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Vortex patterns in a fast rotating Bose-Einstein condensate
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For a fast rotating condensate in a harmonic trap, we investigate the structure of the vortex lattice using wave
functions minimizing the Gross-Pitaevskii energy in the lowest Landau level. We find that the minimizer of the
energy in the rotating frame has a distorted vortex lattice for which we plot the typical distribution. We
compute analytically the energy of an infinite regular lattice and of a class of distorted lattices. We find the
optimal distortion and relate it to the decay of the wave function. Finally, we generalize our method to other
trapping potentials.
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The rotation of a macroscopic quantum fluid is a source opects a strongly correlated ground state, such as that of an
fascinating problems. By contrast with a classical fluid, forelectron gas in the fractional quantum Hall regii®&—19.
which the equilibrium velocity field corresponds to rigid We do not address the second situation in this paper and we
body rotation, a quantum fluid described by a macroscopicather focus on the first regime. Furthermore, we restrict our
wave function rotates through the nucleation of quantizedanalysis to the case of a two-dimensional gas inxplane,
vortices[1,2]. A vortex is a singular pointin two dimen-  assuming a strong confinement along #héirection so that
siong or line (in three dimensionswhere the density van- the corresponding degree of freedom is frozen.
ishes. Along a contour encircling a vortex, the circulation of The main features of the vortex assembly equilibrium in
the velocity is quantized in units di/m, wherem is the the fast rotation regime are well known. The vortices form a
mass of a particle of the fluid. triangular Abrikosov lattice in they plane and the area of

Vortices are universal features which appear in manythe elementary cell isti=x#A/(mQ) [20]. The atomic veloc-
macroscopic quantum systems, such as superconductors ity field obtained by a coarse-grained average over a few
superfluid liquid helium. Recently, detailed investigationselementary cells is equal to the rigid body rotation result
have been performed on rotating atomic gaseous Bose=() Xr, whereQ2=QZ (z is the unit vector along the axis).
Einstein condensates. These condensates are usually con-Beyond this approximation, the physics is very rich and
fined in a harmonic potential, with cylindrical symmetry many points are still debated. In a seminal pa@r Ho
around the rotation axig. Two limiting regimes occur de- introduced the description of the macroscopic state of the
pending on the ratio of the rotation frequer@yand the trap  rotating gas in thexy plane by a wave function belonging to
frequencyw in thexy plane. When() is notably smaller than the lowest Landau levelLLL). An LLL wave function is
w, only one or a few vortices are present at equilibri@4].  entirely determinedup to a global phase factoby the lo-
When ) approacheso, since the centrifugal force nearly cation of vortices. Ho considered the case of a uniform infi-
balances the trapping force, the radius of the rotating gasite vortex lattice and inferred that the ground state of the
increases and tends to infinity, and the number of vortices iBystem corresponds to a Gaussian shape for the coarse-
the condensate diverggs—8]. grained atom density profile. Using both analyti€hl—-13

As pointed out by several authors, the fast rotation regimeand numerical[14] investigations, it was subsequently
presents a strong analogy with quantum Hall physics. Indeegointed out that the atom distribution may have the shape of
the one-body Hamiltonian written in the rotating frame isan inverted parabola, instead of Ho's Gaussian result. Two
similar to that of a charged particle in a uniform magneticpaths have been proposed to explain the emergence of such
field. Therefore the ground energy level is macroscopicalljnon-Gaussian profiles. The first one assumes that the restric-
degenerate, as the celebrated Landau levels obtained for tkien to the LLL is not sufficient and the contamination of the
guantum motion of a charge in a magnetic field. There arground state wave function by other Landau levels is respon-
two aspects in this connection with quantum Hall physicssible for the transition from a Gaussian to an inverted pa-
First, when the number of vortices inside the fluid remainsrabola[11,12. The second path explores the influence of
small compared to the numbirof atoms, we expect that the distortions of the vortex latticéwithin the LLL) to account
ground state of the system will correspond to a Bose-Einsteifor the deviation of the equilibrium profile from a Gaussian
condensate, described by a macroscopic wave fungtion  [13,14.

This situation has been referred to as “mean field quantum In the present paper, we investigate the structure of the
Hall regime” [9-14]. Second, wher{) approaches» even vortex lattice for a fast rotating condensate. We derive the
closer, the number of vortices reaches values comparable tmndition under which the LLL is a proper variational space
the total number of atomsl. The description by a single to determine the ground state wave function within a good
macroscopic wave function then breaks down, and one exapproximation. We present a numerical and analytical analy-
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distorted vortex lattice, and we show that these estimates are
in excellent agreement with the results of the numerical ap-
proach. In Sec. IV we extend the method to nonharmonic
confinement, with the example of a quadratic+quartic poten-
tial. Finally we give in Sec. V some conclusions and perspec-
tives.

10 a

-10F . ] I. SINGLE PARTICLE PHYSICS IN A ROTATING FRAME

-10 10 In this section, we briefly review the main results con-
cerning the energy levels of a single particle confined in a
FIG. 1. The structure of the ground state of a rotating Bose{wo-dimensional isotropic harmonic potential of frequelacy
Einstein condensate described by an LLL wave functiogh  in the xy plane. We are interested here in the energy level

=3000: (a) vortex location andb) atomic density profilgwith a  structure in the frame rotating at angular frequeficy>0)
larger scalg The reduced energy defined in EQR.6) is € around thez axis, perpendicular to they plane.
=31.410 7101. The unit for the positiomsandy is [7/(mw)]*'2. In the following, we choose, iw, and %/ (mw) as units

of frequency, energy and length, respectively. The Hamil-
sis of the structure of the vortex lattice, based on a minimitonian of the particle is
zation of the Gross-Pitaevskii energy functional within the 1 2 1 2
LLL. We find that the vortices lie in a bounded domain, and HS) =-V2+ —-0L,=- =(V-iA?+(1-0%—
that the lattice is strongly distorted on the edges of the do- 2 2 2 2
main. This leads to a breakdown of the rigid body rotation (1.1
hypothesis which, as said above, would correspond to a uni- 2. o B ) _
form infinite lattice with a prescribed volume of the cell. The With r*=x“+y“andA=Qxr. This energy is the sum of three
distortion of the vortex lattice is such that, in a harmonicterms: kinetic energy, potential energg/2, and “rotation
potential, the coarse-grained average of the atomic densi§n€rgy” 1L, corresponding to the passage in the rotating
varies as an inverted parabola over the region where it takd§2me- The operatdr,=i(ydx—xdy) is thez component of the
significant values(Thomas-Fermi distribution A similar ~ @ngular momentum.
conclusion has also been reached recentlyl®14. In ad-
dition to the atomic density profile, our numerical computa- _ _ ) ) o
tions give access to the exact location of the zeroes of the Equation(1.1) is formally identical to the Hamiltonian of
wave function, i.e., the vortices. a particle of charge 1 placed in a uniform magnetic field

