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For a fast rotating condensate in a harmonic trap, we investigate the structure of the vortex lattice using wave
functions minimizing the Gross-Pitaevskii energy in the lowest Landau level. We find that the minimizer of the
energy in the rotating frame has a distorted vortex lattice for which we plot the typical distribution. We
compute analytically the energy of an infinite regular lattice and of a class of distorted lattices. We find the
optimal distortion and relate it to the decay of the wave function. Finally, we generalize our method to other
trapping potentials.
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The rotation of a macroscopic quantum fluid is a source of
fascinating problems. By contrast with a classical fluid, for
which the equilibrium velocity field corresponds to rigid
body rotation, a quantum fluid described by a macroscopic
wave function rotates through the nucleation of quantized
vortices f1,2g. A vortex is a singular pointsin two dimen-
sionsd or line sin three dimensionsd where the density van-
ishes. Along a contour encircling a vortex, the circulation of
the velocity is quantized in units ofh/m, where m is the
mass of a particle of the fluid.

Vortices are universal features which appear in many
macroscopic quantum systems, such as superconductors or
superfluid liquid helium. Recently, detailed investigations
have been performed on rotating atomic gaseous Bose-
Einstein condensates. These condensates are usually con-
fined in a harmonic potential, with cylindrical symmetry
around the rotation axisz. Two limiting regimes occur de-
pending on the ratio of the rotation frequencyV and the trap
frequencyv in thexy plane. WhenV is notably smaller than
v, only one or a few vortices are present at equilibriumf3,4g.
When V approachesv, since the centrifugal force nearly
balances the trapping force, the radius of the rotating gas
increases and tends to infinity, and the number of vortices in
the condensate divergesf5–8g.

As pointed out by several authors, the fast rotation regime
presents a strong analogy with quantum Hall physics. Indeed
the one-body Hamiltonian written in the rotating frame is
similar to that of a charged particle in a uniform magnetic
field. Therefore the ground energy level is macroscopically
degenerate, as the celebrated Landau levels obtained for the
quantum motion of a charge in a magnetic field. There are
two aspects in this connection with quantum Hall physics.
First, when the number of vortices inside the fluid remains
small compared to the numberN of atoms, we expect that the
ground state of the system will correspond to a Bose-Einstein
condensate, described by a macroscopic wave functioncsrd.
This situation has been referred to as “mean field quantum
Hall regime” f9–14g. Second, whenV approachesv even
closer, the number of vortices reaches values comparable to
the total number of atomsN. The description by a single
macroscopic wave function then breaks down, and one ex-

pects a strongly correlated ground state, such as that of an
electron gas in the fractional quantum Hall regimef15–19g.
We do not address the second situation in this paper and we
rather focus on the first regime. Furthermore, we restrict our
analysis to the case of a two-dimensional gas in thexy plane,
assuming a strong confinement along thez direction so that
the corresponding degree of freedom is frozen.

The main features of the vortex assembly equilibrium in
the fast rotation regime are well known. The vortices form a
triangular Abrikosov lattice in thexy plane and the area of
the elementary cell isA=p" / smVd f20g. The atomic veloc-
ity field obtained by a coarse-grained average over a few
elementary cells is equal to the rigid body rotation resultv
=V3 r, whereV=Vẑ sẑ is the unit vector along thez axisd.

Beyond this approximation, the physics is very rich and
many points are still debated. In a seminal paperf9g, Ho
introduced the description of the macroscopic state of the
rotating gas in thexy plane by a wave function belonging to
the lowest Landau levelsLLL d. An LLL wave function is
entirely determinedsup to a global phase factord by the lo-
cation of vortices. Ho considered the case of a uniform infi-
nite vortex lattice and inferred that the ground state of the
system corresponds to a Gaussian shape for the coarse-
grained atom density profile. Using both analyticalf11–13g
and numerical f14g investigations, it was subsequently
pointed out that the atom distribution may have the shape of
an inverted parabola, instead of Ho’s Gaussian result. Two
paths have been proposed to explain the emergence of such
non-Gaussian profiles. The first one assumes that the restric-
tion to the LLL is not sufficient and the contamination of the
ground state wave function by other Landau levels is respon-
sible for the transition from a Gaussian to an inverted pa-
rabola f11,12g. The second path explores the influence of
distortions of the vortex latticeswithin the LLLd to account
for the deviation of the equilibrium profile from a Gaussian
f13,14g.

In the present paper, we investigate the structure of the
vortex lattice for a fast rotating condensate. We derive the
condition under which the LLL is a proper variational space
to determine the ground state wave function within a good
approximation. We present a numerical and analytical analy-
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sis of the structure of the vortex lattice, based on a minimi-
zation of the Gross-Pitaevskii energy functional within the
LLL. We find that the vortices lie in a bounded domain, and
that the lattice is strongly distorted on the edges of the do-
main. This leads to a breakdown of the rigid body rotation
hypothesis which, as said above, would correspond to a uni-
form infinite lattice with a prescribed volume of the cell. The
distortion of the vortex lattice is such that, in a harmonic
potential, the coarse-grained average of the atomic density
varies as an inverted parabola over the region where it takes
significant valuessThomas-Fermi distributiond. A similar
conclusion has also been reached recently inf13,14g. In ad-
dition to the atomic density profile, our numerical computa-
tions give access to the exact location of the zeroes of the
wave function, i.e., the vortices.

An example of relevant vortex and atom distributions is
shown in Figs. 1sad and 1sbd for n=52 vortices. The param-
eters used to obtain this vortex structure correspond to a
quasi-two-dimensional gas of 1000 rubidium atoms, rotating
in the xy plane at a frequencyV=0.99v, and strongly con-
fined along thez axis with a trapping frequencyvz/ s2pd
=150 Hz. The spatial distribution of vortices corresponds to
the triangular Abrikosov lattice only around the center of the
condensate: there are about 30 vortices on the quasi-regular
part of the lattice and they lie in the region where the atomic
density is significant: these are the only ones seen in the
density profile of Fig. 1sbd. At the edge of the condensate,
the atomic density is reduced with respect to the central den-
sity, the vortex surface density drops down, and the vortex
lattice is strongly distorted. Our analytical approach allows
us to justify this distortion and its relationship with the decay
of the solution.

