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Supplementary Material

I. BRIEF REMINDER OF THE HARPER-HOFSTADTER BAND STRUCTURE:
EDGE STATES AND CHERN NUMBERS

In this work, we illustrate the cold-atom elevator scheme using the paradigmatic Harper-Hofstadter (HH) model,
which describes hopping of particles on a two-dimensional square lattice with a homogenous magnetic flux � per
plaquette. The HH Hamiltonian can be written in the Landau gauge as
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where the operators âm,n (â†
m,n

) annihilate (create) a particle on the lattice site ` = (m,n), where m and n denote
the site indices along the x and y directions, respectively. The uniform flux per plaquette �=2⇡↵ is defined modulo
2⇡. For a rational flux ↵=p/q, with (p, q) prime numbers, the single-particle spectrum splits into q subbands. When
represented as a function of the flux ↵, these energy bands form a fractal structure known as the Hofstadter butterfly.

The finite (uniform) flux per plaquette � breaks time-reversal symmetry, hence leading to non-trivial topological
properties: the Hofstadter bands are associated with a non-zero (first) Chern number. Considering the flux ↵=1/4
as an example, the HH model exhibits 4 subbands, with the middle two bands touching at singular (Dirac) points
[Fig. S1(a)]. The lowest and the highest bands share the same Chern number C = 1; while the middle degenerate
band is associated with the Chern number C=�2.

Under open boundary conditions, the model hosts chiral edge modes whose energies are located within the bulk
energy gaps; these edge states can be identified in the red spectrum displayed in Fig. S1(b), where a steeper slope
reflects the low density of (edge) states within the bulk gaps. Considering the flux ↵=1/4 (main text), the two bulk
gaps each hosts a single edge mode. The chirality of these two edge modes are opposite: the edge mode located in the
lowest (resp. highest) bulk gap propagates in a clockwise (resp. anti-clockwise) manner; see also Fig. 2(d) and (f) in
the main text, where these two opposite chiral motions are revealed using the elevator scheme.
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FIG. S1. Edge state injection with a trivial reservoir. (a) Energy spectrum as a function of quasimomenta kx and
ky. We set the lattice constant a = 1. The Chern numbers of the separated bands are C = 1,�2, 1, respectively. (b) Energy
spectrum as a function of the state indices. The blue and red dots correspond to the Hamiltonian describing the trivial reservoir
(with chemical potential ✏R = 1.5) and the Hofstadter system, respectively. We consider a trivial reservoir of size 7⇥ 16 which
is coupled to a system of size 16 ⇥ 16 with flux � = ⇡/2 per plaquette. A high wall (one site wide) is placed between the
reservoir and the system [blue lines in (f)], which leaves a door of width d open in the middle. (c) Population of HH eigenstates
⇢j as a function of their energy Ej for di↵erent door width d, at time t = 40. (d) Number of the injected particles in the edge
as a function of the time for di↵erent door width d. Inset: The number of particles in the edge as a function of d at t = 100.
Snapshots of spatial density distribution for (e) d = 16, (f) d = 4. The green dashed line indicates the region used to count
the number of particles at the edge, and the blue bonds represent the high wall. Initially there are N = 10 particles in the
reservoir, and the on-site potential in the reservoir is suddenly lifted to the value ✏R=1.5. Energy and time are in units of J
and ~/J , respectively. The arrows in (e) and (f) are a guide to the eye for the chiral motion.
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II. EDGE-STATE INJECTION

A. Using a trivial reservoir

In the main text, we have shown that chiral edge states can be populated in an energy-selective manner, using
a system-reservoir setting immersed in a uniform magnetic flux. In this Appendix, we show that a trivial reservoir
(i.e. a reservoir without flux) can also be used to inject particles into the edge states of a quantum Hall system.

Similarly to the sketch in Fig. 1(a) in the main text, we couple a system described by the HH model to a reservoir
without magnetic flux. Initially, the reservoir is filled with free fermions, and the system is empty. Suddenly lifting
the reservoir on-site potential ✏R, such that the energy of the particles in the reservoir becomes resonant with an edge
mode of the system [Fig. S1(b)], is found to generate chiral edge currents in the system [Fig. S1(e)]. Even though only
a small fraction of particles are injected into the edge states in this case, we find that applying a high wall between
the reservoir and the system [see blue bonds in Fig. S1(f)], but leaving a small door open in the middle of the wall,
can improve the e�ciency. In Fig. S1(f), we plot the snapshots of density distributions of the time-evolved state using
a small door opening of width d= 4, from which we observe stronger chiral edge currents appearing in the system.
We attribute the better e�ciency of the door-opening configuration to the fact that a wider range of quasi-momenta
is o↵ered by a smaller door width, thus allowing for the population of more edge states in the system; see Fig. S1(c)
where we plot the population of HH eigenstates for di↵erent d.

