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We investigate the real-time buildup of short-range correlations in a nondegenerate ultracold Bose gas near
a narrow Fano-Feshbach resonance. Using rapid optical control, we quench the closed-channel molecular
energy to resonance on sub-microsecond timescales and track the evolution of the two-body contact through
photo-dissociation losses. Repeated pulse sequences enhance sensitivity to early-time two-body losses and reveal
long-lived coherence between atom pairs and molecular states. The observed dynamics are accurately reproduced
by our dynamical two-channel zero-range theory, which explicitly accounts for the resonance’s narrow width
and finite closed-channel decay, establishing a predictive framework for correlation dynamics in quantum gases
near Fano–Feshbach resonances.

Understanding and predicting out-of-equilibrium dynamics
in quantum many-body systems is one of the central challenges
of modern physics. Ultracold gases offer a pristine testbed to
address this challenge, with well-defined initial states, tunable
interactions, and microscopic dynamics that can be resolved
directly in experiment. This unique level of control has en-
abled landmark observations of non-equilibrium phenomena
in quantum gases [1–9].

Among the various nonequilibrium settings explored so
far, a paradigmatic case is the three-dimensional Bose gas
quenched from the weakly interacting regime to the maximally
interacting unitary limit, whose experimental study [10–15]
stimulated extensive theoretical activity [16–30]. The dynam-
ics of this system are governed by the buildup of short-range
two-body correlations, which are naturally described in terms
of Tan’s contact C2 [31–38], a unifying concept in quantum
gases with close connections to nuclear physics [39–42]. The
contact C2, proportional to the probability of finding two atoms
at short interparticle distances, connects microscopic and ther-
modynamic quantities through exact relations. While C2 has
been measured at equilibrium [11, 43, 44], its nonequilibrium
dynamics remain elusive [10, 14], most likely because of ad-
ditional three-body contributions [28, 45].

A natural probe of C2 is provided by microscopic loss
mechanisms, such as photo-dissociation of closed-channel
molecules, which have long served as sensitive diagnostics
of short-range correlations at equilibrium [46–49]. These pro-
cesses directly reflect the amplitude of short-range correlations
while minimally perturbing the many-body state, making them
a promising route to probe correlation dynamics in real time.
However, exploiting them to follow the growth of correla-
tions requires interaction control on timescales shorter than
the buildup time, which remains a significant experimental
challenge.

Probing the dynamics of C2 can be carried out near both
broad and narrow Fano–Feshbach resonances (FFRs). While
broad resonances are fully characterized by the scattering
length [50], narrow resonances enrich this description by intro-
ducing an additional length scale 𝑅★ set by the effective range
and inversely proportional to the resonance width [51–53].

This distinctive feature makes them a powerful platform to ex-
plore effective-range effects, which are of central importance
in low-energy nuclear systems [54–56].

In this Letter, we implement a new approach based on op-
tical tuning of the closed-channel molecular state, enabling
genuine sudden quenches on sub-microsecond timescales and
providing access to previously unresolved contact dynamics.
This fast control is achieved via spin-dependent light shifts
arising from the large vectorial and tensorial polarizability of
lanthanide atoms [57–60]. By repeatedly cycling between res-
onant and weak interactions, we enhance sensitivity to early-
time two-body losses and resolve the buildup of short-range
correlations following an interaction quench. We develop a
two-channel model that incorporates the narrow resonance
width and molecular-state dissipation, relates the two-body
loss rate to the instantaneous contact C2 (𝑡), and accurately
reproduces the observed dynamics. Finally, by varying the
off-resonant time in each cycle, we observe oscillations of
the two-body loss rate, extending previous observations of in-
terference effects arising from the coherent superposition of
dimer and unbound atomic states [61–63].

We perform the experiment with 162Dy atoms, and use a
laser beam detuned by Δ = 2𝜋 × 20 GHz from the optical tran-
sition at 𝜆 = 530.06 nm. It couples the ground-state manifold,
with total angular momentum 𝐽 = 8, to an excited state with
𝐽′ = 𝐽 − 1 [64], allowing us to control the closed-channel
energy (see Fig.1). This beam is linearly polarized along 𝑧,
resulting in a light shift for most closed-channel molecular
states [65, 66]. By contrast, the open-channel state, composed
of atoms in the spin configuration |−8⟩ ⊗ |−8⟩, remains ef-
fectively decoupled from the light field. As a result, we do
not observe heating or atom loss due to spontaneous emission
when operating far from the FFR.

This spin-dependent light shift (SLS) leads to a displace-
ment of the FFR pole from its original position 𝐵0 to a new
magnetic field 𝐵1. The shift is given by 𝐵1 − 𝐵0 ∝ −𝐼/(Δ𝛿𝜇),
where 𝐼 is the laser intensity and 𝛿𝜇 > 0 the differential mag-
netic moment between the molecular and atomic states.

Our experiments start with a thermal sample of typically
105 atoms. As shown in Fig. 1, the SLS beam shifts the FFR
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FIG. 1. Fano-Feshbach resonance (FFR) displacement induced by a
spin-dependent light-shift. Top: Illustration of the coupling between
the ground-state manifold with total angular momentum 𝐽 = 8 and
the excited-state manifold associated with the transition at wavelength
𝜆 = 530.06 nm, with 𝐽′ = 7. This coupling induces a light shift that
displaces the energy of the closed-channel molecular state |C⟩, while
the open-channel collisional state |O⟩ remains unaffected. Bottom:
Loss features in the presence (disks) and absence (squares) of the spin-
dependent light-shift (SLS) laser, showing the optical displacement of
the magnetic Fano-Feshbach resonance from 𝐵0 to 𝐵1 for a thermal
sample of 162Dy with 𝑁 = 3 × 104 atoms and temperature 𝑇 =

1.24 µK. In the “SLS on” (resp. “SLS off”) case we hold the sample
for 15 ms (resp. 150 ms).

loss feature from 𝐵0 ≈ 5.15 G to 𝐵1 ≈ 5.07 G. This shift
enables a rapid change in scattering length, from 𝑎 ≈ 140 𝑎0
to resonance (𝑎 → ∞), within 200 ns [2, 67]. In addition to
shifting the resonance, the laser also induces two-body losses
due to photo-dissociation of closed-channel molecules, which
we use here as a tool for probing short-range correlations. The
laser-induced energy shift of the closed-channel molecule and
the associated two-body loss thus provide a method to probe
the dynamics of short-range two-body correlations.

