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We present theoretical descriptions of Sisyphus cooling in a two-dimensional laser configura-
tion, based on semiclassical as well as quantum approaches. A detailed comparison of these various
approaches and a discussion of their range of validity are given. Features of the ‘cooled atomic distri-
bution such as channeling of the atoms along specific lines in momentum space and the observability
of tunneling induced resonances in the population of the ground state of the atomic motion in the

optical potential wells are discussed.
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" I. INTRODUCTION

In the last decade, a large amount of both experi-
mental and theoretical work has been performed in or-
der to study the processes involved in laser cooling of
atoms [1,2]. In “optical molasses,” the minimum tem-
peratures that have been obtained experimentally are in
the range 1-10 pK and they correspond to rms atomic
momenta of the order of only a few photon momenta
ik [3,4]. Theoretically it has been possible to give an
account for such low temperatures in one-dimensional
(1D) configurations, for which cooling mechanisms can
be clearly identified and analyzed [5,6]. In 2D and 3D, ex-
tensive numerical calculations have been performed only
in a regime where the internal atomic variables can be
adiabatically eliminated leading to a Fokker-Planck-type
equation for the classical atomic center-of-mass motion
[7,8]. However, this approximation is not necessarily
justified, as observed from a comparison between the
Fokker-Planck approach and a full quantum treatment
in 1D [6].

In the present paper, we present a theoretical anal-
ysis of a 2D molasses configuration, for which cooling
occurs because of the Sisyphus effect {5]. This analy-
sis involves a semiclassical treatment, without elimina-
tion of the atomic internal state, and different quantum
treatments. We consider an atom for which the cooling
transition involves the ground state, with angular mo-
mentum J, = 1/2 and an excited level with angular mo-
mentum J. =-3/2. The two ground sublevels g, and
g- have periodic potential energies Uy (z,y) induced by
the coupling between the atom and the laser field. The
atom-laser coupling also gives rise to optical pumping
processes, transferring the atom back and forth between
the sublevels g and g_.. Sisyphus cooling originates from
the difference between U, and U_ and from the corre-
lation between the spatial modulation of Uy and optical
pumping processes. For example, an atom in state g, is
preferentially transferred to g_ by optical pumping pro-
cesses in a place where U, is larger than U_. Therefore
an atom initially in state g, has to climb a potential hill
for U, and it then jumps to g_ around the top of this
U, -potential hill. It is then put in a valley for U_ and
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it has to climb again a U_-potential hill before having
an appreciable probability of being transferred back to
g+. These changes of Zeeman sublevels lead to a fransfer
of atomic potential energy into fluorescence field energy
and they are the key dissipative element of the Sisyphus
mechanism.

The laser-field configuration we consider consists of two
standing waves along the z and y axes, linearly polarized
in the y and z directions, and with a phase difference o:

E(z,y,t) = 2E&, cos kz cos(wrt)

+2Eo€;, cos ky cos(wrt + a) . (1)

This configuration has been studied experimentally by
Hemmerich and Hansch [9]. Also one of us [7] and Finkel-
stein, Guo, and Berman [10] have calculated, after elim-
ination of the internal state, the semiclassical force act-
ing on a slowly moving atom in this configuration. The
same analytical dependence on the atom-laser parame-
ters were recovered for the friction and diffusion coeffi-
cients as in the 1D case. Such an approach, however,
relies on an adiabatic elimination of the internal state,
which is not generally valid. This becomes particularly
obvious in the present laser configuration because of a
divergence of the friction coefficient [7,10] in the vicin-
ity of the nodes of the electric field (1). A derivation of
the steady-state atomic distribution using a semiclassi-
cal force would then be technically difficult. The various
treatments of the present paper do not rely on the elim-
ination of the internal atomic state. They are therefore
free of any singularity around the field nodes. In fact
we find that the cooling process is dominated by the dy-
namics around the antinodes where the atomic density is
maximal. )

First quantum results for this 2D configuration have
already been published in {11]. They have been obtained
in the limit of large detunings between the laser and the
atomic frequencies by the secular method. This method
consists in calculating the steady-state populations of
the various eigenstates of the Hamiltonian describing the
atomic motion in U4 (x,y). A remarkable feature of these

5092 ©1994 The American Physical Society



30 TWO-DIMENSIONAL SISYPHUS COOLING 5093

results was the existence of resonances in these popula-
tions as a function of the amplitude of Uy. They are
due to the resonant tunneling between adjacent potential
wells of U,.. These resonances were not present in the 1D
configurations studied before and their observation would
constitute a novel demonstration of the quantum nature
of atomic motion in optical molasses.

In the large detuning limit, the theoretical treatment
of laser cooling is simplified because optical pumping pro-
cesses can be treated perturbatively, but this limit is hard
to reach in practice. The observability of the resonances
could not be easily deduced from the perturbative treat-
ment of [11]. The purpose of this paper is to give a more
complete study of the proposed 2D cooling configura-
tion and to investigate in particular the sensitivity of the
tunnel-induced resonances to laser detuning.

The paper is organized as follows. In the next sec-
tion we derive the master equation describing the 2D
atomic motion in the light field. We also introduce a
modification of spontaneous emission which simplifies the
calculations. In Sec. III the quantum equations are ap-
proximated by a classical stochastic process. Section IV
presents our method of numerical integration of the full
quantum equations of motion. Section V is devoted to
a detailed presentation of the secular method. Finally,
Sec. VI summarizes and compares the results obtained
with these various methods.

II. MASTER EQUATION
A. The light-shift potential and the relaxation

In this paper, we restrict ourselves to laser fields with
a saturation parameter sg < 1, which is known to lead
to the lowest temperatures. The parameter

202

involves the Rabi frequency Q = dEy/k characterizing
the coupling between the atomic dipole d and the field
amplitude Ej; of each traveling wave, the natural width I’
of the atomic excited state, and the detuning § = wz —wy4
between the laser (wz) and atomic (wa) frequencies.

1t is then possible to eliminate adiabatically the atomic
excited state and to write down an equation of evolution
for the restriction of the density operator to the atomic
ground state [12,13]. The general form for this master
equation is

% = £lo] = 1o, H] + ()retex 3)

In (3), the Hamiltonian H describes the motion of the
atom in the potential associated with the light shifts of
the various ground-state sublevels. The light-shift am-
plitude scales as %dsp and the spatlal periodicity of the
potential is related to the laser wavelength A = 27 /k, so
that H can be written

H= m + 4ﬁ580V(kT_") 9 (4)
where 7 and 7 are the position and momentum operators
for the atomic center of mass. For a fixed value of 7, V'
is an operator acting in the Hilbert space of the internal
atomic ground level.

For the particular laser configuration studied here (1),
the electric field lies in the -y plane and it has only o4
and o_. components when expanded in the standard basis
associated with the z axis. Consequently V is diagonal
in the basis |g+) = |g,m, = £1/2):

V(kf") — (X—f—(kF} V_(ki-g) . (5)

Using the Clebsch-Gordan coefficients for a J, = 1/2
Je = 3/2 transition, we find that the elements Vi are
proportional to I + (1/3)Is, where Iy = |€+|? are the
intensities of the reduced o+ components £4 of the field:

Ex(kz, ky) = V2(ie*™ cos kz T cos ky) . (6)

We then get
Vi(ke, ky) = %(cos2 kz + cos® ky & cos kx cos kysina) .

(7

As we have mentioned in the ‘Introduction Sisyphus cool-

ing occurs if the two potentials V. have different spatial
variations. This requires that sina # 0. In the following
we will give numerical results only in the case o = 7/2.

The relaxation part in (3) corresponds to transi-
tions between atomic ground-state sublevels due to
absorption-spontaneous-emission cycles. The rate of
these optical pumping transitions scales as I'sp and we
therefore write

(p)relax = F?OErela.x(P, kF) (8)

For the particular geometry studied here, the relaxation
operator is calculated explicitly in Appendix A. In what
follows, a simplified spontaneous-emission pattern is as-
sumed: fluorescence photons are emitted only along the
z, y, and z axes. This modification will greatly sim-
plify the numerical calculations required by the quantum

“treatment of the cooling process. Indeed it allows one to

use a grid for the atomic momentum distribution with
a step as large as the photon momentum #k. This sim-
plification is justified because the minimal rms atomic
momenta are found to be several photon momenta Ak.
For example, in 1D, the corresponding assumption intro-
duced an error on rms momenta on the order of 0.2%k
[14]. The resulting relaxation operator is

Crelm(p$ k"-") = - Z{V(k’l-"),p}

T DD DED Dl - i

e=+ m=x,y,z [#£¥m
(9)
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It involves a sum over the polarization (along the m =
z,y, or z axis) and the direction (backward £ = — or for-
ward ¢ = + along the ! axis) of the fluorescence photon.
In (9) the following operators have been introduced:

B, = _% (s+ - %8_) [+) ¢+
__\;_5 (e’_ — %&r) RIGE

By = = (£ + 36- ) b+ (10)

4 (e_ + 1£+) )1,

B = e+ Le_ iy,

where the o4 reduced components £+ of the laser electrlc
field are given in (6).

A feature of the relaxation operator (9) that will be
particularly useful in Sec, III is the absence of coupling
between the ground-state populations {£|p|+) and the
ground-state coherences {+|p|F). As shown in Appendix
A, the same property is true when the exact spontaneous-
emission pattern is considered, since the absence of cou-
pling is due to the trace taken over atomic motion along
the z axis.

We emphasize that, due to the factorization of dsg and
I'sg, the operators V and Lelax appearing in (4) and
(8) depend on neither the intensity of the light nor its
detuning from the atomic resonance. These operators
are only functions of the geometry of the configuration
which has been chosen. Note that this property relies
on the procedure used for the elimination of the excited
state. In particular, it requires that the contribution to
laser cooling, known as Doppler cooling in semiclassical
theory [15] and acting on a velocity scale v = T'/k, can
be neglected. Such a procedure is legitimate as long as
one considers velocity distributions with a rms velocity ¥
much smaller than the ones obtainable by Doppler cool-
ing, i.e., M#? < AL'/2.

B. Scaling laws

In a given geometry such as the one corresponding to
the field (1), and for 2 1/2 + 3/2 atomic transition,
several physical parameters are required to characterize
a given laser cooling situation. Concerning the atom,

one needs to know the atomic mass M, the wavelength '

A, and the natural width I'. In addition, the atom-laser
coupling is characterized by the Rabi frequency Q and
the detuning §. Actually, it is possible to choose reduced
units so that these five parameters are reduced to only
two independent parameters. A possible choice is to take
the reduced position R and momentum P operators and
the reduced time scale 7 given by

- -7 = Dsot. (11)

CASTIN, BERG-S@RENSEN, DALIBARD, AND MOLMER 50

The equation of motion (3) then becomes

dp _.A [ P?
—_— = —_ -——'—'VR crea.x 7R 12
ik o [p, 5 ( )]+ ax(p, B) . (12)

Since P = —i05, Eq. (12) involves the two dimensionless
parameters:

u0=__4h;£2’ A=

o , (13)

M|

where Ep = A%k?/2M stands for the recoil energy, i.e.,
the kinetic energy gained by an atom at rest after emis-
sion of a photon. The parameter up gives the magnitude

_of the light shift of the atomic ground level, measured

in units of the recoil energy Eg, and A is the detuning
measured in units of linewidth. Note that this reduction
of the problem to two independent parameters is useful
not only for studying the steady state of the atom, but

- also transient regimes, spatial diffusion in the molasses,

etc. Note also that if Doppler cooling had been kept,
a third dimensionless parameter, such as ¢ = Eg/kl,
would be required to characterize a given situation. The
treatment presented here corresponds to the mathemat-
ical limit € — 0, for given ug and A.

III. SEMICLASSICAL METHOD

Before going to the solution of the quantum equation of
motion, we present in this section an approximate semi-
classical approach, which has the advantage of being very
close to the intuitive picture of Sisyphus cooling. Apply-
ing this method we shall be able to evaluate the effect
of a truncation in the momentum space on various quan-
tities calculated in the steady state. This is important
information since such a truncation cannot be avoided in
the quantum calculation, which requires an expansion of
the atomic wave function or density matrix on a finite
subset of the momentum basis.