By monitoring the number of particles Nedge injected in a specific region of the edge [depicted by the dashed lines
in Fig. S1(f)], we find that tuning the door width d manifests as a way of controlling the number of particles injected
into the edge states, as shown in Fig. S1(d). In the inset of (d), we plot Nedge as a function of the door width d at
time t = 100, and the optimal fraction of injected particles is found at a door width of intermediate size.

B. Spectroscopy resolution

In the main text, we show that our edge-state injection scheme can be used as a spectroscopic probe of the
lattice band structure. The resolution of this probe will depend on the band-width of the reservoir (as set by the
tunneling amplitude JR), and on the system-reservoir coupling strength (which we generally set to JRS =JR in our
calculations). To further analyze this resolution aspect, we now study the population of the system’s eigenstates as
one varies the system-reservoir coupling JRS (while keeping JR=1 fixed inside the reservoir); see Fig. S2 displayed
below. These results illustrate how using a weaker coupling (e.g. JRS=0.4) indeed allows for a better resolution of the
populated edge states. Besides, we note that resolving the edge-state branch in the system requires that the reservoir’s
bandwidth should be smaller than the target band-gap in the system (where the edge-state branch is located). In case
the reservoir’s tunneling amplitude JR cannot be reduced to a small value JR⌧J , one can still obtain a satisfactory
energy-resolution of the populated edge states by lowering the filling of the reservoir (i.e. by only filling low-energy
eigenstates in the reservoir; see e.g. Fig. S1).

(a) (b)

FIG. S2. (a) Population of HH eigenstates ⇢j as a function of their energy Ej for di↵erent strength of coupling between system
and reservoir JRS at time t=20; here we fix JR=1 inside the reservoir. (b) Population of HH eigenstates ⇢j as a function of
Ej for di↵erent observation time t at JRS =0.8. Here, we consider N = 19 particles in a reservoir of size 7⇥12 coupled to a
system of size 13⇥12 and with flux �=⇡/2 per plaquette.
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C. From sharp to smooth box traps

Box traps are an important tool for reaching ultra-low entropies in quantum gas microscopes, which requires fine
control of the energy landscape [1]. In order to provide more quantitative numbers, state-of-the-art experiments are
able to control the flatness of the potential down to a level that is on the order of a few tens of Hz, which is typically
about two orders of magnitude lower than the Hubbard on-site interaction energy. This underlines the feasibility of
our proposed scheme. In terms of spatial resolution, high-numerical-aperture imaging systems enable addressing on
the order of 500nm, hence allowing for single-site addressability as recently demonstrated for a short-spacing lattice
with a lattice constant of 383.5nm [99], or as demonstrated in the context of many-body localization [100].

In the main text, we have considered ideal box-type potentials (infinitely abrupt walls) to illustrate the principle of
our proposed method. We have systematically checked that our results do not qualitatively change as one smoothens
the box potentials (e.g. by considering a convolution of the box-trap potentials by a Gaussian). Here, we show how
the dynamics are modified as one smoothens the box traps, based on the edge-state-injection scheme; see Fig. S3
displayed below. While smoothening the box potential leads to a reduction of the edge-mode velocity (in agreement
with previous studies, e.g. [58]), our results convincingly show that the injection of particles from the reservoir into
the system (and hence, the activation of the edge current, in this example) does not rely on having perfectly abrupt
box potentials in our elevator scheme.

In addition to shaping the potential energy landscape, our scheme requires that the relative energy between the
reservoir and the systems should be controlled. This can either be achieved with a digital micromirror device (DMD),
which allows for refresh rates that are large compared to the typical time scales in cold-atom experiments, or by
using two independent light sources, such that the potential of the reservoir can simply be adjusted by changing the
intensity of one of the two laser sources.

