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Continuous loading of a non-dissipative atom trap

C. F. Roos, P. Cren, D. Guéry-Odelin and J. Dalibard
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Abstract. – We study theoretically a scheme in which particles from an incident beam are
trapped in a potential well when colliding with particles already present in the well. The
balance between the arrival of new particles and the evaporation of particles from the trapped
cloud leads to a steady state that we characterize in terms of particle number and temperature.
This scheme is particularly interesting for a cigar-shaped potential where different longitudinal
and transverse evaporation thresholds can be chosen. We show that a resonance occurs when
the transverse evaporation threshold coincides with the energy of the incident particles. It leads
to a dramatic increase in phase space density with respect to the incident beam.

The trapping of atomic particles has been an invaluable tool for recent developments
in atomic physics and quantum optics. It can be performed by suddenly switching on a
confining potential when the particles are in the vicinity of its minimum. This method is used
successfully to trap ions in electromagnetic traps [1], and neutrons [2] or atoms [3] in magneto-
static traps. Another way of trapping particles is to take advantage of a dissipative mechanism,
such as in a magneto-optical trap [4]. In this way, the trap can be loaded continuously since
a friction force dissipates the excess energy of the particles and prevents them from escaping.
The loading of neutral atoms into a trap using collisions with a buffer gas also belongs to the
dissipative category [5].
In this paper we investigate a different loading mechanism, in which particles are injected

into a potential well, and can be trapped by undergoing an elastic collision with one of the
particles already present in the well. After the collision, the incident particle has an energy
below the depth U of the potential well and gets trapped. The excess energy is then redis-
tributed to the whole trapped sample via elastic collisions and it is subsequently released by
the evaporation of a trapped particle. We show that it is possible to accumulate in this way
particles with an equilibrium temperature T � U/kB. We also show that, for experimentally
feasible conditions, a large increase in phase space density can be achieved with respect to
the one of the incident beam of particles. Our study constitutes a realistic description of the
continuous loading of a trap, consistent with Liouville’s theorem [6]. It has to be contrasted
with the elegant, but simplified model of [7], where new atoms are injected into a trap at a
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Fig. 1 – (a) First model: atoms with an energy (1+ ε)U are injected into a harmonic trap and can be
captured by collisions with particles already present in the trap. Trapped atoms with an energy larger
than U are evaporated. (b) Second model: incoming atoms undergo collisions with trapped particles or
with those reflected on the potential barrier at z < 0. Evaporation occurs if the longitudinal or trans-
verse energy of a particle exceeds the evaporation threshold Uz or U⊥. The phase space density of the
trapped particles can be orders of magnitude larger than the phase space density of the incoming beam.

given energy, but where evaporation of previously trapped atoms at the same energy is not
taken into account; in that case, the gain in phase space is only limited by ad hoc losses, such
as three-body collisions.
We develop two models in this paper. The first model deals with an isotropic harmonic

trap, assuming an evaporation criterion based on the total energy of a particle. This allows to
use simple analytical expressions for the evaporation rate and it leads to a proof-of-principle
of the process, as long as the energy of the injected particles is small with respect to the trap
depth. The second model is more elaborate and leads to much more spectacular predictions
for a realistic situation. It assumes an anisotropic trap (cigar-shaped potential) and it takes
advantage of different evaporation rates along the long axis of the cigar and in the transverse
directions. One can then accumulate particles in the well even if their incident energy notably
exceeds the well depth. We conclude the paper by giving some indications on the dynamics
of the loading process.
For our first model, we consider an isotropic harmonic potential with frequency ω. An

atomic beam with flux Φ and a mean energy U(1 + ε) per particle is injected into a poten-
tial well (fig. 1a). We assume that those atoms undergoing collisions are trapped. Atoms
are evaporated as soon as their total (kinetic+potential) energy after a collision exceeds the
threshold U . The steady-state energy distribution P (E) of the trapped gas is approximated
by a truncated Boltzmann distribution with temperature T [8]:

P (E) ∝ ρ(E)e−E/T θ(U − E),
where ρ(E) is the density of states and θ the Heaviside step function. For simplicity, we set
the Boltzmann constant kB = 1.
In order to determine T and the number N of trapped atoms, we equalize the incoming

and outgoing fluxes of energy and particles. An incoming atom brings the energy U(1 + ε).
The average energy carried away by an evaporated atom can be written as U +κT , where κ is
a dimensionless coefficient depending on the ratio η = U/T . It can obtained from the collision
kernel of the Boltzmann equation, by calculating the probability that an atom emerges from
a binary elastic collision with a kinetic energy larger than a given threshold [8, 9]. From the
equation

(1 + ε)U = U + κT =⇒ κ(η)
η
= ε, (1)
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we deduce η, hence the temperature. The function κ(η)/η equals 1/6 for η = 0 and decreases
when η increases. Therefore, a steady state exists only for values of ε smaller than 1/6. For
large η, the function κ(η) tends to 1 and we obtain η � ε−1, i.e.