A. Evolution of the Wigner distribution

Our goal here is to connect the quantum equations of
motion (3) to the evolution of classical particles, with

 two possible internal states, moving in the bipotential

Uy and jumping at random between these two states.
This is reached in two steps. First, we write the master

- ‘equation (3) using the Wigner representation W (7, p, t) of

the atomic density matrix p(t). We then perform some
simplifications on the equation in order to be able to
associate to this equation a stochastic classical process,
which is studied using a standard Monte Carlo method.

The Wigner transform of the atomic density matrix
p(t) is defined as

WERD = oz [ Fu (P G0~ F)
x exp(—1ip - @/h) . (14)



For a given phase space point (7,5), W is a 2 X 2 matrix
acting in the Hilbert space associated with the internal
atomic ground state.

As we have seen above, the Hamiltonian H is diago-
nal in the basis g..,g_ and the relaxation term (9) does
not couple diagonal and nondiagonal matrix elements
in this basis. Therefore we will need in the following
only the evolution of the two quantities IL.(7,7,t) =
{ge|W (¥, P, t)|ge) with ¢ = *. The two quantities
I1 (¥, 5, t) and II_(7, P, t) give the quasiprobability den-
sity in phase space for finding the atom in states g, and
g—, at position 7, and with momentum p.

(8t +

|

Rl

and a similar equation for II_. In (15) the potential
= 4kdsoV, (16)

is the light shift of the |+) ground-state sublevel and 4 —
and .., are the optical pumping rates from |+) to |F)
internal sublevels. As expected, these rates scale with
the saturation parameter s¢ and are proportional to the
intensities of the o3 components of the la.ser electric field
given in Eq. (6):
1 2 o 1 2

V- = gToolé-1% 7+ =gTs0l&+]" . (17)

Equation (15) is the result of a systematic expansion
of the master equation, but contrary to the traditional
semiclassical treatment, we have kept the internal states
+. The first line accounts for Sisyphus cooling in the way
it was described in the Introduction, but now the atomic
motion is governed by additional force and dlﬁ'usmn-type
terms in the second and third lines.

We may derive from the first line of Eq. (15) an esti-
mate of the cooling efficiency for high-energy atoms. As-
suming that Il (7,5,t) = II_(F, 5, t) = II(F,5,£)/2 and
that these functions do not vary with position on the
wavelength scale, we get for the total, the kinetic, and
the potential energy A

2 (B) = U=~ U (v = 7-4))s

8
= —2—,;ﬁ630F80 sinfa , (18)

which is negative for § < 0 and sina 3 0. This cooling

rate corresponds as expected to a fraction of a light shift

1
_ (D3 D
Des = (Di’i DY,

18

_ R%K’T'so ( 11 + 5cgcy sina — 8¢2 + c2

78g8ysina
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The derivation of the equations of motion of II. is
lengthy, but straightforward. These equations of motion
take the form of two integro-differential equations, where
(7, P, t) is coupled to Il (F,5",t), with |p'— 7’| < 27k.
Since we expect the steady—state momentum distribu-
tions to have an extension p in momentum space of a few
fik, we now expand these equations of motion in powers
of ik /p to second order. The resulting equations are no
longer equivalent to the master equation (3) and some
specific quantum features of the atomic motion in the
optical potential wells may be lost. We obtain

-8 — UL (7) - 3,—,») My = =y Iy +y—4 I
- z ap-'(Fi+H+ +F‘+1'I )

i=x,y
t+ Z 8p,p, (DY, 11y + DX T ) (15)
i,j==y

ot

hdso per optical pumping time (I'so) ~*. The validity of
this result is limited by the fact that high-energy atoms
do not necessarily have a uniform distribution in space.

" As we see below, the classical Monte Carlo calculation

gives evidence of substantial channeling of atoms along
preferred trajectories in the z-y plane. This implies a re-
duction of the cooling rate, as can be understood by in-
troducing weighted averages in the derivation of d(E)/dt
(see discussion in Sec. IIIE).

. The forces F,; and F_, in Eq. (15) can be written,
setting ¢, = coskz, s, = sinkz, ¢, = cosky, 3, = sinky,

Fo,= ghkf‘so cos a(—8zcy,ce8y) =4F_, . (19)

The existence of the ﬁ_+ component implies a momen-
tum change of 7::_F_+ associated with each jump of the

atom from the — to the + sublevel. Both F\., and F._..
correspond to the local mean radiation pressure and have
a vortex-type structure. A similar vortex force has been
studied in [9] in a different 2D laser configuration for a
two-level atom and it has been related for that configu-
ration to the vortex structure of the Poynting vector S.
In our laser configuration, the local Poynting vector S
vanishes everywhere, but for a given sublevel of J; = 1/2

the radiation pressure is not proportional to S. This is
due to the different Clebsch-Gordan coefficients entering
in the coupling of the ground-state sublevel [+) (or |—))
to the o4 and o components of the laser electric field.
We note, however, that the vortex forces vanish when
a=m/2.

The “momentum diffusion tensors” D, and D_, in
Eq. (15) are given by

7858, sina
20
11+5cwcysina+c§—8c2) ’ (20)
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D*= be‘y
p_,=(P% —+)
+ (D£+ DY,

h%k2T'sg ( 1+ 3c,,cy sina + 2+ c

T 18\ sesysina

The momentum diffusion tensors D__ and D,_ to use
in the equation of motion for II_ are similar to (15) and
are obtained by replacing y by y —A/2 in {20) and (21).

B. Classical stochastic equations

We restrict ourselves to the particular case a = n/2,
where the most efficient Sisyphus cooling is expected, ac-
cording to (18), and where there are no vortex forces.
Therefore the second line of (15) vanishes. (Quantum
calculations of the kind described in Sec. V have been
performed also for @ = 7 /4 [16] and they show indeed
that the width of the atomic momentum distribution is
increased compared to the case o = 7w/2.)

The physical interpretation of the first line of (15) is
clear. It corresponds to the classical motion of an assem-
bly of particles with mass M, with two internal states
+ and —, evolving in the potential Uy, and randomly
jumping among + and — with the rates v and vy_.

The third line of (15) describes the momentum diffu-

sion associated with the relaxation part of the master
equation. Contrary to the first line, it is not possible to
give a simple interpretation of these terms in reference to
a classical process. For instance, the “diffusion tensor”
D, has in some locations (e.g., z = 0, y = A/2) nega-
tive eigenvalues, while one expects that a classical diffu-
sion tensor is always positive. Also the diffusion tensor
D_, can be nonzero in a place where v_, = 0, while
one would expect D_, ~ g?y_, in a classical stochastic
process where the particle randomly jumps from — to +
while receiving a random kick g. An equivalent problem
occurs for a two-level atom at the node of a standing
wave and it has been studied in detail in [12].

The negative components of the diffusion tensors are
reminiscent of the quantum nature of the atomic mo-
tion. Here we briefly summarize an explanation for these
anomalous diffusion terms. Consider an assembly of clas-
sical particles at rest at the location z = 0, y = A/2 where

the light is purely o_. If these atoms are all in the ground

state sublevel |+), they will experience a diffusive heating
due to the absorption and subsequent spontaneous emis-
sion of o_ light. This contributes to the D, diffusion

(a) S

gz C-1i/2 Csir2 Cusre _ gz &
B_i2  Bityz g 78—1/2

e  Cri/a

1172
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' smsy sina ) (21)

1+3cmcys1na+c +c

tensor and is illustrated in Fig. 1(a). The optical pump-
ing process via emission of light, linearly polarized along
the z axis, contributes to D4 _ as indicated in Fig. 1(b).
Now, quantum mechanics forces us to impose a finite po-
sition and momentum width to the atomic motion. The
quantum analog of the particles at rest in the potential
well is the oscillator ground-state wave function. The
~4+-— rate causes a depletion of the wave function and
this depletion is maximum at (z = 0, y = A/2), where
Y4— is maximum. With a quadratic falloff of v, _, we
find to first order in time that the position wave function
remains Gaussian, but with an increased width. The cor-
responding momentum wave function is therefore getting
narrower, which indicates a negative contribution to the
momentum diffusion coefficient. This negative contribu-
tion to D, even exceeds the positive terms, accounted
for above, causing the total D, to be negative in this
particular point. This quantum correction of course ex-
ists everywhere and it also has a negative sign in the
global minima, e.g., at (z = 0, y = 0), without, however,
causing the total D, to be negative.

We cannot mimic these negative terms by a classical
stochastic process. Therefore, in order to perform a clas-
sical Monte Carlo analysis of the problem, we have re-
placed (15) by a slightly different equation of motion.
Since we expect in steady state a strong spatial localiza-
tion around (z = 0, y = 0) (modulo the spatial periods
of U,.) for not too fast particles (|p] ~ P) in state |+), we
replace the position-dependent tensor D, by its value

- D44 in (0,0). We also approximate the diffusion tensor

D__ by a position-dependent scalar tensor D_., propor-

" ‘tional to the transition rate y_, from |—) to |4). Since

the feeding of II; involves hot particles in the |—) sub-
level, one can consider that these particles are almost
uniformly distributed in position space.: We therefore
choose the normalization factor in D_ 4 in order to have
the same spatial average for D_, and D_:

" 'We finally get the approximate equation for o = 7/2:

A(at J\ZZI - 87 — 07U () -8,;)1'[

L | Ui, B |

+(a2 + 85 (D++H++D_+l'[ ) (22)

. FIG. 1. The absorption of a o_ polarized
photon and emission processes involved in
:the diffusion terms. In (a) the process con-
_tribnting to D4, is shown and in (b) we show

" “the gbntribution to Dy_.

Laase



with _
1
D++ = —2—ﬁ2k21—‘80 5 (23)

D= %h2k27_+ = %fi.zkzl"so(c,c +ey)? . (24)
The classical stochastic process associated with (22) is
now very simple and it can be studied with a Monte
Carlo analysis by evolving a set of N particles with two
internal states + and —. The jump rates between these
two states are given by v4_ and vy_ and each jump is
accompanied by random kicks with a rms value &k along
each direction z and y to simulate the diffusion associated

with D_, and D,._. Between two jumps, the particles

evolve under the action of the potential Uy or U_ and
also receive random kicks to simulate the effect of D,
or D__.

From the Monte Carlo solution of (22) we can calcu-

late the phase space distribution H(MC)( 7, P,t). We can
also use the classical simulation to estimate the popula-
tion mp . of a given quantum state ¢g(7). We introduce
the Wigner function Wy (7,p) associated with ¢ (14)
and we obtain

Wo,é(t) =Tr (pl¢0,5) (¢0,c])
_ / &2 / &5 IL, (7, ) Wo (7, 5)

= = Z‘Se e,WO T:apt) » (25)

t—l

where 7;(t), §:(t), and €;(t) denote the position, momen-
tum, and internal state of the particle 7 at time ¢.

C. Results of the semiclassical eafculation

We have performed a Monte Carlo evolution for a set
of N = 4000 particles moving according to (22), for var-
ious values of up and A. All the particles start in the
internal level +, in the ground state of the optical poten—
tial U,.. In the range of values of ug con51dered in this
paper (up < 1000), we have observed that a time evo-
lution of 2000(T'so)~* is usually large enough to ensure

that the steady state is reached. An example of such an_

evolution, showing (p?) as a function of time, is given in
Fig. 2 for uo = 400 and A = —10. In what follows, we
have averaged the various calculated quantities over the
time interval 2000 < T'sgt < 4000, in order to decrease
the statistical uncertainty.

In addition to the rms momentum, we calculate in
steady state three other quantities: (i) the population g
of the ground state of the motion in U, (F) as indicated

in Sec. IIIB, (ii) the half width p. . at relative height

e—1/2

J dpyII(p.,p,), and (iii) the corresponding half width pe ¢
of the momentum distribution along & = (€, + &,)/v2 V2.
For a Gaussian distribution, the last two quantities coin-
cide with the rms momentum along a given axis, so that
one expects, for such a Gaussian distribution, (p?) =
2p2; = 2p;¢. In experimental investigations, the half
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of the momentum distribution along &, ie., of ~
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" "FIG. 2. The temporal evolution of (p?) in the semiclassical
Monte Carlo evolution of 4000 atoms, for parameters uo = 400
and A = =10.

width of the momentum distribution along one specific
direction may be a more relevant parameter than (p?).