(a) (b)

(c) (d)

FIG. S3. (a) On-site potentials ✏(x) as a function of the horizontal lattice indices x. Motivated by the Munich experiment [43],
we use an error function to describe the sharpness of the boundary between the system and the reservoir. Namely, the on-site

potentials for each row takes the following form, ✏(x) = ✏Rp
⇡

R �s(x�x0�1/2)

0
e�t

2
dt+ ✏R

2 , where the parameter s determines the

sharpness. Dashed lines are a guide to the eye. Snapshots of spatial density distribution at time t = 20 for (b) s = 5, (c)
s = 0.4 and (d) s = 0.2.

III. CHERN INSULATOR PREPARATION USING THE INJECTION SCHEME

Here, we investigate the possibility of preparing a CI based on injecting particles from a reservoir into an empty
system. As an example, we partition a large box of size 12 ⇥ 12 into a sub-box of size 8 ⇥ 8 at the center (the
“system”) and we define the rest as a trivial reservoir (without magnetic flux). The middle sub-box is our target
system, described by the HH model with flux � = ⇡/2 per plaquette. We first analyze the ground-state properties
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of such a system-reservoir setup. Figure S4(c) shows the bulk density nB as a function of the reservoir potential ✏R.
The incompressible nature of the CI ground state manifests as a plateau in the bulk density. Its topological nature
can be confirmed from the local Středa’s marker shown by the red dots in Fig. S4(c), which forms a plateau around
1 in the region with bulk density saturation, which is in agreement with the Chern number C = 1 of the occupied
lowest band.

(a) (b) (c)

(d) (e) (f)
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FIG. S4. Preparing a Chern insulator based on injection. (a) Energy spectra of the entire setup as a function of ✏R.
The red line indicates the Fermi level. Considering a box of size 12⇥12 with a target system being a8⇥8 sub-box at the center,
the Fermi level corresponds to the 80th eigenvalue. (b) Energy gap (di↵erence between the 80th and 81st eigenvalues) for
JR=0.15. The minimal energy splitting is found to be �EM =0.00033. Inset: the minimal energy splitting �EM as a function
of the system length Lsys; here, we consider square boxes of increasing size L ⇥ L, and keep the ratio L/Lsys ' 1.6 constant.
(c) The bulk density and the local Středa marker as a function of ✏R. The bulk density is evaluated within the central 4⇥4
sites. The shadow indicates the regime of Chern insulator ground states in the system. (d) The bulk density as a function of
✏R for di↵erent ⌧ . The black dashed line is the ground state density shown in (c), which represents the adiabatic limit. Here we
linearly ramp up ✏R from �4 until 0 within time ⌧ , with the initial state being a fully filled trivial reservoir. (e) The population
of the eigenstates of the Hofstadter model. We ramp up ✏R from �4 until �1.76 by using a saturation function with time ⌧ .
(f) The spatial density distribution of a typical isolated bulk state with index j = 3.

Based on this ground-state property, one can envisage to adiabatically prepare a CI by slowly ramping up the
reservoir potential ✏R. In our setup, such an adiabatic limit will be determined by the energy gap �E just above the
Fermi level. A typical avoided-crossing is shown in the inset of Fig. S4(a), and the energy gap �E as a function of
✏R is plotted in Fig. S4(b). We find that, in order to build up a CI by ramping up ✏R, one has to pass through an
energy gap as small as �EM =0.00033, which complicates the preparation in practice. The bulk density is plotted in
Fig. S4(d) for di↵erent ramping times ⌧ , upon using a linear ramping up of ✏R. It shows that thousands of tunneling
times (⇠ 1/�E) would be required to approach the adiabatic limit for this system size; see also the scaling shown in
the inset of Fig. S4(b).

As regards the preparation of a large CI through particle injection, another di�culty concerns the presence of isolated
eigenstates deep in the bulk of the system. Considering an improved ramp (based on a saturation function), we obtain
the eigenstate populations ⇢j displayed in Fig. S4(e). Here we identify some dips in the eigenstate populations: those
dips correspond to eigenstates that are located deep in the bulk, and which are essentially isolated from the reservoir.
The spatial density distribution of such a typical isolated eigenstate is shown in Fig. S4(f), with the red box indicating
the boundary between the target system and the reservoir.

