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S.I. EFFECTIVE POTENTIAL CREATED BY
THE STROBOSCOPIC SCHEME

In this Section, we present the calculation of the ef-
fective lattice potential produced via the stroboscopic
scheme illustrated in Fig. 1 (main text). We start from
a periodic potential V(z) of period d, which can be de-
composed in Fourier series as

V(z) = Z Vy ei2mpz/d,
pEZ

The method consists in shifting the potential V(z) of
the distance d/N, after each time interval T/N. For N
integer, this leads to a time-periodic potential V(x,t)
of time period T. For a sufficiently short period T,
the atomic motion is governed by the effective potential
Ve (), equal to the time average of V' (z,t):

T
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It is then apparent that the effective potential Veg(x) is
periodic, of period deg = d/N.

S.II. CALCULATION OF THE EFFECTIVE
POTENTIAL

In this section we give details about the establishment
of the effective Hamiltonian (egs. (3), (4) in the main
text). We first provide a simple description of the effec-
tive Hamiltonian in a Born-Oppenheimer approximation,
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and discuss further the relevance of this approximation
for typical lattice parameters.

The Born-Oppenheimer approximation consists in ne-
glecting the kinetic energy for the calculation of the effec-
tive Hamiltonian. The position z is considered as a fixed
parameter, while internal degrees of freedom are treated
quantum mechanically. Using the formalism of ref. [S1],
we decompose the Hamiltonian in Fourier series as

H(t) = Ho+» Vel 4 y=ie—iat,
j=1

V(l) — V(fl)'l' — VL€72ikmo_z/27

VI = vyt = e, /2,

V) =0 otherwise.

The effective Hamiltonian can be expanded as a series
in 1/Q. At lowest order, it reads

p2

Hcff = m + V:)H(x)7
1
_ (1) (1) (=N)
Ver(®) = ey [v [V % H +he,

with V() occurring N times. One calculates

VIfVVBe_iQNkw

‘/eff(x) = W [JZ7 RN [O—Zvo-LEH + h.C.
_ Uett [ cos(2Nkx)o,, N even,
~ 2 | sin(2Nkx)o,, N odd,

where Ueg = 2Vi(VL,/hQ)N /N1

In the main text we consider the case of a (pseudo)-
spin-1/2 for simplicity. The scheme can directly be ex-
tended to an arbitrary spin F. Assuming a coupling
V(xz,t) = 2Vi cos(2kx — Qt)F, + 2V cos(NQt)F,,, we
make use of the general commutation algebra of F,
operators and obtain an effective potential Veg(x) =
Uet cos(2Nkx)F, (N even).

We now consider the validity of the Born-Oppenheimer
approximation, which consists in neglecting the non com-
mutation of position and momentum. The latter plays a
role at the order N + 1 of the perturbative expansion
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FIG. S1. Depth Ueg of the effective lattice, calculated for

arbitrary values of Vi,/(hQ) (a) or Vg/(h) (b) in the case
N = 4. The dashed lines correspond to the lowest-order per-
turbation result (4), and the solid lines to the resummation
results (S.1) and (S.2).

in 1/Q. We performed the perturbative expansion up to
the order NV + 1 for the case N = 1, and obtained the
expression

2
P Ueff

Hoyp =2 —
f=om T

2

" (%) B+
While the first term of order N +1 only represents an en-
ergy offset, the second term can be viewed as a spin-orbit
coupling which may affect the atom dynamics. However,
for typical momenta p on the order of the lattice momen-
tum k, the amplitude of this term is smaller than the
effective lattice depth Ueg by a factor ~ E,/(fS2), which

is typically very small for the examples considered in this
Letter.

sin(2kz)o,

Uet hk . :
5 20 (psin(2kzx) + sin(2kx)p) oy

S.III. RESUMMATION OF
THE PERTURBATIVE EXPANSION OF H.g

The effective potential Vog can be calculated as a se-
ries expansion in powers of the (potentially small) dimen-
sionless parameters V1,/(7Q) and Vp/(A€2), in the high-
frequency limit 2 — oo. In the main text, we provide its

expression in Eq. (4), which corresponds to the lowest-
order term. We note that this derivation, which is based
on the general formula of Ref. [S1], was obtained by ne-
glecting the non-commutativity of the position and mo-
mentum operators; indeed, we verified that the momen-
tum operator is irrelevant in the derivation of the effective
potential, which essentially relies on the spin-dependent
time-modulated components of the Hamiltonian. Thus,
in the following of this Section, which aims to derive the
effective potential in the strong-modulation regime, we
explicitly neglect any effects associated with the kinetic
energy term of the full Hamiltonian.