To better resolve the dynamics we employ a repeated pulsing
protocol that improves the detectability of two-body losses
by accumulating their effects over many interaction quenches
near resonance (see Fig. 2 inset). This approach enhances
sensitivity to small loss rates without modifying the underlying
inelastic mechanism. Specifically, we prepare a thermal gas at
the magnetic field 𝐵1, and apply a sequence of optical pulses:
the SLS beam is turned on for a duration 𝑡on, followed by an
off period 𝑡off long enough to ensure that successive pulses
act independently. This sequence is repeated 𝑁cycles times,
resulting in a total exposure time 𝑡exp = 𝑡on𝑁cycles [68].

In Fig. 2, we show the atom number evolution as a function
of 𝑡exp for a thermal sample with temperature 𝑇 = 0.34(1) µK
and three values of 𝑡on with 𝑡off = 26 µs. For a fixed 𝑡exp, we
observe a monotonic increase in atom loss with increasing 𝑡on,
a signature that the two-body loss rate is dynamically evolving.
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FIG. 2. Probing two-body loss dynamics. Atom number as a function
of exposure time, 𝑡exp = 𝑡on𝑁cycles, for three different values of 𝑡on
(see legend), at a temperature 𝑇 = 0.34 µK, and initial atom number
𝑁0 ≈ 2 × 104. Here 𝑡off = 26 µs. Solid lines are fits using Eq. (1).
Inset: Schematic of the pulsing protocol.

We fit the data using a two-body loss model,

𝑑𝑁

𝑑𝑡exp
= −𝐿2 (𝑡on, 𝑡off) 𝑛̄ 𝑁, (1)

where 𝑛̄ = 𝑛0/
√

8 is the spatially averaged density, assuming
a Gaussian spatial distribution with peak value 𝑛0. We extract
the effective two-body loss coefficient 𝐿2 (𝑡on, 𝑡off), defined as

𝐿2 (𝑡on, 𝑡off) =
1
𝑡exp

∫ (𝑡on+𝑡off )𝑁cycles

0
L2 (𝑡) 𝑑𝑡 (2)

where L2 is the instantaneous loss rate such that locally ¤𝑛 =

−L2 𝑛
2. The right-hand side of Eq.(2) would be independent

of both 𝑡on and 𝑡off ifL2 was constant during 𝑡on and zero during
𝑡off . Accordingly, 𝐿2 allows us to quantify deviations from this
simple scenario. Since atom loss is accompanied by heating,
we restrict our fit to data where the temperature increase is
below 15% and take into account the small resulting change in
effective volume due to thermal expansion of the cloud [68].

As shown in Fig. 3(a), for 𝑡off = 26 µs, 𝐿2 increases
with 𝑡on at short times and saturates for 𝑡on ≳ 20 µs to an
asymptotic value 𝐿stat

2 . We independently confirm this satura-
tion behavior using a continuous-probe configuration, where
𝐿̄2 = 𝐿2 (𝑡off = 0), shown as the shaded region in Fig. 3(a).
The measured value of 𝐿̄2 agrees with 𝐿stat

2 within experimen-
tal uncertainty, reinforcing our interpretation that the pulsed
sequence faithfully captures the buildup dynamics of two-body
losses.

To model the observed dynamics, we reduce the many-body
problem to a two-body problem, which can be justified in the
nondegenerate regime by a virial expansion [22], and we adopt
a zero-range two-channel description. In this framework, the
wave function of the relative motion in the open channelΨ(r, 𝑡)
is coupled to the closed-channel amplitude 𝜙(𝑡), with coupling
strength characterized by the range parameter 𝑅★ > 0. We find
that 𝜙 is related to the 1/𝑟 singularity of Ψ by the equation
𝜙(𝑡) =

√
4𝜋𝑅★ lim𝑟→0 𝑟 Ψ(r, 𝑡). As a consequence, the two-

body contact is proportional to the density 𝑛𝑏 of closed-channel
molecules, C2 (𝑡) = (8𝜋/𝑅★) 𝑛𝑏 (𝑡), a result previously estab-
lished at equilibrium [47, 69, 70]. Since 𝑛𝑏 (𝑡) equals 𝑛2/2



3

times the thermal average ⟨|𝜙(𝑡) |2⟩𝑇 , and each molecule being
lost at a rate Γb (𝑡), the instantaneous atom loss rate constant
is [71]

L2 (𝑡) = Γb (𝑡)
𝑅★

4𝜋
C2 (𝑡)
𝑛2 = Γb (𝑡) ⟨|𝜙(𝑡) |2⟩𝑇 . (3)

The problem of calculating the loss rate thus reduces to
determining 𝜙(𝑡) for a pair of particles in a unit volume. We
find (see Ref. [68]) that the evolution of 𝜙(𝑡) for two identical
bosons with non-zero relative momentum 𝑘 is governed by

𝑖ℏ ¤𝜙(𝑡)−𝐸0 (𝑡)𝜙(𝑡)−
ℏ3/2

√
𝑖𝜋𝑚 𝑅★

∫ 𝑡

−∞

¤𝜙(𝑡′)d𝑡′
√
𝑡 − 𝑡′

= −ℏ2

𝑚

√︂
8𝜋
𝑅★

𝑒−𝑖
ℏ𝑘2
𝑚

𝑡 ,

(4)
where 𝐸0 (𝑡) = −ℏ2/[𝑚 𝑎′ (𝑡)𝑅★] − 𝑖ℏΓb (𝑡)/2 is the complex
closed-channel molecular energy detuning, and 1/𝑎′ (𝑡) is the
real part of the inverse scattering length.

In the stationary regime, substituting 𝜙(𝑡) = 𝜙stat𝑒−𝑖ℏ𝑘
2𝑡/𝑚

into Eq. (4) yields an algebraic equation, whose solution gives
the stationary contact density

Cstat
2 = 𝑛2 𝜆2

T

∫ ∞

0
d𝑥

32
√

2 𝑥2𝑒−𝑥
2/(2𝜋 )

(𝜆T/𝑎′ + 𝑥2𝑅★/𝜆T)2 + ( 𝑚2ℏΓb𝜆T𝑅★ + 𝑥)2 ,

(5)
where 𝜆T =

√︁
2𝜋ℏ2/(𝑚kB𝑇) is the thermal de Broglie wave-

length. Equation (5) shows that Cstat
2 depends on three dimen-

sionless parameters characterizing, respectively, the dimer de-
tuning, the resonance width, and the loss strength. For a broad
lossless resonance (𝑅★ → 0, Γb → 0), Cstat

2 becomes inde-
pendent of the sign of 𝑎′ and peaks at the resonance position,
where we recover the universal result Cstat

2 = 32𝜋𝑛2𝜆2
T [45].

