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We analyze the dynamics of two trapped interacting Bose-Einstein condensates in the absen
thermal cloud and identify two regimes for the evolution: a regime of slow periodic oscillations and
regime of strong nonlinear mixing leading to the damping of the relative motion of the condensates.
compare our predictions with an experiment recently performed at JILA. [S0031-9007(98)08104-6
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The experimental evidence for Bose-Einstein conde
sation in trapped atomic gases [1] has attracted a lot
attention, as the presence of a macroscopically occup
quantum state makes the behavior of these gases dra
cally different from that of ordinary gas samples. Trappe
Bose-Einstein condensates are well isolated from the e
vironment and, at the same time, can be excited by d
forming the trap or changing the interparticle interaction
The question of how the gas sample, being initially a pu
condensate, subsequently reaches a new equilibrium s
is directly related to the fundamental problem of the ap
pearance of irreversibility in a quantum system with
large number of particles. Thus far the time depende
dynamics of trapped condensates has mainly been a
lyzed for a single condensate [2–6] on the basis of th
Gross-Pitaevskii equation for the condensate wave fun
tion. Remarkably, already in this mean-field approach th
stochastization in the condensate evolution has been fou
[3], and the damping of the condensate oscillations h
been observed numerically [5]. However, the question
the formation of a thermal component, addressed in [3
has not been investigated.

In this paper we study the evolution of a richer system
a mixture of two interacting condensates (a andb), in the
situation where initially the thermal cloud is absent. Th
properties of a static two-component trapped condensa
including the issue of spatial separation of thea and b
components due to interparticle interaction [7,8], wer
investigated in [9]. The response of the system to sm
modulations of the trap frequency has also been stud
numerically [10]. In our case thea and b condensates
have initially the same density profile and are set in
motion mostly by an abrupt displacement of the tra
centers. The main goal of our work is to study th
dynamics of spatial separation of the two condensates a
analyze how the system can acquire statistical propert
and reach a new equilibrium state. From a general po
of view, we are facing the problem raised by Fermi, Pas
and Ulam [11]. They considered classical vibrations o
a chain of coupled nonlinear oscillators to analyze th
emergence of statistical properties in a system with a lar
number of degrees of freedom. As was revealed later, t
0031-9007y99y82(2)y251(4)$15.00
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appearance of statistical properties requires a sufficie
strong nonlinearity leading to stochastization of motio
[12], whereas for small nonlinearity the motion remain
quasiperiodic (see, e.g., [13]).

We consider a situation in which the two condensa
a and b see harmonic trapping potentials of exactly th
same shape, and the interparticle interactions charac
ized by the scattering lengthsaaa, aab, andabb are close
to each other. The control parameter, determining
possibilities of nonlinear mixing and stochastization, is t
relative displacementz0 of the trap centers. We identify
two regimes for the evolution. In the first one the rel
tive motion of the condensates exhibits oscillations a
frequency much lower than the trap frequencyv. In the
other regime there is a strong nonlinear mixing leading
the damping of the relative motion, and the system ha
tendency to approach a new equilibrium state. We co
pare our predictions with the results of the Joint Institu
for Laboratory Astrophysics (JILA) experiments [14,15
on a two-component condensate of87Rb atoms in theF ­
1, m ­ 21 and F ­ 2, m ­ 1 states. In these experi
ments the double condensate was prepared from a si
condensate in the stateF ­ 1, m ­ 21 (a) by driving a
two-photon transition which coherently transfers half
the atoms to the stateF ­ 2, m ­ 1 (b).

We mostly perform our analysis in the mean-fie
approach relying on the Gross-Pitaevskii equations for
wave functionsfa and fb of the a and b condensates.
This approach corresponds to the classical limit of t
evolution of a quantum field, the subsequent correctio
being proportional to a small parametersna3

´´0d1y2 (n is the
gas density) and, hence, manifesting themselves only o
rather large time scale. The two coupled Gross-Pitaev
equations forfa andfb normalized to unity read

ih̄≠tf´ ­

"
2

h̄2D

2m
1 U´ 2 m

1
X

´0­a,b

g´´0N´0 jf´0 j2

#
f´ . (1)

Here g´´0 ­ 4p h̄2a´´0ym are the coupling constants fo
elastic interaction between atoms in the states´ and´0, m
© 1999 The American Physical Society 251
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is the atom mass, andN´, U´ are the number of atoms and
trapping potential for thé condensate. As in the JILA
experiment, we choose the initial conditionfa,bs0d ­ f0,
where the (real) wave functionf0 corresponds to the
ground state of Eq. (1) with all atoms in thea state and no
trap displacement. The chemical potential of this groun
state is denoted asm.

