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S.I. EFFECTIVE POTENTIAL CREATED BY
THE STROBOSCOPIC SCHEME

In this Section, we present the calculation of the ef-
fective lattice potential produced via the stroboscopic
scheme illustrated in Fig. 1 (main text). We start from
a periodic potential V (x) of period d, which can be de-
composed in Fourier series as

V (x) =
X

p2Z
Vp e

i2⇡px/d.

The method consists in shifting the potential V (x) of
the distance d/N , after each time interval T/N . For N
integer, this leads to a time-periodic potential V (x, t)
of time period T . For a su�ciently short period T ,
the atomic motion is governed by the e↵ective potential
V
e↵

(x), equal to the time average of V (x, t):

V
e↵

(x) =
1

T

Z T

0

V (x, t)dt

=
1

N

NX

j=1

V (x+ jd/N)

=
X

p2Z
Vp e

i2⇡px/d 1

N

NX

j=1

ei2⇡pj/N

=
X

p multiple of N

Vp e
i2⇡px/d.

It is then apparent that the e↵ective potential V
e↵

(x) is
periodic, of period d

e↵

= d/N .

S.II. CALCULATION OF THE EFFECTIVE
POTENTIAL

In this section we give details about the establishment
of the e↵ective Hamiltonian (eqs. (3), (4) in the main
text). We first provide a simple description of the e↵ec-
tive Hamiltonian in a Born-Oppenheimer approximation,

⇤ sylvain.nascimbene@lkb.ens.fr

and discuss further the relevance of this approximation
for typical lattice parameters.
The Born-Oppenheimer approximation consists in ne-

glecting the kinetic energy for the calculation of the e↵ec-
tive Hamiltonian. The position x is considered as a fixed
parameter, while internal degrees of freedom are treated
quantum mechanically. Using the formalism of ref. [S1],
we decompose the Hamiltonian in Fourier series as

H(t) = H
0

+
1X

j=1

V (j)eij⌦t + V (�j)e�ij⌦t,

V (1) = V (�1)† = V
L

e�2ikx�z/2,

V (N) = V (�N)† = V
B

�x/2,

V (j) = 0 otherwise.

The e↵ective Hamiltonian can be expanded as a series
in 1/⌦. At lowest order, it reads

H
e↵

=
p2

2m
+ V

e↵

(x),

V
e↵

(x) =
1

N !(~⌦)N
h
V (1), . . . ,

h
V (1), V (�N)

ii
+ h.c.,

with V (1) occurring N times. One calculates

V
e↵

(x) =
V N
L

V
B

e�i2Nkx

2N !(2~⌦)N [�z, . . . , [�z,�x]] + h.c.

=
U
e↵

2

⇢
cos(2Nkx)�x, N even,
sin(2Nkx)�y, N odd,

where U
e↵

= 2V
B

(V
L

/~⌦)N/N !.
In the main text we consider the case of a (pseudo)-

spin-1/2 for simplicity. The scheme can directly be ex-
tended to an arbitrary spin F . Assuming a coupling
V (x, t) = 2V

L

cos(2kx � ⌦t)Fz + 2V
B

cos(N⌦t)Fx, we
make use of the general commutation algebra of Fu

operators and obtain an e↵ective potential V
e↵

(x) =
U
e↵

cos(2Nkx)Fx (N even).
We now consider the validity of the Born-Oppenheimer

approximation, which consists in neglecting the non com-
mutation of position and momentum. The latter plays a
role at the order N + 1 of the perturbative expansion
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FIG. S1. Depth Ue↵ of the e↵ective lattice, calculated for
arbitrary values of VL/(~⌦) (a) or VB/(~⌦) (b) in the case
N = 4. The dashed lines correspond to the lowest-order per-
turbation result (4), and the solid lines to the resummation
results (S.1) and (S.2).

in 1/⌦. We performed the perturbative expansion up to
the order N + 1 for the case N = 1, and obtained the
expression

H
e↵

=
p2

2m
+

U
e↵

2
sin(2kx)�y

+

✓
V
L

~⌦

◆
2

E
r

+
U
e↵

2

~k
2m⌦

(p sin(2kx) + sin(2kx)p)�y.

While the first term of order N+1 only represents an en-
ergy o↵set, the second term can be viewed as a spin-orbit
coupling which may a↵ect the atom dynamics. However,
for typical momenta p on the order of the lattice momen-
tum k, the amplitude of this term is smaller than the
e↵ective lattice depth U

e↵

by a factor ⇠ E
r

/(~⌦), which
is typically very small for the examples considered in this
Letter.