The variations of (p?), 2p2 ., 2p2 ;, and = as functions
of ugp are plotted in Figs. 3(a) and 3(b). The detuning
chosen for this figure is A = —10, but we have varied A
between —5 and —30 without any qualitative change.

We see in Fig. 3(a) that (p?) is only defined for rela-
tively large values of ug. The minimum +/(p?) = 9.0%k,
corresponding to a rms momentum of 6.4k per axis,
is found for uy = 300. Below ug = 200, this quantity
does not reach a steady state, but increases indefinitely
with time, as we have checked in using the much longer
mteractlon time I'st =20 000, instead of I'st = 4000.
This divergence is due to escape channels along the axes
z = +y[)], as discussed in further detail in Sec. IIIE.
The existence of such escape channels has been predicted
independently by Dum and Zoller [17]. This channel-
ing effect is most prominent for small uy. For instance,
Fig. 4 shows two momentum distributions obtained af-
ter an evolution during 2000(T'so)~!, for (a) up = 100
and (b) up = 400. For ug = 100, many particles are
found with a high momentum such that |p.| =~ |p,|. For
ug = 400, on the contrary, the distribution does not show
any evidence of escape channels

The variations of pe . and p? ¢ shown in Fig. 3(a) are
similar to those of (p 2), but the corresponding minimum
values of Pz, 3.9%k, and p. ¢, 2.2/ik, are reached for much
smaller values of the light shifts, up ~ 40 and ug ~ 20,
respectively. The fact that p. ¢ can become much smaller
than p.. at low values of ug is again a consequence of

. the channeling of atoms in momentum space along the
lines p, = %py,.

As is commonly done to present experimental data,
we can deduce from our results for (p?) and p2,, p2;, 2
“temperature.” As is apparent in Fig. 3(a) for large uy,
this temperature is found to vary linearly with uo. By a
linear fit for uy > 400, we have found the approximate
laws
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2
kBT(pz) = %pﬁ ~ (0.19ug + 21)Eg , (26)
Pio ,
ksTp, . = M -22(0.34ug + 19)Ep , (27)
Pie
kBTpg,E = M o~ (0.24‘UO + 15)E}E - (28)

The variation of mp as a function of ug is reproduced in
Fig. 3(b) for A = =10. As for p, , and p. ¢, a steady state
can be reached even for low values of uy. The maximal
value wy = 0.049 is obtained for ug ~ 80. We can also
use mp to define a temperature T,,. We introduce the
2D harmonic oscillator corresponding to the harmonic
part of the potential U, around z = y =0, i.e., with an
oscillation frequency Q45 given by

M@, = 282U, + 82U,)(0,0) = —4hk?6s, , (29
osc 2 v ‘

s0 that AQosc = /2uoER. The temperature Ty, is such
that the population in the ground state of the previous
2D harmonic oscillator is 7 in thermal equilibrium. For
large values of ug, the approximate law follows:

mosrcr o Mlpsc,

kBTy, = — — o~ 2
z (- 7o) Vo

o~ (0.3%uo + 31)Eg ,

(30)

which gives a temperature larger than (26)-(28). The
behavior of g as a function of ug corresponding to the
law (30) is plotted as a dashed line in Fig. 3(b). This
shows that (30) is a good approximation even for low
values of ug. . )

The discrepancy between the four temperatures that
we have deduced from the phase space distribution is a
good illustration of the non-Gaussian character of this
distribution. For instance, the fact that the rms kinetic
energy (p?)/2M is smaller than p? /M and p2 /M, for
uo > 300, indicates that the momentum distribution is
less extended than a Gaussian distribution. This dis-
crepancy should also be considered as a warning against
characterizing a given laser cooled steady-state distribu-
tion by a single temperature parameter.

Another piece of information that we have extracted
from these Monte Carlo evolutions for different uy and
A is a typical time constant for the cooling process. We
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FIG. 3. The results of the semiclassical calculations for (a)
(#*) (%), 2 (0), and 2p? . (+), where pe,. and p.. are
the half widths at the relative height e~ /2 of the momentum
distributions along z and ¢ and (b) the population of the
ground state of the atomic motion mo (solid line). The dashed
line gives the population deduced from the linear fit of the
“temperature” T, with %o presented in Sec. ITI C. The results
were calculated with a detuning of A = —10 and evolution of
4000 atoms in 4000/(Tso).
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FIG. 4. Two momentum distributions ob-
tained by the semiclassical calculations. The
channeling of the atoms along the lines
P= = +p,, is clear for the low potential depth
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have fitted by an exponential law the long time part of
the temporal behavior of (p?) (such as the one shown
in Fig. 2), where this quantity differs by less than 30%
from its steady-state value. The same type of fit was
performed for mo(t) on the time interval where my differs
by less than a factor 3 from its final value. The results
of the two fits are nearly equivalent and lead, for large
uo [up > 400, as in (26) and (30)], to a time constant on
the order of |6|M/Thk? = (I'sg) ™ 1uo/8.

D. Truncation effects

In a classical Monte Carlo evolution, the momentum
of a given atom can take arbitrarily large values; this is,
for instance, reflected in the existence of escape chan-
nels along |p.| = |py|, causing a divergence of the time
evolution of (p?) for up < 200. On the contrary, in the
quantum calculations based either on the evolution of
the density matrix or on the secular approach, one uses
a finite grid for the momentum distribution, requiring a
truncation in momentum space. It is therefore interest-
ing to use the classical Monte Carlo evolution to study
the consequences of such a truncation. This can be done
simply by adding to the equations of motion (22) the con-
dition that the momentum of the particle has to remain
lower than a given bound. If the momentum becomes
greater than this bound, the particle does not contribute
to the average anymore. This simulates absorbing bound-
ary conditions for the evolution of the atomic density
matrix.

The boundary is chosen to mimic the grid used for
the quantum calculation. It is defined by the maximal

&)/V2:

ilpm +p,] < NmaxV2hk With nmax = 15 . (31)
V2

The value of the cutoff parameter 1., = 15 is the one
used for the quantum calculations in Secs. IV and V.
For such a low value of nmax, the typical evolution time
necessary for the system to reach a steady state is much
shorter than in the absence of truncation. We have as-
sumed that it is less than 500(I'sp)~! and we have per-

formed an average over the time interval 500 < I'sot <

1000. In order to improve the statistics, an initial number
of 8000 atoms is considered. The results for the various
quantities of Sec. III C obtained with the truncation are
plotted in Fig. 5(a) with the same symbols as in Fig. 3(a).
In Fig. 5(b), the dotted line corresponds to the values of
mo calculated without truncation and already given in
Fig. 3(b). The strongest modification due to the trunca-
tion occurs for (p?), which is now minimal for uo = 100,
instead of ug = 300 in the absence of truncation. This
is a consequence of the fact that the escape channels are
now closed. The modifications on the half-widths and on
the population of the ground state mp are much less im-
portant, at least for the values of up considered in Fig. 5
(uo < 400). Consequently, these last three quantities can
be evaluated in a reliable way in a quantum calculation

having the boundary condition (31).

E. Channeling of the atoms

The classical Monte Carlo simulations give evidence of
a threshold on the potential depth for the cooling to be
effective. When ug is decreased below a value ~ 200, the
mean atomic kinetic energy (p?)/(2M) no longer reaches
a steady-state value, but is increasing linearly with time.!
This increase of (p?) does not imply a general escape of
the atoms toward high momenta since the population
mp of the ground state of the optical potential wells still
reaches a nonzero steady-state value. It is due to a chan-
neling of a finite fraction of the atoms along the rotated
lines:
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FIG. 5. The results of the semiclassical calculations per-
formed with a truncation in momentum space corresponding
to a cutoff parameter nmax = 15 [see Eq. (31)], for (a)(p?)
(%), 292 . (¢), and 2p2; (+) and (b) mo (solid line) as func-
tions of up. The dotted line corresponds to the predictions
of Pig. 3(b) (obtained without truncation). The results were
calculated with a detuning of A = —10 and evolution of an

initial number of 8000 atoms in 1000/(I'so).
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in momentum space, where they reach very high veloci-
ties (see Fig. 4). ) ) S

In order to get some understanding of this channeling,
we consider the evolution of a jet of atoms with a large
velocity along €,. Since we expect the longitudinal ve-
locity v, to evolve on a time scale longer than the one
for the transverse velocity vg, we consider v, to have the
fixed value vg, but we keep v¢ as a dynamical variable.
As shown in Appendix B, we are now left with a 1D prob-
lem, with the following optical potential wells and optical
pumping rates, deduced from an average of (16) and (17)
over 7

(yar)y = %1"30(1 F coskg) (34)
Uiy = ;héso(2 + coske) (35)

where £ = kv/2. The spatial modulation in (34) and
(35) leads to a Sisyphus effect along the £ axis, in a way
similar to the 1D linllin standard model on the J; =
1/2 = J. = 3/2 transition (linllin is an abbreviation
for a setup of two counterpropagating laser beams with
orthogonal linear polarizations).

This leads to the following qualitative understanding
of the channeling along 7. Consider a value of ug lead-
ing to efficient transverse Sisyphus cooling along the &
axis so that the atoms of the jet keep their momentum
quasiparallel to the 7 axis. The atoms also accumulate
in position space at the bottom of the potential wells
(35), i.e., in the vicinity of the lines k¢ = 0 [2x] for the
|[+) sublevel and the lines k§ = = [2m] for the |—) sub-
level. Along these lines, the laser electric field is purely

circularly polarized and there is no longitudinal Sisyphus

effect. The efficiency of the longitudinal cooling (i.e.,
along the 7 axis) is therefore decreased by the transverse
spatial localization of the atoms. This suggests that the

threshold uﬂ for longitudinal cooling, of py, may be larger

than the corresponding threshold ug for the transverse

cooling. For values of ug between ug and ug, atoms are
captured and channeled by the transverse cooling, but
their motion along 77 is heated.

This discussion is supported by the quantitative treat-
ment of Appendix B, where we derive the explicit values
of the thresholds for the existence of a finite momentum
variance. We obtain ui- & 100 and u}l = 5ug /3 = 165.

We can extend the present discussion to the search for
directions of channeling other than the rotated axes £ and
7. A first condition for the direction 7 to be an escape
channel is that the optical potential wells Uy averaged

In a more exact treatment, including Doppler cooling, this
increase stops when the mean kinetic energy reaches the
Doppler limit proportional to A[d| for 8] > T.

CASTIN, BERG-SPRENSEN, DALIBARD, AND M@LMER 50

along 7 are spatially modulated transversally to 7. The
only possible directions, apart from £ and 7, are found
to be the laser axes ¢ and y. These axes, however, do
not obey the second condition, which is a modulation of
the averaged optical pumping rates leading to Sisyphus
cooling. The averaged rates {y4), and {y_), are found
to have exactly the same spatial dependence in «, so that
no cooling along = can occur. This result can be stated
in the more intuitive way: after averaging along y, the
action of the laser standing wave along y becomes trivial,
and one is left essentially with a 1D lin||lin configuration
along 2, with no sub-Doppler cooling.

IV. INTEGRATION OF THE QUANTUM
MASTER EQUATION

In this section we describe how to perform a numerical
integration of the full quantum master equation (3) for
the atomic density matrix, with the simplified relaxation
operator (9) derived in Appendix A. Such a numerical
integration requires fewer approximations than the other
treatments used in this paper. It is used as a test of the
classical Monte Carlo simulation (in Sec. VI) and of the
secular approximation (in Sec. V).