In this Section, we first derive the expression for the
effective potential Vig, in the case where V1,/(%€2) is al-
lowed to take arbitrary large values (still assuming that
Vs < V1,hQ). Following Refs. [S2,S3], we perform a
unitary transformation

[v') = R(t) [¥), R(t)=exp (—zi‘;é sin(kz — Qt)az> ,

which removes the diverging term ~ Vi ~ A} from the
time-dependent potential V(z,t) in Eq. 1 (main text).
This leads to a novel time-dependent potential

V'(z,t) = R(t)V (x,t)(t)R (t) + ihd, R(t) R ()
= R(t) [V cos(NQt)o,] R (t).

Making use of the identity e=79: 5,979 = cos(2v)o, +
sin(2vy)o,, we obtain the expression

2
V'(z,t) = Vi cos(NQ) [cos <h‘g sin(kz — Qt)) Oy
2
+ sin (hVQL sin(kx — Qt)) O'y:| .

In the large-frequency limit 2 — oo, the atom dynam-
ics can be described by an effective stationary potential,
given by [S2, S3]

1 T
Virlw) = 7 [ Vi@

A%y

= Jxn <) Vi cos(2Nkz)oy, (S.1)

hQ

assuming N even, and where Jy is a Bessel function of
the first kind. This effective potential corresponds to a
spin-dependent optical lattice of spacing d/N and depth
Uet = 2Jn (22) V.

A similar resummation with respect to Vi /(AQ) can
also be derived. Here, we make use of the Floquet repre-
sentation of time-periodic Hamiltonians. We first write
the exact eigenstates of the coupling %COS(N Qt)o,,
which read

QSIVB
Incs2) = 32y (B ) bt o)

PEZL




where n denotes the Floquet quantum number, and s,
is the spin projection along x. The energy of the state
[|n, s:) is equal to nhQ). The effect of the coupling
W cos(kx — Qt)o, can be understood using perturbation
theory in the degenerate subspace ||n, &), which must be
performed at order N. We obtain the expression

Ue
Vet () = fo cos(2Nkzx)o,,

Vs —ano () >
off = 210
Zq', 1 Pi=—

Hﬁvzl in[(—l)iif‘%]

N 1Hi:11 22:1(1"‘ij) '

(5.2)

We plot in Fig. S1 the lattice depth Ueg given by the re-
summation formulas in Eqgs. (S.1)-(S.2) discussed above.
We checked that the formulas (S.1) and (S.2) account
well for the numerical results obtained via direct di-

agonalization of the Bloch-Floquet equations (see Sec-
tion S.IV).

S.IV. EXPRESSION FOR
THE BLOCH-FLOQUET HAMILTONIAN

The modulated potential (1) is invariant under the
space and time translational symmetries 7, 7; and T*,
which all commute with each other. The eigenstates of
the Hamiltonian can thus be written as eigenstates of
those symmetries, which can be expressed as

¢q,w($,t) _ ei(QIfwt) § o eil(k:avfﬂt)eiij:vv
7, lEZ

where —Nk < ¢ < Nk and 0 < w < Q. The spinor
coefficients c;; are determined by the equations

R2q + (L + Nj)kJ?

w4+ 1Q)c;; = o

Cjl

%3
+ ?Jx(cj,l+1 +¢ji-1)

B
+ 70z(cj+1,l—N + Cj—1,1+N)-

The numerical data represented in Fig. 2 (main text) is
calculated using the above equations, in a truncated basis
—10 < 5,1 < 10.