By contrast, near a narrow resonance, the maximum of Cstat
2

(and hence of 𝐿stat
2 ) shifts to a finite negative scattering length

(𝜆T/𝑎′ < 0) [68].
When 𝑎′ and Γb are suddenly quenched, the field 𝜙 evolves

toward a new stationary state. As one can see from Eq. (4),
the dynamics and associated timescales depend on several pa-
rameters. For a single quench at 𝑡 = 0 from a very large initial
detuning to a value 𝐸0 close to resonance we can neglect 𝜙(𝑡)
at 𝑡 < 0 and solve Eq. (4) analytically by the Laplace transform
technique. One can check that the transform of 𝜙(𝑡) explicitly
reads

𝜙(𝑠) =
√︁

8𝜋/𝑅★

(𝑘2 − 𝑖𝑚𝑠/ℏ) (𝑠 + 𝑖𝐸0/ℏ +
√︁
𝑖ℏ𝑠/𝑚/𝑅★)

. (6)

The corresponding inverse Laplace transform is in general a
bulky but analytic expression written in terms of error func-
tions. It depends on the dimensionless parameters 𝑚𝐸0/ℏ2𝑘2

(which is complex) and 𝑘𝑅★, and we can choose, for example,
𝑚/ℏ𝑘2 as the overall timescale. Let us discuss two illustrative
examples described by compact formulas. In both cases we
assume a quench to resonance, i.e., Re(𝐸0) = 0.

In the lossless (𝑚Γb/ℏ𝑘2 ≪ 1), broad-resonance (𝑘𝑅★ ≪
1) limit, we can neglect the first two terms in Eq. (4),
or the corresponding terms in Eq. (6), and arrive at
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FIG. 3. Two-body contact dynamics. (a) Measured two-body loss
coefficient 𝐿2 for different temperatures (see legends). Solid lines are
fits using Eq. (4) [68]. The shaded region indicates the value of 𝐿̄2
plus or minus one standard deviation. (b) Evolution of C2 (𝑡), scaled
by its stationary value, for a broad FFR (black dashed line), a narrow
resonance with low loss (Γb/2𝜋 = 20 kHz, blue line), and a higher-
loss narrow resonance (Γb/2𝜋 = 100 kHz, red line), for a thermal
sample at 1.4 µK. The narrow-resonance curves are calculated from
Eq. (7). (c) Same comparison for a thermal sample at 0.4 µK. (d)
Temperature dependence ofCstat

2 /𝑛2, deduced from 𝐿̄2, and compared
with the theoretical prediction from Eq. (5). The blue dashed line
shows the prediction from Eq. (5), with the values of 𝑅★ and Γon

b
given by Eq. (8) and the corresponding error bars reflected by the
shaded area.

(4𝜋/𝑅★) |𝜙(𝑡) |2 = 32 𝜋2
��Erf

√︁
−𝑖ℏ𝑘2𝑡/𝑚

��2/𝑘2, where Erf is
the error function. This quantity oscillates in time, but av-
eraging over momenta leads to the monotonically increas-
ing C2 (𝑡) = 64 𝑛2 𝜆2

T arctan(𝑡/𝜏𝑇 ) [27], where we define
𝜏𝑇 = ℏ/kB𝑇 .

As a second example, we consider the narrow-resonance
limit, where we can neglect the integral term in Eq. (4). Then,
𝜙(𝑡) is proportional to 𝑒−𝑖ℏ𝑘

2𝑡/𝑚 − 𝑒−Γb𝑡/2 and, after thermal
averaging, we obtain

C2 (𝑡) =
1 + 𝑒−Γb𝑡 − 2𝑒−Γb𝑡/2 cos [(3/2) arctan(𝑡/𝜏𝑇 )][

1 + (𝑡/𝜏𝑇 )2]3/4

 Cstat
2 ,

(7)
which is a non-monotonic function characterized by two
timescales: 1/Γb and 𝜏𝑇 . We note that Eq. (7) features a
C2 (𝑡) ∝ 𝑡2 scaling at short times [25], different from the
C2 (𝑡) ∝ 𝑡 scaling in the broad-resonance case [17, 18, 24, 27].
In Fig. 3(b)-(c) we present a few examples of the time depen-
dence of the contact density predicted for various experimental
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parameters following a single quench to resonance. For nar-
row resonances, C2 (𝑡) can become non-monotonic, while for
broad resonances this only happens when quenching to the
Re(𝐸0) < 0 side of the resonance [27].

Using the periodic pulse protocol, we now experimentally
and theoretically reveal the dynamics of the two-body contact.
We examine the temperature dependence of the two-body loss
rate dynamics by probing thermal samples from 0.30 µK to
1.24 µK. These temperatures are low enough to avoid con-
tamination from nearby higher-partial-wave FFRs [72] while
remaining high enough to ensure non-degenerate samples. We
fit the data, treating 𝑅★ and Γb as adjustable parameters, with
a Floquet-based numerical approach that solves Eq. (4) and
deduces 𝐿2 from Eqs. (2) and (3) [68, 73]. The model repro-
duces the measurements across the entire temperature range,
see Fig.3(a). From the fits we extract the on-resonance decay
rate of the closed-channel molecule Γon

b and the range param-
eter 𝑅★ which are both nearly temperature independent and
given by [68]

Γon
b /(2𝜋) = 123(38) kHz and 𝑅★ = 10.0(2.3) ℓvdW, (8)

where ℓvdW = 4.12 nm is the van der Waals length [74]. As
an independent check we perform bound-state spectroscopy,
which yieldsΓon

b /2𝜋 = 112(30) kHz and 𝑅★ = 10.8(2.1) ℓvdW,
consistent with Eq. (8), as well as the values of the differential
magnetic moment 𝛿𝜇 = 4.15(18) 𝜇𝐵 and the FFR position
𝐵res, such that Re(𝐸0) = 𝛿𝜇(𝐵 − 𝐵res) (see End Matter).

We show in Fig.3(d) the two-body contact density Cstat
2 /𝑛2,

deduced from 𝐿̄2 using Eq. (3), as a function of temperature.
The measurements are well reproduced by Eq. (5) (dashed blue
line), evaluated with the parameters from Eq. (8); the shaded
band reflects the uncertainties in these parameters. These find-
ings demonstrate a high degree of control over the observed
two-body losses and establish their direct connection to the
two-body contact density, whose dynamical evolution we re-
solve.