An example of relevant vortex and atom distributions is2}2 and confined in a potential with a spring constant 1
shown in Figs. (a) and b) for n=52 vortices. The param- —? A common eigenbasis df, andH is the set of(not
eters used to obtain this vortex structure correspond to Bormalized Hermite functions:

uasi-two-dimensional gas of 1000 rubidium atoms, rotating — 22 CoNIf i kgt
iqn the xy plane at a frequenc{2=0.9%, and strongly con- i) =& a0y (0= 13) (&), (1.2
fined along thez axis with a trapping frequencw,/(27r)  wherej andk are non-negative integers. The eigenvalues are
=150 Hz. The spatial distribution of vortices corresponds toj —k for L, and
the triangular Abrikosov lattice only around the center of the
condensate: there are about 30 vortices on the quasi-regular
part of the lattice and they lie in the region where the atomidor H. For =1, these energy levels group in series of states
density is significant: these are the only ones seen in theith a givenk, corresponding to the well-known Landau
density profile of Fig. lb). At the edge of the condensate, levels. Each Landau level has an infinite degeneracy(For
the atomic density is reduced with respect to the central derslightly smaller than 1, this structure in terms of Landau
sity, the vortex surface density drops down, and the vortexevels labeled by the indek remains relevant, as shown in
lattice is strongly distorted. Our analytical approach allowsFig. 2. The lowest energy states of two adjacent Landau lev-
us to justify this distortion and its relationship with the decayels are separated by2, whereas the distance between two
of the solution. adjacent states in a given Landau level is(1<1.

The paper is organized as follows. We s{&gc. ) with a It is clear from these considerations that the rotation fre-
short review of the energy levels of a single, harmonicallyquency () must be chosen smaller than the trapping fre-
trapped particle in a rotating frame, and we give the expresguency in thexy plane, i.e.,o=1 with our choice of units.
sion of the Landau levels for the problem of interest. ThenOtherwise the single particle spectrum E@d.3) is not
we consider the problem of an interacting gas in rotation, anébounded from below. Physically, this corresponds to the re-
we derive the condition for this gas to be well described byquirement that the centrifugal foraeQ?r must not exceed
an LLL wave function(Sec. I). Sections Il and IV contain the restoring force in thay plane -mw?r.
the main original results of the paper. In Sec. lll, we explain
how to improve the determination of the ground state energy
by relaxing the hypothesis of an infinite regular lattice. We  When the rotation frequend is close to 1, the states of
present analytical estimates for an LLL wave function with ainterest at low temperature are essentially those associated

ko-.

A. The Landau level structure

Eix=1+(1-Q)j+(1+Q)k (1.3

B. The lowest Landau level
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AE S A. The Gross-Pitaevskii energy functional

| —— The state of the gas is described by a macroscopic wave
function (r) normalized to unity, which minimizes the
- — Gross-Pitaevskii energy functional. We introduce the dimen-

—_— k=1 . iy . )
3 _ sionless coefficienG characterizing the strength of atomic
interactions, proportional to the atom scattering lenath
G=v8wNas/a,. The average energy per atom, written in the
1 - k=0 frame rotating at frequenc, is
I e

. G
E[y]= f (¢[H8)w]+5|¢|4)dzr, (2.1
FIG. 2. The single particle energy spectrum fa=0.9. The

indexk labels the Landau levels. The energy is expressed in units Qf here HY is defined in Eq(1.1). The wave function/(r)

Q
heo. minimizing E[ ] satisfies the Gross-Pitaevskii equation:

with k=0, e.g., the lowest Landau lew¢lLL ) [9,21,23. Any HG 9Ar) + Glyr)[2(r) = wdr). (2.2

funct.ion yir) of the .LLL is & linear combination of the; s The chemical potentiak is determined by imposing that
and it can be cast in the form f|#2=1. The solution of Eq(2.2) depends on the two inde-
) = e‘rz’zP(u), (1.4) pendent dimensionless paramet@rand G.

B. The LLL limit
wherer=(x,y), u=x+iy, and P(u) is a polynomial(or an € m

analytic function of u. WhenP(u) is a polynomial of degree _ In the presence of repulsive interactid@>0), the basis
n, an alternative form ofi(r) is of Eg. (1.2) is not an eigenbasis of tié-body Hamiltonian.
However, for a given interaction streng@and for a suffi-
- ciently fast rotation({) close tow=1), the restriction to the
p(r)y=e 2] (u-uy, (1.5  LLL is sufficient to determine with a good accuracy the
=1 ground state of the system and its energy. Indeed when
approaches =1, the centrifugal forcenQ?r nearly compen-
sates the trapping forcemw?r and the area occupied by the
atoms increases. The effect of interactions gets smaller so

where they; (j=1, ... n) are then complex zeroes oP(u).
Eachu; is the position of a single-charged, positive vortex,

since the phase gi(r) changes by # along a closed contour that the total energy per particle tends to the enérgyof

encircling Uj- . the lowest Landau level, i.e., 1 in our reduced units.
In the LLL, there is a one-to-one correspondence between When ¢ is chosen in the LLL, the energy functional Eq
atom and vortex distributions. This relation can be made ex(2 1) can be notably simplified ' Indeed the LLL functions;

plicit by introducing the atom density,(r)=|y(r)|%: satisfy the equalities

— _ 2 —r.
In[pa(r)]=~r +2$ Injr —ry|. (1.6) <Ekin>:<Eho>=%+%f SILAIEr 23

Introducing the vortex density,(r)=2;8(r-r;) we obtain
using V2(Injr —rg|) =2m8(r —ry):

1 1
VIn[p(N)]} = - 4 + 4mp,(r). (1.7) (Ban) =5 f |V, (B =7 f rPyfPd’r. (2.4)

This relation was initially derived by Ho if9] who inter-  The total energ\E[ #]=E,, [#] is then given by
preted it in terms of the Gauss law for a system of two-

dimensional charges located at the points

where the kinetic and harmonic oscillator energies are

G
ELLL[w]_Q:f((1_Q)r2|¢|2+5|¢|4>d2r. (2.5

ll. THE INTERACTING GAS IN ROTATION In Sec. Ill, we will minimize this energy functional for func-
We now consider a gas of identical bosonic atoms with _tions in the LL_L. He_re we simply outline some relevant scal-
massm. The gas is confined in a cylindrically symmetric N9 laws in this regime.
harmonic potential, with frequenay in the xy plane andw,
along thez direction. We suppose that the characteristic en- T ) ) o
ergy #iw, is very large compared to all other energy scales _Th_e minimization of Eq(2.5) is equivalent to the mini-
appearing in the paper, so that we can assume that the atoffézation of the reduced energy