The paper is organized as follows. We startsSec. Id with a
short review of the energy levels of a single, harmonically
trapped particle in a rotating frame, and we give the expres-
sion of the Landau levels for the problem of interest. Then,
we consider the problem of an interacting gas in rotation, and
we derive the condition for this gas to be well described by
an LLL wave functionsSec. IId. Sections III and IV contain
the main original results of the paper. In Sec. III, we explain
how to improve the determination of the ground state energy
by relaxing the hypothesis of an infinite regular lattice. We
present analytical estimates for an LLL wave function with a

distorted vortex lattice, and we show that these estimates are
in excellent agreement with the results of the numerical ap-
proach. In Sec. IV we extend the method to nonharmonic
confinement, with the example of a quadratic+quartic poten-
tial. Finally we give in Sec. V some conclusions and perspec-
tives.

I. SINGLE PARTICLE PHYSICS IN A ROTATING FRAME

In this section, we briefly review the main results con-
cerning the energy levels of a single particle confined in a
two-dimensional isotropic harmonic potential of frequencyv
in the xy plane. We are interested here in the energy level
structure in the frame rotating at angular frequencyV s.0d
around thez axis, perpendicular to thexy plane.

In the following, we choosev, "v, andÎ" / smvd as units
of frequency, energy and length, respectively. The Hamil-
tonian of the particle is

HV
s1d = −

1

2
¹2 +

r2

2
− VLz = −

1

2
s=− iAd2 + s1 − V2d

r2

2

s1.1d

with r2=x2+y2 andA=V3 r. This energy is the sum of three
terms: kinetic energy, potential energyr2/2, and “rotation
energy” −VLz corresponding to the passage in the rotating
frame. The operatorLz= isy]x−x]yd is thez component of the
angular momentum.

A. The Landau level structure

Equations1.1d is formally identical to the Hamiltonian of
a particle of charge 1 placed in a uniform magnetic field
2Vẑ, and confined in a potential with a spring constant 1
−V2. A common eigenbasis ofLz and H is the set ofsnot
normalizedd Hermite functions:

f j ,ksrd = er2/2s]x + i]yd js]x − i]ydkse−r2
d, s1.2d

wherej andk are non-negative integers. The eigenvalues are
j −k for Lz and

Ej ,k = 1 + s1 − Vd j + s1 + Vdk s1.3d

for H. For V=1, these energy levels group in series of states
with a given k, corresponding to the well-known Landau
levels. Each Landau level has an infinite degeneracy. ForV
slightly smaller than 1, this structure in terms of Landau
levels labeled by the indexk remains relevant, as shown in
Fig. 2. The lowest energy states of two adjacent Landau lev-
els are separated by,2, whereas the distance between two
adjacent states in a given Landau level is 1−V!1.

It is clear from these considerations that the rotation fre-
quency V must be chosen smaller than the trapping fre-
quency in thexy plane, i.e.,v=1 with our choice of units.
Otherwise the single particle spectrum Eq.s1.3d is not
bounded from below. Physically, this corresponds to the re-
quirement that the centrifugal forcemV2r must not exceed
the restoring force in thexy plane −mv2r.

B. The lowest Landau level

When the rotation frequencyV is close to 1, the states of
interest at low temperature are essentially those associated

FIG. 1. The structure of the ground state of a rotating Bose-
Einstein condensate described by an LLL wave functionsL
=3000d: sad vortex location andsbd atomic density profileswith a
larger scaled. The reduced energy defined in Eq.s2.6d is e
=31.410 7101. The unit for the positionsx andy is f" / smvdg1/2.
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with k=0, e.g., the lowest Landau levelsLLL d f9,21,22g. Any
functioncsrd of the LLL is a linear combination of thef j ,0’s
and it can be cast in the form

csrd = e−r2/2Psud, s1.4d

where r =sx,yd, u=x+ iy, and Psud is a polynomialsor an
analytic functiond of u. WhenPsud is a polynomial of degree
n, an alternative form ofcsrd is

csrd = e−r2/2p
j=1

n

su − ujd, s1.5d

where theuj s j =1, . . . ,nd are then complex zeroes ofPsud.
Eachuj is the position of a single-charged, positive vortex,
since the phase ofcsrd changes by 2p along a closed contour
encirclinguj.

In the LLL, there is a one-to-one correspondence between
atom and vortex distributions. This relation can be made ex-
plicit by introducing the atom densityrasrd= ucsrdu2:

lnfrasrdg = − r2 + 2o
j

lnur − r ju. s1.6d

Introducing the vortex densityrvsrd=o jdsr −r jd we obtain
using¹2slnur −r0ud=2pdsr −r0d:

¹2hlnfrasrdgj = − 4 + 4prvsrd. s1.7d

This relation was initially derived by Ho inf9g who inter-
preted it in terms of the Gauss law for a system of two-
dimensional charges located at the pointsr j.

II. THE INTERACTING GAS IN ROTATION

We now consider a gas ofN identical bosonic atoms with
massm. The gas is confined in a cylindrically symmetric
harmonic potential, with frequencyv in the xy plane andvz
along thez direction. We suppose that the characteristic en-
ergy "vz is very large compared to all other energy scales
appearing in the paper, so that we can assume that the atoms
occupy the ground state of thez motion, of energy"vz/2 and
extensionaz=Î" / smvzd. We are interested in the ground
state of this quasi-two-dimensional gas, when it is rotating at
frequencyV close tov around thez axis.

A. The Gross-Pitaevskii energy functional

The state of the gas is described by a macroscopic wave
function csrd normalized to unity, which minimizes the
Gross-Pitaevskii energy functional. We introduce the dimen-
sionless coefficientG characterizing the strength of atomic
interactions, proportional to the atom scattering lengthas:
G=Î8pNas/az. The average energy per atom, written in the
frame rotating at frequencyV, is

Efcg =E Sc*fHV
s1dcg +

G

2
ucu4Dd2r , s2.1d

whereHV
s1d is defined in Eq.s1.1d. The wave functioncsrd

minimizing Efcg satisfies the Gross-Pitaevskii equation:

HV
s1dcsrd + Gucsrdu2csrd = mcsrd. s2.2d

The chemical potentialm is determined by imposing that
eucu2=1. The solution of Eq.s2.2d depends on the two inde-
pendent dimensionless parametersV andG.