Since the number of components of the atomic density
matrix p scales as (Pmax/fik)*, where pmayx is the radius
of truncation in momentum space, this calculation is lim-
ited to not too large values of ppax/hk. Even so, the size
of p would make a derivation of the steady-state den-
sity matrix by a direct inversion of the master equation
technically difficult. We therefore perform a temporal

-evolution of the density matrix, until the steady state

is reached. It is also easy in this way to use the sparse
character of the master equation in momentum space.
In the numerical treatment of this section, the use of

_symmetries of the laser configuration leads to a substan-

tial reduction of the size of the evolved objects. In the
absence of laser light, only spontaneous processes occur
and the corresponding evolution of the atomic density
matrix is invariant under any translation in real space
and under any reflection or rotation acting simultane-
ously on internal and external variables. These symme-
tries are partially broken by the laser field and one is left
with a discrete group of symmetry operators acting in
the atomic Hilbert space such that

Sclplst = ztspsf] , (36)

where the Liouvillian operator £ is defined in Eq. (3).
The translational symmetry of the laser-field configura-
tion leads to a natural discretization of the problem dis-
cussed in Sec. IV A below. In Sec. IVB we show how
reflection symmetries and a combination of a translation
and a change of internal state may be applied to reduce
the numerical problem. The practical implementation,
i.e., the algorithm of integration and the choice of the
time increment dt in the temporal evolution, are given in
Sec. IVC.
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A. Spatial translation symmetries
and discretization of the problem

Consider the unitary operators T'(@) representing the
spatial translations:

T(@) = exp(—if- @/R) . (37)

In order for T(&) to generate a symmetry in the sense of
Eq. (36), it is sufficient that the laser electric field (1) is
preserved in the following way:

T@)E(F )T (@) = £EF,¢) . (38)

The minus sign is allowed in Eq. (38) since the coefficients
of the master equation have a quadratic dependence in E.
The largest translational symmetry group for the present
field configuration is found to be generated by T' (/\ef) and
T(A&,), where & and &, are the unit vectors (32) and
(33) and the rescaled wavelength A = A/v/2 has been
introduced. T(;\é'g) corresponds simply to a translation
of A/2 along each laser axis, which changes the sign of
each of the standing waves a.long z and y.

The invariance by T'(A&) and T(A&,) corresponds in
real space to a square lattice structure of E(r,t) along
the rotated axes u and v. It is convenient to introduce
also the reciprocal lattice {K} given by

B = E(neee +n,é, ng,n, integers , 39
(323 n€n £+ Ty

where the rescaled wave vector is k = 2w/ X =EkvV2. We
note that the single photon wave vectors I_c:c Jy = kézzy
do not belong to the reciprocal lattice, contrarily to the
linear combinations I-c:,, + Ey, 21?,,., 21?1,.' Our choice for
a unit cell of the reciprocal lattice (the so-called first
Brillouin zone) is sketched in Fig. 6, together with a few

reciprocal vectors K. This unit cell can be described
analytically by

1- 1
—=k < —k.
Sk <aea, < (40)

It amounts to writing in a unique way any atomic mo-
mentum 7 as

P=hg+K), 4

where ¢ is in the first Brillouin zone and K is a vector
of the reciprocal lattice. The so-called Bloch vector §
determines the way the plane atomic wave |p) transforms
under T'(@):

T(@)|p) = e *T%|p) . (42)

The existence of spatial periods of the problem has an
important consequence on the structure of the master
equation. Any dyad |51)(f2|, with f; = §+ K; (B = 1), is
invariant under unitary transformation by T'(@) and can
thus be coupled by time evolution only to dyads of the
same form |py/)(52'|, with 7 = @’ + Ki/. In our inte-
gration of the master equation, we have to deal therefore
only with the matrix elements of p between momentum

5101

FIG. 6. The basic unit cell in reciprocal space, or the first
Brilloun zone. Lattice vectors are indicated by the eight
equivalent points, shown as filled circles.

vectors of the same Bloch vector, i.e., we are only con-
cerned with the restriction of p inside each subspace of
a given translational symmetry. These restrictions corre-
spond to the following submatrices:

pg=PypPy; with Pp=> |§+ R} G+ K|, (43)
R

where the vector K belongs to the reciprocal lattice. The
matrix eleménts of p between momenta of different Bloch
vectors ¢ # ¢’ are not coupled to the ps and are expected
to decay exponentially to 0 with time.

A priori a given pz couples to all the p;» matrices be-
cause of spontaneous emission, the Bloch vector shifting
from ¢ to

' =§+k,-kY+ R (44)

under the absorption of a laser photon of momentum
kkyz, followed by the spontaneous emission of a photon of
momentum fkg. In Eq (44), s’y is the projection of ks
on the zy plane and K is the approprla.te vector of the
reciprocal lattice bringing § 7+EL—k S’y back into the first
Brillouin zone. For the simplified spontaneous emission
pattern of Sec. II, we find that a given py is coupled to
itself and to a single other pg. Indeed, when ks is along
one of the laser axes = or Y, kL - ks is a vector of the
reciprocal lattice and §' = ¢. If ks is along the z axis,
l:;’y vanishes and ¢’ = ¢ — ke, up to a vector of the
reciprocal lattice.

B. Reduction of‘ the number of variables
due to symmetries

The previously investigated spatial translations are not
the only symmetries of our laser-field configuration. On
the J, = 1/2 — J, = 3/2 atomic transition considered
here, one can combine the exchange of the ground-state
sublevels |+}, — |F), with the spatial translation of /2
along y, which exchanges the o1 components £ of the
laser electric field. In this way, the B,, operators in (9)
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and the whole Liouvillian operator are clearly invariant
under the action of

Sexen = (| )= +-H+T(2/28,) . (45)

We examine also the reflections inside the zy plane. As
it is apparent in expression (1), the laser electric field is
invariant by the reflections I, and I, with respect to the
laser axes. From Eq. (9) we see tha.t I, and I, are sym-
metry operators for the whole Liouvillian operator the
various operators B,, and our simplified spontaneous-
emission pattern are unchanged under the action of I,
and I,,. For a general Bloch vector §, this amounts to con-
necting the steady-state values of the matrices pg, p1, 4,
p1,g and pr,1,4- One has, for example,

P = LI 1t (46)

Relations of the form (46) are particularly interesting
when ¢, I.q, 1,4, and I,I,§ coincide. This is found to be
the case for one particular family of Bloch vectors only:

§=0, ¢ =—ké,. (47)

In this section, we will restrict ourselves to this family.

For the particular value @ = 7/2, to which all the
explicit calculations of the present paper are restricted,
£, isinvariant and £_ is changed into —&_ by a reflection
in the £ axis, so that the corresponding operator I is
a symmetry operator. In this case, it is equivalent to
introduce, instead of the set I, I,,Is, the symmetries
LI, = I, 1,1 and I.

We now want to deal numerically with the two coupled
submatrices py defined in Eq. (43) with Bloch vectors § =
0 and § = —k€,. They are represented more conveniently
in the following way:

pE (0, (M, n 0, iy) = (£,FP|pl£, 7)), (48)
with 79 = kk(n{)& + n$e,) — kkize, (5 = 1,2) and
where i; = 0 comesponds tod=0and ig =1to §=
—ké;. The truncation in momentum space is performed
by restricting the indices in (48) to

—(Pmax+1) < nél),nfil), néz),nflz) Snmax+1. (49)
We take absorbing boundary conditions, assuming that
the density matrix is vanishing on the boundary of the
domain (49), i.e., when one of the indices ng,’,z) equals
F+(Nmax +1).

We restrict ourselves to initial density matrices pg(0)
(7= 0 or —ke) invariant by all the symmetry operators
S we have considered:

p2(0)S" = py(0) . (50)

Equation (36) then ensures that pg(t) is invariant by S for
any later time ¢. This observation leads to the following
reduction of the problem.

First, through the Seyc, transformation given in (45),
one can express the density matrix in the |—), ground-

state sublevel as function of the density matrix in the
{+). sublevel. Considering the matrix elements of both
sides of (50) between |—,p1) and |—,53), with S = Sexch,
and using (37), one gets indeed:

p(_) (nél), nS,l) , néz), ngz)’ iq)

= (—1)i°"°hp(+) (n?), n,(71), néz), ngz) ) lq) ) (51)

with fexep = n(l) + n(l) + n(z) + n This reduces the
number of components of p by a factor of 2 and we omit
the superscript *.

Then, setting S equal to each of the symmetry oper-
ators I, I, It I,), and I, we find that it is sufficient to

consider elements of p with ns,l) > M > 0. This leads
to an additional reduction of the number of components
by a factor of 8.

C. Numerical implementation

In our program, we consider as independent compo-
nents of p the matrix elements with an internal state |+),
and with indices n,(,l) > ngl) > 0 in the domain (49). The
number of such components, with ¢, = 0,1, is

= (2%max + 3)2(Tmax + 2) (max + 3), (52)

a factor almost 16 smaller than the original number
4(2Nmax + 3)%. For the largest nmax We have considered
(nmax = 15), N is on the order of 3 x 10°. In order to
take into account in an automatic way the previous sym-
metry relations, p is represented numerically as a one-
dimensional complex array with N components:

Ak) = p(n?),'n.fll),néz),n,(f),iq) for 1<k<N, (53)

(1.2)

where k is an integer function of the ng ;- and i, indices

k= f(n(,n,n n@ ). (54)

This function f is defined on the whole set (49) and in-
cludes all the symmetries.

Numerically, the quantum master equation reduces to
a first-order ordinary differential equation, with time-
independent coefficients, on the N components vector A:

d

th MI[A]. {(55)
If one keeps only the nonzero coefficients of M, the evalu-
ation of any component M[A](k) requires a small number
of multiplications, on the order of 100. In addition, all
the nondiagonal multiplicative factors M (k, k') originate
only from the atom-laser interaction. Therefore, they do
not depend on the atomic momentum indices, i.e., on k,
up to a permutation, and they can be stored without re-
quiring a lot of memory. For instance, the contribution
of the optical potential U, to the evolution of p(+), i.e.,



(1/iB)[Uy, p')], involves a coupling of a given A(k) to
itself and to 16 neighboring states in momentum space.

The solution of the differential equation (55) is approx-
imated numerically by a fourth-order Taylor expansion of
the exact propagator between t and t + dt:

eMdt ~ 1 4 Mdt + (Mdt)?/2 + (Mdt)3/6 + (Mdt)*/24 .
S ' (56)

Expression (56) requires four evaluations of the action of
M on A. The condition of stability of this scheme is

1+ udt + (udt)?/2 + (udt)>/6 + (udt)*/24] <1 (57)

for any eigenvalue p of the matrix M. Physically, we
expect the maximal real part «ymax of the u’s to be on
the order of the typical excitation rate I'sg of the atoms
by the laser field and the maximal imaginary part wyax of
the u's on the order of the largest Bohr frequencies of the
Hamiltonian (4). An overestimate of wmay is obtained as
the sum of the maximum Bohr frequencies of 52/2M on
the finite sample (49) and V:

A,
2M
We are mainly in a regime of large detunings (/6| > T'),

80 that wmax is much larger than 7y,,x. One therefore
solves (57) for u = iw, w real, which gives

2n2 ) +4]6|so . (58)

Wmax < Omax =

lwdt| <2v2. - (39)

We finally keep as an approximation for the maximum

acceptable time step

_2V2

Bt nx = . (60)

wma.x

In our numerical calculations, we have made the choice
of time step dt == df,,.y, assuring the convergence of the
time evolution. In this way, the time evolution of the
matrix elements of p between eigenstates |1) and |2) of
H with an energy difference Eg3 — E; ~ Awgmax is not
accurate, but the fast oscillatipp terms (1]p|2) are rapidly
damped to a value smaller than a population (1]p{1) or
{2|p|2) by a factor fivmax/|E2 — E1| ~ Ymax/Wmax < 1.

‘We have also introduced an algorithm for the time evo-
lution relying on a splitting formula

eMdt ~ e%dt/Z(l +Rdt)eﬂdt/2 , (61)

where #H stands for the Hamiltonian part of the Liouvil-
lian and R represents Lieax. The exp(#dt/2) terms are
expanded to order 4 in dt. Note that R is not treated
to the same order in (61). This is legitimate since the
rates in R are much smaller than the Bohr frequencies
in H. In this way, the relaxation part, which requires
more multiplications than the Hamiltonian part, is eval-
uated only once per time step dt and the total calculation
time is reduced. The numerical results derived from this
splitting technique with the time step dt = 2dinax are
found to be in good agreement with the ones of the full
fourth-order scheme with the smaller time step dtax-
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The results derived from the numerical integration of
the master equation will be presented in Sec. VI and
compared to the prediction of the other approaches used
in this paper.