The existence of eigenstates located deep in the bulk, which are essentially decoupled from the reservoir, complicate
the perfect filling of the target topological band. This issue can be solved by improving the system-reservoir coupling
(e.g. by increasing the system-reservoir interface or considering a double-layer configuration), or by considering systems
with (strong) interactions; see main text and Section IV below.
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IV. FRACTIONAL CHERN INSULATOR PREPARATION USING THE INJECTION SCHEME

A. Using a linear ramp

Despite the di�culties mentioned above, injecting particles into an empty system can still be used to prepare a
strongly-correlated FCI state, as demonstrated in Fig. 3 in the main text. The reasons are twofold. First, considering
a small FCI droplet, the many-body gap across the injection process can potentially remain (reasonably) large due
to finite size e↵ects. Second, the strong interactions potentially prevent the isolation of bulk states, as previously
illustrated in Figs. S4(e)-(f). As a further demonstration, here we show that a linear ramp of ✏R can also be used to
prepare a small FCI droplet.

(a) (b) (c)

(d) (e) (f)
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Prepared state, t=200
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FIG. S5. Preparing a fractional Chern insulator by using a linear ramp. The spatial density distribution of (a) the
initial state at ✏R=�3, (b) the target state at ✏R=�2 and (c) the prepared state at time t = ⌧ = 200. (d) The bulk density as
a function of ✏R for di↵erent ⌧ . The black dashed line corresponds to the adiabatic limit. (e) The local Středa marker Cstr(t)
as a function of ✏R(t) for di↵erent ⌧ . (f) The final Středa marker as a function of ⌧ . Inset: linear fit of the density versus flux
at ⌧ = 180, which gives Cstr ⇡ 0.59. Here, we consider N = 12 hard-core bosons, and the system of size 4⇥ 4 is coupled with
two reservoirs with JR = 0.15, each of which has size 4⇥ 4.The error bars denote the standard error of a regression slope.

We start from a trivial state with 6 hard-core bosons in each reservoir, as shown in Fig. S5(a), leaving the system
empty. After linearly ramping up the reservoir potential ✏R(t) from �3 until �2 within a duration ⌧ , we track the
bulk density, as evaluated within the central 2 ⇥ 2 sites, as a function of ✏R(t); see Fig. S5(d). Using numerical
simulations based on density matrix renormalization group (DMRG) methods [85–89], one observes that the bulk
density approaches the adiabatic-limit prediction for a su�ciently long ramping time. The sudden increase of the
bulk density indicates a transition. As further confirmed by the local Středa marker in Fig. S5(e), the obvious dip
(breakdown) of Cstr indicates a change in the topological properties. By using su�ciently long ramping times, Cstr

gets close to the expected value 1/2. The final Středa marker as function of total ramping time is plotted in Fig. S5(f),
with the inset showing that a ramping time ⌧ = 180 leads to the marker’s value Cstr ⇡ 0.59.

B. Finite size e↵ects

After demonstrating the validity of our injection scheme for the preparation of a small FCI, we now analyze how
the e�ciency of this scheme scales with the size of the reservoir, as well as with the size of the target system. Focusing
on the sub-box configuration introduced in Fig.3(a) of the main text, we consider a target system of size LS ⇥ LS

coupled with two identical reservoirs of size LR⇥LS , where LS and LR denote the lengths of the system and reservoir,
respectively.

We first investigate the e↵ects of the reservoir length LR by fixing LS=4 and the total particle number N=12. We
calculate the many-body gap �E as a function of the reservoir energy ✏R, within the range �3  ✏R  �2, where a
transition is known to occur (see Fig. 3 in the main text). From this, we extract the minimal many-body gap �EM ,
which sets the time-scale for adiabatic state preparation. The resulting quantity �EM is plotted as a function of
LR in Fig. S6(a). We find that for LR � 3, the minimal gap �EM linearly decreases with LR. Besides, by fixing
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FIG. S6. Finite size e↵ects in the FCI-reservoir setup. (a) The minimum gap �EM as a function of the length of each
reservoir LR for a fixed total number of particles N = 12. Inset: The many body gap �E as a function of ✏R for LR=3 (blue)
and 4 (orange). (b) The minimum gap �EM as a function of particle number N for a fixed LR = 4. Inset: �E as a function
of ✏R for N=4 (blue) and 12 (orange). In (a,b) we fix the system length LS = 4. (c) The minimum gap �EM as a function
of the system length LS for fixed LR = 4, N = 12. Inset: �E as a function of ✏R for LS=4 (blue) and 5 (orange). (d) The
bulk density nB as a function of LS at ✏R = �2 for LR = 4, N = 12. Inset: nB as a function of ✏R for LS = 4 (blue) and
LS = 8 (orange). The dotted line indicates the expected n = 1/8 in the thermodynamic limit. The bulk density is averaged
over a disk of radius r = 1 at the center of the system. In (a-d), we choose the width of the whole setup to be W = LS and
use JR = 0.15,↵ = 1/4. The dashed lines are the guide to the eye.