B. The LLL limit

In the presence of repulsive interactionssG.0d, the basis
of Eq. s1.2d is not an eigenbasis of theN-body Hamiltonian.
However, for a given interaction strengthG and for a suffi-
ciently fast rotationsV close tov=1d, the restriction to the
LLL is sufficient to determine with a good accuracy the
ground state of the system and its energy. Indeed whenV
approachesv=1, the centrifugal forcemV2r nearly compen-
sates the trapping force −mv2r and the area occupied by the
atoms increases. The effect of interactions gets smaller so
that the total energy per particle tends to the energy"v of
the lowest Landau level, i.e., 1 in our reduced units.

Whenc is chosen in the LLL, the energy functional Eq.
s2.1d can be notably simplified. Indeed the LLL functions
satisfy the equalities

kEkinl = kEhol =
1

2
+

1

2
E c*fLzcgd2r , s2.3d

where the kinetic and harmonic oscillator energies are

kEkinl =
1

2
E u = cu2d2r, kEhol =

1

2
E r2ucu2d2r . s2.4d

The total energyEfcg=ELLL fcg is then given by

ELLL fcg − V =E Ss1 − Vdr2ucu2 +
G

2
ucu4Dd2r . s2.5d

In Sec. III, we will minimize this energy functional for func-
tions in the LLL. Here we simply outline some relevant scal-
ing laws in this regime.

C. Scaling laws and lower bound in the LLL

The minimization of Eq.s2.5d is equivalent to the mini-
mization of the reduced energy

efcg =
ELLL fcg − V

1 − V
=E Sr2ucu2 +

L

2
ucu4Dd2r s2.6d

with

FIG. 2. The single particle energy spectrum forV=0.9. The
indexk labels the Landau levels. The energy is expressed in units of
"v.
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L =
G

1 − V
. s2.7d

Therefore the minimizercLLL depends only on the parameter
L. This is quite different from what happens when the LLL
limit is not reached: for the minimization of Eq.s2.1d, the
two parametersG and V are relevant, and not only their
combinationL.

It is instructive to consider the minimum ofefcg whenc
is allowed to explore the whole function space of normalized
functions eucu2d2r =1. This minimum is straightforwardly
obtained forucu2 varying as an inverted parabola in the disk
of radiusR0:

ucminsrdu2 =
2

pR0
2S1 −

r2

R0
2D, R0 = S2L

p
D1/4

, s2.8d

andcsrd=0 outside. The reduced energy is

emin =
2Î2

3Îp
ÎL. s2.9d

The variation of the atomic density as an inverted pa-
rabola is very reminiscent of the Thomas-Fermi distribution
for a condensate at rest in a harmonic potential. However,
this analogy should be taken with care. In the usual Thomas-
Fermi approach, one neglects the kinetic energy term and the
equilibrium distribution is found as a balance between poten-
tial and interaction energies. In the LLL problem considered
here, kinetic and potential energies are equalfsee Eq.s2.3dg,
and their sumer2ucu2, which is large compared to 1 when
L@1, is nearly balanced by the rotation term −VkLzl.

The functioncmin clearly does not belong to the LLL,
since the only LLL function depending solely on the radial
variable is exps−r2/2d. Consequently the reduced energy Eq.
s2.9d is strictly lower than the result of the minimization of
efcg with c varying only in the LLL. In other words, the
minimization of Eq.s2.5d that we perform in the next section
amounts to find the LLL function which is “the most similar”
to cmin, so that its reduced energy is the closest toemin. For
L@1, we shall see thate.aÎL, wherea is a coefficient of
order unity to be determined.

D. Validity of the LLL approximation

Sincee.aÎL, the ground state energyE of the fast ro-
tating gas determined within the LLL approximation isV
+aÎGs1−Vd. Therefore the restriction to the LLL is valid as
long as the excess energyaÎGs1−Vd is small compared to
the splitting 2"v=2 between the LLL and the first excited
Landau level:

Restriction to the LLL if Gs1 − Vd ! 1. s2.10d

When this condition is satisfied, the projection ofc on the
excited Landau levels is negligibly small.

It is interesting to compare the scaling laws derived in the
LLL with the exact relations obtained using the virial theo-
rem. For a 2D gas, this theorem gives for the ground state of
the spossibly rotatingd system

kEhol = kEkinl + kEintl, s2.11d

kEintl =
G

2
E ucu4d2r , s2.12d

while we expect for LLL wave functions forL@1

kEhol = kEkinl , ÎL @ kEintl , ÎGs1 − Vd. s2.13d

Therefore, within the LLL validity domain of Eq.s2.10d, the
scaling laws for the predicted LLL energies agree with the
constraints imposed by the virial theorem.

III. THE LLL EQUILIBRIUM DISTRIBUTION

This section is devoted to the minimization of the reduced
energy given in Eq.s2.6d for LLL wave functions. We start
with wave functions corresponding to an infinite regular vor-
tex lattice and we derive the corresponding energy. Then, we
give numerical results which we use in the rest of the section
as a guide to improve our choice for trial wave functions and
analyze the distortion of the lattice.

A. The case of a regular vortex lattice

1. The average density profile for a regular vortex lattice

We consider a wave function in the LLL with an infinite
number of vortices on a regular lattice and an average spatial
density r̄v. We denote byuj the points of the regular trian-
gular lattice, and byA=1/r̄v the area of its unit cell. We
consider the LLL wave functions

csrd = Ce−r2/2 p
ujPDR

su − ujd, s3.1d

where only theuj’s located in the diskDR of radiusR cen-
tered at the origin contribute to the product and the constant
C is due to the normalizationeucu2=1. ForA.p, we now
prove the following result for the atomic densityrasrd
= ucsrdu2:

rasrd → psrdr̄asrd asR→ `, s3.2d

where psrd is periodic over the lattice and vanishes at the
uj’s, and where

r̄asrd =
1

ps2e−r2/s2
,

1

s2 = 1 −
p

A . s3.3d

The function r̄asrd is the coarse-grained average of the
atomic densityrasrd. This Gaussian decay has already been
obtained by Ho in the so-calledaveraged vortex approxima-
tion f9g. However, we find useful to prove it here with a
different approach, which we shall generalize to nonuniform
latticessSec. III Cd.