C. Scaling laws and lower bound in the LLL

occupy the ground state of tlzenotion, of energyiw,/2 and E[v]-0 A
extensiona,=\%/(mw,). We are interested in the ground dyl= ~1-q =f <r2|¢|2 + E|¢|4>d2r (2.6
state of this quasi-two-dimensional gas, when it is rotating at

frequency() close tow around thez axis. with
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G G
A:—l_Q. (2.7 <Eint>=EJ|l//|4d2I’, (2.12
Therefore the minimizeg, | depends only on the parameter while we expect for LLL wave functions foh > 1
A. This is quite different from what happens when the LLL — —_—
limit is not reached: for the minimization of E¢2.1), the (Eng = (Ewin) ~ VA > (Ejp) ~ VG(1-9).  (2.13

two parameterss and () are relevant, and not only their Therefore, within the LLL validity domain of Eq2.10), the

combinationA.. _ . scaling laws for the predicted LLL energies agree with the
It is instructive to consider the minimum efy] wheny  nstraints imposed by the virial theorem.
is allowed to explore the whole function space of normalized

functions [|yf?d’r=1. This minimum is straightforwardly lIl. THE LLL EQUILIBRIUM DISTRIBUTION
; 5 : . . /
g?ggﬁg;?' y|? varying as an inverted parabola in the disk This section is devoted to the minimization of the reduced

energy given in Eq(2.6) for LLL wave functions. We start

2 r2 2N\ V4 with wave functions corresponding to an infinite regular vor-
| min(1)[* = —2<1 - _2>, Ry= <—) . (2.8 tex lattice and we derive the corresponding energy. Then, we
™Ro Ro give numerical results which we use in the rest of the section
and (r)=0 outside. The reduced energy is as a guide to improve our choice for trial wave functions and

0 analyze the distortion of the lattice.
e
‘A

€min = _3\“'7—TV . 2.9 A. The case of a regular vortex lattice

o . . . 1. The average density profile for a regular vortex lattice
The variation of the atomic density as an inverted pa- g Y P g

rabola is very reminiscent of the Thomas-Fermi distribution ~We consider a wave function in the LLL with an infinite
for a condensate at rest in a harmonic potential. Howevefumber of vortices on a regular lattice and an average spatial
this analogy should be taken with care. In the usual Thomagdensity p,. We denote byy; the points of the regular trian-
Fermi approach, one neglects the kinetic energy term and th@ular lattice, and byA=1/p, the area of its unit cell. We
equilibrium distribution is found as a balance between potenconsider the LLL wave functions

tial and interaction energies. In the LLL problem considered

— a2 _
here, kinetic and potential energies are edeak Eq(2.3)], y(r)=Ce" .1_£ (u=-up, 3.9
and their sum/r?{2, which is large compared to 1 when EhRt
A>1, is nearly balanced by the rotation terrfé ). where only theu;’s located in the diskDg of radiusR cen-

The function ¢, clearly does not belong to the LLL, tered at the origin contribute to the product and the constant
since the only LLL function depending solely on the radial C is due to the normalizatiof|>=1. For A>m, we now
variable is exp-r2/2). Consequently the reduced energy Eq.prove the following result for the atomic density,(r)
(2.9 is strictly lower than the result of the minimization of =[(r)[*
e ] with ¢ varying only in the LLL. In other words, the —
minimization of Eq.(2.5) that we perform in the next section pa(r) — p(r)pa(r) asR— e, (3.2
amounts to find the LLL function which is “the most similar” where p(r) is periodic over the lattice and vanishes at the
t0 Ymin, SO that its reduced energy is the closesg . For u;'s, and where
A>1, we shall see that=a\A, wherea is a coefficient of 1 2 -
order unity to be determined. ()= — a1 — 12

y pa(r) = —5€ T 5= 1 1 (3.3
The function p,(r) is the coarse-grained average of the
atomic densityp,(r). This Gaussian decay has already been
obtained by Ho in the so-calleaveraged vortex approxima-
tion [9]. However, we find useful to prove it here with a
different approach, which we shall generalize to nonuniform
lattices(Sec. Il O.

1

D. Validity of the LLL approximation

Sincee=ayA, the ground state enerdy of the fast ro-
tating gas determined within the LLL approximation (b
+a+/G(1-Q). Therefore the restriction to the LLL is valid as
long as the excess energy/G(1-()) is small compared to

the splitting Zw=2 between the LLL and the first excited

Landau level: To prove this result, we write [p,(r)]=v(r)+w(r) with
Restriction to the LLL if G(1-Q)<1. (2.10 2

— ) 1 A2 !
When this condition is satisfied, the projection fon the v(r)=y"+ ZUED Infu—uj| - ZL Infu—u’ld%”,
excited Landau levels is negligibly small. IR R

It is interesting to compare the scaling laws derived in the 2

LLL with the exact relations obtained using the virial theo- wr)=—y-r2+—=1[ Inju-u'|d*’, (3.9
rem. For a 2D gas, this theorem gives for the ground state of Pr

the (possibly rotating system where we setu’=x'+iy’, y=In(mo?), and y'=y+2InC.

(Enho = {Exin) *+ (Ein)» (2.1 Here Pg denotes the inner surface of the polygon formed by
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the union of all elementary cells having their centgin the 0 o
disk Dg. We want to find the limit ofo(r) andw(r) asR is fp (rdr=h. (3.10
large.

We start with the calculation af(r). The integral entering The reduced energy E¢3.9 depends on the ared of the
in the definition ofy can be written unit cell througho and on its shape through the Abrikosov

coefficientb. Let us briefly recall the origin of this coeffi-
1 Inju-u’|d?r’ = s f Inju - u; - u"|d?r” cient. Instead of using the exact atomic dengitfr) to cal-
Pr U eDg ! ’ culate the energy, we work with the coarse-grain average

(3.5 pa(r), whose spatial variation is much simpler. To do this

' substitution, we must renormalize the interaction coefficient
where the sigrf stands for the integration over the unit cell G, which become$®G. This is a consequence of the discrete-
of the lattice divided by the area of the cell WhenRtends ness of the vortex distribution: since the wave functiin)

to infinity, v(r) tends to the series must vanish at the vortex location, the average valug/6f
B over the unit cell, and hence the interaction energy, is larger
Uo(1) = Yo+ 22, f In |u|u—uuj|u_”|d2r” (3.6) thallln the result obtained ify{ was quasi-uniform over the
uj —U - cell.

