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Critical Rotation of a Harmonically Trapped Bose Gas
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We study experimentally and theoretically a cold trapped Bose gas under critical rotation, i.e., with a
rotation frequency close to the frequency of the radial confinement. We identify two regimes: the regime
of explosion where the cloud expands to infinity in one direction, and the regime where the condensate
spirals out of the trap as a rigid body. The former is realized for a dilute cloud, and the latter for a
condensate with the interparticle interaction exceeding a critical value. This constitutes a novel system
in which repulsive interactions help in maintaining particles together.
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The rotation of a macroscopic quantum object is a
source of spectacular and counterintuitive phenomena. In
superfluid liquid helium contained in a cylindrical bucket
rotating around its axis z, one observes the nucleation of
quantized vortices for a sufficiently large rotation fre-
quency V [1]. A similar phenomenon occurs in a Bose-
Einstein condensate confined in a rotating harmonic trap
[2–5]. In particular, vortices are nucleated when the rota-
tion resonantly excites surface modes of the condensate.
This occurs for particular rotation frequencies in the in-
terval 0 , V # v��

p
2, where v� is the trap frequency

in the xy plane perpendicular to the rotation axis z.
Several theoretical studies have recently considered the

critical rotation of the gas, i.e., V � v�, which presents
remarkable features [6–14]. From a classical point of
view, for V � v� the centrifugal force compensates the
harmonic trapping force in the xy plane. Hence the motion
of a single particle of mass m in the frame rotating at fre-
quency V is simply due to the Coriolis force 2m �r 3 V.
This force is identical to the Lorentz force acting on a par-
ticle of charge q in the magnetic field B � 2�m�q�V. The
analogy between the motion of charged particles in a mag-
netic field and neutral particles in a rotating frame also
holds in quantum mechanics. In this respect, a quantum
gas of atoms confined in a harmonic trap rotating at the
critical frequency is analogous to an electron gas in a uni-
form magnetic field. One can then expect [8,10] to observe
phenomena related to the quantum Hall effect.

This paper presents an experimental and theoretical
study of the dynamics of a magnetically trapped rubidium
(87Rb) gas stirred at a frequency close to v�. We show
that the single particle motion is dynamically unstable for
a window of frequencies V centered around v�. This
result entails that the center of mass of the atom cloud
(without or with interatomic interactions) is destabilized,
since its motion is decoupled from any other degree of
freedom for a harmonic confinement. This also implies
that a gas of noninteracting particles “explodes,” which
we indeed check experimentally. When one takes into
account the repulsive interactions between particles, which
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play an important role in a 87Rb condensate, one would
expect naively that this explosion is enhanced. However,
we show experimentally that this is not the case, and
repulsive interactions can “maintain the atoms together.”
This has been predicted for a Bose-Einstein condensate in
the strongly interacting, Thomas-Fermi (TF), regime [9].
Here we derive the minimal interaction strength which
is necessary to prevent the explosion. This should help
studies of the quantum Hall related physics in the region
of critical rotation.

Consider a gas of particles confined in an axisymmetric
harmonic potential V0�r�, with frequency vz along the
trap axis z, and v� in the xy plane. To set this gas into
rotation, one superimposes a rotating asymmetric potential
in the xy plane. In the reference frame rotating at an
angular frequency V around the z axis, this potential reads
V1�r� � emv

2
��Y2 2 X2��2, where e . 0. The rotating

frame coordinates X, Y are deduced from the laboratory
frame coordinates x, y by a rotation at an angle Vt.

For a noninteracting gas, the equation of motion for each
particle reads:

Ẍ 2 2V �Y 1 �v2
��1 2 e� 2 V2�X � 0 , (1)

Ÿ 1 2V �X 1 �v2
��1 1 e� 2 V2�Y � 0 , (2)

while the motion along z is not affected by the rotation.
One deduces from this set of equations that the motion
in the xy plane is dynamically unstable if the stirring fre-
quency V is in the interval �v�

p
1 2 e, v�

p
1 1 e �. In

particular, for V � v� and e ø 1 the quantity X 1 Y
diverges as exp�ev�t�2�, whereas X 2 Y remains finite.