To prove this result, we write lnfrasrdg=vsrd+wsrd with

vsrd = g8 + 2 o
ujPDR

lnuu − uju −
2

AEPR

lnuu − u8ud2r8,

wsrd = − g − r2 +
2

AEPR

lnuu − u8ud2r8, s3.4d

where we setu8=x8+ iy8, g=lnsps2d, and g8=g+2 ln C.
HerePR denotes the inner surface of the polygon formed by
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the union of all elementary cells having their centeruj in the
disk DR. We want to find the limit ofvsrd andwsrd asR is
large.

We start with the calculation ofvsrd. The integral entering
in the definition ofv can be written

1

AEPR

lnuu − u8ud2r8 = o
ujPDR

W
lnuu − uj − u9ud2r9,

s3.5d

where the signW stands for the integration over the unit cell
of the lattice divided by the area of the cellA. WhenR tends
to infinity, vsrd tends to the series

v`sr d = g0 + 2o
uj
W

ln
uu − uju

uu − uj − u9u
d2r9 s3.6d

whose convergence can be checked by expanding the func-
tion lnuu−uj −u9u up to third order inu9 / su−ujd. This series
is a periodic function over the lattice and we setpsrd
=expfv`srdg, which is also periodic.

To calculatewsrd, we first consider the auxiliary function
w̃srd=wsrd−ws0d+r2/s2. Using ¹2slnur −r0ud=2pdsr −r0d,
we find thatw̃ is harmonic inPR, with w̃s0d=0. Moreover, a
small computation leads to the inequalityw̃srd
ù−pr2/ s2Ad. In the limit R→`, we find thatw̃ converges
to w̃`, which is a harmonic polynomial with degree less than
2. Due to the symmetry properties of the unit cell, and the
lower bound by the parabola −pr2/ s2Ad, w̃`=0, hence the
result Eq.s3.3d.

To summarize, when the vortex lattice is periodic with a
uniform average spatial densityr̄v, the coarse-grain average
r̄a of the atomic density is the Gaussian of widths. The
relation in Eq.s3.3d can be put in the form

¹2hlnfr̄asrdgj = − 4 + 4pr̄v, s3.7d

which generalizes to coarse-grained quantities the result
given in Eq.s1.7d. The fast rotation limit corresponds to the
case of a large spatial extent of the atom distribution, i.e.,
s→ +` or equivalentlyA=1/r̄v→p.

2. The energy associated with a uniform vortex lattice

Once the behavior of the limiting functionc is known, we
can determine the reduced energys2.6d in the limit of fast
rotation. This requires the calculation of the integrals
erasrdd2r, er2rasrd d2r, andera

2srd d2r in the limit R→`. It
is performed using Eqs.s3.2d ands3.3d, by taking advantage
on the difference in the scales of variations ofr̄asrd sscale
s@1d andpsrd sscale,1d. We getf23g

E rasrdd2r . S
W

psrdd2rDSE r̄asrdd2rD , s3.8d

so that the normalization ofra entailsWpsrd d2r =1. A similar
splitting betweenp andr̄a occurs for the energy and we find

e .E Sr2r̄asrd +
bL

2
r̄a

2srdDd2r = s2 +
bL

4ps2 , s3.9d

where we have set

W
p2srdd2r = b. s3.10d

The reduced energy Eq.s3.9d depends on the areaA of the
unit cell throughs and on its shape through the Abrikosov
coefficientb. Let us briefly recall the origin of this coeffi-
cient. Instead of using the exact atomic densityrasrd to cal-
culate the energy, we work with the coarse-grain average
r̄asrd, whose spatial variation is much simpler. To do this
substitution, we must renormalize the interaction coefficient
G, which becomesbG. This is a consequence of the discrete-
ness of the vortex distribution: since the wave functioncsrd
must vanish at the vortex location, the average value ofucu4
over the unit cell, and hence the interaction energy, is larger
than the result obtained ifucu was quasi-uniform over the
cell.

We now look for the choice ofb ands which minimizes
the reduced energy Eq.s3.9d. As known for the case of su-
perconductors, the lattice minimizingb is the triangular one
f24g, for which b.1.1596. The minimization overs then
leads to

s0 = fbL/s4pdg1/4 and e0 = ÎbL/p. s3.11d

We recover a scaling similar to Eqs.s2.8d ands2.9d, inferred
for a distribution varying as an inverted parabola. Note that
the size of the elementary cellA=ps1−s0

−2d−1 differs from
the rigid body rotation result,ARBR=p /V, although the two
quantities tend top whenV tends to 1. Actually, if we im-
poseA=ARBR in Eq. s3.9d, instead of minimizing ons, we
find that 1/s2=1−V and we obtainELLL ,2, much larger
than the resultELLL ,1 deduced from Eq.s3.11d.

The reduced energye0 exceeds the lower bound Eq.s2.9d
by the factorÎb3Î9/8,1.14. The origin of the coefficient
b has been explained above. The coefficientÎ9/8=1.06 is
due to the difference between the Gaussian envelope found
herefcf. Eq. s3.3dg, and the optimum function varying as an
inverted parabola Eq.s2.8d. For the parameterL=3000 used
in Fig. 1, we finde0=33.3 using Eq.s3.11d, which is ,6%
larger than the result found numericallyscf. Fig. 1 and Sec.
III B belowd.

B. Minimization in the LLL: Numerical results

We now turn to the description of the numerical method
that has been used to obtain the vortex and atomic patterns
shown in Fig. 1 and we give some further results of interest
for the following discussion. For a givenL=G/ s1−Vd and a
given numbern of vortices, we write our trial functions un-
der the form of Eq.s1.5d. We vary the location of the vortices
ui using a conjugate gradient method to determine the opti-
mal location and the minimum reduced energyen.

The computation of the energy uses the Gauss point
methodsseef25g or f26g for a use in the case of the Gross-
Pitaevski equationd: the computation of the integral of a
polynomial times a Gaussian is exact as long as the degree of
the polynomial is lower than a certain bound, which depends
on the number of Gauss points. An alternative method used
for example inf14g consists in writing the trial functions in
the form of Eq.s1.4d with Psud=o j=1

n bju
j, and performing
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the minimization by varying the coefficientsbj. The advan-
tage of the method followed here is to give directly the lo-
cation of the vortices, while the alternative approach requires
to find then roots of the polynomialPsud, which may be a
delicate task for largen.