. We now look for the choice db and o which minimizes
whose convergence can be checked by expanding the f“”ﬁie reduced energy E¢3.9. As known for the case of su-

tion Infu=u;=u’| up to third order inu"/(u-u;). This series perconductors, the lattice minimizirgis the triangular one
is a periodic function over the lattice and we $8r)  [24] for which b=1.1596. The minimization ove then

=exfduv.(r)], which is also periodic. leads to
To calculatew(r), we first consider the auxiliary function ’
W(r)=w(r)-w(0)+r?/g2. Using V2(In|r=ro|)=2md(r-ry), oo=[bA/(4m)]Y* and e=\bA/m.  (3.11)

we find thatw is harmonic inPg, with W(0)=0. Moreover, a
small , computation leads to the inequalityW(r)  fo 5 distribution varying as an inverted parabola. Note that
=-m%/(2A). In the limit R—, we find thati converges ¢ gjze of the elementary cell=m(1-0;°) 7" differs from

to W.., which is a harmonic polynomial with degree less thany,o rigid body rotation resultdrgs= 7/, although the two

2. Due to the symmetry propertzies of the unit cell, and theyyantities tend tar when () tends to 1. Actually, if we im-
lower bound by the parabolamt</(2.A4), w,,=0, hence the pose.A=Aggr in Eq. (3.9), instead of minimizing onr, we

result Eq.(3.3). o ~ find that 1/2=1-0Q and we obtainE,; ~2, much larger
To summarize, when the vortex lattice is periodic with athan the resulE, |, ~1 deduced from Eq(3.11.

uniform average spatial densipy, the coarse-grain average  The reduced energy, exceeds the lower bound E@.9)
pa Of the atomic density is the Gaussian of width The  py the factorybx V9/8~1.14. The origin of the coefficient

We recover a scaling similar to Eq.8) and(2.9), inferred

relation in Eq.(3.3) can be put in the form b has been explained above. The coefficigB{8=1.06 is
VIn[py(N)]} = - 4 + darp,, (3.7) due to the difference between the Gaussian envelope found

here[cf. Eq.(3.3)], and the optimum function varying as an
which generalizes to coarse-grained quantities the resulhverted parabola Eq2.8). For the parametek =3000 used
given in Eq.(1.7). The fast rotation limit corresponds to the in Fig. 1, we finde,=33.3 using Eq(3.11), which is ~6%
case of a large spatial extent of the atom distribution, i.e.larger than the result found numericallgf. Fig. 1 and Sec.
o— +% or equivalentlyA=1/p,— . 111 B below).

2. The energy associated with a uniform vortex lattice

Once the behavior of the limiting functiafiis known, we B. Minimization in the LLL: Numerical results

can determine the reduced ener@y6) in the limit of fast We now turn to the description of the numerical method
rotation. This requires the calculation of the integralsthat has been used to obtain the vortex and atomic patterns
Jpa(r)d?r, fr2p,(r) d?r, and fp(r) d?r in the limit R—. It~ shown in Fig. 1 and we give some further results of interest
is performed using Eq$3.2) and(3.3), by taking advantage for the following discussion. For a giveh=G/(1-(2) and a
on the difference in the scales of variationsgfr) (scale  given numbem of vortices, we write our trial functions un-
o>1) andp(r) (scale~1). We get[23] der the form of Eq(1.5). We vary the location of the vortices
U; using a conjugate gradient method to determine the opti-
2. 2 — 2 mal location and the minimum reduced enekgy

fpa(l’)d = (f p(r)d r)(f pa(1)d r), 3.9 The computation of the energy uses the Gauss point
method(see[25] or [26] for a use in the case of the Gross-
Pitaevski equation the computation of the integral of a
polynomial times a Gaussian is exact as long as the degree of

so that the normalization gf, entailsfp(r) d°r=1. A similar
splitting betweerp andp, occurs for the energy and we find

— bA_, ) bA the polynomial is lower than a certain bound, which depends

€= f (f palr) + 7Pa(f) d’r=o?+ ppt (3.9 on the number of Gauss points. An alternative method used
& for example in[14] consists in writing the trial functions in

where we have set the form of Eq.(1.4) with P(u):E}‘zlbjuJ', and performing
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FIG. 5. The regular lattice wittd =7 and distorted lattice mini-

FIG. 3. The minimum reduced energy as a function of the  izing the energy for\ =3000 andn=52 vortices.

number of vortices in the trial wave functidrh =3000.

the minimization by varying the coefficients. The advan- the regular vortex lattice to the case of a distorted lattice. We
tage of the method followed here is to give directly the lo-make the hypothesis that the locatiansof the vortices are
cation of the vortices, while the alternative approach requiregleduced from a regular hexagonal lattig& by
to find then roots of the polynomiaP(u), which may be a o reoy _ reqs, re
delicate task for large. Uy = TCU™) = Muhu™, (312

For the range of\’s that we have exploretbetween 300 where\(r) is a positive function varying smoothly over a
and 3000, the reduced energy, decreases for increasimy  distance of order unity. We assume that the unit cell of the
until it reaches a plateau. For=3000(Fig. 3), the plateau is initial regular lattice has the ared=r, corresponding to a
reached fom=52 and the reduced energy varies in relativeflat density profile in Eq(3.3). If X tends to infinity for a
value by~+10"8 whenn increases from 52 to 70. The vor- finite valuer,, the number of vortices in the distorted lattice
tex and atom distributions fon=52 are given in Fig. 1. s finite and equal te-rZ, since all vortices located after the
Whenn increases the central distribution of vortices remainsthorizon” ry, in the regular lattice are rejected to infinity.
the same, as well as the significant part of the atom distribuotherwise, if\ is finite for all r, the number of vortices in
tion. The distribution minimizing the energy for=70 vorti-  the distorted lattice is infinite.
ces is shown in Fig. 4. We note that beyamd52, the loca- The distortion is illustrated in Fig. 5 for the particular case
tion of the additional vortices strongly depends on the initialof A=3000. We have plotted at the same scale the regular
data of the optimization procedure, as extra vortices onlyattice with.A= and the configuration of vortices minimiz-
slightly change the energy. In addition to the result of Fig. 4.ing the energy. Fon=52 vortices, only the lattice sites of the
which is the absolute minimum fofA=3000n=70}, we  regular lattice whose distance to the origin is belgw 7.4
have found a number of configurations corresponding to loremain in the distorted lattice. Around the center of the disk
cal minima where the additional vortices lie on an outer dis-of radiusry, the function\(r) is close to 1, and the lattice
torted circle. {u;} has, in this region, the same local triangular symmetry as
{u}eg}. On the other hand, the function(r) becomes very
) i large whenr approaches the horizan. The lattice is then
_ Inspired by the numerical results such as the ones showggnsiderably distorted on the edges, and it does not necessar-
in Figs. 1 and 4, we generalize the approach developed fq[y possess a global triangular symmetry. The only case
3 where this triangular symmetry is preserved occurs when a
- vortex is located at the origin=0. We found in our numeri-
] cal simulations that this event rarely occurs. The most fre-
- . ] guent case is the one displayed in Figs. 1 and 4, where the
origin is at the middle of the segment joining two adjacent
. ] vortices. In this case the distorted lattice is symmetric by

] reflection with respect to two orthogonal axes.