We consider thea and b condensates in the Thomas
Fermi regime (̄hv ø m) and assume the number of con
densate atomsNa ­ Nb ­ Ny2 [16]. The first set of
our calculations is performed for the evolution of th
condensates in a spherically symmetric trapping potent
U0srd ­ mv2r2y2 which att ­ 0 is displaced along the
z axis by a distancez0y2 for thea atoms and by2z0y2 for
the b atoms. We present the results for the time depe
dence of the mean separation between the condensate

ustd ­
Z

d3r zsjfasr, tdj2 2 jfbsr, tdj2d . (2)

For the curves in Fig. 1 the coupling constants aregaa ­
gab ­ gbb, and forz0 ­ 0 our initial state is an equilib-
rium state att $ 0. In this state the Thomas-Fermi ra
dius of the condensateR0 ­ s2mymv2d1y2 serves as unit
of length, and the shape off0 is determined bymyh̄v.
Hence, forz0 fi 0 the dependence of the quantityuyR0 on
vt is governed by the parametersmyh̄v andz0yR0.

Our results reveal two key features of the evolutio
dynamics. The first one, for a tiny displacementz0, is
a periodic motion with slow frequencies which turn ou
to be sensitive to small variations in the values of th
coupling constants. The other feature, for much larg
z0, but still z0 ø R0, is a strong damping in the relative
motion of the two condensates, as observed at JILA [14

In order to understand the physics behind the evol
tion pattern, we first perform a linear analysis of Eq. (1
For the case wheregaa ­ gab ­ gbb ­ g, and the dis-

FIG. 1. Mean separation between the condensates versus t
in isotropic traps forgaa ­ gab ­ gbb and myh̄v ­ 29.2.
Relative displacement:z0 ­ 6.66 3 1024R0 (a), and z0 ­
7.17 3 1022R0 (b). Solid curves: Numerical integration of
Eq. (1). Dotted curves: Analytical prediction for (a) (see text
and the linear model relying on Eq. (6) for (b).
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placementz0 is sufficiently small, we linearize Eq. (1)
with respect to small quantitiesdfa,b ­ sfa,b 2 f0d and
z0. Then, for the quantitydf2 ­ dfa 2 dfb, describ-
ing the relative motion of the condensates, we obtain t
equation

ih̄≠tdf2 ­

"
2

h̄2D

2m
1 U0 2 m 1 Ngf2

0

#
df2 1 S2 ,

(3)

with the source termS2 ­ mv2z0zf0. For the quantity
df1 ­ dfa 1 dfb we find an equation decoupled from
df2 and without source terms. Hence, the initial co
dition df1sr, 0d ­ 0 allows us to putdf1sr, td ­ 0 for
t $ 0.

ForS2 ­ 0 Eq. (3) is the equation for the wave functio
of a particle moving in the potentialV ­ U0 2 m 1

Ngf
2
0 . Stationary solutions of this equation provide u

with the eigenmodes of oscillations of the condensa
with respect to each other. In the Thomas-Fermi lim
the potentialV , originating from the kinetic energy of the
condensate, is a smooth function ofr inside the condensate
spatial regionr , R0: V ­ h̄2sDf0dy2mf0 ø h̄v. For
r . R0 this potential is close toU0 2 m and is much
steeper. ReplacingV by an infinite square well of radius
R0 we obtain the energy spectrum of eigenmodes w
large quantum numbersn: Enl ­ sp h̄vd2s2n 1 ld2y16m,
wherel is the orbital angular momentum. This explain
the appearance of oscillations at a frequency much sma
than v in our numerical calculations (see Fig. 1a), sinc
the energy scale in the spectrum issh̄vd2ym ø h̄v. For
the latter reason we call these eigenmodes soft mod
Note that the soft modes for the relative motion of the tw
condensates also exist in the spatially homogeneous c
where they have a free-particle spectrum [7].