Finally, we study the dependence of 𝐿2 (𝑡on, 𝑡off) on 𝑡off at
fixed 𝑡on = 3 µs. The data, shown in Fig. 4, reveal oscillations
of the two-body loss rate, normalized by the asymptotic value
𝐿stat

2 . We attribute these oscillations to the fact that, between
pulses, the system is quenched out of resonance to the negative
Re(𝐸off

0 ) side, where the closed-channel molecular state lies far
below the open-channel threshold and is thus protected from
dissociation. During this period, the closed-channel amplitude
acquires a phase factor≈ 𝑒−𝑖𝐸

off
0 𝑡off/ℏ, interfering with the open-

channel component which accumulates a phase ≈ 𝑒−𝑖ℏ
2𝑘2𝑡off/𝑚.

The loss of contrast arises from thermal averaging over 𝑘 and
from the finite closed-channel decay rate Γoff

b , which remains
relatively small in our case (see End Matter).

Similar oscillations have been observed in double-pulse ex-
periments [61–63]. A distinguishing feature of our experi-
ment is the use of a periodic sequence of pulses. As shown
in Fig. 4(a), the resulting oscillations deviate markedly from
a simple sinusoid, exhibiting an extended minimum followed
by a sharp, asymmetric peak. This waveform reflects interfer-
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FIG. 4. Coherent oscillations of the two-body loss rate. Normal-
ized loss rate 𝐿2/𝐿stat
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The solid line corresponds to numerical solutions of Eq. (4) us-
ing the parameters from Eq. (8). The values of (𝑇,Re(𝐸off

0 )/ℎ)
are (0.41 µK,−436 kHz) for (a), (0.41 µK,−560 kHz) for (b), and
(1.24 µK,−560 kHz) for (c).

ence between multiple pathways for molecule formation, each
associated with one of the 𝑁cycle on-resonant pulses.

To gain a more quantitative insight on these oscillations we
numerically solve Eq. (4). The theory curve shown in Fig.4(a)
fits the data for a detuning Re(𝐸off

0 )/ℎ = −436(7) kHz, in
good agreement with the expected detuning at the field 𝐵1,
Re(𝐸off

0 )/ℎ = 𝛿𝜇 (𝐵1 − 𝐵0) = −480(50) kHz for the parame-
ters determined in the End Matter. We then increase the SLS
intensity by 40%, shifting the resonance pole to a lower mag-
netic field, 𝐵2 < 𝐵1, such that the off-resonant dimer energy is
≈ −ℎ× 560 kHz. As a result, we observe faster oscillations, as
shown in Fig. 4(b), confirming that the oscillation frequency
is set by the off-resonant dimer energy.

As we have mentioned, the reduction of contrast with in-
creasing 𝑡off is attributed to the finite temperature of the gas
and to the intrinsic loss rate of the off-resonant molecular state,
quantified by Γoff

b (see End Matter). To check this, we repeat
the measurement at a higher temperature, 𝑇 = 1.24 µK. As
shown in Fig. 4(c), the contrast decays more rapidly, as pre-
dicted by the numerical model, confirming that it is the thermal
decoherence that plays the key role in the observed damping.

In conclusion, we achieve a direct measurement of the real-
time buildup of two-body correlations in a thermal Bose gas
near a narrow resonance, enabled by sub-microsecond inter-
action quenches. By connecting the temporal evolution of the
two-body loss rate to Tan’s contact, we establish controlled
dissipation as a powerful probe of short-range correlations,
extending earlier studies of strongly interacting gases at equi-
librium into the dynamical regime. The excellent agreement
with a two-channel model demonstrates its predictive capacity
and paves the way for exploring new quench protocols, pulse
sequences, and interaction regimes. Looking ahead, the ex-
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perimental and theoretical advances demonstrated here open
promising routes to probe the non-equilibrium dynamics of
Tan’s contact in degenerate Bose gases, including the most
challenging strongly correlated regime.
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END MATTER

DETERMINATION OF Γb AND 𝑅★ FROM SPECTROSCOPY
OF THE DIMER ENERGY
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FIG. 5. Determination of the narrow Fano–Feshbach resonance prop-
erties. Top: Resonance spectra of atom losses as a function of the
modulation frequency Ω for various magnetic fields (see legend).
For visual clarity, the different curves are vertically offset by hand.
The solid lines are fits to the data using Eq. (4). Bottom: Reso-
nance frequency as a function of magnetic field, for 𝐼0 = 0 (SLS off)
and 𝐼0 = 15𝜇W/𝜇m2 (SLS on). The solid line shows the expected
dressed Feshbach dimer energy dependence on magnetic field with
the parameters listed in Table I.

To determine the closed-channel dimer energy as a function
of magnetic field, we apply the SLS beam with a temporal
intensity profile 𝐼 (𝑡) = 𝐼0 + 𝐼1 sin2 (Ω𝑡/2). For half of the data
we use 𝐼0 = 0 and 𝐼1 = 1.0 𝜇W/𝜇m2 (SLS off in Fig.5), which
places the FFR pole at 𝐵0 ≈ 5.15 G. For the other half we set
𝐼0 = 15𝜇W/𝜇m2 and 𝐼1 = 1.5 𝜇W/𝜇m2 (SLS on in Fig. 5),
shifting the pole to 𝐵1 ≈ 5.07 G. In both cases the average
intensity is 𝐼0 + 𝐼1/2. We then scan the frequency Ω around
the molecular binding energy and observe resonant atom loss
when ℏΩ matches the real part of the closed-channel binding

energy, signaling the formation of weakly bound molecules
that subsequently decay (see Fig. 5 top panel). The extracted
binding energies as a function of magnetic field are shown in
Fig. 5 (bottom panel).

The only differences between the two datasets are the ef-
fective resonance position, determined by the SLS beam, and
the inverse lifetime of the molecular state, Γb, which increases
with SLS intensity. The value of Γoff

b is much smaller than Γon
b ,

yet remains finite. Its value is likely set by photo-dissociation
from the infrared trapping lasers. We observed that Γoff

b re-
mained unchanged for 𝐼1 up to 2.0 𝜇W/𝜇m2 (a factor of two
increase), indicating that the contribution from the residual
SLS average intensity, 𝐼1/2, is negligible in this regime.

The best-fit parameters characterizing the resonance spectra
are reported in Tab. I. The line shown in Fig. 5 corresponds
to the following expression for the real part of the dressed
Feshbach dimer energy [76]

Re(𝐸𝑑) = − ℏ2

4𝑚𝑅★2

(√︁
1 + 4𝑅★/𝑎′ − 1

)2
, (9)

with

𝑎′ = − ℏ2

𝑚𝑅★𝛿𝜇(𝐵 − 𝐵res)
, (10)

where 𝐵res is the position of the FFR; 𝐵res = 𝐵0 (resp. 𝐵res =
𝐵1) when the SLS is off (resp. on).