As for the case of the regular lattice, we introduce the
] coarse-grained averageg and p, of the atom and vortex
. ===t ] densities. The functiop, is now space dependent and is

. . =" ] simply the inverse of the area of a distorted cell in the vicin-

_10:_ . ] ity of r:

C. The distorted lattice

. f Po() ={N(E)INE) + 1N ()T (3.13

-10

FIG. 4. Vortex distribution minimizing the reduced energy for

A =3000 andn=70 vortices.

0
x

10

wherer=\(r')r’ and where\’ is the derivative of\. We
recall that the expected length scale in the limit of fast rota-
tion is Ry=(2A/m)Y*>1 (see Sec. Il Cand we consider a
class of distortions\(r) such that
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5 f(r2/Rg) 1 leading order i\, the Thomas-Fermi radius and the horizon
A (f):1+—2+0<%), (3.19 are equal. The functiom transforming the initial regular
Ro lattice u;*? into the distorted latticey; is thus

where f(£2) is a continuous function, which diverges ﬁt ,
=rZ/R3. We also assume that the integfals) = [§f(s')ds r=Tr")=r'+—5—-.
diverges at= gﬁ. We shall check in the end that the distortion Ri-r
minimizing the energy belongs to the class of functions de-Once f(s) is known, one can evaluate the vortex density
fined in Eq.(3.14. using Eq.(3.13:

In the limit A>1, we show in the Appendix the following

(3.21)

properties for the vortex lattices obtained through a distor- T (r) = (1 + R; )—1 (3.2
tion obeying Eq(3.14: Pu (RE-r'2)2) ~ '
(1) The atom density,(r) can be written as )
wherer andr’ are related by Eq(3.21). In particular the
In[pa(r)]=o(r) +wl(r), (3.195 vortex density ar=0 is ~(1—R12)/7-r, which is close, but

not equal, to the predictiof/# for a rigid body rotation.
Our distortion functionf is to be related to that di2g],
though it is derived using very different techniques. The
v(r) =v.(r') with r=\(r")r’. (3.16 asymptotic result Eq3.19 has also been obtained recently
. ) . _ by Watanabe, Baym, and Pethilck3], who assumed that Eq.
w(r) is a smooth radial function and we sei(r) (3.7 can be generalized to the case whejeis spatially

where v is related to the function.(r) introduced for a
regular lattice in Eq(3.6):

=exgdw(r)], wherep, is normalized to unity. dependent:

(2) The coarse-grain averageg at a pointr =Ry& and the _
integral F of the distortion functiorf are related by the re- VHIn[pa(r)]} = = 4+ dap,(r). 3.23
lation By differentiating Eq(3.17), a similar relation can be proved

— o within our approach witfp,(r) replaced by, (T(r)). The two
Pa(Rof) = eX=F(E)] 1T &< & (3.17 relations are equivalent at points not too close to the
and is zero elsewhere. Note thai(r) is continuous ar,  Thomas-Fermi radiugi.e., R;—r=1). They differ notably
=Ry¢, since we have assumed tHafs) tends to + when  whenr is close toR; since Eq.(3.23 would entail that no
s—&. vortex lies out of the Thomas-Fermi radius, whereas our ap-
(3) As for the regular lattice case, we use the difference irproach yields that the vortex densjiy(r’) is negligible only
the scales of variations of the two functionandw to obtain  at a radiug’=T(r) much larger thai;. The latter prediction
seems in better agreement with numerical results.
€= f (fzﬁa(r) +%5§(r)>d2r. (3.18 _Aresult related to Eq(3.23 has also been shown in a
2 different context by Sheehy and Radzihovsid7]. They
consider the case of a condensate which is not in very fast
rotation (i.e., outside of the LLL regimebut still with sev-
eral vortices. Interestingly, the procedure usefi2i to de-
rive the relation betweep, andp, is based on the minimi-
ation of the energy functional, including atom interactions.
n the contrary, the result in E¢B.17) or (3.23 is a conse-
quence of the structure of an LLL wave function and it is at
first sight independent of atomic interactions. However, one
D. The “Thomas-Fermi” distribution in the LLL must keep in mind that the knowledge of the strength of
tom interactions is essential to check the relevance of LLL
ave functions for the probleffisee Eq(2.10]. The relation
reached ir27] has the same structure as E8}23), but with
a dimensionless coefficient involving the healing length and
p, inside theV?In(p,) term. Close to the Thomas-Fermi ra-

whereb=1.1596 as for a regular lattice.

The differences with respect to the initial minimization
problem of Eq.(2.6) are the renormalization of the coeffi-
cientG— bG discussed in Sec. Il A, and the fact thatis a
smooth, non-negative radial function, instead of being th
square of an LLL wave function.

We now address the minimization of the energy functiona
in Eg. (3.18. The minimizing function is the inverted pa-
rabola p,(r) = RE—r? for r <R,;=(2bA/m)*4 andp,=0 for
r>R;. The associated energy is

22 — dius, p, varies rapidly and the approach [#7] leads to a
e=—=\bA. (3.19  different relation from Eq(3.23), since the derivatives qf,
3vm have a significant contribution in this region.
Using Eq.(3.17 we deduce the distortion functidits) and Our analytical predictions can be compared with our nu-
its primitive F(s): merical results obtained in the particular case3000(i.e.,

R,=6.86), for which we plotted Fig. 1. The prediction of Eq.
(3.19 vyields €=31.374, only 0.12% below the value deter-
Jb-s mined numerically. We can also compare our trial density

with the numerical result. We give in Fig. 6 the prediction of
As initially assumed, the function§s) andF(s) tend to +>  the inverted parabola together with the radial density distri-
at the horizonyb, hencer,=bY“R,=R,. This means that at bution determined numerically:

f(s) = , F(s):—m(l—%). (3.20
b
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order in A should lead to a minimizing functiop, with a
smoother decay to zero aroumR]. In particular a natural
way to match the inverted parabola with the asymptotic de-
cay r2neg? of any LLL function with n vortices could be
obtained through a Painlevé-type equatias at the border
of a nonrotating BEC

Remark: Comparison with the “centrifugal force approxi-
mation.” Under some conditions, it is possible to writeas
the product of a rapidly varying function(r) and a slowly