As in our linear approach we havedf1sr, td ­ 0,
Eq. (2) for the mean separation between the condens
reduces toustd ­ 2

R
d3r zf0 Rehdf2j, and the contri-

bution to ustd comes from the components ofdf2 with
l ­ 1, ml ­ 0. Solving Eq. (3) with the initial condition
df2sr, 0d ­ 0, we obtainustd as a superposition of com-
ponents, each of them oscillating at an eigenfrequency
a soft mode:

ustd ­ z0

X
n$1

2mv2

En1

É Z
d3r wn1zf0

É2
3

"
1 2 cos

√
En1t

h̄

!#
, (4)

wherewn1 is the wave function of the soft mode withl ­
1, ml ­ 0 and main quantum numbern. Damping of
oscillations of ustd could, in principle, originate from
the interference between the components with differe
n in Eq. (4). However, the sourceS2 basically popu-
lates only the lowest soft mode, irrespective of th
value of z0: the amplitude of oscillations at the lowes
eigenfrequency in Eq. (4) (the term withn ­ 1) greatly
exceeds the sum of the amplitudes of other terms. Hen
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these oscillations remain undamped. For the same rea
their frequency and amplitude can be found withwn1
replaced by the functionzf0 normalized to unity. Using
the Thomas-Fermi approximation for the condensa
wave function [17]:f2

0srd ­ 15s1 2 r2yR2
0dy8pR3

0 for
r , R0, andf0 ­ 0 for r . R0, we obtainE11 ; h̄V ­
s7y4d sh̄vd2ym which is very close toE11 ­ 1.62sh̄vd2y
m calculated numerically. Then, retaining only th
leading term (n ­ 1) in Eq. (4), we find ustd ø
z0s4my7h̄vd2f1 2 cossVtdg shown in the dotted line
in Fig. 1a. As one can see, the condition of the line
regimeu ø R0 requires a very small displacement

z0 ø sh̄vymd2R0 , (5)

and already a moderatez0 as in Fig. 1b is sufficient to
drive the system out of the linear regime.

We have performed a similar linear analysis for th
case wheregaa fi gab fi gbb, but the relative difference
between the coupling constants is small. Also in th
case the sourceS2 mostly generates oscillations of the
condensates relative to each other at a single freque
V0 ø v. For a relative difference between the couplin
constants much smaller thansh̄vymd2, the frequency
V0 coincides with the soft-mode frequencyV found
above. Otherwise the sign ofg2 ­ gaa 1 gbb 2 2gab

becomes important. In particular, for positiveg2 ¿
jgaa 2 gbbj already a moderate difference between th
coupling constants strongly increases the frequencyV0

compared toV. In this case we obtain undampe
oscillations atV0 ø sg2ygaad1y2v. For g2 , 0, already
in the z0 ­ 0 case, a breathing mode in which the tw
condensates oscillate out of phase becomes unstable,
the system evolves far from the initial state. Note th
for a small difference between the coupling constants t
conditiong2 , 0 is equivalent to the criterion of spatia
separation of the condensates in the homogeneous c
gaagbb , g2

ab [7,8].
We now turn to the largez0 regime (Fig. 1b) where

we find a strong damping of the oscillations of the mea
separation between the condensates,ustd. In order to prove
the key role of nonlinearity in this regime, we first attemp
a linear model assuming that the densitiesjf 0́ j2 inside the
square brackets of Eq. (1) are not evolving:X

´0

N´0g´´0 jf´0 j2 ! Ngjf0j
2. (6)

In contrast to the analysis which led to Eq. (4), the di
placementz0 is now explicitly included in the Hamiltonian
through the terms6mv2zz0y2 in Ua,b , and the number of
populated oscillation modes depends onz0. However, for
the parameters in Fig. 1b we find that only a few mod
are populated, and the interference between them can
account for the damping found numerically (dotted vers
solid curve in Fig. 1b).