ε� 1 =⇒ T � εU. (2)

In other words, the equilibrium temperature is equal to the excess energy of the incom-
ing atoms.
We now determine the number of atoms in steady state by comparing the flux of atoms

injected into and evaporated from the trap. We first note that only a fraction of the incident
flux Φ contributes to the feeding of the trap. Indeed, the above description of the evapora-
tion is only valid in the collisionless (or Knudsen) regime, where the mean free path is much
larger than the size of the atom cloud. Therefore, most of the incoming atoms cross the trap
without any collision. To calculate the fraction f of incoming atoms which collide with a
trapped atom, we assume that all incoming trajectories pass through the center of the trap.
For the low temperatures considered here, the elastic collisions are isotropic (s-wave regime)
and they are characterized by the total elastic cross-section σ. We find f =

√
2πr̄n0σ, where

r̄ =
√
kT/mω2 is the size of the trapped cloud and n0 the density at the center of the har-

monic trap. The outgoing flux can be calculated using classical kinetic equations. The average
collision rate is γ =

√
2/πn0σ∆v, where ∆v =

√
kT/m. In the collisionless regime γ � ω,

the probability that an atom is evaporated after a collision is p � 2ηe−η if η � 1 [8]. The
balance between the incoming flux Φin = fΦ and the outgoing flux Φout = pγN then gives

Φin = pγN =⇒ N = ε
Φ
ω
e1/ε . (3)

This result is intuitive. In the regime ε−1 ∼ η � 1, the number of atoms in the trap scales as
e1/ε ∼ eU/T , which is a direct consequence of Boltzmann’s law. The numberN can be in princi-
ple very large. However, one should keep in mind the validity criterion for the Knudsen regime
f < 1, which imposes e1/ε < U/(Φmσω). This puts an upper bound Nmax ∼ εU/(mω2σ) on
the number of trapped atoms.
Qualitatively new features arise in the second model that we now discuss and which con-

stitutes the main subject of this paper. Here, atoms are injected across the plane z = z0 with
a negative velocity along the z-axis, and with some transverse potential and kinetic energy
(fig. 1b). For such a geometry, the evaporation can be either longitudinal or transverse. The
longitudinal evaporation is a direct consequence of the loading mechanism: an atom which
crosses the plane z = z0 with a positive velocity is evaporated. Furthermore, one can exper-
imentally arrange that an atom is also evaporated when its distance r = (x2 + y2)1/2 to the
z-axis exceeds a threshold value r0. For instance, one can use a magnetic gradient to confine
the atoms transversally and use a radio-frequency wave to flip their magnetic moment when
they cross the surface of the cylinder r = r0 [11].
The possibility to control independently the transverse and longitudinal evaporation thresh-

olds is of particular interest if one considers an anisotropic trap with ωz � ω⊥, where ω⊥ and
ωz stand for the oscillation frequencies in the xy plane and along the z-axis, respectively. In
this case, the trapped gas is cigar-shaped and one can reach a regime where the z motion is in
the hydrodynamic regime (γ � ωz), while the transverse motion is still collisionless (γ � ω⊥).
In other words, the mean free path of an atom is supposed to be larger than the radial size of
the cigar, but smaller than its length. All incident atoms undergo a collision with the trapped
atoms and are captured. We now study how the simple approach presented above is modified
and we derive the expected gain in phase space density for a realistic situation.
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The evaporation rate along the z-axis is notably reduced as compared with the rate derived
in the collisionless regime for the same ratio ηz = Uz/T . Indeed most atoms which emerge
from a collision with an energy Ez larger than the evaporation energy Uz = mω2

zz
2
0/2 undergo,

before reaching the point z0, another collision which can bring their energy Ez below Uz. Using
a molecular-dynamics simulation [12–14], we have calculated i) the probability pz that an atom
reaches z = z0 after a collision and is evaporated, ii) the average energy Uz + κzT carried
away by this atom. For ηz in the range from 4 to 7, we find

ωz � γ : pz � 0.14e−ηzωz/γ, κz � 2.9. (4)