. varying envelopea/(r) [11]. This is reminiscent of the split-
: : — . ting of In(p,) in terms ofv and w, although it leads to a
0 2 4 6 8 different conclusion. One obtains for the envelope an equa-
FIG. 6. The radial density distributiop.4r) for A=3000. The tion s_imilar to Eq.(2.2), where only the centrifugal potential
unit along the vertical direction is arbitrary. The dotted line is a fit "€Mains[11]:

Prad (")

using the inverted parabola with the radRs=(2bA/ 7)4, with an 1 — r2— -
adjustable amplitude. - EVZQZ/(V) +(1 ‘QZ)ELW) + G| yAr)|2ydr) = pr),
2w (325)
_ = 2 _
Prad) = 27.,[0 ()|, (3.24 where u=u—-Q. We call this approach the “centrifugal

force” approximation[29] and we compare its predictions

_ _ _with those derived from the LLL approximation.

whered is the polar angle in they plane. Apart from oscil- ~ when the approximation leading to E¢.25 is valid,
lations due to the discreteness of vortices, the two distribugne is left with the problem of a 2D gas at rest in a harmonic
tions are remarkably close to each other. A. similar conclu-potentia| with the spring constant 1¥2. The solution of this
sion was reached recently by Cooper, Komineas, and Reaghuation depends on the strength of the interaction parameter
[14]. They also performed a numerical minimization of theg, |f G>1, the kinetic energy term can be neglected

energy of Eq.(2.1) in the LLL limit, and found an atom ) . . . — 12
density profile in good agreement with the inverted parabolétg?%fsinzeig:'tthgir:; 'Qca:;%r;s;iazo{zee /?izsl|ib((;)z|)];/%1
a

distribution predicted ir13]. . - .
- d #(r)=0 outside. Note thatRy, coincides with our
From the above analytical results, we expect that th n : . fa . .
y P homas-Fermi radiuR,; for Q=1. If G<1, the interaction

minimizing configuration will involven~rﬁ~48 vortices. ¢ b lected and th lution is th d state of
The number of vortices for which the minimum energy pla- erm can be negiected and the solution 1S the ground state o
the harmonic oscillator, i.e., the Gaussian of width

teau is reached numerically is 52, which is very closeﬁto rne1/a
As for the location of vortices, our analysis indicates that the_Q ) o
vortices in the distorted lattice are images through Egs. !N the LLL, we have seen that the distinction between the
(3.12—(3.2)) of points of the regular hexagonal lattice such WO regimesG>1 andG<1 is not relevant. The only im-
that|ui®} <r,=R;. Note that the optimal vortex configuration portant parameter is=G/(1-(2). WhenA > 1 the envelope
involves some vortices outside the disk of radRis They  Of the atom density profile is close to an inverted parabola,
correspond to regular lattice sita€® close to the horizon Ireéspective of the value db. Therefore, there exists a clear
r,. Indeed, for these points gets large and the image point discrepancy between the predictions of th_e LL_L treatment
is sent beyond the Thomas-Fermi radius. Thus, though th@"d those of the centrifugal force approximation when 1
distorted lattice provides an inverted parabola which van— . <G<1. For these parameters the LLL approximation is
ishes atR,, the location of the vortices extends beyoRg ~ Valid sinceG(1-Q) <1 [see Eq.(2.10]. The extent of the
The numerical analysis leads to results which nicely confirmvave function minimizinge[y] is thusR,~ (G/(1-Q))**,
our analytical predictions. In addition it allows us to explore While the reasoning based on E@.25 would lead to a
the role of the vortices lying outside the Thomas-Fermi dis-Gaussian envelope with a larger side-Q)™"/% independent
tribution. For example, one can remove the contribution ©0f G.
—u;) of these vortices in the expression E#.5 of the LLL
wave function, while keeping unchanged the contribution of
the vortices inside the Thomas-Fermi radius. This results in a The ideas that we have developed for a harmonic confine-
significant modification op,(r) which then vanishes around ment can be generalized to a larger class of trapping potential
~7.3, instead of-6.8. Therefore these outer vortices play anV(r). For simplicity we assume here thtis cylindrical
important role in the equilibrium shape of the condensateSymmetric, with a minimum at=0. We definew as mo?
even though they cannot be found when one simply plots the #V/dr?, and we set
atomic spatial density. 1 22

A closer look at Fig. 6 indicates thaf, is matched to zero VD) = gma ™™+ WIn. .1
more smoothly than an inverted parabola. An expansion oAs above we choose and \#/(mw) as the units for fre-
the energy of the distorted lattidéq. (3.18)] to the next quency and length, respectively.

IV. EXTENSION TO OTHER CONFINING POTENTIALS
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We are still interested here in a region whéde-1. To  so that the coarse-grain avgragepgfis meaningful. This
minimize the Gross-Pitaevskii energy functional, we userequiresk<1 andk<G<1/Vk. When these conditions are
again wave functions in the LLL so that the energy per parsatisfied,).— 1~k?3GY3<1, and the study of the regime

ticle to be minimized is 0=, can be performed within the LLL. In addition one
G can check that for).-1<Q-1<k3G??3, the width R,
ELL :Q+J {[(1 — Q)2+ W(r)]p, + _Pi d2r. -R_ of the annululs/ is large compared tdHoth R, andR_ _
2 are of order(G/k)'/6], so that the use of the coarse-grain

(4.2) averages 0p, andp, is justified. A similar analysis to what
we have performed above yields an almost uniform vortex

As explained in Sec. Il C, the LLL approximation is valid if |attice in the annulus, with a distortion near the inner and
the minimum forg | —Q is small compared to the distance gyter boundaries.

2=2hw between the LLL and the first excited Landau level. The LLL approximation has been used by Jackson’
We have seen that varying the locatian®f the vortices,  Kavoulakis, and Lundh to study the phase diagram of the
hence the average vortex surface dengity allows us to  vyortices in a quadratiequartic phase[35]. They were
generate a large class of coarse-grain averaged atom dengiostly interested in the stability of giant vortices, hence they
ties p,. ProvidedW(r) is well behaved, we can generalize the restricted their analysis to particular LLL states, whEte)
treatment presented for the purely quadratic case. The energyly contains two or three terrrhz;uj. However, one could, in
ELLL can still be expressed in terms pf instead ofp, With  principle, use the same approach as the numerical treatment
an expression similar to E.2), and the interaction param- developed here, and derive the detailed vortex pattern for
eterG replaced byoG. The Thomas-Fermi distribution mini- various choices o6, , andk. It would be interesting to see

mizing E is whether there exists a domain of parameters where the poly-
1 o2 nomial F(u) has a multiple root iru=0. This would corre-
TE w=(1=Q)rc=WI(r) ) . )
p, (r)=ma bG ,0 (4.39)  spond to the giant vortex which has been predicted by other