We argue that the damping in our calculations most
originates from nonlinearity of the system, which in
creases the number and amplitude of populated osci
tion modes and provides an interaction between them.
son

te

e

ar

e

is

ncy
g

e

d

o
and

at
he
l
ase,

n

t

s-

es
not
us

ly
-
lla-
As

a result, the evolution of the condensate wave functio
fa and fb becomes chaotic. This can be seen fro
Fig. 2 where we compare the spectral densityRnsnd ­
jT21

RT
0 dt ns0, td expsintdj2 of the density at the origin

ns0, td with an identically defined spectral densityRusnd of
ustd for the parameters in Fig. 1b andT ­ 110yv. The
function Rnsnd has a smooth envelope at largen, with
peaks corresponding to the islands of regular motion.
the contrary,Rusnd exhibits pronounced peaks atn of order
v, without any smooth background. This picture provid
a clear signature of stochastization in the system [13] a
prompts us to represent each of the condensate wave f
tions in Eq. (1) as a superposition of two constituents:
a slowly oscillating regular part conserving the phase c
herence properties and (ii) a composition of high-ener
excitations characterized by stochastic motion. Only t
slow constituent contributes to such macroscopic quanti
asustd, since the contribution of the fast stochastic part
averaged out.

Our analysis is consistent with the general statem
that for a large population of various oscillation mod
the nonlinear interaction between them leads to stocha
zation in the motion of excitations with sufficiently hig
energy [13]. This allows us to employ the mechanism
stochastic heating [13] for explaining the damping of o
cillations ofustd: The mean-field interaction between th
fast stochastic and the slowly oscillating parts leads to
ergy transfer from the slow to the fast part.

The evolution of the occupation numbers of the mod
of the fast stochastic part is governed by kinetic equatio
[13] and eventually slows down. The rate of energ
and particle exchange between the two constituents t
reduces. After a sufficiently long time only small linea
oscillations of the condensates survive, mostly at t
lowest eigenfrequency and the gas sample as a wh
could be thought of as being close to a steady sta
However, the damping of the remaining oscillations a
the ultimate evolution of the fast stochastic part towar
the thermal equilibrium require an analysis beyond t
mean-field approach. For the parameters in Fig. 1b, us

FIG. 2. Spectral densitiesRnsnd (a) and Rusnd (b) for the
parameters in Fig. 1b andT ­ 110yv (see text).
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the semiclassical Bogolyubov approach [18] and relyin
on the conservation of energy and number of particle
we find an equilibrium temperatureTeq ø 0.6m and a
condensed fractionga,b ø 0.9, for N ­ 5 3 105.

The last set of our calculations relates to the rece
JILA experiment [14] where the evolution of a two
component87Rb condensate has been investigated.
the conditions of this experiment we solved numerical
Eq. (1) by taking aab ­ 55 Å and the ratio gaa:gab:
gbb ­ 1.03:1:0.97. We also explicitly included in these
equations the 22 ms expansion of the clouds after switc
ing off the trapping potential. The results of our calcu
lations are presented in Fig. 3. As in Fig. 1b, we fin
a strong damping of the oscillations of the mean sepa
tion between the condensates,ustd. Our numerical results
are in fair agreement with the experimental data, althou
the damping in the experiment is somewhat larger. W
extended the calculations to twice the maximum expe
mental time and found small oscillations which rema
undamped on this time scale.

Our data for the JILA experiment [14] can be analyze
along the same lines as the results in Fig. 1b, with a dam
ing originating from stochastization in the evolution o
the condensate wave functions. The equilibrium tempe
ture is close tom, corresponding to condensed fraction
ga ø gb ø 0.9. The large value of the condensed frac
tion explains why phase coherence between thea and b
components could be observed even after the damping
the motion ofustd [15]. The damping time of the small
remaining oscillations, estimated along the lines of [19
will be of order 1 s.

We believe that the stochastic regime identified fro
our calculations is promising for investigating the loss o
phase coherence and the formation of a new thermal co
ponent in initially purely Bose-condensed gas sample
An interesting possibility concerns the observation of
continuous change in the phase coherence between tha

FIG. 3. Mean separation between the condensates in the J
experiment versus evolution time in the traps, after a 22 m
free expansion. Dots with error bars: JILA experiment. Sol
curve: Our numerical calculation.
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and b components with increasing the trap displaceme
and, hence, decreasing the final Bose-condensed fractio
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