LS=LR=4, we find a non-linear increase of �EM as a function of the total particle number N ; see Fig. S6(b). Since
the value of the minimal gap �EM determines the time scale for a possible adiabatic state preparation, the results
presented here indicate that it is favorable to consider a reservoir of small size with many particles.

We now analyze how the size of the system LS influences the e�ciency of the scheme, by fixing the reservoir length
LR=4 and the particle number N=12. As shown in Fig. S6(c), the minimal gap decreases with LS , which signals the
potential di�culty of preparing an FCI in a substantially larger lattice system. This limitation could be circumvent
by optimizing the reservoirs (see above), or possibly, by combining the injection scheme with the cleaning method
described in the main text. Another route for improvement could be o↵ered by a double layered system-reservoir
configuration; in practice, this could also be realized using two di↵erent internal states of an atom for the system and
reservoir, respectively.

Last but not least, we analyze the (ideal) particle density expected within the bulk of the system nB as a function
of the system size LS , for a fixed reservoir energy ✏R=�2; see Fig. S6(d). It is interesting to note that the particle
density nB already approaches its thermodynamic-limit value nB = ⌫↵ = 1/8 (expected for a ⌫=1/2 Laughlin state)
for a system size LS & 8. Specifically, we find nB ' 0.127 and nB ' 0.124 for LS=8 and LS=10, respectively.

V. STATE PREPARATION VIA REPEATED CLEANING

A. Rabi cycles

The aim of this Appendix is to estimate optimal parameters for the vacuum-cleaning scheme, by analyzing a
simplified few-level model.

In Fig. 4(a) of the main text, we presented a sketch of a simplified 3-level toy model for our system-reservoir
setup. Our aim is to gain more intuition on our repeated cleaning protocol by analyzing the Rabi oscillations that
occur between these levels upon coupling them. To be specific, we introduce the Level-0, Level-1, and Level-R to
denote our (target) lowest Chern band, the first excited band and the reservoir band, respectively. The corresponding
characteristic energies are represented by E0, E1 and ✏R in Fig. 4(a). Level-0 and Level-1 have the same coupling
strength JR with Level-R.

Starting from the situation where both the lowest and the excited bands are fully occupied, we aim to activate a
coupling that keeps the lowest band occupation essentially una↵ected, while cleaning o↵ the population in the excited
bands as much as possible. Specifically, in terms of the 3-level toy model, we analyze the occupation in Level-0 when
the transition from Level-1 to Level-R is maximal. Here, we treat the 3-level toy model as two independent two-level
systems: one describing the coupling of the reservoir to Level-0 and the other describing the coupling of the reservoir
to Level-1.

In a two-level quantum system, it is well-known that the Rabi formula describes the transition from one level to
the other. Starting from a state initially occupying the first level (denoted by a), the transition probability to the
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FIG. S7. Rabi oscillations and quench dynamics. (a) The maximal transition PMax
1R , (b) the transition left in Level-0

1 � P0R at t = t⇤, and the characteristic population P of the simplified 3-level toy model. (d) The excited band transition
PHH

1R , (e) the remaining lowest band population 1 � PHH

0R , and the characteristic population PHH of the quench dynamics of
our system-reservoir configuration at t = 100.

second level (denoted by b) reads

Pab(t) =
�
2

�2 + (Ea � Eb)2/4
sin2

 r
(Ea � Eb)2

4
+ �2t

!
, (S2)

where Ea, Eb represent the level energies and � is the strength of coupling between these two levels.
We first analyze the transition from Level-1 to Level-R, and we establish its optimal regime by finding the maximal

value P
Max

1R
= P1R(t⇤) using Eq. S2; the time t

⇤ will denote the optimal duration of the coupling. We plot PMax

1R
for

di↵erent values of ✏R, JR in Fig S7(a). When ✏R becomes resonant with E1 ' �0.6, which is taken as the mean value
of the excited Hofstadter band, the transition probability P1R can take a value as large as 1. In order to study the
remaining population in the Level-0 when P1R is maximal, we plot 1� P0R at time t = t