Under these operating conditions, the evaporation threshold U⊥ = mω2
⊥r

2
0/2 in the xy

plane is a crucial control parameter. One can set U⊥ to a value larger than Uz, so that the
particles evaporated transversely carry an energy U⊥ + κ⊥T notably larger than the energy
Uz + κzT for a particle evaporated along z. If the trap were operated in the collisionless
regime for the z motion, this would make the transverse evaporation unlikely and inefficient.
However, thanks to the reduction of pz by a factor ωz/γ with respect to the collisionless case,
we can raise U⊥ to a value larger than Uz and still obtain similar probabilities pz and p⊥ for
longitudinal and transverse evaporation.
The equilibrium temperature T is now obtained by generalizing (1):

(1 + ε)Uz =
pz

pz + p⊥
(Uz + κzT ) +

p⊥
pz + p⊥

(U⊥ + κ⊥T ). (5)

Similarly, the number of atoms in steady state is obtained from the generalization of (3):

Φin = (p⊥ + pz)γN. (6)

The values of pz and κz have been given in (4). We have also derived the corresponding
values for the transverse motion from a molecular-dynamics simulation. For collision dynamics
ranging from the Knudsen regime (γ � ω⊥) to the hydrodynamic regime (up to γ = 5ω⊥),
we fit our results for η⊥ = 8 to 13 by the formula

p⊥ � 2.0e−η⊥ ω⊥
ω⊥ + 1.4γ

, κ⊥ � 2.0. (7)

The set of equations (4)-(7) now allows us to determine T and N for a given experimental
situation.
As a concrete example, we consider a beam of rubidium atoms (σ = 7.1×10−16m2) injected

in a trap with ω⊥ = 100ωz and ωz/2π = 10Hz. The flux is Φ = 107 atoms/s, with an average
velocity vi = 20 cm/s and a velocity dispersion ∆vi = 4 cm/s along each of the three axes x, y,
z (temperature Ti ∼ 17µK) [15]. This beam is confined transversely by a harmonic potential
with the same frequency ω⊥ as in the trap. In these conditions, the initial phase space density
is Di ∼ 2×10−5. The barrier height Uz in z0 (see fig. 1b) is chosen such that only atoms with
an incident velocity larger than vi −∆vi are transmitted (Uz = m(vi −∆vi)2/2 ∼ 135µK).
The flux passing in z = z0 is then Φin = 0.84Φ and the average excess energy εUz of the
incoming atoms is ∼ 140µK (i.e. ε ∼ 1).
The temperature and the number of atoms are shown in fig. 2 as a function of the transverse

evaporation threshold. We also give the phase space density D in the trap calculated using
Boltzmann statistics. It shows a sharp maximum D ∼ 10−2 when U⊥ is close to 270µK (i.e.
U⊥ ∼ (1+ε)Uz), in which case p⊥/pz ∼ 2. The gain in phase space density with respect to the
incident beam is then ∼ 500, while it is only 10 if one restricts evaporation to the longitudinal
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Fig. 2 – Variation of the temperature (a), of the number of trapped atoms (b), and of the phase
space density (c), as a function of the transverse evaporation threshold U⊥. The characteristics of
the injected atomic beam are given in the text. The dashed lines in (a) indicate the variation of the
temperature if one neglects either longitudinal evaporation (line with negative slope) or transverse
evaporation (horizontal line).

direction (U⊥ =∞). In this optimum regime, we find in steady state γ ∼ ω⊥, N ∼ 108 atoms
and T = 24µK (ηz ∼ 5.7, η⊥ ∼ 11.4). Note that the temperature is now much lower than
the excess energy εUz. This has to be contrasted with the result of the first model where one
always gets T ≥ εU .
The spectacular resonance in the steady-state phase space density shown in fig. 2 is a

general feature of our second model. It occurs when the transverse evaporation threshold U⊥
is set to a value near the total incident energy (1 + ε)Uz. This resonance, which allows to
increase by orders of magnitude the phase space density of the trapped cloud with respect to
that of the incoming beam, constitutes the main result of this letter.
We now discuss the characteristics of the system on the two sides of the resonance. When

U⊥ is lower than the optimum value, the evaporation is essentially transverse since p⊥ � pz.
In this case, (5) simplifies to give

p⊥ � pz : T =
1
κ⊥
((1 + ε)Uz − U⊥). (8)

We recover in this way the linear variation of T for a small U⊥ (see fig. 2). The number of
atoms, given by Φin ∼ p⊥γN , increases as U⊥ increases. The approximation (8) is valid until
U⊥ approaches (1+ ε)Uz, in which case it would lead to T ∼ 0. At this point the longitudinal
evaporation cannot be neglected any more, and pz and p⊥ are of the same order.
When U⊥ is larger than the optimal value, the transverse evaporation becomes inefficient

and one is left with a purely longitudinal evaporation. The temperature and the number of
trapped atoms are then independent of U⊥. From (5)-(6), one gets T = εUz/κz (horizontal
dashed line in fig. 2a) and N = Φine