V. SECULAR METHOD

We now come to the secular approach, which is the
last method that we have used to study the 2D Sisy-
phus cooling. It consists in determining perturbatively
the steady state of the cooled atoms in three steps. First
we find the eigenstates ¢; and the eigenenergies E; of the
Hamiltonian H entering in the master equation (3). We
then include the relaxation part of the master equation
by calculating the rates of transfer -y;; between any two
eigenstates ¢; and ¢;. Finally the steady state is char-
acterized by the set of populations m; of the eigenstates
which balance the rate equations

0=7f; =— Z'yi_,j’rr,' - Z’)’j.ﬁ'n’j . (62)
7 J

All the relevant steady-state quantities, such as position
or momentum distributions, can then be deduced from
this set of populations and the known eigenstates.

This solution is only an approximation of the real
steady-state density matrix since it amounts to neglect-
ing any nondiagonal matrix element (¢;|p|¢;) between
two different eigenstates of H. In steady state, we have

®)

0= i@i{_EQ(tﬁ.-IPI%) + (il (P)retax|Bs) - (63)

Consequently the secular approximation is valid if, for
any pair ¢;,¢; with ¢ # j, the steady-state value of
(¢:|p|@;j) can be assigned to 0 by symmetry reasons or if
the Bohr frequency (E; — E;)/k is much larger than the
transition rates (~ I'sp) originating from (f);clax. Below
we shall demonstrate that the relevant minimal Bohr fre-
quencies of H are of the order of the recoil shift Er/A.
The secular approximation is then valid if

Hl'so « Ep <= uo < |6|/T . (64)

This condition implies very large detunings for a given
light-shift potential. It is much more restrictive than the
one required in 1D [6]:

hl'sp € \JugERp <> Jue < /T . (65)

The reason for this change is simply the increase of de-
generacy when one passes from 1D to 2D. For instance,
for a given Bloch vector and in the energy range be-
tween —ugFEgr and 0, corresponding to the bound lev-
els, there are uoFEr/AQosc ~ +/Up states in 1D and
(20ER/FQ0sc)?/2 ~ ug states in 2D. The average split-
ting between these levels therefore is reduced from ~
VuoER in 1D to ~ Epg in 2D. A similar argument on the
density of states in the three-dimensional case shows that
the Bohr frequencies between adjacent states could be
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very small, much smaller than the recoil energy. Conse-
quently, the secular approach will probably be very ha.rd
to use in 3D.

A. Eigenstates and the energy spectrum

Here the diagonalization of the Hamiltonian H given
in (4) is considered. Since V is diagonal in the ba-
sis (g4,9-), each eigenstate factorizes into an internal
atomic part |g+) times ad external part, which is an
eigenstate of Hy:

Hj:,;z m + 4ﬁ580Vi (kT) .7 7 ] (66)
We note that the relation V_ (km, ky) = Vi(kz, ky + 7)
implies that the spectra of H, and H_ are identical and
that the eigenstates of H__ can be deduced from thoserf
H, by a spatial translation.

In order to exploit the symmetries of V.., we use the
coordinates (£,n) corresponding to the rotated basis (32)
and (33). In Fig. 7(a) we show a surface plot of V.. The

potential has two types of minima, global ones of value_

—1 situated at (£,5) = (n,m])) and local ones of value
—1/3 in positions (§,7) = ((n+ 1/2)X, (m + 1/2))\) The

(a) 0]

\ \\\\‘\‘

sl my
T e il
““‘\‘n"’l[‘;llw
u’:‘l"’ ’f"
lmﬁ

—uckr

FIG. 7. (a) A surface plot of the potential V; and (b) the
energy spectrum for uo = 123 shown together with a cut
through the potential V. along the line { = 7, with 2D har-
monic levels indicated. The dotted line shows the analog vari-
ation of V_.
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maxima, where V, (£,n) = 0, are attained at points such
as (€,1) = (3, (m-+1/2)3) or (€,1) = ((n+1/2)4,m3).
As deduced from the translational symmetry between V.
and V_, the global minima of V., coincide with the local
minima of V_, whereas the maxima for the two potentials
are at the same locations.

As it is known from the Bloch theorem, each eigenstate
of H. can be written as a product of a periodic function
of ¢ and n with period }, times a plane wave exp(i7 - 7),
where the Bloch vector ¢ is chosen in the first Brillouin
zone (40). The energy spectrum consists of allowed en-
ergy bands separated by forbidden gaps. An example is
plotted in Fig. 7(b) for wy = 123. For comparison, the
variations of V.. along the line £ = 7 (i.e., y = 0) with

_harmonic levels are indicated. There is clearly a one-

to-one correspondence between the lowest energy bands
and the lowest harmonic levels in the main potential well.
The harmonic oscillation frequency in the main potential
well equals
- S ER -
2ug—— 67
g (67)
[see Eq. (29)] and the one corresponding to the harmonic
approximation of the local minimum is

Qosc =

2ug E

Q‘,:)sc = T()'—ER' - (68)

In Fig. 7(b), an energy band corresponding to the first
bound level in the local potential well can also be identi-
fied. To emphasize this point, we have shown in Fig. 8,
as a function of ug, the eigenenergies of H for the given
Bloch vector § = (k/4)é,. One notes the existence in the
low part of the spectrum of energies with different slopes,
the first ones corresponding to states localized around the
bottom of the global potential minimum and varying as

@25 — Ug = (N+ 1)'\/2’“0 — UQ,

N2>0 (69)
and the second ones to states localized around the bottom
of the local potential minimum and varying as
EN
Eg

—(N'+1) 2“0 -

(70)

7 (N’+1)

Av01ded crossmgs bgtween states of these two types can
appear’ for certain_ values of the potentla.l depth, ie.,
ug ™~ 85 or ug ~ 120 when the eigenenergies of two
states, one of ea.ch cla,ss, come close. Figure 9 shows
density plots in one spatial period of the wave functions

- participating in the avoided crossing around up = 120,

shown for three values of the potential depth “before,”

“at,” and “after” the avoided crossing. Before and after
the avoided crossing, one clearly identifies the two types
of states, each being localized around a potential min-
imum. At the avoided crossing, tunneling through the
barrier separating the two wells causes a mixing of the
two types of states so that the two eigenstates of H are
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0.00 “ 7 B. Degenerate and quasidegenerate levels

Since the validity of the secular approximation requires

-o.10 Bohr frequencies (E; — F;)/k large compared to the re-
_ ; laxation rates, the quasidegeneracies that may occur in
“5 4 g the spectrum of H deserve particular attention.
g 020K The first example of quasidegeneracy occurs for two
=

states belonging to the same band, with different Bloch
vectors. Fortunately, the translational invariance of the
problem along the square lattice of step A implies that the
steady-state density matrix is also invariant under these
translations. Therefore no steady-state matrix element

> - can exist between two states corresponding to different
i toa 128 u, 150 , 1 200 . Bloch vectors and we do not have to worry about such
closely spaced energy levels.

We now choose a given Bloch vector and we review
the quasidegeneracies that may appear in the spectrum
of Hy for this 4. In the low part of the spectrum, the
width of the energy bands is so small that the quasi-
degeneracies can be investigated for the particular value
¢ = 0 only. Then the eigenvalue problem has a noncom-
mutative group of symmetries, the so-called Cy4, group,
delocalized between the two wells. A third state also ap- generated by the reflections I, and I, with respect to
pears in Fig. 8, with an energy between the two levels  the laser axes (see Sec. IV) and the reflection I, with
participating in the avoided crossing. This third state  respect to the £ axis. According to Wigner’s theorem,
does not couple to the two other levels because of its the systematic degeneracies are given by the dimension
different symmetry. of the irreducible representations of the symmetry group

~0.30 F

01 d

—0.40L

N - > L1 = e

FIG. 8. The eigenenergies calculated for a Bloch vector
g = (k/4)€ in a range just below zero, shown as a func-
tion of ug. The eigenenergies are given in units of uoEg.
One observes several avoided crossings. In particular, around
uo ~ 85 or ug ~ 120 an avoided crossing involving the first
bound state in the local potential minimum appears.

Re/m

k¢/n

0
Xn/n

0
kn/n kn/m

FIG. 9. Density plots of the wave functions participating in the avoided crossing around up ~ 120, with band indices n = 21
and n = 23 (n = 0 corresponds to the ground state). The wave functions in the upper row correspond to n =23 for values of
%o equal to 111, 120, and 123 from left to right. The coexistence of two spatial components in each eigenstate for uo = 120 is
quite clear.



5106

in the Hilbert space. Two kinds of irreducible represen-
tations are found. The first one involves one-dimensional
invariant subspaces, corresponding to eigenvectors of H
with the same symmetry with respect to I, and I,. It
leads to no systematic degeneracy. The second kind in-
volves invariant subspaces of dimension 2, giving rise to
a twofold degenerate eigenvalue of H. The correspond-
ing eigenvectors |1) and |2) can be chosen with opposite
symmetries with respect to I, and I,. These two eigen-
vectors are interchanged by the a.ctlon of I (i.e., [2) =
It|1)). As the steady-state density matrix p®® is invari-
ant under the symmetries I, and Iy, the matrix element
(1]p*|2) vanishes. The invariance with respect to I¢, on
the other hand, ensures that the populations (1}p°¢|1)
and (2|p**|2) are equal.

In order to estimate the minimum energy gap between
the lowest lying bands, we perform an expansion of the
problem in powers of the Lamb-Dicke parameter kao,
where ap is the spatial extension of the ground state

(2ug)t/%

To second order, the 2D harmonic oscillator spectrum is
recovered. (N + 1)-fold degenerate levels are bunched in
multiplicities £x located at energies (IV + l)ii.fl,,ﬂc above
the bottom of the well (N > 0). To fourth order in kaq,
this degenera.cy is partially lifted, as expected from the
previous symmetry considerations. The resulting energy
splitting is proportional to ugEr(kag)?, i.e., it is equal
to the recoil energy Exr up to a numerical factor. For
instance, the multiplicity located around 4/2,e., which
would be 4 times degenerate for a pure harmonic po-
tential, is split into two submultiplicities separated by
(v13/3) Eg, with each containing two levels.

Still considering a given Bloch vector ¢, a second type
of quasidegeneracy appears in the region where the two
types of bound states mentioned above may participate
in an avoided crossing. Here again the average splitting
between the two levels participating in the avoided cross-
ing is found numerically to be on the order of the recoil
energy. ’

Finally, the last kind of qua31degeneracy that appears
in the spectrum of H for a given ¢ concerns the states
corresponding to quasifree motion, with an energy larger
than the modulation of the light-shift potential Since the
Bloch vector is fixed, we have one state in each square of
area (hk)? = 2A%k2. Thus, in this 2D case, the density
of states dn/dE equals 7 /2Eg, which indicates that the

kao = (71)

average distance between two consecutive states? is again

on the order of the recoil energy Eg.

3In fact, we observe that the states in the continuum ap-
pear in groups of 4, corresponding to channeling of the
atoms along the symmetry axes +z,+y or +n,+{, and
we have degenerate levels but of different symmetry prop-
erties. Going very high in energy, we also find states
in groups of 8, corresponding to motion along four axes
“far from” the symmetry axes, i.., motion along (z,y) =
(£n, £m), (£n,Fm), (£m, £n), (+m, Fn) with a ratio be-
tween m and n being far from 0 and 1 (m < n).
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C. Rate equations

We now turn to the problem of calculating the rates
of transfer ;_,; between any two eigenstates ¢; and ¢;.
In the secular regime, these rates will lead to the steady-
state populations of the ¢;’s.

The rate «;_,; is obtained directly by calculating 7;,
assuming that the atom is initially in state ¢;. Using (3)
and (8), we get

Yiesi = D80(®;j| Lretax(1#:){il, k7) ¢) - (72)

We now replace the relaxation operator L e,y by its ex-
pression (9) to derive, for i # j,

Yini(E = £) = _I‘{O Z Z Z I<¢J|5~tkean|¢t)|

m=z,y € l#m
(73)

if ¢; and ¢; correspond to the same internal state of the
atom, and

DS S Keslem R B, (74)

e Il==z,y

’Yi—}j(# - F) = =

if ¢; and ¢; correspond to different internal states.