approache$10,32,38. Another limit whereR,—~R_<1 has

where is the chemical potential determined such tfig; ~ recently been studied if86].
=1. Oncep, has been determined over the whole space, the

energyE,,, can then be calculated and the validity of the V. CONCLUSION
various approximations can be checkéd: |E,,, —Q|<1 _ _ _ _
and (i) the extension of the domain whepg differs from In this paper, we have studied analytically and numeri-

zero is large compared to 1, so that it is legitimate to intro-cally the vortex distribution and atomic density for the
duce a coarse-grain averagemfover several vortex cells, ground state of a rotating condensate trapped in a harmonic
and there is a large parameter playing the rol&ef potential, when the rotation and trapping frequencies are
As an example, we investigate the case of a combine§lose to each other. Restricting our analysis to quantum
quartic and harmonic potential(r)=kr4/4, which has been states in the lowest Landau level, we have shown that the
studied recently theoretically, numericallg0-36, and ex- atomic density varies as an inverted parabola over a central
perimentally[37]. A nice feature of this potential is that it "€gion. The vortices form an almost regular triangular lattice
allows us to explore the regioft=1, since the centrifugal N this region, but the area of the cell differs from the pre-
force, %, can always be compensated by the trapping forcediction for solid body rotation. In the outer region, the lattice
varying as 4r +kr3). We defineA,=[3k?0G/(8m)]?° andA IS strongly distorted. We have determined the optimal distor-
=(1-0)%+ku. Two cases can occur(i) If Q<Q. tion, and related |t_t0 th_e decay of the wave function close to
N the Thomas-Fermi radius.
Our results agree with those of a recent numerical study
[14]. Another analytical approach to this problem has re-
20%2+ 3A(Q - 1) - (Q - 1)3=4A3"2, (4.4)  cently been given in13]. It leads to the same value as ours
. T .. for the energy of the ground state, whereas our treatment
(i) If Q> thenp,” is nonzero on an annulus of radii pr6yides more detailed information on the vortex pattern at
RE=2(Q-1£VA)/k, andA=A,. S the edge of the condensate. Our predictions for the equilib-
The Thomas-Fermi distribution given in EGL.3) allows  rjym shape of the atomic density and for the vortex distribu-
us to calculate the minimum energy per particle. Since theion should be experimentally testable. [IF] the regime of
general calculation is quite involved, we simply give here thefast rotation in the LLL has already been achieved and it was
result for Q=0 indeed found that the atom density profile varies as an in-
-0 - — 0O = L13~2/3 verted parabola, and not as a Gaussian as one would expect
=0 By —0=akPC (4.5 for an infinite regular latticg9]. In [8], a detailed experimen-
where a=-0.1. More generally, whefl—(| is at most of tal analysis of the vortex spacing as a function of the distance
the order ok?3GY3, thenE | - is of the order okY3G?3.  to the center of the trap has been made and it showed a clear
The restriction to the LLL wave functions and the use of thedistortion of the pattern on the edges of the condensate. This
“Thomas-Fermi” approximatiofiEg. (4.3)] are valid if two  study was not performed in conditions such that our LLL
conditions are fulfilled{(i) E; |, -~ <1, hencekG’<1, and  approximation is valid, and the relevant theoretical model is
(i) the extensiorR, ~ (G/k)'/6 of p, is large compared to 1, rather the one developed [@7]. However, it should be pos-

=1+\Ao, then p;7 is nonzero in a disk of radius;
=2(Q-1+JA)/k, Q andA being linked by

023611-9



AFTALION, BLANC, AND DALIBARD PHYSICAL REVIEW A 71, 023611(2005

20 INNINTR/NNTNININININNNA r, where\(r) diverges. We have sat,=\(aR;) and the area
YAVAVAVAVAVAVAVAVAVAVAVAVAY of the unit cell of the outer lattice isl,=m\2. When aRy
tends tory, A4, tends to infinity and the vortex lattice of Fig.

7 is similar to the one in the right of Fig. 5.

10 P

JAVAVAVAVAVAVAVAVAVAVAVAVAY
AVAVAVAVA™\ N VVAVAVAVAVAY:

3 VAVAV&N VAVAVAYAVAY In the following, we shall(i) definep, and compute its
AVAVAV/ v, s va W \VAVAYS imi : | i
f VV‘W#‘#'#%’%’VV ] limit when R, increasedi.e., Q) tends to 1 for a fixeda, and

(ii) let « get close to the horizog,=r,/R,. We need to take

the limits in this order, because we will use thatis close to

1, which is only true ife is fixed less tharg, andR; is large.
First we consider only the poinjsin a diskDg:

>~ 0

AVAVAV.AVAVAVAViVaVANYS VAVAV
OORRIAL
10 ,AVAVAVMYAVA'AYK&VAVAVA.

\VAVAVAVAVAVAVAVAVAVAVAVAVA

AVAVAVAVAVAVAVAVAVAVAVAVAVE pn=ce™ I (u-uy. (A.2)
-20 IZI{)\/\/\{(O\/\/\/é\/\/\/l\(\)/\/\/\Z% lil<r’
) ) x Q. denotes the unit cell of the lattice of arglg, andP, g is

the polygon formed by the union of all elementary cells of

FIG. 7. An example of a distorted lattice generated by the transy a4 4~ and centern i, with [j|<R’. We write Ifp,(r)]
formation Eq.(A.1). The radius of the circle is ,aRy. In the regu- :er(r)a+WR,(r) with « a

lar part outside the circle, the cell areads,.

sible to perform a similar experimental analysis for faster ;. (r)=2 > (In|r i _Aij Injr —r’
a Qa

rotation rates and test, in particular, the validity of our pre- aRy<li|<R’

diction concerning the distortion factafr) [see Eqs(3.12), .