For the range ofL’s that we have exploredsbetween 300
and 3000d, the reduced energyen decreases for increasingn,
until it reaches a plateau. ForL=3000sFig. 3d, the plateau is
reached forn=52 and the reduced energy varies in relative
value by,±10−8 whenn increases from 52 to 70. The vor-
tex and atom distributions forn=52 are given in Fig. 1.
Whenn increases the central distribution of vortices remains
the same, as well as the significant part of the atom distribu-
tion. The distribution minimizing the energy forn=70 vorti-
ces is shown in Fig. 4. We note that beyondn=52, the loca-
tion of the additional vortices strongly depends on the initial
data of the optimization procedure, as extra vortices only
slightly change the energy. In addition to the result of Fig. 4,
which is the absolute minimum forhL=3000,n=70j, we
have found a number of configurations corresponding to lo-
cal minima where the additional vortices lie on an outer dis-
torted circle.

C. The distorted lattice

Inspired by the numerical results such as the ones shown
in Figs. 1 and 4, we generalize the approach developed for

the regular vortex lattice to the case of a distorted lattice. We
make the hypothesis that the locationsuj of the vortices are
deduced from a regular hexagonal latticeuj

reg by

uj = Tsuj
regd = lsuuj

reguduj
reg, s3.12d

where lsrd is a positive function varying smoothly over a
distance of order unity. We assume that the unit cell of the
initial regular lattice has the areaA=p, corresponding to a
flat density profile in Eq.s3.3d. If l tends to infinity for a
finite valuerh, the number of vortices in the distorted lattice
is finite and equal to,rh

2, since all vortices located after the
“horizon” rh in the regular lattice are rejected to infinity.
Otherwise, ifl is finite for all r, the number of vortices in
the distorted lattice is infinite.

The distortion is illustrated in Fig. 5 for the particular case
of L=3000. We have plotted at the same scale the regular
lattice withA=p and the configuration of vortices minimiz-
ing the energy. Forn=52 vortices, only the lattice sites of the
regular lattice whose distance to the origin is belowrh=7.4
remain in the distorted lattice. Around the center of the disk
of radius rh, the functionlsrd is close to 1, and the lattice
hujj has, in this region, the same local triangular symmetry as
huj

regj. On the other hand, the functionlsrd becomes very
large whenr approaches the horizonrh. The lattice is then
considerably distorted on the edges, and it does not necessar-
ily possess a global triangular symmetry. The only case
where this triangular symmetry is preserved occurs when a
vortex is located at the originr =0. We found in our numeri-
cal simulations that this event rarely occurs. The most fre-
quent case is the one displayed in Figs. 1 and 4, where the
origin is at the middle of the segment joining two adjacent
vortices. In this case the distorted lattice is symmetric by
reflection with respect to two orthogonal axes.

As for the case of the regular lattice, we introduce the
coarse-grained averagesr̄a and r̄v of the atom and vortex
densities. The functionr̄v is now space dependent and is
simply the inverse of the area of a distorted cell in the vicin-
ity of r:

r̄vsrd = hplsr8dflsr8d + r8l8sr8dgj−1, s3.13d

where r =lsr8dr8 and wherel8 is the derivative ofl. We
recall that the expected length scale in the limit of fast rota-
tion is R0=s2L /pd1/4@1 ssee Sec. II Cd and we consider a
class of distortionslsrd such that

FIG. 3. The minimum reduced energyen as a function of the
number of vortices in the trial wave functionsL=3000d.

FIG. 4. Vortex distribution minimizing the reduced energy for
L=3000 andn=70 vortices.

FIG. 5. The regular lattice withA=p and distorted lattice mini-
mizing the energy forL=3000 andn=52 vortices.

AFTALION, BLANC, AND DALIBARD PHYSICAL REVIEW A 71, 023611s2005d

023611-6



l2srd = 1 +
fsr2/R0

2d
R0

2 + OS 1

R0
4D , s3.14d

where fsj2d is a continuous function, which diverges atjh
2

=rh
2/R0

2. We also assume that the integralFssd=e0
sfss8dds8

diverges ats=jh
2. We shall check in the end that the distortion

minimizing the energy belongs to the class of functions de-
fined in Eq.s3.14d.

In the limit L@1, we show in the Appendix the following
properties for the vortex lattices obtained through a distor-
tion obeying Eq.s3.14d:

s1d The atom densityrasrd can be written as

lnfrasrdg = vsrd + wsrd, s3.15d

where v is related to the functionv`srd introduced for a
regular lattice in Eq.s3.6d:

vsrd = v`sr8d with r = lsr8dr8. s3.16d

wsrd is a smooth radial function and we setr̄asrd
=expfwsrdg, wherer̄a is normalized to unity.

s2d The coarse-grain averager̄a at a pointr =R0j and the
integralF of the distortion functionf are related by the re-
lation

r̄asR0jd ~ expf− Fsj2dg if j , jh, s3.17d

and is zero elsewhere. Note thatr̄asrd is continuous atrh

=R0jh since we have assumed thatFssd tends to +̀ when
s→jh

2.
s3d As for the regular lattice case, we use the difference in

the scales of variations of the two functionsv andw to obtain

e .E Sr2r̄asrd +
bL

2
r̄a

2srdDd2r . s3.18d

whereb=1.1596 as for a regular lattice.
The differences with respect to the initial minimization

problem of Eq.s2.6d are the renormalization of the coeffi-
cientG→bG discussed in Sec. III A, and the fact thatr̄a is a
smooth, non-negative radial function, instead of being the
square of an LLL wave function.

D. The “Thomas-Fermi” distribution in the LLL

We now address the minimization of the energy functional
in Eq. s3.18d. The minimizing function is the inverted pa-
rabola r̄asrd~R1

2−r2 for r ,R1=s2bL /pd1/4, and r̄a=0 for
r .R1. The associated energy is

e .
2Î2

3Îp
ÎbL. s3.19d

Using Eq.s3.17d we deduce the distortion functionfssd and
its primitive Fssd:

fssd .
1

Îb − s
, Fssd = − lnS1 −

s
Îb

D . s3.20d

As initially assumed, the functionsfssd andFssd tend to +̀
at the horizonÎb, hencerh=b1/4R0=R1. This means that at

leading order inL, the Thomas-Fermi radius and the horizon
are equal. The functionT transforming the initial regular
lattice uj

reg into the distorted latticeuj is thus

r = Tsr8d = r8 +
r8

R1
2 − r82 . s3.21d

Once fssd is known, one can evaluate the vortex density
using Eq.s3.13d:

pr̄vsrd = S1 +
R1

2

sR1
2 − r82d2D−1

. s3.22d

where r and r8 are related by Eq.s3.21d. In particular the
vortex density atr =0 is ,s1−R1

−2d /p, which is close, but
not equal, to the predictionV /p for a rigid body rotation.