⇤ in Fig S7(b).
Now, to identify an optimal regime for our control parameters, we define a figure of merit P as

P = 1� P0R + P1R. (S3)

In the ideal case where the population in Level-1 is completely removed (P1R = 1) while Level-0 remains perfectly
una↵ected (P0R = 0), one has the maximal value P = 2; vice versa one has the minimal value P = 0. As shown in
Fig. S7(c), it is preferable to set ✏R close to resonance with the excited band E1 and to use a small coupling strength
JR, in order to empty the Level-1 while protecting the Level-0.

To make a further step towards our cleaning protocol, we now check the above-mentioned optimal parameter regime
for a quench dynamics of our system-reservoir setup. Considering an initial state with 1/2-filling per site within the HH
system (the central sub-box), we investigate the quench dynamics by suddenly setting ✏R to a given value. Similarly,
we now define the figure of merit PHH for our HH system as,

PHH = 1� P
HH

0R
+ P

HH

1R
, (S4)

where we can express the possibility of transition from band i to the reservoir in terms of the eigenstate populations
⇢j as

P
HH

iR
=

NiX

j=1

(1� ⇢j)/Ni, (S5)

with i = 0, 1 and Ni being the number of bulk states belonging to band i. By plotting the figure of merit PHH for
di↵erent values of JR, ✏R in Fig. S7(f), one identifies an optimal parameter regime, where ✏R is close to the mean
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FIG. S8. Preparing a Chern insulator based on cleaning. (a) The repeated ramping protocol for ✏R according to
a saturation function. The red dashed line is the guide to the eye. (b) Population in HH eigenstates for di↵erent ncyc with
⌧ =60 per cycle. (c) The local Středa marker of the evolved state with ncyc =10, ⌧ =60 as a function of lattice indices along
the middle row. Inset: the corresponding spatial density distribution of the evolved state. (d) Eigenstates population ⇢j as a
function of state index j for the same total preparation time ttot=500. The blue dots represent our repeated cleaning protocol
with a duration ⌧ = 50 per cycle; the orange squares corresponds to a single cleaning process (thus ⌧ = 500), and the green
triangles are the results of using a static reservoir with ✏R '�1.1 (that is just below the excited band). (e) The local marker
Cstr as a function of the total preparation time ttot. In the case of repeated cleaning, we use a duration ⌧= ttot/Ncyc per cycle.
The local marker is averaged over a disk at the center with a radius of r=3. The error bars denote the standard error of a
regression slope. (f) The typical time t⇤tot as a function of the system length LS for di↵erent total cycle number Ncyc. During
the scaling, we consider square boxes and keep the length ratio between the whole setup and the system as L/LS ' 1.6. For
(b-e), we partition a lattice of size 20⇥20 into a target 12⇥12 system (central box) and a surrounding reservoir with particle
number N=72. We set a flux �=⇡/2 in the system and �=0 in the reservoir, and use JR=0.15, ⇠=3.

energy value E1 of the excited band and where the coupling JR is relatively weak. In contrast, when ✏R is set close
to the mean energy of the lowest band E0 ' �2.7, a small PHH is found due to a heavy depletion of the lowest band.
When ✏R is set to a very large value (o↵ resonance), no transition takes place between the system and the reservoir,
and thus PHH saturates to 1. This analysis shows a qualitative agreement with the simplified Rabi model [Fig. S7(c)].

B. Dynamical cleaning scheme and scaling

Despite the identification of an optimal parameter regime (see above), a simple quench dynamics does not lead
to a satisfactory preparation of the CI, i.e. a complete depletion of the excited bands while leaving the lowest band
perfectly filled. This is essentially due to the finite dispersion of the HH bands. To solve this issue, we consider tuning
✏R in a time-dependent fashion, as we now explain.