TABLE I. Values of the FFR position, 𝐵res, differential magnetic mo-
ment, 𝛿𝜇, and 𝑅★ in the presence and absence of the spin-dependent
light-shift.

𝐼0 = 0 (SLS off) 𝐼0 ≠ 0 (SLS on)

𝛿𝜇 (𝜇B) 4.35 (16) 4.15 (18)

𝐵res (G) 5.154 (2) 5.073 (2)

𝑅★ (ℓvdW) 10.2 (1.8) 10.8 (2.1)

Γb/(2𝜋) (kHz) 20 (10) 112 (30)

https://doi.org/https://doi.org/10.1103/PhysRevA.95.062705
https://doi.org/https://doi.org/10.1103/PhysRevA.95.062705
https://doi.org/10.1103/PhysRevX.5.041029
https://doi.org/10.1063/5.0049518
https://doi.org/10.1103/PhysRevResearch.3.043225
https://doi.org/10.1103/PhysRevResearch.3.043225
https://doi.org/10.1103/PhysRevA.100.042707
https://doi.org/10.1103/PhysRevA.100.042707
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Density-dependence of losses
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FIG. S1. Loss rate as a function of density. (a) Atom number
evolution as a function of time 𝑡 for two different initial densities (see
legend and text), following a quench to the FFR. At short times, losses
exhibit a linear dependence on time. (b) Atom number normalized
by the initial peak density. The data collapse onto a single linear
curve, consistent with a two-body loss process. (c) Atom number
normalized by the square of the initial peak density. The differing
evolutions clearly indicate that the losses are incompatible with a
three-body process.

In this section, we describe the procedure that leads to the
conclusion that the losses in our experiment have a two-body
nature. The differential equation

¤𝑛 = −L𝛼𝑛
𝛼 (S1)

describes the evolution of the density in the presence of a loss
mechanism involving 𝛼-body collisions. In our experiment,
the single-particle lifetime is on the order of 15 s, far exceeding
the timescales probed here. The dominant loss mechanisms are
therefore either dimer losses involving photon-assisted pho-
todissociation (𝛼 = 2) or intrinsic three-body losses (𝛼 = 3).
Assuming a Gaussian spatial distribution, and integrating over
space, the total atom number then evolves according to:

¤𝑁 = −
L𝛼𝑛

𝛼−1
0

𝛼3/2 𝑁 . (S2)

Its solution, neglecting the time-dependence of L𝛼 , is given
by

𝑁 (𝑡) = 𝑁0[
1 +

(
𝛼−1
𝛼3/2

)
L𝛼𝑛

𝛼−1
0,𝑖 𝑡

]1/(𝛼−1) (S3)

where 𝑛0,𝑖 = 𝑁0/𝑉 is the peak density at 𝑡 = 0, 𝑁0 the initial
atom number and 𝑉 =

[
2𝜋kB𝑇

/ (
𝑚𝜔̄2) ]3/2 the volume. We

restrict to short enough times such that the temperature of the
cloud changes by less than 15% of its initial value. For these
short times, Eq. (S3) simplifies to

𝑁 (𝑡)
𝑁0

≈ 1 − L𝛼

𝑛𝛼−1
0,𝑖

𝛼3/2 𝑡 . (S4)

We investigate two thermal samples at the same temper-
ature, 𝑇 = 0.9 µK, but with different geometric mean trap
frequencies: 𝜔̄ (1) = 2𝜋 × 141 Hz and 𝜔̄ (2) = 2𝜋 × 212 Hz.
The initial atom numbers are such that 𝑁

(2)
0 ≈ 3 𝑁

(1)
0 , and

therefore 𝑛
(2)
0,𝑖 ≈ 10 𝑛(1)0,𝑖 .

In Fig. S1(a), we show the evolution of 𝑁 (𝑡)/𝑁0 as a func-
tion of 𝑡, confirming the initial linear decrease in atom number
for both cases. We then examine the power-law dependence
of the loss rate on the density. From Eq. (S4) we expect that
the quantity [𝑁 (𝑡)/𝑁0 − 1]/𝑛𝛼−1

0,𝑖 ≈ −(L𝛼/𝛼3/2) 𝑡 is indepen-
dent of 𝑛0,𝑖 . We find that the experimentally measured values
for this quantity do indeed approximately collapse on a sin-
gle curve if we assume 𝛼 = 2 (Figs. S1b), but not for 𝛼 = 3
(Fig. S1c). We conclude that the losses are predominantly two-
body in nature. We performed the same analysis for different
temperatures and densities, and reached the same conclusion.

Cycling procedure

As described in the main text, we quench the system to
resonance for a duration 𝑡on, followed by an off-resonant pe-
riod 𝑡off . The total exposure time at resonance is given by
𝑡exp = 𝑁cycles 𝑡on. We use integer values of 𝑁cycles, correspond-
ing to square pulses generated by a waveform generator that
modulates the radiofrequency amplitude driving an acousto-
optic modulator. Although 𝑡exp takes discrete values, the vari-
ation of 𝑁 over one cycle is small, and 𝑁 can be considered
to be a smooth differentiable function of 𝑡exp. In practice, the
maximum number of cycles ranges from 10 to 5000 depending
on the chosen value for 𝑡on.

Extracting 𝐿2 in a Thermal Gas with Evolving Temperature

Atom loss is accompanied by heating in the harmonic trap,
as shown in Fig. S2(a), resulting in a variation of the effective
volume due to the thermal expansion of the cloud. To ensure
accurate determination of the two-body loss rate, we restrict
our analysis to the regime where the temperature increases by
no more than 15%, as indicated by the shaded area in Fig. S2(a).

Equation (1) of the main text yields the differential equation

𝑑𝑁

𝑑𝑡exp
= −𝐿2 (𝑇) 𝑁 (𝑡exp)2 / [4𝜋𝑘𝐵

𝑚𝜔̄2 𝑇 (𝑡exp)
]3/2

, (S5)

which we solve numerically, with𝑇 (𝑡exp) obtained by fitting the
measured temperature evolution with a second order polyno-
mial (see Fig. S2). This allows us to account for the dilatation
of the sample over time. We use the fitted temperature curve
to determine the time-average temperature 𝑇 which is used in
the computation of the corresponding two-body loss rate.
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FIG. S2. Temperature and atom number evolution. (a) Temperature
evolution as a function of time after quenching a thermal sample with
initial temperature 𝑇 = 1.15 µK to the Fano–Feshbach resonance,
for different interrogation times 𝑡on (see legend) and 𝑡off = 26 µs.
The shaded area corresponds to a temperature increase greater than
15% of the initial temperature, where we exclude all data from our
analysis. The lines are fits to the data using a polynomial function.
(b) Normalized atom number evolution as a function of time. The
fitted curves correspond to the resolution of Eq. (S5) accounting for
the temperature evolution extracted from the fits shown in (a).