Our distortion functionf is to be related to that off28g,
though it is derived using very different techniques. The
asymptotic result Eq.s3.19d has also been obtained recently
by Watanabe, Baym, and Pethickf13g, who assumed that Eq.
s3.7d can be generalized to the case wherer̄v is spatially
dependent:

¹2hlnfr̄asrdgj = − 4 + 4pr̄vsrd. s3.23d

By differentiating Eq.s3.17d, a similar relation can be proved
within our approach withr̄vsrd replaced byr̄v(Tsrd). The two
relations are equivalent at points not too close to the
Thomas-Fermi radiussi.e., R1−r *1d. They differ notably
when r is close toR1 since Eq.s3.23d would entail that no
vortex lies out of the Thomas-Fermi radius, whereas our ap-
proach yields that the vortex densityr̄vsr8d is negligible only
at a radiusr8=Tsrd much larger thanR1. The latter prediction
seems in better agreement with numerical results.

A result related to Eq.s3.23d has also been shown in a
different context by Sheehy and Radzihovskyf27g. They
consider the case of a condensate which is not in very fast
rotation si.e., outside of the LLL regimed but still with sev-
eral vortices. Interestingly, the procedure used inf27g to de-
rive the relation betweenr̄v and r̄a is based on the minimi-
zation of the energy functional, including atom interactions.
On the contrary, the result in Eq.s3.17d or s3.23d is a conse-
quence of the structure of an LLL wave function and it is at
first sight independent of atomic interactions. However, one
must keep in mind that the knowledge of the strength of
atom interactions is essential to check the relevance of LLL
wave functions for the problemfsee Eq.s2.10dg. The relation
reached inf27g has the same structure as Eq.s3.23d, but with
a dimensionless coefficient involving the healing length and
r̄v inside the¹2 lnsrad term. Close to the Thomas-Fermi ra-
dius, r̄v varies rapidly and the approach off27g leads to a
different relation from Eq.s3.23d, since the derivatives ofr̄v
have a significant contribution in this region.

Our analytical predictions can be compared with our nu-
merical results obtained in the particular caseL=3000si.e.,
R1=6.86d, for which we plotted Fig. 1. The prediction of Eq.
s3.19d yields e=31.374, only 0.12% below the value deter-
mined numerically. We can also compare our trial density
with the numerical result. We give in Fig. 6 the prediction of
the inverted parabola together with the radial density distri-
bution determined numerically:
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rradsrd =
1

2p
E

0

2p

ucsrdu2du, s3.24d

whereu is the polar angle in thexy plane. Apart from oscil-
lations due to the discreteness of vortices, the two distribu-
tions are remarkably close to each other. A similar conclu-
sion was reached recently by Cooper, Komineas, and Read
f14g. They also performed a numerical minimization of the
energy of Eq.s2.1d in the LLL limit, and found an atom
density profile in good agreement with the inverted parabola
distribution predicted inf13g.

From the above analytical results, we expect that the
minimizing configuration will involven, rh

2,48 vortices.
The number of vortices for which the minimum energy pla-
teau is reached numerically is 52, which is very close torh

2.
As for the location of vortices, our analysis indicates that the
vortices in the distorted lattice are images through Eqs.
s3.12d–s3.21d of points of the regular hexagonal lattice such
that uuj

regu, rh=R1. Note that the optimal vortex configuration
involves some vortices outside the disk of radiusR1. They
correspond to regular lattice sitesuuj

regu close to the horizon
rh. Indeed, for these pointsl gets large and the image point
is sent beyond the Thomas-Fermi radius. Thus, though the
distorted lattice provides an inverted parabola which van-
ishes atR1, the location of the vortices extends beyondR1.
The numerical analysis leads to results which nicely confirm
our analytical predictions. In addition it allows us to explore
the role of the vortices lying outside the Thomas-Fermi dis-
tribution. For example, one can remove the contributionsu
−ujd of these vortices in the expression Eq.s1.5d of the LLL
wave function, while keeping unchanged the contribution of
the vortices inside the Thomas-Fermi radius. This results in a
significant modification ofrasrd which then vanishes around
,7.3, instead of,6.8. Therefore these outer vortices play an
important role in the equilibrium shape of the condensate,
even though they cannot be found when one simply plots the
atomic spatial density.

A closer look at Fig. 6 indicates thatr̄a is matched to zero
more smoothly than an inverted parabola. An expansion of
the energy of the distorted latticefEq. s3.18dg to the next

order in L should lead to a minimizing functionr̄a with a
smoother decay to zero aroundR1. In particular a natural
way to match the inverted parabola with the asymptotic de-
cay r2ne−r2

of any LLL function with n vortices could be
obtained through a Painlevé-type equationsas at the border
of a nonrotating BECd.

Remark: Comparison with the “centrifugal force approxi-
mation.” Under some conditions, it is possible to writec as
the product of a rapidly varying functionhsrd and a slowly

varying envelopec̄srd f11g. This is reminiscent of the split-
ting of lnsrad in terms of v and w, although it leads to a
different conclusion. One obtains for the envelope an equa-
tion similar to Eq.s2.2d, where only the centrifugal potential
remainsf11g:

−
1

2
¹2c̄srd + s1 − V2d

r2

2
c̄srd + Guc̄srdu2c̄srd = m̄c̄srd,

s3.25d

where m̄=m−V. We call this approach the “centrifugal
force” approximationf29g and we compare its predictions
with those derived from the LLL approximation.

When the approximation leading to Eq.s3.25d is valid,
one is left with the problem of a 2D gas at rest in a harmonic
potential with the spring constant 1−V2. The solution of this
equation depends on the strength of the interaction parameter
G. If G@1, the kinetic energy term can be neglected

sThomas-Fermi approximationd and one getsuc̄srdu2~1
−r2/Rcfa

2 inside the disk of radiusRcfa=h4G/ fps1−V2dgj1/4

and csrd=0 outside. Note thatRcfa coincides with our
Thomas-Fermi radiusR1 for V.1. If G!1, the interaction
term can be neglected and the solution is the ground state of
the harmonic oscillator, i.e., the Gaussian of widths1
−V2d−1/4.