(3.14, and(3.20]. -\, jld%r ) +2 In|r = X(j)j ——f In|r
Finally, we have addressed the case of other trapping po- ol IJ\<EaRo | il AJg, |

tentials, such as a superposition of a quadratic and a quartic
potential, which have also been addressed experimentally — 1" = \()j| P ,)
i . pjldr’ | +21InC,
[37]. For even faster rotations, when the number of vortices
approaches the number of atoms, the ground state is strongly .
correlated. We did not touch this point here, but our workandWg:(r)=Wyr:(r) +w,(r) with
should be relevant for studying the apparition of this corre- 5
lated regime from a destabilization of the mean field results Wir(r)=-r?+ —f In|r - r’|d2r’
by quantum fluctuations. Aulp, o
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APPENDIX: THE CASE OF A DISTORTED LATTICE lattice casg
The aim of this appendix is to prove the properties used ir}\ The next step is to lék, be Iarge., keeplngz flxe_d, S0 that_
Sec. 111 C. A detailed proof will be given ifi38]. We con- « 18 close to 1 for the class of distortion functions consid-
sider a distorted lattice in an inner region and keep a regula(?recj in Eq.(3.14. We find
lattice in the outer region in such a way that the distortion is o(r) = v.(r"), (A.4)
continuous(see Fig. 7. We label byj a regular hexagonal o ,
lattice with a unit cell aread== and we define the trans- Wherev., is given by Eq.(3.6), andr, r" are related by

formed lattice by Nr)r" forr/n, < aRy
e : = “ ’ A.
_IN(iDi for il < aRy, Tl for rIN, > aRy. A5
17 \ej  forlj|= A1) )
o J|= aRo, We denotew=w;+w,=In(p,). We estimatew,(r), using

where the radiu®, is given in Eq.(2.8), the distortion func- an expansion of the logarithm and the fact thaj) ~\,
tion \(r) satisfies3.14), andaR, is smaller than the horizon ~1:
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1 L& (E-E) Finally, using that\ ,= 1, we can apply the separation of
W(Rog) = ;f [f(a®) ~f(¢ Z)JW(F% ; integrals[23] and find, for example, that
<a
(A.6)
where relevant’s are of order unity. Using an integration by fpad% o (J e”w(r’)dzr’)(f e‘F<§2)d2§
part and a primitiveF of f, we get[6(x) is the Heaviside i<a
function] )
+et | e,
W(Ro8) = [F(c?) = F(&) + (& - D ()]0 &). - ¢

(A.7)

; -2 2 — 2802 _
S_mce we he_lver = f(e?)/RG, ther_1w1(R0§)— § f(.of )- PUt e jast integral in the second line is equahﬁe‘F<“2)/f(a2).
ting everyt_hmg together, we obtain up to an additive constanh this stage,« is still a free parameter. If the distortion
for normalization, function A(r) has a horizon at=§,R,, we leta tend to &,
-F(& for ¢< a, otherwise tow. The last integral tends to zero given the
—2HeD) +p for &> a (A.8) hypothesis that andF tend to +c at &,. The same procedure
# ' is valid for all terms entering into the energy functional,

In[pa(Rod)] = {

with w=a?f(a?)-F(a?). which justifies the use of Eq3.18).

[1] E. M. Lifshitz and L. P. PitaevskiiStatistical PhysicgButter- (2003.
worths Heinemann, London, 198@Chap. III. [20] R. P. Feynman, ifProgress in Low Temperature Physkedited

[2] R. J. Donnelly,Quantized Vortices in Helium I{Cambridge by C. J. Gorter(North-Holland, Amsterdam, 19%5Vol. 1,
University Press, Cambridge, U.K., 199Chaps. 4 and 5. Chap. 2.

[3] M. R. Matthewset al, Phys. Rev. Lett.83, 2498(1999. [21] S. M. Girvin and T. Jach, Phys. Rev. B9, 5617(1984).

[4] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, [22] D. A. Butts and D. S. Rokhsar, Natuftondon 397, 327
Phys. Rev. Lett.84, 806 (2000. (1999.

[5] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle[23] G. Allaire, SIAM J. Math. Anal.23 1482(1992.
Science292 476 (2001); C. Raman, J. R. Abo-Shaeer, J. M. [24] W. H. Kleiner, L. M. Roth and S. H. Autler, Phys. Re¥33

Vogels, K. Xu, and W. Ketterle, Phys. Rev. Le®7, 210402 A1226 (1964).
(2002. [25] Y. Maday and C. Bernardi, irlandbook of Numerical Analysis
[6] P. Engels, I. Coddington, P. C. Haljan, V. Schweikhard, and E. (Elsevier, Amsterdam, 2000Vol. 5, pp. 209-486.
A. Cornell, Phys. Rev. Lett90, 170405(2003. [26] C. M. Dion and E. Canceés, Phys. Rev.&, 046706(2003.
[7] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, [27] D. E. Sheehy and L. Radzihovsky, Phys. Rev.78, 063620
and E. A. Cornell, Phys. Rev. LetB2, 040404(2004). (2004; 70, 051602(2004.
[8] I. Coddington, P. C. Haljan, P. Engels, V. Schweikhard, S.[28] J. Anglin and M. Crescimanno, e-print cond-mat/0210063.
Tung, and E. A. Cornell, Phys. Rev. &0, 063607(2004). [29] Strictly speaking, as shown [i11], the coefficientG is renor-
[9] T. L. Ho, Phys. Rev. Lett87, 060403(2001). malized in this procedure. Here we omit this change for our
[10] U. R. Fischer and G. Baym, Phys. Rev. Lefi0, 140402 qualitative discussion.
(2003. [30] A. L. Fetter, Phys. Rev. A64, 063608(2001).
[11] G. Baym and C. J. Pethick, Phys. Rev.69, 043619(2004). [31] K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev6@
[12] G. Watanabe and C. J. Pethick, e-print cond-mat/0402167. 053606(2002.
[13] G. Watanabe, G. Baym, and C. J. Pethick, Phys. Rev. B&t. [32] E. Lundh Phys. Rev. A65, 043604(2002.
190401(2004). [33] G. M. Kavoulakis and G. Baym, New J. Phy&, 51.1
[14] N. R. Cooper, S. Komineas, and N. Read, Phys. Rev0A (2003.
033604(2004. [34] A. Aftalion and I. Danaila, Phys. Rev. A9, 033608(2004).
[15] N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn, Phys. Rev. [35] A. D. Jackson, G. M. Kavoulakis, and E. Lundh, Phys. Rev. A
Lett. 87, 120405(2001). 69, 053619(2004); see also A. D. Jackson and G. M. Kavou-
[16] B. Paredes, P. Fedichev, J. I. Cirac, and P. Zoller, Phys. Rev. lakis, e-print cond-mat/0311066.
Lett. 87, 010402(200)). [36] A. L. Fetter, B. Jackson, and S. Stringari, e-print cond-mat/
[17] J. Sinova, C. B. Hanna, and A. H. MacDonald, Phys. Rev. Lett. 0407119.
89, 030403(2002. [37] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Phys. Rev. Lett.
[18] J. W. Reijnders, F. J. M. van Lankvelt, K. Schoutens, and N. 92, 050403(20049); S. Stock, V. Bretin, F. Chevy, and J. Dali-
Read, Phys. Rev. Leti89, 120401(2002. bard, Europhys. Lett65, 594 (2004.

[19] N. Regnault and T. Jolicoeur, Phys. Rev. Le#tl, 030402 [38] A. Aftalion and X. Blanc(unpublishedl

023611-11