Temperature dependence of the loss resonance feature
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FIG. S3. Magnetic field 𝐵max at which the loss rate is maximal,
shown versus the sample temperature. The trap frequencies are fixed
at (𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧) = 2𝜋× (58, 358, 292) Hz for all data. The dotted line
indicates the FFR position obtained from closed-channel molecular
spectroscopy. The solid line is the theoretical prediction for 𝐵max
which maximizes Eq. (5).

A consequence of the narrowness of the FFR is that for
nonzero temperature, the maximum loss rate does not occur
exactly when the scattering length diverges. For a fixed trap
frequency, we show in Fig. S3 that the magnetic field at which
losses are maximal, 𝐵max, indeed shifts with temperature. We
note for completeness that 𝑡exp was adjusted at each tempera-
ture such that the maximum loss corresponds to 30% of the
initial atom number.

The experimentally determined 𝐵max is in good agreement
with the theoretical prediction (see solid line in Fig. S3) ob-
tained from Eq. (5) without adjustable parameters (we use
𝑅★ and Γon

b from Eq. (8), and 𝛿𝜇 and 𝐵res from Tab. I, right
column).

Fitting procedure to extract 𝑅★ and Γon
b
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FIG. S4. Temperature-dependence of fitted parameters. Left panel:
Sum of squared residuals (SSR) for the data at 𝑇 = 1.09(4) µK.
Right panels: Γon

b and 𝑅★ vs. temperature. Here dashed lines indicate
temperature averages and shaded regions show the associated standard
deviations.

To compare the experimental data with the numerical sim-
ulations for 𝐿2 (𝑡on, 𝑡off), we use a Floquet-based numerical
approach that solves Eq. (4) and averages the instantaneous
loss rate over a full modulation cycle, 𝑡on + 𝑡off (see Ref. [73]
and last section), which depends on both on- and off-resonant
parameters.

For the off-resonant scattering length we use 𝑎′off ≈ 46 𝑎0
(see End Matter). For the on-resonant scattering length 𝑎′on,
we use the value that maximizes Eq. (5) of the main text for
each temperature (see previous section). Experimentally, we
adjust 𝐵 to 𝐵max for each 𝑇 . Regarding the molecular decay
rate Γb (𝑡), we assume that Γb (𝑡) = Γon

b during the on-resonant
interval 𝑡on and Γb (𝑡) = Γoff

b during the off-resonant time 𝑡off .
For each temperature, we fit the data by minimizing the sum of
the squared residuals with respect to the numerical simulation,
while varying 𝑅★, Γon

b , and Γoff
b . We observed that Γoff

b had
little impact on the fits, and therefore fixed it to the value
2𝜋×20 kHz obtained by modulation spectroscopy (see Tab. I).

The fitting procedure thus reduces to a two-dimensional op-
timization over 𝑅★ and Γon

b . Specifically, we vary 𝑅★ in the
range 4 ℓvdW to 18 ℓvdW, and Γon

b from 60 kHz to 190 kHz. For
all temperatures, we observe a well-defined optimal region in
parameter space (see Fig. S4, left panel). The error bars on
the fitted parameters are obtained using a bootstrap method.
In the right panels of Fig. S4, we check the temperature inde-
pendence of 𝑅★ and Γon

b , respectively. The dashed lines and
shaded areas represent the temperature-averaged values and
their standard deviations, yielding 𝑅★ = 10.0(2.3) ℓvdW and
Γon

b /2𝜋 = 123(38) kHz.

Evolution of 𝐿2 as a function of 𝑡on and 𝑡off

We show in Fig. S5 the buildup of the two-body loss rate,
normalized by its asymptotic value 𝐿stat

2 = 283(19) µm3/s, as
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FIG. S5. Evolution of 𝐿2 as a function of 𝑡off and 𝑡on. Buildup
of the two-body loss rate 𝐿2 (𝑡on) for various out-of-resonance dura-
tion 𝑡off (see legend) at a fixed temperature of 𝑇 = 0.41 µK. Solid
lines are numerical solutions of Eq. (4) using Γb/2𝜋 = 123 kHz and
Re(𝐸0)/ℎ = −560 kHz.

a function of 𝑡on for three different values of 𝑡off (see legend).
Although the overall behavior of 𝐿2 is non-monotonic with
respect to 𝑡off (see Fig. 4 and its discussion in the main text), we
observe a monotonic increase of 𝐿2 with 𝑡on for each individual

𝑡off . Importantly, we find that for a fixed modulation period,
i.e. the same value of 𝑡on + 𝑡off , the measured two-body loss
rate can vary significantly. For example, for 𝑡off = 1.4 µs and
𝑡on = 2 µs, we find 𝐿2/𝐿stat

2 = 0.089(7), whereas for the same
total modulation period but with 𝑡off = 2.4 µs and 𝑡on = 1 µs,
we measure 𝐿2/𝐿stat

2 = 0.53(6).

Derivation of the evolution equations for the closed-channel
amplitude

We solve the problem of two atoms in a large volume, which
can be taken to be a unit volume to alleviate notations. This is
equivalent to the second order non-equilibrium virial expan-
sion of Refs. [22, 26, 27]. Although we deal with identical
bosons, for future reference we provide the derivation of the
evolution equations for two distinguishable atoms of generally
different masses. Consider the two-channel Hamiltonian (we
set ℏ = 1)

𝐻̂ =

∫
𝑑3𝑟

∑︁
𝜎=1,2

𝜓̂†
𝜎 (r)

(
− ∇2

r
2𝑚𝜎

)
𝜓̂𝜎 (r) + 𝜓̂

†
𝑏
(r)

[
− ∇2

r
2(𝑚1 + 𝑚2)

+ 𝜈(𝑡)
]
𝜓̂𝑏 (r)

− 𝜂

∫
𝑑3𝑟 𝑑3𝑦 𝛿𝑟0 (y)

[
𝜓̂
†
1 (r + 𝜇y/𝑚1) 𝜓̂†

2 (r − 𝜇y/𝑚2) 𝜓̂𝑏 (r) + ℎ.𝑐.