In the LLL, we have seen that the distinction between the
two regimesG@1 andG!1 is not relevant. The only im-
portant parameter isL=G/ s1−Vd. WhenL@1 the envelope
of the atom density profile is close to an inverted parabola,
irrespective of the value ofG. Therefore, there exists a clear
discrepancy between the predictions of the LLL treatment
and those of the centrifugal force approximation when 1
−V!G!1. For these parameters the LLL approximation is
valid sinceGs1−Vd!1 fsee Eq.s2.10dg. The extent of the
wave function minimizingefcg is thusR1, (G/ s1−Vd)1/4,
while the reasoning based on Eq.s3.25d would lead to a
Gaussian envelope with a larger sizes1−Vd−1/4, independent
of G.

IV. EXTENSION TO OTHER CONFINING POTENTIALS

The ideas that we have developed for a harmonic confine-
ment can be generalized to a larger class of trapping potential
Vsrd. For simplicity we assume here thatV is cylindrical
symmetric, with a minimum atr =0. We definev as mv2

=]2V/]ur2u0 and we set

Vsrd = 1
2mv2r2 + Wsrd. s4.1d

As above we choosev and Î" / smvd as the units for fre-
quency and length, respectively.

FIG. 6. The radial density distributionrradsrd for L=3000. The
unit along the vertical direction is arbitrary. The dotted line is a fit
using the inverted parabola with the radiusR1=s2bL /pd1/4, with an
adjustable amplitude.
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We are still interested here in a region whereV,1. To
minimize the Gross-Pitaevskii energy functional, we use
again wave functions in the LLL so that the energy per par-
ticle to be minimized is

ELLL = V +E Ffs1 − Vdr2 + Wsrdgra +
G

2
ra

2Gd2r .

s4.2d

As explained in Sec. II C, the LLL approximation is valid if
the minimum forELLL −V is small compared to the distance
2=2"v between the LLL and the first excited Landau level.

We have seen that varying the locationsui of the vortices,
hence the average vortex surface densityr̄v, allows us to
generate a large class of coarse-grain averaged atom densi-
ties r̄a. ProvidedWsrd is well behaved, we can generalize the
treatment presented for the purely quadratic case. The energy
ELLL can still be expressed in terms ofr̄a instead ofra with
an expression similar to Eq.s4.2d, and the interaction param-
eterG replaced bybG. The Thomas-Fermi distribution mini-
mizing ELLL is

ra
TFsrd = maxSm − s1 − Vdr2 − Wsrd

bG
,0D s4.3d

wherem is the chemical potential determined such thater̄a
=1. Oncer̄a has been determined over the whole space, the
energyELLL can then be calculated and the validity of the
various approximations can be checked:sid uELLL −Vu!1
and sii d the extension of the domain wherer̄a differs from
zero is large compared to 1, so that it is legitimate to intro-
duce a coarse-grain average ofra over several vortex cells,
and there is a large parameter playing the role ofR0.

As an example, we investigate the case of a combined
quartic and harmonic potential:Wsrd=kr4/4, which has been
studied recently theoretically, numericallyf30–36g, and ex-
perimentallyf37g. A nice feature of this potential is that it
allows us to explore the regionVù1, since the centrifugal
force,V2r, can always be compensated by the trapping force,
varying as −sr +kr3d. We defineD0=f3k2bG/ s8pdg2/3 andD
=s1−Vd2+km. Two cases can occur.sid If V,Vc

=1+ÎD0, then ra
TF is nonzero in a disk of radiusR+

2

=2sV−1+ÎDd /k, V andD being linked by

2D3/2 + 3DsV − 1d − sV − 1d3 = 4D0
3/2. s4.4d

sii d If V.Vc, then ra
TF is nonzero on an annulus of radii

R±
2=2sV−1±ÎDd /k, andD=D0.

The Thomas-Fermi distribution given in Eq.s4.3d allows
us to calculate the minimum energy per particle. Since the
general calculation is quite involved, we simply give here the
result forV=Vc:

V = Vc: ELLL − V = ak1/3G2/3, s4.5d

wherea.−0.1. More generally, whenu1−Vu is at most of
the order ofk2/3G1/3, thenELLL −V is of the order ofk1/3G2/3.
The restriction to the LLL wave functions and the use of the
“Thomas-Fermi” approximationfEq. s4.3dg are valid if two
conditions are fulfilled:sid ELLL −V!1, hencekG2!1, and
sii d the extensionR+,sG/kd1/6 of r̄a is large compared to 1,

so that the coarse-grain average ofra is meaningful. This
requiresk!1 andk!G!1/Îk. When these conditions are
satisfied,Vc−1,k2/3G1/3!1, and the study of the regime
VùVc can be performed within the LLL. In addition one
can check that forVc−1,V−1!k1/3G2/3, the width R+
−R− of the annulus is large compared to 1fboth R+ andR−
are of ordersG/kd1/6g, so that the use of the coarse-grain
averages ofra andrv is justified. A similar analysis to what
we have performed above yields an almost uniform vortex
lattice in the annulus, with a distortion near the inner and
outer boundaries.

The LLL approximation has been used by Jackson,
Kavoulakis, and Lundh to study the phase diagram of the
vortices in a quadratic1quartic phasef35g. They were
mostly interested in the stability of giant vortices, hence they
restricted their analysis to particular LLL states, whereFsud
only contains two or three termsbju

j. However, one could, in
principle, use the same approach as the numerical treatment
developed here, and derive the detailed vortex pattern for
various choices ofG, V, andk. It would be interesting to see
whether there exists a domain of parameters where the poly-
nomial Fsud has a multiple root inu=0. This would corre-
spond to the giant vortex which has been predicted by other
approachesf10,32,36g. Another limit whereR+−R−ø1 has
recently been studied inf36g.

V. CONCLUSION

In this paper, we have studied analytically and numeri-
cally the vortex distribution and atomic density for the
ground state of a rotating condensate trapped in a harmonic
potential, when the rotation and trapping frequencies are
close to each other. Restricting our analysis to quantum
states in the lowest Landau level, we have shown that the
atomic density varies as an inverted parabola over a central
region. The vortices form an almost regular triangular lattice
in this region, but the area of the cell differs from the pre-
diction for solid body rotation. In the outer region, the lattice
is strongly distorted. We have determined the optimal distor-
tion, and related it to the decay of the wave function close to
the Thomas-Fermi radius.