In order to discuss the dynamics of the cooling pro-
cess, we may, as a simple approximation, consider the
transition rates for three processes only: heating of the
lowest levels of a given potential, say U, towards either
(i) eigenstates of U_ or (ii) neighboring states in Uy and
(iii) cooling by transitions of hot atoms in, e.g., U} to-
wards bound states of U_.

The heating processes are considered in the case of
deep potential wells, for the atoms occupying the lowest
lying levels. These atoms are in the Lamb-Dicke regime
and a good approximation of the corresponding eigen-
functions are the 2D harmonic oscillator wave functions.
The heating of an atom in a localized eigenstate of Hy,
say, takes place by two processes: one is the transition to-
wards the other bound states of g, of higher energy and
the other is the departure towards eigenstates of H_, also
with higher energy. Here we wish to discuss the depen-
dence of these rates on the potential depth parameter
Ug-

Consider first the total departure rate from a bound
state of U, towards all eigenstates of H_. The rate for
such a process is found from the expression in (74). When
we sum the transition rate over the full set of states |j, —),
we-find that the total departure is given by a matrix
element

dm;
(fme) =T pgm . 9
dep——

In the Lamb-Dicke regime, £_ is approximated by
quadratic terms in z and y and the term (75) is pro-
portional to (ka0)4I‘30 = I'so/(2ug). The correspondmg
time scale for heating to take place by this process is
rather slow. Compared to the results of [18] for one-
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dimensional Sisyphus cooling (rate ~ I'sy/,/up), we find
that in our 2D system, the rate of this specific heating
process is reduced by a factor of /ug.

For the transitions between states of the same internal
state, i.e., g;, we see from Eq. (73) that in the Lamb-
Dicke regime, the rates involve squared matrix elements
of operators such as pgz /%, where ps = €kik is the mo-
mentum of the fluorescence photon. If we approximate
in (73) the ¢’s by harmonic oscillator eigenstates |ns, ny),
we deduce that the rates from and to a state |n,,n,) to-
ward and from the state |n,+1,n,) are yo(n, +1), where

Yo = 2(kao)?T'sy = V2lso (76)
Vuo

These rates have therefore the same dependence on uq as
in 1D.

The heating brings the atom to the quasifree states
of H,, which are spread out more or less uniformly in
space. Now the atom has a rate of transition to the
internal sublevel |—) on the order of the optical pumping
rate I'sg. These transitions can lead to Sisyphus cooling.

For the heating part of the Sisyphus dynamics, we
would like to give an estimate of the mean time for the
heating to bring the atom from the ground state of the
optical potential to states of positive energy. As dis-
cussed above, a first heating process implies a direct tran-
sition to a state of opposite internal level and the corre-
sponding time scales as up/(I'sp). The second process
involves energy increments of Af{l.s. by transitions be-
tween neighboring states within the same potential well.
In order to estimate the time scale for this process, let
us consider the mean change in harmonic oscillator index
7 = ng + ny after a small time step dt. Starting from
the state |n.,n,) at time ¢, we have at time ¢ + dt and
to first order in dt a departure probability towards the
multiplicity {|n.-+1,n,), |n,n,+1)} (increase of n by 1)
given by yo(ns + 1)dt + vo(ny + 1)dt = yo(n + 2)dt. Sim-
ilarly the departure probability towards the multiplicity
{lne — 1,ny), |nz,ny — 1)} (decrease of n by 1) is yondt.
Therefore the mean change in n = n, + ny corresponds
to

%m) =27 . (77)

We consider the atom to be at the top of the potential
when n is on the order of |/ug leading to a mean heating
time ~ /ug/vo ~ uo/(I'so)- ‘

This time scale can be recovered in a semiclassical pic-
ture. It corresponds to the time required for an atom
performing a random walk in momentum space, with a
momentum diffusion coefficient Dy, ~ (hk)2I'sy given
in (23), to experience a mean increase in energy on the
order of ugER.

Finally, we consider the time scale of the whole Sisy-
phus dynamics in the present regime 1y >» 1. The atomic
motion in steady state involves random successions of two
different processes: a slow heating from the lowest lying
levels up to states of positive energy and a fast cool-
ing from these high energy states back to the bottom

of the potential wells. The relaxation time for average
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quantities such as the atomic kinetic energy is mainly
determined by the slow heating process. It is therefore
expected to scale as ug/I'sg, which is in agreement with
the semiclassical results presented in Sec. III C and which
is lon]ger than the corresponding 1D result V%o/(T'so)
[18,19].

D. The steady-state distribution

We have calculated numerically the steady state of the
set of equations (62), associated with the normalization
condition 3} II; = 1. Since all rates are proportional to
I'sg, this term factorizes out of (62) and we are left with
a set of equations depending only on ug. In the secular
regime, there is therefore a single universal parameter to
characterize the steady state instead of the two parame-
ters generally required.

In order to reduce the computational effort, our calcu- -
lations were performed for a specific choice of the Bloch
vectors. With the simplified spontaneous-emission spec-
trum, only states of Bloch vectors ¢; and ¢ = §1 — ké,
couple. We have chosen to perform the calculations for
two different pairs (¢1,¢2) in a way that describes the
whole first Brillouin zone best, i.e., we have made use of
the symmetries in the problem mentioned in Sec. IV. We
have therefore chosen ¢y = k/2€, +k/4¢€,,q> = —k/2¢8, +
k/4&, and ¢ = k/4é;,d> = —3k/4€,, which amounts to
paving the Brillouin zone into 16 equal squares. We have
calculated the periodic function appearing in the Bloch
eigenstate with a cutoff in the Fourier series at a momen-
tum |p¢| = |Pn| = Nmaxfik = NmaxV/2Bk. In most of the
calculations of this section, we have taken as a cutoff pa-
rameter npyax = 15, which is exactly the one used in the
truncated classical Monte Carlo calculations of Sec. IIID
[see Eq. (31)]. Note that all the calculated eigenstates are
included in the numerical solution of the rate equations,
so that the total number of energy bands considered per
atomic internal state is (2nmax + 1)? = 961. This is an
improvement by a factor of roughly 2 with respect to the
results presented in [11], for which the cutoff parameter
Was Nmax = 10 and the corresponding number of energy
bands was only 212 = 441.

In Fig. 10 we show the populations of the first ten
bands as a function of the potential depth ug. A remark-
able feature of the variations of my as a function of ug
is the appearance of resonances. Their physical origin is
discussed in detail in Sec. VE. Here we argue that the
resonant features in mg are not an artifact of the trunca-
tion in momentum space.

Consider the resonance in mg located around ugo = 120.
We know from the analytical solution of Appendix B that
the steady-state density matrix is normalizable (up >
33), so that the population my of the lowest energy band

‘has a nonvanishing limit for n,.. going to infinity. We

also know from Appendix B and from the numerical re-
sults of Sec. III that the mean square momentum is di-
verging when 7,y is increased. These two quantities g
and (p?)/(hk)? are given as functions of the cutoff param-
eter Nmax in Table I, for three values of ug around 120.

When nmax shifts from 15 to 21, which corresponds to a

number of bands in the calculation shifting from 961 to
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FIG. 10. The populations in the lower ten bands, shown as’
a function of ue, with a truncation in momentum space as in
Eq. (31). We note the resonances, especially in mo.

1849, the decrease in g is on the order of 5 x 10™* (rela-
tive change less than 2%). The same change in nmax leads
to a much larger relative increase (greater than 11%) of
(p?)/(kk)®. We are therefore confident that the trunca-
tion effect on g remains small and that it is smaller than
the observed variation of wy through a resonance.

From the steady-state populations, we can also extract
momentum and position distributions. A position distri-
bution has been given in [11]: it exhibits a strong modu-
lation of the spatial atomic density.

Figure 11(a) shows a momentum distribution, obtained
for up = 60. We observe an anisotropy in the wings,

corresponding to an accumulation of atoms along the ro- |

tated axes £ and 7. We recover here a feature that we
have discussed in detail in the classical Monte Carlo anal-
ysis of the cooling process. This feature is reduced for
larger values of ug as shown in Fig. 11{b) for uo = 210.
Finally, in Fig. 12, we have indicated the variation with
ug of the half widths p. , and p.¢ defined in Sec. III C.

E. A simple model of the resonances in g

As we have already noted [11], a remarkable feature
appears in the variations of the populations of the states
¢; with uo, namely, the resonances in especially 7. This
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" “TABLE 1. The effect of the momentum cutoff parameter
fimax on’ the population mo of the lowest energy band and
on the mean square momentum in recoil units (p®)/(%ik)?, in
'the secular approach. The values of ug that we consider are
bracketing a resonance in 7.

g Tmax 10%mo (p?)/(Bk)?
114 15 714 37.2
L e 18 . 7.11 40.4
S TETEA . +.31 ©7.08 43.1
o :120 15 . 819 36.6
e - 8.16 38.6
S 8.14 40.7
126 15 6.29 38.5
18 6.27 40.5
21 6.25 42.5

resonant behavior of mg is due to the existence of the
avoided crossings, induced by tunneling, in the energy
diagram (cf. Fig. 8). To get some physical insight into
this problem, we consider the following simple model in-
cluding four levels 0,a,b, and 1 (see Fig. 13). Level |0)
is the ground state in, e.g., U_; |a) and |b) are the two
spatial components of the states that participate in the
avoided crossing: |a) is localized around the local mini-
mum of U,. and |b} is localized in the main potential well
of Uy; finally, [1) symbolizes the rest of the states in the
problem.

At a position where the eigenenergies differ signifi-
cantly, no effects of the avoided crossing appear and the
transitions between the four levels take place between
the “pure” states 0,a,b, and 1. Level |a) is a state in the
local potential minimum of U, and it has a large tran-
sition rate toward the ground state |0), but the rate of
feeding <y1_,q is low. This is due to the fact that state |a)
differs in spatial dependence from the rest of the excited
levels. Level |b) has a feeding rate y;_;5 of “typical” size,
i.e,, larger than 7,4, and departs mainly toward levels
other than |0}, i.e., its departure is determined by Y1,
which is large. The ground state departs toward the en-
semble of the other states |1).

When the energy levels participating in the avoided
crossing come closer, the two spatial components |a) and
|b) start to mix in the eigenstates because of tunneling
between the two adjacent wells. This mixing was well

FIG. 11. The momentum distribution cal-
culated for (a) wo = 60 and (b) uo = 210
with a truncation in momentum space such
that Tmax in Eq. (31) equals 18. The chan-
rea b e pglimgg lines found in Fig. 4 are also apparent

—— - here, for the low value of uo in (a).
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FIG. 12. The variation of the half widths squared p2, (in
dashed line) and p? ¢ (in solid line) as a function of uo cal-
culated within the secular approach. The same truncation is
applied as in Eq. (31).

illustrated by the density plot of the wave functions of
Fig. 9. At the center of the avoided crossing, the tran-
sitions take place between the completely mixed states
(1/v2)(|a) + |b)) and the states |0} and [1). The rate
of feeding of each of the two mixed states is now on the
order of half the rate of feeding of the state |b) whereas
the departure toward the lower state |0) is on the order
of half the original departure of state |a). Therefore the
mixed states have both a large feeding from the upper
states and a large transfer toward the groﬁnd‘state. As
a consequence, the population in the ground state iﬁ-
creases noticeably while the sum of the population of the
states participating in the avoided crossing remains small
and practically unchanged. The pair of states |a) and |b)
merely acts as a “tap,” opening an extra channel in the
feeding of the state |0).
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~ V1. COMPARISON

In this paper, we have presented three different meth-
ods for the analysis of 2D laser cooling. Two of these
methods involve approximations of the exact quantum
master equation. One is the classical limit for the atomic
motion that was presented in Sec. III and the other is

-the reduction of the master equation to rate equations
. between quantum levels for the atomic motion in the

optical potential wells, as presented in Sec. V. We now
compare the results of these two methods with the more
exact numerical implementation of the master equation

- - discussed in Sec. IV.