]
, (S6)

where 𝜓̂
†
1 (r) and 𝜓̂

†
2 (r) create atoms of masses 𝑚1 and 𝑚2,

respectively, 𝜓̂†
𝑏
(r) is the creation operator of a bare closed-

channel molecule, and 𝜇 = 𝑚1𝑚2/(𝑚1 + 𝑚2) is the effective
mass. To regularize the model we use the delta-shell represen-
tation with 𝛿𝑟0 (y) = 𝛿( |y| − 𝑟0)/(4𝜋𝑟2

0), were 𝑟0 is assumed to
be the smallest length scale in the problem. As we will see,
the model (S6) has a well-defined zero-range limit such that
𝑟0 drops out of the final equations and the bare parameters 𝜈

(complex) and 𝜂 (real) are expressed in terms of the renormal-
ized physically meaningful quantities: the complex detuning
𝐸0 (𝑡) = Re [𝐸0 (𝑡)]−𝑖 Γb (𝑡)/2 and the real range parameter 𝑅★

characterizing the resonance width (a standard procedure also
used, e.g., in Refs. [53, 76]). We note that it is possible to add
a direct interaction between atoms in the open channel, char-
acterized in the zero-range limit by the background scattering
length (see, e.g., Refs. [26, 52, 77]); we have checked that for
our experimental parameter regime, this does not lead to any
significant changes of the results, and we omit the background
interaction to simplify the discussion.

The center-of-mass degree of freedom separates and the

relative two-body wave function can in general be written as∫
𝑑3𝑟 𝑑3𝑦 Ψ(y, 𝑡) 𝜓̂†

1 (r + 𝜇y/𝑚1) 𝜓̂†
2 (r − 𝜇y/𝑚2) |0⟩

+
∫

𝑑3𝑟 𝜙(𝑡) 𝜓̂†
𝑏
(r) |0⟩ , (S7)

where |0⟩ is the vacuum state. The evolution of the amplitudes
Ψ and 𝜙 is governed by the coupled Schrödinger equations

𝑖𝜕𝑡Ψ(y, 𝑡) = −
∇2

y

2𝜇
Ψ(y, 𝑡) − 𝜂 𝛿𝑟0 (y) 𝜙(𝑡) (S8)

and

𝑖𝜕𝑡𝜙(𝑡) = 𝜈(𝑡) 𝜙(𝑡) − 𝜂

∫
𝑑3𝑦 𝛿𝑟0 (y) Ψ(y, 𝑡). (S9)

Equation (S8) describes free motion everywhere in space
except for the surface of the sphere with radius 𝑟0. It is useful
to rewrite this equation in the integral form

Ψ(y, 𝑡) = Ψ0 (y, 𝑡)

+ 𝑖 𝜂

∫ 𝑡

−∞
𝑑𝑡′

∫
𝑑3𝑦′ 𝐺 (y − y′, 𝑡 − 𝑡′) 𝛿𝑟0 (y′) 𝜙(𝑡′),

(S10)
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where the Green function

𝐺 (y, 𝑡) = 𝑒𝑖𝑦
2𝜇/2𝑡

(2𝜋𝑖𝑡/𝜇)3/2 (S11)

solves

[𝑖𝜕𝑡 + ∇2
y/(2𝜇)]𝐺 (𝑦, 𝑡) = 𝑖 𝛿(𝑡) 𝛿(y) (S12)

and Ψ0 (y, 𝑡) is a solution of Eq. (S8) with 𝜂 set to zero. For our
scattering problem this is the incoming plane wave Ψ0 (y, 𝑡) =
𝑒𝑖k·y−𝑖𝑘

2𝑡/(2𝜇) with momentum k.
The idea of passing from Eq. (S8) to Eq. (S10) is that, if

we now set |y| = 𝑟0, Eqs. (S9) and (S10) form a closed system
of equations for 𝜙(𝑡) and Ψ(y, 𝑡), where y is on the sphere.
Moreover, Eq. (S10) [as well as the original Hamiltonian (S6)]
conserves angular momentum and allows for a separate de-
scription of each partial wave. In our case the 𝑠-wave scatter-
ing is dominant and for brevity we concentrate on this channel,
which means that we deal with two time-dependent functions
𝜙(𝑡) and Ψ(𝑟0, 𝑡). Working out the integral over 𝑑3𝑦 in the
limit of small 𝑟0 Eq. (S10) reduces to

Ψ(𝑟0, 𝑡) = 𝑒−𝑖𝑘
2𝑡/(2𝜇)+ 𝜂𝜙(𝑡)

2𝜋𝑟0/𝜇
+𝑖𝜂

∫ 𝑡

−∞

𝜙(𝑡′) − 𝜙(𝑡)
[2𝜋𝑖(𝑡 − 𝑡′)/𝜇]3/2 𝑑𝑡

′

(S13)
where, on the right-hand side we have neglected terms of
order 𝜇2𝜂𝑟2

0 |𝜕𝑡𝜙(𝑡) |. They are smaller than the integral term

by a factor
√︃
𝜇𝑟2

0/𝜏 where 𝜏 is the characteristic time scale
of variations of 𝜙. For completeness we also explicitly write
Eq. (S9) projected on the 𝑠-wave channel

𝑖𝜕𝑡𝜙(𝑡) = 𝜈(𝑡) 𝜙(𝑡) − 𝜂Ψ(𝑟0, 𝑡). (S14)

The function Ψ(𝑟0, 𝑡) is eliminated from Eqs. (S13-S14) and
after partial integration the resulting equation for the closed-
channel amplitude reads

𝑖𝜕𝑡𝜙(𝑡) − [𝜈(𝑡) − 𝜇 𝜂2/(2𝜋𝑟0)]𝜙(𝑡)

− 𝜂2
√

2𝑖

( 𝜇
𝜋

)3/2 ∫ 𝑡

−∞

𝜕𝑡 ′𝜙(𝑡′)√
𝑡 − 𝑡′

𝑑𝑡′ = −𝜂𝑒−𝑖𝑘2𝑡/(2𝜇) . (S15)

In the stationary case (time-independent 𝜈) Eq. (S15) is
solved by 𝜙(𝑡) = 𝜙0𝑒

−𝑖𝑘2𝑡/(2𝜇) with

𝜙0 = − 𝜂

𝑘2/(2𝜇) − [𝜈 − 𝜇𝜂2/(2𝜋𝑟0)] + 𝑖𝜇𝜂2𝑘/(2𝜋)
(S16)

and Eq. (S10) becomes

Ψ(y, 𝑡) = 𝑒𝑖k·y−𝑖𝑘
2𝑡/(2𝜇) + 𝜇𝜂𝜙0

2𝜋
𝑒𝑖𝑘𝑦−𝑖𝑘

2𝑡/(2𝜇)