We choose to dynamically tune the reservoir potential according to a saturation function,

✏R(t) = ✏
i

R
� (✏i

R
� ✏

f

R
)t/(

p
c⌧2 + t2), (S6)

with the initial value ✏
i

R
= 4, a constant parameter c = 0.02 and the total ramping time ⌧ . As shown in Fig. S8(a),

after reaching the final value ✏
f

R
, we quickly lift ✏R to a high value. Since the system is now almost completely

decoupled from the reservoir, one can easily remove the particles from the reservoir. The ability of preparing such an
empty reservoir makes it possible to have several cycles. To increase the e�ciency, one can design the final value of
✏
f

R
for each cycle ncyc as

✏
f

R
(ncyc) = ✏

f

R
(1) + JR⇠

ncyc � 1

Ncyc � 1
, (S7)
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with ncyc = 1, · · · , Ncyc and Ncyc is the total cycle number. The coe�cient ⇠ controls the final value of ✏R. For the

very first cycle, we take ✏
f

R
(1) = �1.1 which is located right below the excited band.

Considering a many-body state at 1/2-filling as our initial state, we now apply our repeated cleaning protocol to
prepare a CI in the system: we aim at removing the higher band populations but leaving the lowest Chern band
almost perfectly filled. As shown in Fig. S8(b), we find an e�cient depletion of the excited bands with the increase of
the cycle number. During the ramp, the bulk states of the lowest band remain almost perfectly filled. This already
points towards the realization of a CI state in the system. To further confirm its topological nature, we plot the local
Středa marker (averaged over the surrounding 4 sites) for ncyc = 10 with ⌧ = 60 per cycle in Fig. S8(c), which shows
a uniform bulk with Cstr ⇡ 1.

To demonstrate the advantages of using repeated cycles, we now compare the cleaning e�ciency for three di↵erent
situations: (i) an evaporative-type method using a static reservoir; (ii) a single but very long cleaning process (i.e. a
“slowly-falling”elevator); (iii) our repeated cleaning scheme (“vacuum cleaner”). The results are shown in Fig. S8(d):
Using a static reservoir only allows to get rid of a limited portion of excitations; see the green triangles in Fig. S8(d).
In contrast, our repeated-cleaning protocol provides an e�cient way to remove all excitations; see blue dots in Fig.
S8(d). Importantly, increasing the number of cycles is shown to improve the cleaning (state-preparation) performance.
Figure S8(e) further demonstrates the e�ciency of the repeated-cleaning scheme, by showing the obtained Chern
marker as a function of the total cleaning time: a Chern insulator cannot be prepared by using the static-reservoir
scheme over realistic times.

Besides, in order to appreciate the scaling behavior, we plot a typical time t
⇤
tot

corresponding to the uniformity
u=1�

pP
`
(n` � ↵)2/N` above 0.96 in Fig. S8(f), where the uniformity is evaluated in a central disk of radius r=4

containing N` sites. We find that the typical time increases more slowly with the system size as one increases the
total number of cycles.

C. Full preparation protocol using the cleaning scheme

In the main text, we apply our repeated cleaning protocol to a realistic state, which has been prepared starting
from a trivial metal (i.e. starting from a band structure with zero Chern numbers). Here we give more details about
the full ramping protocol.

We start from a trivial metal in the presence of a large staggered potential, �` = [(�1)m + (�1)n]�/2, with (m,n)
being the lattice indices along x and y direction, respectively. We then linearly ramp up the flux in the lattice from 0 to
the value of ⇡/2. Since the system is still within a trivial regime (guaranteed by the large staggered potentials � = 10),
one can ramp up the flux rather quickly. After that, we slowly reduce the staggered potential in order to change the
topological nature of the bands; this transition generates excitations in the higher bands for a realistic quasi-adiabatic
ramp; see the sequence in Fig. S9(a). The density distribution of the evolved state, across the topological phase
transition, is shown in Fig. S9(b)-(d); this latter situation corresponds to the blue dots in the band populations shown
in Fig. 4(b) in the main text.