ηz/(0.14ωz), which is very reminiscent of the results of
the first model.
The gain G in phase space is an important result of our study. It depends on the incident

flux Φ for a given loading and trapping configuration (parameters ε and ω⊥/ωz). For relatively
small incident flux, we find that G increases with increasing Φ. We consider again the above
example and we suppose that we increase Φ from 107 to 108 atoms/s. Due to an increase of
the collision rate and thus of the evaporation efficiency, we find that the steady-state atom
number N is multiplied by 15, and that the temperature decreases by 10%. The phase space
gain then passes from 500 to 900.
The phase space gain G as a function of the flux Φ saturates when the transverse motion

enters the hydrodynamic regime (γ � ω⊥). In this case, we obtain a “universal” result for
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the gain G, which does not depend on the details of the loading process, but only on the two
dimensionless parameters ε and ω⊥/ωz. Indeed the ratio p⊥/pz obtained from (4)-(7) is a
function of η⊥ − ηz and ε only. The temperature and the ratio N/Φ are independent of the
flux Φ, hence a gain G also independent of Φ. Assuming ε ∼ 1 as in the example above, this
maximal gain is G ∼ 103 for ω⊥/ωz = 102, and G ∼ 104 for ω⊥/ωz = 103.
We now investigate the dynamics of the system and the time necessary to reach the steady

state of the system around the resonance. The time evolution of the atom number N and of
the total energy 3NT is given by

dN
dt

= Φin − (pz + p⊥)γN, (9)

d(3NT )
dt

= Φin(1 + ε)Uz − pzγN(Uz + κzT )− p⊥γN(U⊥ + κ⊥T ). (10)

The steady state of this set of non-linear equations corresponds to the solution of (5)-(6).
Initially, the description in terms of a thermal equilibrium fails since no atoms are present.
The loading of the trap is initiated by collisions between atoms of the incoming and the
reflected outgoing beams. In the above example, the collision rate γ between the two beams
is of the order of ωz, which ensures an efficient start of the whole process.
The detailed study of the non-linear dynamics involved in (9)-(10) is outside the scope

of this letter. A simple hint on the behavior of the solutions consists in linearizing these
equations around the steady state discussed above. Suppose, for simplicity, that evaporation
occurs essentially in the longitudinal direction. The two time constants of the corresponding
system are (within a numerical coefficient) τ1 = τη2z and τ2 = τ/η

2
z , where τ = Ns/Φin is the

time required to send the number of atoms corresponding to the steady-state number Ns into
the trap. Since ηz � 1, these two time constants are very different from each other and the
time τ1 needed to reach equilibrium exceeds by a factor η2z the “natural” time scale τ . For the
same experimental conditions as in fig. 2, we find a slow time evolution of N(t), with a time
constant τ1 � 160 s (to be compared with τ = Ns/Φin ∼ 10 s). By contrast, the temperature
T (t) reaches rapidly a value close to steady state.
In order to confirm the above analytical treatment, we have run ab initio a numerical sim-

ulation based on molecular dynamics. We have obtained values for the evolution of N(t) and
T (t) which differ by no more than 20% from those deduced from the set of equations (9)-(10).
It is worth noting that for such long time scales, losses, e.g. due to 3-body collisions, become
important and will limit in practice the gain in phase space density as in [7].
Our analysis has been carried out for a gas in the non-degenerate regime. Quantum

effects could be taken into account using a generalization of the Boltzmann equation which
includes bosonic stimulation or fermionic inhibition [16]. In particular for bosons, “stimulated
emission” processes will speed up the dynamics of the whole scheme. Such a detailed analysis
is outside the scope of the present paper. For this reason, we have deliberately chosen in the
example above a very small initial phase space density (Di ∼ 2 × 10−5) so that the trapped
gas always remains in the classical regime, even after a gain G ∼ 103. A transposition of
this result to a denser beam (Di ≥ 10−3) would eventually bring the trapped gas into the
degenerate regime.
To summarize, we have shown that a continuous loading of a non-dissipative trap could

be achieved with the help of evaporation. This process can be remarkably efficient in the
case of an anisotropic, cigar-shaped, geometry. In this case, the incident particles can have
an incident energy εUz of the order of the entrance barrier Uz and still reach a temperature
T � Uz. For a realistic configuration, a gain in phase space of several orders of magnitude
is possible between the incident beam and the trapped cloud. This method constitutes an



C. F. Roos et al.: Continuous loading of a non-dissipative atom trap 193

alternative to the proposal of [17] based on a continuous evaporative cooling of a guided
beam. It is also complementary of the scheme recently achieved at MIT, where a succession
of condensates was merged in the same trap, producing thus a steady-state BEC in a given
location [18].
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