The mean kinetic energy Ex of the atomic distribu-
tion and the population my of the ground state for the
atomic motion obtained by the semiclassical Monte Carlo
calculations and the integration of the master equation
are shown in Fig. 14 for a typical experimental value
of the detuning A = —5. The agreement observed in
the figure is very good, although the semiclassical cal-
culations relied upon a drastic simplification of the mo-
mentum diffusion tensor. For the semiclassical results in
Fig. 14, we used the same truncation in momentum space
as in the quantum calculation. This truncation has been
chosen large enough to keep the boundary effect small
on my as discussed in Sec. IIID. Note that the corre-
sponding boundary effect on Ex is dramatic: as shown
in Sec. ITIIC, (p?) is indeed diverging for uy < 200 in the
absence of truncation.

We know from the secular approach that for a large
value of |A|, resonances in the population g as a func-
tion of up appear. The observability of these resonances
has been investigated by the integration of the master
equation for increasing values of |A|. These results are
shown in Fig. 15 together with the prediction of the secu-
lar approach. The results for the calculations within the
secular approach were obtained for the type of bound-

FIG. 13. Simple model to demonstrate the effect of an avoided crossing on the population of the ground state mo. The states
ja) and |b) symbolize the two spatial components of the eigenstates of U, participating in the avoided crossing: |a) is located
in the small potential well of U, [i.e., around (z,y) = (0, A/2)] and |b) is located in the large potential well of U, [i.e., around
(z,y) = (0,0)]. |0) is the ground state of U_ and |1) stands for the rest of the states in the problem, i.e., mainly excited states
of Us. In (i) and (i') the components |a) and |b) do not mix in the eigenstates and the feeding of the ground state is rather
weak. On the contrary, at the center of the avoided crossing in (i), the two components |a) and |b) mix and this mixing leads

to an increased population in the ground state.
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e = ‘ (b) 2 FIG. 14. Comparison of the results for
80 [— 8 - the calculations within the semiclassical ap-
= ¥ F E proach (error bars) and the more exact
oy 80 o 8 o - numerical integration of the master equa-
\::4 = = E 3 tion (¢). (a) The mean kinetic energy
= 40— o 4 = Ex = (p*)/2M in units of the recoil energy
= S = N Eg and (b) the population 7 of the ground
20 [~ 2 - state of the atomic motion. In both calcu-
E ’ . - . lations, we had a truncation in momentum
ok o - Lo Loa Bpace Nmax = 15 [as in Eq. (31)] and a de-

0 100 200 0 100 200 tuning A = —5.

Uo - Yo

ary conditions and the Bloch vector of Sec. IV, which
are different from the ones used in Sec. V. However, the
large values of |A| force us to use very small time steps
dt in the numerical integration of the master equation.
In both the secular and the master equation approaches,
we therefore restrict ourselves to a smaller value of the
cutoff parameter: N,y [as defined by Eq. (31)] is only 8,
instead of 15 in the previous calculations. The important
result concerns the minimum detuning for which the res-
onance may be observed. A detuning |A| > 50 is required
for having a change of mp at resonance of 20%. For de-
tunings in usual experimental conditions (i.e., |A| < 20)
the resonances are washed out.

We have also tried a simple improvement of the secu-
lar approach. If consists in the inclusion of nondiagonal

10 L T

my (in %)

FIG. 15. The appearance of the resonance in mo as the
value of |A] increases. We compare the prediction of the in-
tegration of the complete master equation with the results of
the “modified” secular approach, including the nondiagonal
density matrix elements between the states participating in
the avoided crossing. The symbols show the results for the
integration of the master equation, § = —20T (), § = —50I"
(o), and § = —100T' (A). The lines give the corresponding
curves for the “modified” secular approach as dotted, dashed,
and dot-dashed lines for § = —20T", —50T, —100I'. The solid
line shows the result of the “pure” secular approach, corre-
sponding to an infinite detuning. Note that the Bloch vector
is § = 0 (as in Sec. IV) and that the cutoff parameter in
momentum space is Tmax = 8 only.

density matrix elements between eigenstates participat-
ing in the avoided crossing. Indeed we expect from the
discussion of Sec. V that these density matrix elements
represent the most important correction to the secular
treatment. This is confirmed by the results shown in Fig.
15, where excellent agreement is found with the results
obtained from the density matrix evolution.

In Sec. V, we have interpreted the resonances in mg as
a pure quantum effect involving the tunneling through a
barrier in the optical potential wells. As a consequence,
we expect this resonance to be absent in the semiclassical
predictions. We therefore compare the predictions of the
improved secular method with a Bloch vector §= 0 and
a cutoff n,x = 15 to the classical calculations for the
same cut-off parameter np., = 15. We see in Fig. 16

" that even for A = —100, no resonance appears in the

classical results. Note that the values of mg given by the

“ classical Monte Carlo method in Fig. 16 are a bit larger
. than the ones given in Fig. 5(b); this is due to the larger

values of the detuning in Fig. 16, which lead to colder
atomic distributions.

Lo T
aF ]
R sl -
'E PR
~ /./ \
é’ 7E ‘/,:'/’——\ \ 3
oo PRSI RN
] é A \\\"\
E $ & AN
6 § ¢ é'\ ]
5 L ;
110 120 130
U

FIG. 16. Comparison between semiclassical and quantum
calculations of mo. The semiclassical results are obtained with
the evolution of 64 000 atoms, with a truncation in momentum
space corresponding to the cutoff parameter nmax = 15. The
detuning is § =—50T" (¢0) and § = ~100T" (A). No resonance
appears, even at large detuning. The quantum results are
obtained from the “modified” secular approach, with a Bloch
vector § = 0 and the same cutoff parameter nmax = 15. The
detuning is § = —50T for the dashed line and § = —100T" for
the dot-dashed line. The resonance is clearly visible.
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VII. CONCLUSION

In the preceding section, we compared the results of
the three different approaches used in this paper. As a
conclusion, we wish to discuss their qualitative features.

With the semiclassical approach, we are able to find
a reliable value for the mean kinetic energy since we are
not subject to a truncation in momentum space. This
is not the case for the quantum treatments used in this
paper and in [11]. Our semiclassical treatment could also
easily give access to quantities such as the spatial diffu-
sion in the optical lattices [20] and fluorescence spectra;
cf. the 1D calculations in [21]. The problem with the
type of semiclassical approach we have presented is that
it strongly relies on the absence of coherence between the
atomic ground-state sublevels due to the polarization of
the laser electric field lying in the zy plane. Even so,
the semiclassical limit of the master equation in Wigner
form leads to momentum diffusion tensors with negative
eigenvalues at some points in space. This required an ad-
ditional approximation in order to construct a classical

stochastic equation for the atomic motion. For a more

general electric field or atomic transition, there seems to
be presently no semiclassical alternative to the standard

approach involving an adiabatic elimination of the inter- {

nal atomic degrees of freedom and derivation of a Fokker-
Planck equation [7,8,22]. This standard approach, how-
ever, cannot be used in the regime of the coldest atomic
distributions [23] and one should turn to a quantum de-
scription of the atomic motion.

The secular approach constitutes an efficient way of
decreasing the complexity of the master equation for the
full atomic density matrix. This method can be applied
when the dissipative broadening of the quantum levels is
smaller than the spacing between them. In this regime,
one can hope to have access to specific quantum features,
including the effects of tunneling found in this paper.
Other possible effects involve the band structure of the
energy levels in the periodic optical potential [24]. On
the other hand, the validity condition (64) for the sec-
ular approach in 2D for potential depths leading to ef-

ficient Sisyphus cooling is quite restrictive and may be

even worse in 3D. ,

Finally, the only clearly valid quantum approach for
realistic experimental conditions is the numerical inte-
gration of the master equation. However, even with the
use of all the symmetries in the problem, this numerical
evolution of the full atomic density matrix is a very heavy

numerical task which cannot be reasonably extended to ‘
3D. An alternative numerical method is to simulate the

quantum master equation using stochastic wave func-
tions, as an application of the general methods detailed
in [25-29]. This approach has the advantage of evolving
much smaller objects than the density matrix. The sta-
tistical uncertainty of the results limits the precision in
the evaluation of local quantities such as the population
of a single quantum state, but encouraging preliminary
results for the kinetic energy [30] and the momentum
distributions in 3D cooling using the Monte Carlo wave
function approach of [26] have been obtained.
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APPENDIX A: MASTER EQUATION IN 2D

In this appendix, we present the equation of motion
for the atomic density matrix g describing the dynamics
of the internal atomic degrees of freedom and the atomic
motion in the zy plane. This density matrix g is deduced
from the density matrix p for the full 3D atomic motion
by taking the trace over the external atomic variables
along z:

p="Tolpl = [ do. (oalolpe) (A1)
where the momentum representation along z is taken as
an example.

1. The spontaneous emission kernel

In the master equation for p, this trace over z changes
only the terms feeding the ground-state components pg,
by spontaneous emission from the excited-state compo-
nents pe.. These terms can be derived from the procedure

given in [31]:
d ) 8 [ 5 R(=) . o+ ik
—p F—JR d n (A € €
(dt %)y 87 E’_ini )

X peceF T (&(+> -g) S(7| —1) . (A2

They involve a sum over the momentum %k and the po-
larization € of the fluorescence photon. The é function in
(A2) ensures that the fluorescence photons have a wave
vector of modulus k. The atomic recoil after spontaneous
emission is taken into account by the translation opera-
tors exp(ik - ¥) in momentum space. In (A2), A s
the raising or lowering part of the atomic dipole operator,
reduced by the atomic dipole d, with I' = d?w /3reofic?,
such that the matrix elements of the spherical compo-
nents A, are Clebsch-Gordan coefficients in the standard
basis: (Jeme|Agq|Jgmg) = (Jemne|1J,qmg). The sum over
polarizations € is easily carried out in (A2):

?;,‘; (5(—) .g*) Dee (5(+) .g)
= 3 APpeAlM - (5(—) .,—i) pec (5(+) .ﬁ,‘) .
1=, 1,2 (A3)
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When one takes the trace of (A2) over the atomic mo-
tion along z, the terms e**:* appearing in (A2) disap-
pear because of the invariance of the trace in a circular

permutatmn One can then, for given components 7, of

7 in the xy plane, perform the sum over the component
n, of 7 along z explicitly, using : :

§(I1) - 1) = Z §(n, —ay/1—71) . (A4)
J_ a=t .
We get
__d_ = 311 ——tkn_,_ 7
dtPos = \/1 - ni V
x[ 5 Al
i=m1yyz
(5< )11 e (A9 5)
—-(1-a%)Al- )peeA("')J AL (A5)

The important point is that (A5), unlike (A3), is free of
crossed terms between components of the atomic dipole
operator in the zy plane and along z, i.e., terms of the
form Ag,;,) PeeASY). Such terms are odd functions of o
and cancel after the sum over « given in (A4), which cor-
responds to a destructive interference between the con-
tributions of the two possible directions of spontaneous
emission 7 for given components 7 in the zy plane. In
1D, this interference effect is stronger since any crossed
term A( )'ecA(+), with i # 7, is destroyed [32].