To test this prediction we use a 87Rb cold gas in a Ioffe-
Pritchard magnetic trap, with frequencies vx � vy �
2p 3 180 Hz and vz � 2p 3 11.7 Hz. The initial tem-
perature of the cloud precooled using optical molasses is
100 mK. The gas is further cooled by radio-frequency
evaporation. For the first set of experiments we stop
the evaporation before the Bose-Einstein condensation is
reached. The resulting sample contains 107 atoms at a
temperature T � 5 mK. It is dilute, with a central density
© 2002 The American Physical Society 250403-1
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�1012 cm23, and atomic interactions can be neglected
(mean-field energy økBT). The second set of experi-
ments corresponds to a much colder sample (T , 50 nK),
i.e., to a quasipure condensate with 105 atoms.

After evaporation, the atomic cloud is stirred during a
time t by a focused laser beam of wavelength 852 nm and
waist w0 � 20 mm, whose position is controlled using
acousto-optic modulators [2]. The beam is switched on
abruptly, and it creates a rotating optical-dipole potential
which is nearly harmonic over the extension of the cloud.
Then we switch off the magnetic field and the stirrer, allow
for a 25 ms free fall, and image the absorption of a resonant
laser beam propagating along the z axis. We measure in
this way the transverse density profile of the sample, that
we fit assuming a Gaussian shape for the noncondensed
cloud, and a parabolic TF shape for the condensate. We
extract from the fit the long and short diameters in the
plane z � 0, and the average position of the cloud. The
latter gives access to the velocity of the center-of-mass of
the cloud before time of flight.

The center-of-mass displacement as a function of
the stirring time t is shown in Fig. 1. We choose here
e � 0.09 and V � v�, so that the motion predicted
by Eqs. (1) and (2) is dynamically unstable. To ensure
reliable initial conditions, we deliberately offset the center
of the rotating potential by a few micrometers with respect
to the atom cloud [15]. We find the instability for the
center-of-mass motion both for the noncondensed cloud
(Fig. 1a) and for the quasipure condensate (Fig. 1b). The
center-of-mass displacement increases exponentially, with
an exponent consistent with the measured e.

We consider now the evolution of the size of the atom
cloud as a function of t (Fig. 2). The noncondensed cloud
exhibits the behavior expected from the single particle dy-
namics, i.e., the “explosion” in the X � Y direction. The
cloud becomes more and more elliptical in the xy plane.
The long radius increases with time, while the short one re-
mains approximately constant (Fig. 2a). On the opposite,
we find that the condensate remains circular (Fig. 2b), with
no systematic increase in size. We then obtain the follow-
ing counterintuitive result: for a significant repulsive inter-
action the atoms remain in a compact cloud, while they fly
apart if the interaction is negligible. We observe this sta-

FIG. 1. Center-of-mass displacement after free expansion (log-
scale) vs stirring time for V � v� and e � 0.09. (a) Noncon-
densed cloud with 107 atoms, T � 5 mK. (b) Condensate with
105 atoms. Solid line: exponential fit to the data.
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bility of the shape of the condensate rotating at the critical
velocity for e # 0.2. Above this value of e we find that
the atomic cloud rapidly disintegrates. For e � 0.3, after
a stirring time of 50 ms, we observe several fragments in
the time-of-flight picture.

We now perform a theoretical analysis of how the inter-
particle interaction stabilizes a rotating condensate. To this
end we use the 2D �x, y� time-dependent Gross-Pitaevskii
(GP) equation for an idealized cylindrical trap (vz � 0).
In the rotating frame the GP equation reads

i≠tc �
1
2

�2D 1 �1 2 e�X2 1 �1 1 e�Y2

1 2gjcj2 2 2VL̂�c , (3)

where L̂ is the z component of the angular momentum op-
erator. In Eq. (3) the coordinates are given in units of the
initial harmonic oscillator length

p
h̄�mv�, and the fre-

quencies in units of v�. The condensate wave function
c�X,Y , t � is normalized to unity, and the effective cou-
pling constant is g � 4paÑ, with a being the positive
scattering length, and Ñ the number of particles per unit
axial length. The effective coupling g depends on density
and characterizes the ratio of the mean-field interparticle
interaction to the radial frequency v�. Our experimental
conditions correspond to g � 130.

Since the trapping potential is harmonic, the average
center-of-mass motion of the condensate is described by
the classical equations (1) and (2) and is decoupled from
the evolution of the condensate wave function in the center-
of-mass reference frame [15]. We shall therefore restrict
to wave functions c centered at x � y � 0 for all times.