S.III. RESUMMATION OF
THE PERTURBATIVE EXPANSION OF He↵

The e↵ective potential V
e↵

can be calculated as a se-
ries expansion in powers of the (potentially small) dimen-
sionless parameters V

L

/(~⌦) and V
B

/(~⌦), in the high-
frequency limit ⌦ ! 1. In the main text, we provide its

expression in Eq. (4), which corresponds to the lowest-
order term. We note that this derivation, which is based
on the general formula of Ref. [S1], was obtained by ne-
glecting the non-commutativity of the position and mo-
mentum operators; indeed, we verified that the momen-
tum operator is irrelevant in the derivation of the e↵ective
potential, which essentially relies on the spin-dependent
time-modulated components of the Hamiltonian. Thus,
in the following of this Section, which aims to derive the
e↵ective potential in the strong-modulation regime, we
explicitly neglect any e↵ects associated with the kinetic
energy term of the full Hamiltonian.
In this Section, we first derive the expression for the

e↵ective potential V
e↵

, in the case where V
L

/(~⌦) is al-
lowed to take arbitrary large values (still assuming that
V
B

⌧ V
L

, ~⌦). Following Refs. [S2, S3], we perform a
unitary transformation

| 0i = R(t) | i , R(t) = exp

✓
�i

V
L

~⌦ sin(kx� ⌦t)�z

◆
,

which removes the diverging term ⇠ VL ⇠ ~⌦ from the
time-dependent potential V (x, t) in Eq. 1 (main text).
This leads to a novel time-dependent potential

V 0(x, t) = R(t)V (x, t)(t)R†(t) + i~@tR(t)R†(t)

= R(t) [V
B

cos(N⌦t)�x]R
†(t).

Making use of the identity e�i��z�xe
i��z = cos(2�)�x +

sin(2�)�y, we obtain the expression

V 0(x, t) = V
B

cos(N⌦t)


cos

✓
2V

L

~⌦ sin(kx� ⌦t)

◆
�x

+ sin

✓
2V

L

~⌦ sin(kx� ⌦t)

◆
�y

�
.

In the large-frequency limit ⌦ ! 1, the atom dynam-
ics can be described by an e↵ective stationary potential,
given by [S2, S3]

V
e↵

(x) =
1

T

Z T

0

V 0(x, t)dt

= JN

✓
2V

L

~⌦

◆
V
B

cos(2Nkx)�x, (S.1)

assuming N even, and where JN is a Bessel function of
the first kind. This e↵ective potential corresponds to a
spin-dependent optical lattice of spacing d/N and depth
U
e↵

= 2JN
�
2VL
~⌦

�
V
B

.
A similar resummation with respect to V

B

/(~⌦) can
also be derived. Here, we make use of the Floquet repre-
sentation of time-periodic Hamiltonians. We first write
the exact eigenstates of the coupling VB

2

cos(N⌦t)�x,
which read

||n, sxi =
X

p2Z
Jp

✓
2sxVB

~⌦

◆
|n+ pN, sxi,
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where n denotes the Floquet quantum number, and sx
is the spin projection along x. The energy of the state
||n, sxi is equal to n~⌦. The e↵ect of the coupling
V
L

cos(kx�⌦t)�x can be understood using perturbation
theory in the degenerate subspace ||n,±i, which must be
performed at order N . We obtain the expression

V
e↵

(x) =
U
e↵

2
cos(2Nkx)�x,

U
e↵

= 4~⌦
✓

V
L

2~⌦

◆N
������

X

PN
i=1 pi=�1

QN
i=1

Jpi [(�1)i 2VB
N~⌦ ]QN�1

i=1

Pi
j=1

(1 +Npj)

������
.

(S.2)

We plot in Fig. S1 the lattice depth U
e↵

given by the re-
summation formulas in Eqs. (S.1)-(S.2) discussed above.
We checked that the formulas (S.1) and (S.2) account
well for the numerical results obtained via direct di-
agonalization of the Bloch-Floquet equations (see Sec-
tion S.IV).

S.IV. EXPRESSION FOR
THE BLOCH-FLOQUET HAMILTONIAN

The modulated potential (1) is invariant under the
space and time translational symmetries Tx, Tt and T ⇤,
which all commute with each other. The eigenstates of
the Hamiltonian can thus be written as eigenstates of
those symmetries, which can be expressed as

 q̃,!(x, t) = ei(q̃x�!t)
X

j,l2Z
cj,l e

il(kx�⌦t)eijNkx,

where �Nk < q̃  Nk and 0  ! < ⌦. The spinor
coe�cients cj,l are determined by the equations

~(! + l⌦)cj,l =
~2[q̃ + (l +Nj)k]2

2m
cj,l

+
V
L

2
�x(cj,l+1

+ cj,l�1

)

+
V
B

2
�z(cj+1,l�N + cj�1,l+N ).

The numerical data represented in Fig. 2 (main text) is
calculated using the above equations, in a truncated basis
�10  j, l  10.

