
frequencies at different times during the second evaporative
cooling stage. In Figs. 10(a) and 10(b) we show the evolu-
tion of temperature and atom number as a function of time.
Combined with our measurements of the trap frequencies, we
compute the evolution of the averaged phase-space density
D = n,A3, where n, takes into account the averaging over the
inhomogeneous density in the harmonic potential (see main
text). We show in Fig. 10(c) the evolution of D as a function
of N, in log-log scale. From the fit function D o N7, we
determine the evaporative cooling efficiency ¢ ~ 4 at the
upper end of typical values in optical dipole traps (2 < 9 < 5)
[39].

4. Examples of expanded clouds in the vicinity of the 5.130-G
Feshbach resonance

We here present some examples for the BEC expan-
sion near the By = 5.130 G Feshbach resonance discussed in
Fig. 6(e). We deduce the change in scattering length from the
cloud dilatation in the x—y plane after a 30-ms time-of-flight.
As shown in Fig. 11(a), the expansion of the BEC far from
the resonance, for instance, B = 4.886 G (yellow dot), leads to
radii of 30—45 um, along the two orthogonal axes of the optical
dipole trap in the x—y plane. As the scattering length increases,
the cloud expands significantly more, as shown in Fig. 11(b)
for a magnetic field of B = 5.109 G. Interestingly, for B > By,
where the scattering length passes from large negative values

(a) b (b) 1rs
—~ 3 b © ° o
M ° = °
= ! ° = 0.3 .
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0.1 b ° o 01 %5
0 1 2 3 ' 1 2 3
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FIG. 10. Efficiency of evaporative cooling. (a) Temperature as a
function of time in log-linear scale. (b) Atom number as a function
of time in log-linear scale. (c) Phase-space density (D) as a function
of atom number, N,, in log-log scale. We fit our data with D
N7 and retrieve ¥ ~ 4.0. The gray region indicates the points for
which a non-negligible condensed fraction is already present and the
estimation of D is no longer quantitative. The horizontal dashed line
corresponds to the noninteracting prediction for the emergence of a
BEC at D ~ 2.612.

to its background value and thus crosses zero, we observe a
cloud that does not expand even after a long time-of-flight [see
Fig. 11(c)], which is a hallmark of quantum droplets [40]. Our
procedure for determining the scattering length cannot be used
in this case, as one would need to incorporate beyond-mean-
field corrections to explain the stability of the cloud.

T T T
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FIG. 11. Scattering length in the vicinity of the By = 5.130G
resonance (vertical red line). Expansion of a BEC in the x—y plane
after 30-ms time-of-flight, (a) far from the Feshbach resonance and
near the resonance with B < By (b) or B > B (c). We interpret the
strong expansion of the BEC for B < B resulting from a large scat-
tering length, while for B > B, we observe a dense cloud compatible
with the formation of quantum droplets.
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