We start with a variational analysis of the steady state of
the condensate in the rotating frame. Since the experiment
is restricted to stirring times shorter than typical vortex
nucleation times [2], we use a simple vortex-free Gaussian
ansatz for the condensate wave function [16]:

c�X,Y� ~ exp�iaXY 2 bX2�2 2 gY2�2� . (4)

We extremize the GP energy functional with respect to the
real parameters a, b, g. Extremizing with respect to the
phase parameter a gives a � V�g 2 b���g 1 b�. As
b and g should be finite and positive this sets the constraint

FIG. 2. Long (�) and short (±) diameters of the atom cloud vs
stirring time, for V � v�. (a) Noncondensed cloud. (b) Quasi-
pure condensate (same parameters as in Fig. 1).
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a2 , V2. Extremizing over b and g and expressing b�g

in terms of a, we obtain a closed equation for a:

�e�V� �a2 1 2aV�V2 2 1��e 1 V2� 2

�g�2p�
p

1 2 a2�V2 �a3 1 �1 2 2V2�a 2 Ve� � 0 .
(5)

In the noninteracting case (g � 0) the Gaussian ansatz is
exact, and a is the root of a quadratic equation. This
ansatz also captures the scaling properties of the rotating
condensate in the regime of strong interactions. In the TF
limit (g ! `) the first line of (5) can be neglected and we
recover the cubic equation for a derived in [9].

For g � 0 the parameter a is complex in the interval of
rotation frequencies

p
1 2 e , V ,

p
1 1 e, and there

is no steady state solution for the condensate wave function
at these V [9]. For a finite g the lower border V2 of this
frequency interval remains equal to

p
1 2 e irrespective

of the value of g. The upper border, dashed curves in
Fig. 3, decreases with increasing g at a given e. For small
anisotropy e , 1�5 it reaches the lower border at a critical
coupling strength. For larger g the steady states exist at
any V. If e . 1�5, the upper border never reaches V2 �p

1 2 e and for any g one has an interval of V where
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steady state solutions are absent. The e � 1�5 threshold
was derived for the TF limit in [9].

For g ¿ 1, e ø 1, and V � 1, one of the three roots
of (5) is a � 2e, corresponding to a quasicircular cloud
(b � g). The result of Fig. 2b essentially corresponds to
this steady state, apart from oscillations due to the abrupt
switching of the stirring potential.

To describe the time-dependent solution of Eq. (3) and
account for this abrupt switching, we have developed an
approximate scaling approach. We assume (and later on
check) that the evolution of the condensate shape is well
described by dilations with factors bu�t� and by�t� along
the axes X̃ and Ỹ , rotating at an angular frequency �f�t�
with respect to the laboratory frame x, y. To determine
bu�t�, by�t�, and f�t�, we write the wave function as

c�X̃ , Ỹ , t� � �buby�21�2x�u, y, t� exp	iF�X̃, Ỹ , t�
 , (6)

where we have set u � X̃�bu, y � Ỹ�by , and

F�X̃, Ỹ , t� � ã�t�X̃Ỹ 1 � �bu�2bu�X̃2 1 � �by�2by�Ỹ2,
(7)

with ã � 2 �f tanhj and j�t� � ln�by�bu�. Then the GP
equation reduces to the following equation for x�u, y, t�:
i

∑
≠t 2

�f
coshj

�u≠y 2 y≠u�
∏
x �

∑
2

≠2
u

2b2
u

2
≠2

y

2b2
y

1
1
2

�n2
ub2

uu2 1 n2
yb2

yy2� 1
gjxj2

buby

∏
x . (8)
The “frequencies” nu and ny are given by

n2
u,y � 1 7 e cos�2Vt 2 2f�

1 ã2 7 2 �fã 1 b̈u,y�bu,y . (9)

In Eq. (8) we took into account that u, y are eigenaxes
of the condensate, which requires the absence of terms
proportional to uy and is provided by the relation

e sin�2Vt 2 2f� 2 �̃a 2

ã� �bu�bu 1 �by�by� 1 �f �j � 0 . (10)

We now replace the left-hand side (lhs) of Eq. (8) by
m̃x, where m̃ follows from the normalization condition

FIG. 3. Solid curves: upper (V1) and lower (V2) borders of
the instability region vs g, for an abrupt switching of the rotation
with e � 0.05 (a) and e � 0.25 (b). Dashed curves: upper
border of the region where stationary states are absent.
for x. The solution of the resulting equation is a function
of bu,y, f, and nu,y. We then require that (6) is a relevant
scaling transform, i.e., that the function x�u, y, t� is most
similar to the initial function x�u, y, 0�. More precisely we
set the averages �u2�t , �y2�t equal to their values at t � 0.
This fixes nu and ny in terms of bu, by , f. The solution of
Eqs. (9) and (10) then gives the desired scaling parameters.