Our results agree with those of a recent numerical study
f14g. Another analytical approach to this problem has re-
cently been given inf13g. It leads to the same value as ours
for the energy of the ground state, whereas our treatment
provides more detailed information on the vortex pattern at
the edge of the condensate. Our predictions for the equilib-
rium shape of the atomic density and for the vortex distribu-
tion should be experimentally testable. Inf7g the regime of
fast rotation in the LLL has already been achieved and it was
indeed found that the atom density profile varies as an in-
verted parabola, and not as a Gaussian as one would expect
for an infinite regular latticef9g. In f8g, a detailed experimen-
tal analysis of the vortex spacing as a function of the distance
to the center of the trap has been made and it showed a clear
distortion of the pattern on the edges of the condensate. This
study was not performed in conditions such that our LLL
approximation is valid, and the relevant theoretical model is
rather the one developed inf27g. However, it should be pos-
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sible to perform a similar experimental analysis for faster
rotation rates and test, in particular, the validity of our pre-
diction concerning the distortion factorlsrd fsee Eqs.s3.12d,
s3.14d, ands3.20dg.

Finally, we have addressed the case of other trapping po-
tentials, such as a superposition of a quadratic and a quartic
potential, which have also been addressed experimentally
f37g. For even faster rotations, when the number of vortices
approaches the number of atoms, the ground state is strongly
correlated. We did not touch this point here, but our work
should be relevant for studying the apparition of this corre-
lated regime from a destabilization of the mean field results
by quantum fluctuations.
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APPENDIX: THE CASE OF A DISTORTED LATTICE

The aim of this appendix is to prove the properties used in
Sec. III C. A detailed proof will be given inf38g. We con-
sider a distorted lattice in an inner region and keep a regular
lattice in the outer region in such a way that the distortion is
continuousssee Fig. 7d. We label byj a regular hexagonal
lattice with a unit cell areaA=p and we define the trans-
formed lattice by

uj = Hlsuj udj for uj u , aR0,

la j for uj u ù aR0,
J sA.1d

where the radiusR0 is given in Eq.s2.8d, the distortion func-
tion lsrd satisfiess3.14d, andaR0 is smaller than the horizon

rh wherelsrd diverges. We have setla=lsaR0d and the area
of the unit cell of the outer lattice isAa=pla

2. When aR0
tends torh, Aa tends to infinity and the vortex lattice of Fig.
7 is similar to the one in the right of Fig. 5.

In the following, we shallsid define r̄a and compute its
limit when R0 increasessi.e., V tends to 1d for a fixeda, and
sii d let a get close to the horizonjh=rh/R0. We need to take
the limits in this order, because we will use thatla is close to
1, which is only true ifa is fixed less thanjh andR0 is large.

First we consider only the pointsj in a diskDR8:

csrd = Ce−r2/2 p
uj u,R8

su − ujd. sA.2d

Qa denotes the unit cell of the lattice of areaAa andPa,R8 is
the polygon formed by the union of all elementary cells of
areaAa and centerla j, with uj u,R8. We write lnfrasrdg
=vR8srd+wR8srd with

vR8srd = 2 o
aR0,uj u,R8

Slnur − la j u −
1

Aa
E

Qa

lnur − r8

− la j ud2r8D + 2 o
uj u,aR0

Slnur − lsjdj u −
1

Aa
E

Qa

lnur

− r8 − lsjdj ud2r8D + 2 ln C,

andwR8srd=w1R8srd+w2srd with

w1R8srd = − r2 +
2

Aa
E

Pa,R8

lnur − r8ud2r8

w2srd = o
uj u,aR0

2

Aa
E

Qa

ln
ur − r8 − lsjdj u
ur − r8 − la j u

d2r8.

We have just added and subtracted terms at this stage.
Now we let R8 tend to infinity and find the limit for an

infinite number of vortices. This step is very similar to the
case of the regular lattice since the lattice distortion only
affects a finite number of sites. We find that

w1R8srd − w1R8s0d → w1srd = − r2/s2 sA.3d

with s−2=1−p /Aa. vR8 tends to a convergent seriesv
swhich is not a periodic function, contrary to the regular
lattice cased.

The next step is to letR0 be large, keepinga fixed, so that
la is close to 1 for the class of distortion functions consid-
ered in Eq.s3.14d. We find

vsrd . v`sr8d, sA.4d

wherev` is given by Eq.s3.6d, andr, r8 are related by

r = Hlsr8dr8 for r/la ø aR0,

la r8 for r/la . aR0.
J sA.5d

We denotew=w1+w2= lnsr̄ad. We estimatew2srd, using
an expansion of the logarithm and the fact thatlsjd,la

,1:

FIG. 7. An example of a distorted lattice generated by the trans-
formation Eq.sA.1d. The radius of the circle islaaR0. In the regu-
lar part outside the circle, the cell area isAa.
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w2sR0jd .
1

p
E

j8,a

ffsa2d − fsj82dg
j8 · sj − j8d

uj − j8u2
d2j8,

sA.6d

where relevantj’s are of order unity. Using an integration by
part and a primitiveF of f, we get fusxd is the Heaviside
functiong

w2sR0jd . fFsa2d − Fsj2d + sj2 − a2dfsa2dgusa − jd.

sA.7d

Since we haves−2. fsa2d /R0
2, thenw1sR0jd=−j2fsa2d. Put-

ting everything together, we obtain up to an additive constant
for normalization,

lnfr̄asR0jdg . H− Fsj2d for j , a,

− j2fsa2d + m for j . a,
J sA.8d

with m=a2fsa2d−Fsa2d.

Finally, using thatla.1, we can apply the separation of
integralsf23g and find, for example, that

E rad
2r ~ SE ev`sr8dd2r8DSE

j,a

e−Fsj2dd2j

+ emE
j.a

e−j2fsa2dd2jD .

The last integral in the second line is equal tope−Fsa2d / fsa2d.
At this stage,a is still a free parameter. If the distortion
function lsrd has a horizon atr =jhR0, we let a tend tojh,
otherwise to`. The last integral tends to zero given the
hypothesis thatf andF tend to +̀ at jh. The same procedure
is valid for all terms entering into the energy functional,
which justifies the use of Eq.s3.18d.
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