𝑦
(S17)

valid for 𝑦 ≥ 𝑟0. In Eq. (S17) one recognizes the scattering
amplitude 𝑓 (𝑘) = 𝜇𝜂𝜙0/(2𝜋). Identifying

𝜂 =

√︂
𝜋

𝜇2𝑅★
(S18)

and

𝐸0 = 𝜈 − 1
2𝜇𝑅★𝑟0

(S19)

we recover the standard narrow-resonance structure of the scat-
tering amplitude

𝑓 (𝑘) = − 1
𝑅★(𝑘2 − 2𝜇𝐸0) + 𝑖𝑘

(S20)

and the stationary closed-channel amplitude equals

𝜙0 = −
2
√︁
𝜋/𝑅★

𝑘2 − 2𝜇𝐸0 + 𝑖𝑘/𝑅★
. (S21)

Substituting Eqs. (S18-S19) into Eq. (S15) we obtain the evo-
lution equation with renormalized parameters

𝑖𝜕𝑡𝜙(𝑡) − 𝐸0 (𝑡) 𝜙(𝑡) −
1√︁

2𝜋𝑖𝜇 𝑅★

∫ 𝑡

−∞

𝜕𝑡 ′𝜙(𝑡′)√
𝑡 − 𝑡′

𝑑𝑡′

= −
√︂

𝜋

𝜇2𝑅★
𝑒−𝑖𝑘

2𝑡/(2𝜇) . (S22)

To reproduce Eq. (4) of the main text we should set 𝜇 = 𝑚/2
and multiply the right-hand side of Eq. (S22) by

√
2, which

takes into account the correct symmetrization of the incoming
wave for identical bosons Ψ0 (y, 𝑡) =

√
2 cos(k·y)𝑒−𝑖𝑘2𝑡/(2𝜇) .

Accordingly, the stationary contact density of a thermal Bose
gas reported in Eq. (5) of the main text is obtained from
Eq. (S21) multiplied by

√
2 and where we set 𝜇 = 𝑚/2.

We emphasize that our theory is valid in the zeroth order in
the small parameter

√︃
𝜇𝑟2

0/𝜏 [see discussion after Eq. (S13)].
For the stationary case the characteristic time of variation of 𝜙
is 𝜏 ∼ 𝜇/𝑘2 and the small parameter becomes 𝑟0𝑘 . In practice
this means that we cannot go beyond ultracold temperatures
and describe quenches on timescales associated with the inter-
action range.

As we explain in the main text, the knowledge of 𝜙 for
a pair of atoms in a unit volume can be used for deter-
mining the contact density. This statement is based on the
observation, which holds also in the nonstationary case un-
der the condition

√︁
𝜇𝑟0/𝜏 ≪ 1, that the closed-channel am-

plitude 𝜙(𝑡) is related to the 1/𝑦 singularity of Ψ(𝑦, 𝑡) by
𝜙(𝑡) =

√
4𝜋𝑅★ lim𝑦→0 𝑦Ψ(𝑦, 𝑡). In the stationary case this

follows directly from Eq. (S17); in the general case it can be
seen by keeping in Eq. (S13) only terms diverging as 1/𝑟0.
Namely, we have Ψ(𝑟0, 𝑡) = 𝜇𝜂𝜙(𝑡)/(2𝜋𝑟0), which, by using
Eq. (S18), reduces to 𝜙(𝑡) =

√
4𝜋𝑅★ 𝑟0 Ψ(𝑟0, 𝑡).

Finally we note that in the broad-resonance limit (𝑅★→ 0),
the ¤𝜙 term drops out in Eq. (4) of the main text, which im-
plies that the function 𝜙(𝑡)/

√
𝑅★ ∝ lim𝑟→0 𝑟 Ψ(r, 𝑡) solves the

integral equation already obtained in Ref. [24].

Floquet analysis

For time-periodic 𝐸0 (𝑡) with period 2𝜋/Ω we use the for-
malism of Ref. [73] and solve the integro-differential Eq. (S22)
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by decomposing 𝜙(𝑡) in the Floquet channels

𝜙(𝑡) =
∞∑︁

𝑛=−∞
𝜙𝑛𝑒

−𝑖𝜔𝑛𝑡 , (S23)

where 𝜔𝑛 = Ω𝑛 + 𝑘2/(2𝜇). Substituting this expansion into
Eq. (S22) and using the equality∫ 𝑡

−∞

𝑒−𝑖𝜔𝑡 ′ − 𝑒−𝑖𝜔𝑡

(𝑡 − 𝑡′)3/2 𝑑𝑡′ = −𝑒−𝑖𝜔𝑡
√︁

2𝜋 |𝜔 | (1 − 𝑖 sign 𝜔),
(S24)

valid for real 𝜔, we obtain[
𝜋

2

√︄
|𝜔𝑛 |
𝑖𝜇

(1 − 𝑖 sign 𝜔𝑛) − 𝜔𝑛

]
𝜙𝑛 +

∞∑︁
𝑚=−∞

𝐷𝑛−𝑚𝜙𝑚

=

√︂
𝜋

𝜇2𝑅∗ 𝛿𝑛0, (S25)

where 𝐷𝑛 is the Fourier transform

𝐷𝑛 =
Ω

2𝜋

∫ 2𝜋/Ω

0
𝑒𝑖Ω𝑛𝑡𝐸0 (𝑡)𝑑𝑡 (S26)

and 𝛿𝑛𝑚 is the Kronecker delta. Denoting by 𝐸on
0 the value

of the (complex) detuning at times 0 < 𝑡 < 𝑡on and 𝐸off
0 at

times 𝑡on < 𝑡 < 𝑡on + 𝑡off the Fourier transform of the infinite
sequence of square pulses (𝑡on + 𝑡off = 2𝜋/Ω) reads

𝐷𝑛=0 =
Ω

2𝜋
(𝐸on

0 𝑡on + 𝐸off
0 𝑡off), (S27)

𝐷𝑛≠0 =
𝑒𝑖Ω𝑛𝑡on − 1

2𝜋𝑖𝑛
(𝐸on

0 − 𝐸off
0 ). (S28)

We solve Eq. (S25) numerically by introducing a cutoff for suf-
ficiently high |𝑛| ensuring convergence. The vector 𝜙𝑛 [or 𝜙(𝑡)
given by Eq. (S23)] can then be used for calculating all rel-
evant observables (the contact, the instantaneous or averaged
loss rate, etc.)
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