For the partlcular laser configuration and atomic tran-
sition J;, = 1/2 — J. = 3/2 studied in this paper, we
therefore ﬁnd that density matrix coherences between
the |+), and |—), ground-state sublevels cannot be cou-
pled by spontaneous emission to the elements diagonal
in the internal state ,(+[p[+}, or »{—{p|—)s. This plays
an important role in the possibility of associating an ap-
proximate classical stochastic process with the quantum
master equation in Sec. IIL

The fact that the crossed terms between zy and 2 van-

ish in (A5) is a consequence of the symmetry of the 3D
spontaneous-emission feeding terms (A2) by reflection in
the zy pla.ne The unitary operator § representmg this
symmetry in theﬁatomlc Hilbert space is the product of
the reflection in the internal atomic space Sj,; and the
reflection acting on the atomic motion Sext. After ta.kmg
the trace over the atomic motion along z, the action of

Sext becomes trivial and the reduced feedmg terms (A5) _

are now invariant by the action of S;.; alone. Since Azy
and A, have a different parity with respect to Sjy, the

crossed terms between xy and z are odd and cannot con- .

tribute to (A5). -

In the numerical calculations of the present paper, a
simplified spontaneous-emission pattern is used. In this
pattern, fluorescence photons are emitted only along =,y
and z axes and {A2) becomes
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In this equation, n is the sign of the momentum of
the photon along the ! axis and the normalization fac-
tor is such that (A6) has the same trace as Eq. (A2)
over all atomic variables. The previous exact discussion
shows, however, that the absence of crossed terms be-
tween zy and z in (A6) is not an artifact of the simplified
spontaneous-emission pattern.

ki A(H) | (A6)

Z Z A)e i, e

m=x,y,z l#m

2. Restriction to the ground state

‘When the saturation parameter so given in Eq. (2) is
very ‘'small, the internal atomic variables of a multi-sub-
level atom in the presence of laser light are relaxing with
two different time scales. The first one corresponds to
the rate of spontaneous emission I' and the second one
corresponds to the rate ~ I'sg of optical excitation of the
atom. In the quantum master equation, the components
of the density matrix involving the excited state, i.e., pee,
Peg, and pge, are relaxing with the rate I' or I'/2 and can
therefore be adiabatically eliminated and slaved to the
slower variable pg, [12,13]:

1 - )
~Tpee + 5 [VAL Poe — Peg VAL | 20, (AT)

Epcc =

d . 1
GiPes = (0 —T/Dpeg+ =Vl pyg 0. (a5)

Note that we have performed two approximations in
these equations. In (A8), the coupling of p., to pe. by the

ra.ising part V(+) of the atom-laser interaction potential
is neglected, as compared to the coupling to pg,; this re-
lies on the assumption sy < 1, which leads to typical pee
matrix elements smaller than p,, by a factor sy (see be-
low). The second approximation in (A7) and (AS8) omits
the evolution of p.. and p., due to the atomic kinetic
energy during the fast relaxation time I'~1; this is legiti-
mate when the mean kinetic energy (p"") /(2M) is smaller
than ﬁI‘ Solving Eqgs. (A7) and (A8) gives pee, peg, an.

Pge = pl, as functions of the ground-state components
Pggi one has, for example,

-1
Pes = EBov(_)pggv(’L) (A9)

with V = Var/(%Q/2), where Q is the Rabi frequency
of each of the running laser waves. The slow variables
are then inserted into the equation for p,g, with the sim-
plified spontaneous-emission pattern (A6), leading to the
master equation



d 1 [ 5%
zzf’wﬁ[m* hsayiovts ””“]

1 _
_eru{v( )V(+),pgg}

4+ Fsoz Z Ze_‘k””B pr’r tkrin

n==x m=z,y¥,2 l¥m
(A10)

with the notation Bm = AL VH).

In the particular laser configuration studied here, the
laser electric field components are all in the zy plane
and consequently V involves only the ¢ = = standard
components of A, when z is taken as quantization axis

Y =g, A + A .

The reduced o+ components £1 of the laser field are
written explicitly in Eq. (6). The matrix elements of
V)W) and of the B,,’s are readily evaluated in the
basis of the eigenstates |g,m), of the angular momen-
tum along z, using the Clebsch-Gordan coefficients. The
results are given in Sec. II, with a factor ¢ omitted for
convenience in By in Eq. (10).

APPENDIX B:
CHANNELING IN MOMENTUM SPACE

We present quantitative results on the channeling of
atoms discussed in Sec. IIIE. A jet of atoms of high
velocity vo (i.e., kvg 3> |6]sq, assuming || > T') along

&, = (€ — €,)/V2 is considered. First, the evolu-

tion for the momentum distribution of the jet along
& = (& + &,)/v2 due to transverse cooling is deter-
mined. The leading terms of the mean radiative force
along &, and of the momentum diffusion coefficient along
€,, as functions of the velocity vo, are then obtained.
They allow a prediction of the asymptotic behavior of
the momentum distribution for large velocities along é&,,.

0= Lo {ﬁi-o]c
= —vgBeIIL, . — 2hkdsos sin K0y, TIL,

) 1
+(vﬁk)21‘308§£ [§

with & = &. Note that the coefficients in (B5) are simply
equal to the average over i of the coefficients in Eq. (B2)
and that the simplified momentum diffusion tensors (23)
and (24) are considered.

The coefficients of the Fourier components e of the

distribution [{* are determined from the zeroth-order ap-

50 ~° TWO-DIMENSIONAL SISYPHUS COOLING

(A1)

] .

- gl‘so[(l + e cos k)L, _

1L
00, ¢
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1. Steady-state transverse momentum distribution
for a jet of atoms

Under the assumption that the atomic velocity along
€, has a fixed value vg, one can obtain a closed equation
for the transverse atomic distribution

I (€, peim, £) = j dpy (6, pem,0rt)  (B1)

by replacing the free-flight term ¥ - 87 in (15) by v¢8¢ +
vo0, and by integrating (15) over p,. For the particular
value o = 7/2 and for the ground-state sublevel |+), we
get : . :
(8 + 00,3 = L(n)[]+
= (~vgdg + B¢U4 8p )1
+’Y—+H'L
"}'62 (D€€+Hi +D€€ IIJ.)

— ey T0}
(B2)

One has a similar equation for II+. The momentum dif-

fusion coefficients Dif, are deduced from the 2D momen-
tum diffusion tensors; one has, for example,

D++_—(D + DY+ D%, + DY, (B3)

Equation (B2) corresponds physically to a one-
dimensional transverse cooling of the atoms in the pres-
ence of optical potentials and pumping rates depending
periodically on 7. After a few relaxation times of L,
i.e., after a few transverse cooling times, it = (II%, %)
rea.ches a steady state which is also a perlodlc function
of . It is convenient to introduce the harmonics of the
L(n) operator in (B2):

" L(n)

For our choice of the origin of the spatial coordinates, the
operators Ly and L_ coincide.

For a large velocity vo, Eq. {B2) can be solved per-
turbatively by an expansion in 1/vg. To order 0 in 1/vg,
only the 7-independent component of ot is nonvanishing
and it is given by

= Lo+ Lye™® 4 L_e™n (B4)

e— (1L —&ecos Eﬁ)l’[i‘o,s]

(BS5)

(. . ‘
proxirha.tion ﬁi‘o and we obtain the following equation for
Iit, correct to first order in 1/vg:
ot = (1 + :2— sin l::'r;L.,,) (L]
k‘Uo

(B6)

with
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LyJiit]. = %I"so[(cos k¢ + &)L, _, — (coské — o)L .l
— gﬁl::b'so sin E&LOPEHO'LO,;

1 -
+i§ (hk)*T'so(cos k¢ +7€)836Hi'°,_¢ . (B7)

2. Longitudinal mean force
and momentum diffusion coefficient

Following a technique derived in detail in [33], one can
obtain a mean radiative force for the jet of atoms along
&,. Still assuming a fixed velocity along &,, one multiplies
the equation of evolution of the two-dimensional distribu-
tion (15) by p, and one integrates over p,. The evolution
of the mean atomic momentum along &, is given by the
average of the resulting equation over the external vari-
ables £, pe and the ground-state sublevels £ = . One is
left with . o

(85 + vo0y) (pn) (m, t)

= [ dedpe 1-@,UTE - (8,0 )]
= %h‘fc&so sin kn{cos k¢ (I+ + II1)

1

+§(H-'L|— —TI))e e - (B8)
When the steady-state value of the transverse distribu-
tion ITf is inserted into (B8), the right-hand side of (B8)
is exactly the position-dependent mean radiative force
Fli(n,v,) along 7. For fast atoms along &, one can spa-
tially average this force. Using the 1/vy expansion of
Eq. (B6), we then find that the only nonvanishing term
is the contribution of the first line of (B7) to the IT+ —ITX
term in (B8). We get for the mean force along &, to first
order in 1/vg:

4 his
il - i
(F (773 vO))'I 27

Tso[l — O], (B9)

Vo

where the constant C, between —1 and 1, is defined as

C = (cos kE(Tg 4 — Meg, - ))e,me - (B10)
In the absence of spatial modulation on H‘J;o, = II;';O’__,

C is equal to 0. One then recovers the simple estimate
of Eq. (18), with a factor 1/2 coming from the fact that
the present calculation concerns 1D cooling along the 7
axis while (18) describes 2D cooling. In the presence of
transverse Sisyphus cooling along £, we expect a posi-
tion dependence of I:I.g];o leading to a positive value of C,
as argued qualitatively in Sec. IIIE, and a subsequent
reduction of the cooling efficiency.

In order to get the asymptotic behavior of the mo-
mentum distribution along é&,, the momentum diffusion
coeflicient

D(m,v0) = 5(8 + v00)[(E2) (1) — (pad (1, )?] (BLY)
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is also required and can be derived from the procedure
described in [33]. Among the various contributions to the
momentum diffusion, the only remaining one at large ve-
locity is the contribution of the momentum exchanged
by the atoms after each fluorescence cycle. Indeed the
dominant contribution at low velocity, i.e., the fluctua-
tions of the instantaneous force 8,U experienced by the
atom, vanishes at high velocity [23,33]. We obtain, after
average over 7,

(D(1,00 = o)) = 2 (Ak)*Tso [1 _ %o] . (B12)

3. Asymptotic behavior
of the momentum distribution along €,

We now consider p, as a dynamical variable, which
in the limit of high velocities v, = p,/M evolves much
more slowly than the transverse variables £,p¢. These
transverse variables reach a steady state which does not
depend on 7, p, to lowest order in 1/v,. We can there-
fore approximate the wings k|v,| > |6]sq of the atomic
distribution by the factorized form

1(¢, pe, 7, pa) ~ L (€, )T (1, 1) -

From the average force (B9) and diffusion coefficient
(B12), a standard Fokker-Planck treatment leads to the
following asymptotic behavior:

(B13)

1
H” (P"]) ~ Ip,,IA“ (B14)
with
ho% 1-C
A 33 1 _12_10 . (B15)

We now calculate C as function of ug in a regime
where the spatial modulation of the transverse distribu-
tion Il = I , + I _ is small. As in [23], we intro-
duce as variables in (B5) II, and ¢ = I, , —IIL .
After minor approximations, neglecting the spatial vari-
ation of the momentum diffusion coefficients in (B5) and
the contribution of any diffusive term 65 ., one gets

ve Bl + FosinkéBp p = D2 IIL, (B16)
Ve + Fosin k€, I3, = —yop +yo cos k¢MIL, , (B1T)

with the notations Fy = %ﬁi}éso, Yo = g—l"sg, and Dy =
1% (Ak)?T'so. Then Eq. (B17) is solved formally. One gets,
for positive velocities along &, the functional dependence

1

C:f—s (o cos k&' — Fysin Eg'apt)

p(&,pe) = /e

— o0

XTI (€', pe)e™o@ ~O/ve . (B18)
After elimination of ¢, Eq. (B16) becomes an integro-
differential equation for IIX, which is solved under the
assumption of a negligible spatial dependence of IIL,



()
-L = - -
oo(pﬁ) (1 +p2 P )A-'-/Z (Blg)
with, for |§] > T,
lM’)’oFo Uo
Al = == — X0
2 kD, 33’ (B20)
M ., uo PN
pe= 2R A B

When inserted into (B18), expression (B19) leads to a
position-dependent ¢, allowing one to estimate C. After
some algebra, we get

C= (At —1)/2A+ = (up — 33)/2uo if up > 33
~ 10 otherwise .

(B22)

Since we have omitted in this calculation the pbsitibn
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dependence of the momentum diffusion terms in (B5),
we should disregard also the 2C/11 term in Egs. (B12)
and (B15) and we obtain

-

We can now discuss the thresholds for normalizability
and for the existence of a finite momentum variance. The
power law distribution II(p) ~ 1/p# is normalizable if
A > 1. At the limit of normalizability of the transverse
distribution, A~ is equal to 1, leading to Al = 1 in (B23),
for the same value of ug, up = 33. The two thresholds
therefore coincide.

The power law distribution II(p) ~ 1/p# has a finite
momentum variance (p?) if A > 3 only. Thus the cor-
responding threshold for the transverse distribution is
ug > 3 x 33 = 99, whereas the one for the longitudinal
distribution is ug > 5 x 33 = 165.

1(1 +uo/33) = (1 + AL) for uo > 33
ue/33 = AL for ug < 33.

(B23)
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