S.V. MICRO-MOTION EFFECTS
IN THE MOMENTUM DISTRIBUTION

In this section, we analyze how the micro-motion as-
sociated with the time-modulation in Eq. (1) a↵ects the
momentum distribution of atoms prepared in the e↵ec-
tive potential V

e↵

of spatial period d/N [Eq. (4)]. Specif-
ically, we consider an atom prepared in the ground state
of the e↵ective potential. This state can be expanded on
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FIG. S2. (a) Momentum distribution associated with the
ground state of the e↵ective lattice with spacing d/4 and
depth Ue↵ = 10.9Ee↵

r . (b) Momentum distribution of the
state in (a), taking into account the micro-motion expected
for the dynamic lattice parameters, according to Eq. S.3. The
micro-motion leads to a more complex structure compared
to (a), periodically evolving in time. The lattice parameters
correspond to the ones of Fig. 2 in the main text.

the family of states of momentum multiple of 2Nk (see
Fig. S2a).
The actual state created using time-modulated lattices

is expected to be modified by the micro-motion, as

| (t)i = e�iK(t) | 
0

i , (S.3)

where the expression for the kick operator K(t) is given
in the main text [Eq. (5)]. The latter leads to additional
di↵raction peaks at all momenta multiple of 2k, whose
amplitude vary periodically in time, with a period T/N
(see Fig. S2b). This shows that Bragg di↵raction does
not give a direct information on the ground state of the
e↵ective lattice.

S.VI. EFFECTIVE HAMILTONIAN
DURING LATTICE LOADING

In this Section, we analyze the adiabatic preparation of
the ground state associated with the e↵ective potential
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FIG. S3. (a) Evolution of the amplitude of the moving optical lattice at position x = 0, during and after the lattice ramp of
duration tramp. (b) Scheme of the ramp discretization: the time interval 0  t  tramp is decomposed into N steps of duration
�t. Within each step the depth VL is constant, leading to a time-periodic potential.

V
e↵

(x) of depth U0

e↵

. We consider a slow ramp of the
moving-lattice depth V

L

(t) = 0 ! V 0

L

during the time
interval 0  t  t

ramp

, such that the e↵ective potential’s
depth U0

e↵

corresponds to the final value V
L

(t
ramp

) = V 0

L

.
As the definition (2) of the e↵ective Hamiltonian and
kick operators assumes a constant lattice depth [S1], we
expect these notions to be modified during the ramp. It
is the aim of this Section to show how the adiabatic ramp
can still be captured by an e↵ective-Hamiltonian picture.

To analyze this situation, we decompose the ramp into
N steps, and we assume that the time interval �t =
t
ramp

/N is short enough, such that V
L

can be considered
to remain constant within each step. More precisely, we
assume that the lattice depth is equal to V

L

(j�t) during
the step j�t t<(j+1)�t. We then apply the e↵ective-
Hamiltonian formalism of Ref. [S1] within each time-step,
and write the full time-evolution operator as

U
ramp

=
0Y

j=N�1

Uj ,

Uj = e�iK0[VL(j�t)]e�iHeff [VL(j�t)]�t/~eiK0[VL(j�t)].

In the latter expression, and for the sake of simplicity,
we assumed that �t was a multiple of the modulation
period, so that the kick operators at the beginning and
at the end of each step only depend on the value of V

L

(
in fact, they correspond to the kick operator at the time

t = 0, hence the notation K
0

).
Assuming �t short enough, we write

eiK0[VL((j+1)�t)]e�iK0[VL(j�t)] ' ei�t(dVL/dt)dK0/dVL ,
leading to

U
ramp

= e�iK(tramp)T
⇢
exp

✓
�i

Z
Hramp

e↵

(t)dt/~
◆�

,

where T denotes time-ordering, and where one intro-
duced the slowly varying Hamiltonian

Hramp

e↵

(t) = H
e↵

|VL(t)
� ~dVL

dt

dK
0

(t
ramp

)

dV
L

����
VL(t)

=
U
e↵

(t)

2
cos(2Nkx)�x +

1

⌦

dV
L

dt
sin(2kx)�z.

(S.4)

We now estimate a criterion for identifying the adia-
batic regime of the lattice loading. Describing the lattice
loading solely with the first term of eq. (S.4) would lead to
the standard adiabaticity criterion t

ramp

� ~U0

e↵

/(Ee↵

r

)2

[S4]. We expect the second term in (S.4) to drive non-
adiabatic transitions for V̇

L

& ⌦E
r

. Adiabatic lattice
loading thus requires the additional constraint t

ramp

�
(V 0

L

/E
r

)/⌦. As we choose V
L

. ~⌦, this constraint
should not be the most restrictive.
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