S.V. MICRO-MOTION EFFECTS
IN THE MOMENTUM DISTRIBUTION

In this section, we analyze how the micro-motion as-
sociated with the time-modulation in Eq. (1) affects the
momentum distribution of atoms prepared in the effec-
tive potential Vg of spatial period d/N [Eq. (4)]. Specif-
ically, we consider an atom prepared in the ground state
of the effective potential. This state can be expanded on
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FIG. S2. (a) Momentum distribution associated with the
ground state of the effective lattice with spacing d/4 and
depth Uz = 10.9 ESE. (b) Momentum distribution of the
state in (a), taking into account the micro-motion expected
for the dynamic lattice parameters, according to Eq.S.3. The
micro-motion leads to a more complex structure compared
to (a), periodically evolving in time. The lattice parameters
correspond to the ones of Fig.2 in the main text.

the family of states of momentum multiple of 2Nk (see
Fig.S2a).

The actual state created using time-modulated lattices
is expected to be modified by the micro-motion, as

(1)) = e KD Jyy),

where the expression for the kick operator K (t) is given
in the main text [Eq. (5)]. The latter leads to additional
diffraction peaks at all momenta multiple of 2k, whose
amplitude vary periodically in time, with a period T/N
(see Fig.S2b). This shows that Bragg diffraction does
not give a direct information on the ground state of the
effective lattice.

(.3)

S.VI. EFFECTIVE HAMILTONIAN
DURING LATTICE LOADING

In this Section, we analyze the adiabatic preparation of
the ground state associated with the effective potential
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FIG. S3. (a) Evolution of the amplitude of the moving optical lattice at position = 0, during and after the lattice ramp of
duration tramp. (b) Scheme of the ramp discretization: the time interval 0 < ¢ < tyamp is decomposed into N steps of duration
At. Within each step the depth V1, is constant, leading to a time-periodic potential.

Vet () of depth UY%. We consider a slow ramp of the
moving-lattice depth Vi,(t) = 0 — V{? during the time
interval 0 <t < tamp, such that the effective potential’s
depth UY; corresponds to the final value Vi, (tramp) = V.
As the definition (2) of the effective Hamiltonian and
kick operators assumes a constant lattice depth [S1], we
expect these notions to be modified during the ramp. It
is the aim of this Section to show how the adiabatic ramp
can still be captured by an effective-Hamiltonian picture.

To analyze this situation, we decompose the ramp into
N steps, and we assume that the time interval At =
tramp /N is short enough, such that V1, can be considered
to remain constant within each step. More precisely, we
assume that the lattice depth is equal to V,(jAt) during
the step jJAt<t<(j+1)At. We then apply the effective-
Hamiltonian formalism of Ref. [S1] within each time-step,
and write the full time-evolution operator as

0
Uramp = H Ujv
J=N-1
U; = e~ o [Vi(GAD)] g —iHer [Vi.(FJAD]AL /B i Ko[VL(JAL)]

In the latter expression, and for the sake of simplicity,
we assumed that At was a multiple of the modulation
period, so that the kick operators at the beginning and
at the end of each step only depend on the value of V1, (
in fact, they correspond to the kick operator at the time

t = 0, hence the notation Kj).
Assuming At short enough, we write

eiKo VL((F+1)Ab)] e—iKO [VL(jAL)] ~ eiAt(dVL /dt)dKo/dVi, ;

leading to

Uramp = efiK(tramP)T {eXp <’L / H;g-mp(t)dt/h> } s

where 7 denotes time-ordering, and where one intro-
duced the slowly varying Hamiltonian

ram dVL dKO(tr m )
Heg" () = Hegly, ) — h—" —

de dvi, VL(t)
_ Ueff(t) 1dVvy, .
=— cos(2Nkx)o, + TS sin(2kz)o .

(S.4)

We now estimate a criterion for identifying the adia-
batic regime of the lattice loading. Describing the lattice
loading solely with the first term of eq. (S.4) would lead to
the standard adiabaticity criterion tamp > AU% /(EST)?
[S4]. We expect the second term in (S.4) to drive non-

adiabatic transitions for Vi, > QF,. Adiabatic lattice

~

loading thus requires the additional constraint t,amp >
(VP/E,)/Q. As we choose Vi, < RS, this constraint

~

should not be the most restrictive.
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