The omitted lhs of Eq. (8) only insignificantly changes
nu and ny. It vanishes in both the TF regime and for an
ideal-gas condensate. For the TF limit our procedure gives
the same results as the scaling approach of [17] and the
function jxj2 remains an inverted parabola.

For an abrupt switching of the rotating potential we
use the initial conditions bu,y�0� � 1, �bu,y�0� � f�0� �
�f�0� � 0. We find two types of solution: (i) oscillating
functions bu,y�t�; (ii) one of the scaling parameters even-
tually grows exponentially. Case (ii) describes an infinite
expansion of the condensate in one direction, similarly to
the expansion of the ideal gas under rotation.

For a given e we obtain the upper (V1) and lower (V2)
instability borders in the V 2 g space (see Fig. 3). The
lower border is always equal to

p
1 2 e. The upper border

V1�g� decreases with increasing g, and for e , 0.17 it
reaches V2 at a critical value of the coupling strength.
For e . 0.17 we have V1 . V2 at any g.

The obtained results can be understood by comparing
the frequency Vq of the rotating quadrupole mode of
the condensate with the rotation frequency V � 1 of the
250403-3
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perturbation V1�r�. In the absence of interaction one has
Vq � 1, and the corresponding resonance leads to the con-
densate explosion. The interactions reduce the frequency
of the rotating quadrupole mode (Vq � 1�

p
2 in the TF

limit), suppressing the resonance at V � 1: the deforma-
tion of the condensate induced by V1 remains small, at
least for e smaller than the detuning from the resonance.
For larger e the condensate explodes.

In the presence of interactions (1�
p

2 , Vq , 1), one
could expect naively that the explosion occurs for a reso-
nant drive with V � Vq, even for small e. This is not
the case because of a nonlinear character of the dynamics.
As the system starts to elongate under the action of the
resonant excitation, it becomes closer to an ideal gas, for
which Vq � 1. The gas is then driven away from the
resonance and its deformation stops. This explains why
the lower instability border V2 is independent of g.

The scaling method can also be used to identify sta-
tionary solutions, by setting �f � V and constant bu,y in
Eqs. (9) and (10). The results nearly coincide with the
ones from the Gaussian ansatz. The existence of these so-
lutions can also be explored using an adiabatic switching
of the rotating potential. As shown in Fig. 3 the domain of
instability for an abrupt switching of the rotation includes
the domain for the absence of stationary solutions.

Figure 4 shows the minimum coupling strength gc�e�
required for the stability of the shape of the condensate
at V � 1. TF condensates remain stable for an abrupt
switching of the rotation if e & 0.28. This explains the
destruction of the condensate in our experiment at e � 0.3.

To summarize, our analysis shows that, thanks to repul-
sive interactions, the condensate can preserve its shape and
size for any rotation frequency in the instability window
of the center-of-mass motion,

p
1 2 e , V ,

p
1 1 e.

This occurs for small e (e & 0.17 for TF condensates). In
this case the condensate spirals out of the trap as a rigid
body after the rotation is switched on. For larger e there
are rotation frequencies in the center-of-mass instability
window at which even TF condensates explode. One can

FIG. 4. Critical coupling strength gc vs e for V � 1. The
solid and dashed curves correspond to an abrupt and adiabatic
switching of the rotation, respectively. The black disk corre-
sponds to the experimental situation of Fig. 2b.
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think of observing related effects in rotating ion clouds in
electromagnetic traps (see [18] and references therein).

Although our picture properly describes the experiment,
we do not deal here with the ground state of the system.
On a longer time scale, the gas will evolve to a more
complex state, for instance to a multivortex state (with
possible quantum melting) or to a quantum-Hall-like state,
discussed for the axially symmetric case [6,8,10–14].
A natural extension is to include a rotating anisotropy e,
a necessary ingredient for most present experiments. In
particular, for V � v�

p
1 2 e, one reaches a one-body

Hamiltonian corresponding to an unbound motion (with
a gauge field) in the X direction, similar to a quantum
Hall fluid in a narrow channel. We believe that the study
of many body aspects of this regime will bring in new
features of quantum mesoscopic physics.
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