With this realistic (but highly excited) state in hand, we now apply our repeated cleaning protocol. In order to
progressively address the higher bands at each cycle, we set ✏f

R
(1) = �1.14 and ⇠ = 14 for the final value of ✏f

R
defined

in Eq. (S7); see also Fig. S9(a). In this case, the final value of ✏f
R
in the last cycle reads 0.94, which is located near the

top of the excited band. Note that even though we only consider a linear increase of ✏f
R
at each cycle (for simplicity),

a more e�cient protocol could be designed by fine tuning ✏
f

R
within each cycle, e.g. by means of optimal control or

even machine learning.
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FIG. S9. Full protocol for preparing CI based on cleaning. (a) The full protocol for ramping system parameters.
The flux is linearly increased from 0 to ⇡/2 within ⌧1, and then we decrease the staggered potentials � from 20 to 0 within
⌧2. After that, we apply our cleaning protocol cycle by cycle with ⌧ being the ramping time per cycle. (b-d) The spatial
density distributions at t = 0, ⌧1 and ⌧1 + ⌧2, respectively. Here, we consider the durations ⌧1=100, ⌧2=300 to tune � and �,
respectively.

VI. COMPARING PARTICLE INJECTION AND REPEATED-CLEANING METHODS

In this Section, we compare the two types of state-preparation protocols that are presented in this work: (i) the
particle-injection method (in monolayer but also bilayer configurations), and (ii) the repeated-cleaning protocol.

First of all, we remark that the state-preparation scheme based on the injection of particles (from the reservoirs
to the system) requires a proper coupling between the bulk of the system (where the target state is located) and the
reservoirs. In the limit of a large system (L ! 1), an arbitrarily long time will be required for particles to travel from
the reservoir to the center of the system, as one would deduce from the small spatial overlap between the reservoir
states and the system’s bulk states that are located at the center of the system; see Fig. S4(f). This limitation can
be circumvented by considering a bilayer configuration (i.e. two layers of an optical lattice or two internal states of
an atom), in which one layer represents the system and the other represents the reservoir. We illustrate this strategy
in Figs. S10(b)-(c), which compare the eigenstate populations obtained at the end of the state-preparation process
for the bilayer and monolayer (’surrounding’) configurations, respectively. These results clearly show that the bilayer
configuration does not su↵er from the existence of isolated bulk states in the limit of a large system size.

In any case, we find that the strongest limitation of this injection scheme is related to the adiabatic nature of the
preparation process: increasing the system size leads to a decrease in the many-body gap that needs to be traversed
during the preparation process. This limitation concerns both the monolayer and bilayer configurations, as we now
illustrate in Fig. S10(a): the monolayer configuration (with a surrounding reservoir) and the bilayer configurations
both show a similar scaling of the many-body gap with respect to the system size.

We note that the limitation discussed above, associated with the adiabatic nature of the preparation process, would
challenge any other approach relying on adiabaticity, such as adiabatic-quantum-state preparation starting from a
trivial state and tuning various system parameters.

The repeated-cleaning protocol does not rely on adiabaticity, and in this sense, it is genuinely di↵erent from
adiabatic-quantum-state preparation. To explicitly compare the particle-injection and repeated-cleaning schemes, we
consider a system of size 20⇥20, which is partitioned into a target system of size 12⇥12 and a surrounding reservoir.
According to Fig. S10(d), a total cleaning time ttot⇡500 would be su�cient to prepare a Chern insulator using the
repeated-cleaning scheme. In contrast, applying the injection scheme to the same setting does not lead to a clean
Chern-insulator state over this same preparation time ttot⇡500; see Fig. S10(c).
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FIG. S10. (a) The minimal energy splitting �EM as a function of the system length LS. The blue squares represent a bilayer
setup, and the orange dots describe a monolayer configuration as shown in Fig. S2(b). (b) The population of the eigenstates of
the Hofstadter model in a bilayer setup. The trivial layer with vanishing flux is regarded as a reservoir, and the second layer
described by the Hofstadter model represents the system. Here we consider a target system of size 12⇥12 with flux �=⇡/2 per
plaquette. (c) The population of the eigenstates of the Hofstadter model in monolayer with a surrounding geometry. In both
(b) and (c) we ramp up ✏R from �4.0 until �2.5 by using a saturation function with time t. (d) The HH eigenstate population
by using the repeated-cleaning scheme with a duration ⌧ =50 per cycle and Ncyc =10 cycles in total; ncyc denotes the cycle
index. A total cleaning time of ttot = 500 is found to result in a satisfactory preparation of the Chern-insulator state. Here
the system is made of a 20 ⇥ 20 lattice, partitioned into a target system of size 12 ⇥ 12 and a reservoir. We set the hopping
parameter JR=0.2 within the reservoirs and the connecting interface.
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