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Dynamics of Two Interacting Bose-Einstein Condensates
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We analyze the dynamics of two trapped interacting Bose-Einstein condensates in the absence of
thermal cloud and identify two regimes for the evolution: a regime of slow periodic oscillations and a
regime of strong nonlinear mixing leading to the damping of the relative motion of the condensates. We
compare our predictions with an experiment recently performed at JILA. [S0031-9007(98)08104-6]
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The experimental evidence for Bose-Einstein condenappearance of statistical properties requires a sufficiently
sation in trapped atomic gases [1] has attracted a lot aftrong nonlinearity leading to stochastization of motion
attention, as the presence of a macroscopically occupidd2], whereas for small nonlinearity the motion remains
quantum state makes the behavior of these gases dragjuasiperiodic (see, e.g., [13]).
cally different from that of ordinary gas samples. Trapped We consider a situation in which the two condensates
Bose-Einstein condensates are well isolated from the en: and b see harmonic trapping potentials of exactly the
vironment and, at the same time, can be excited by desame shape, and the interparticle interactions character-
forming the trap or changing the interparticle interaction.ized by the scattering lengths,,, a,,, anda;, are close
The question of how the gas sample, being initially a purdo each other. The control parameter, determining the
condensate, subsequently reaches a new equilibrium statessibilities of nonlinear mixing and stochastization, is the
is directly related to the fundamental problem of the ap+elative displacement, of the trap centers. We identify
pearance of irreversibility in a quantum system with atwo regimes for the evolution. In the first one the rela-
large number of particles. Thus far the time dependentive motion of the condensates exhibits oscillations at a
dynamics of trapped condensates has mainly been anfitequency much lower than the trap frequeney In the
lyzed for a single condensate [2—6] on the basis of thether regime there is a strong nonlinear mixing leading to
Gross-Pitaevskii equation for the condensate wave fundhe damping of the relative motion, and the system has a
tion. Remarkably, already in this mean-field approach theendency to approach a new equilibrium state. We com-
stochastization in the condensate evolution has been fourghre our predictions with the results of the Joint Institute
[3], and the damping of the condensate oscillations ha#r Laboratory Astrophysics (JILA) experiments [14,15]
been observed numerically [5]. However, the question obn a two-component condensate’tRb atoms in theéw =

the formation of a thermal component, addressed in [3]l,m = —1 and F = 2,m = 1 states. In these experi-
has not been investigated. ments the double condensate was prepared from a single
In this paper we study the evolution of a richer systemcondensate in the stafé = 1,m = —1 (a) by driving a

a mixture of two interacting condensatesgndb), in the  two-photon transition which coherently transfers half of
situation where initially the thermal cloud is absent. Thethe atoms to the staté = 2, m = 1 (b).

properties of a static two-component trapped condensate, We mostly perform our analysis in the mean-field
including the issue of spatial separation of theandb  approach relying on the Gross-Pitaevskii equations for the
components due to interparticle interaction [7,8], werewave functions¢, and ¢, of the a and » condensates.
investigated in [9]. The response of the system to smallhis approach corresponds to the classical limit of the
modulations of the trap frequency has also been studieevolution of a quantum field, the subsequent corrections
numerically [10]. In our case the and b condensates being proportional to a small parametet:.,.)!/? (n is the
have initially the same density profile and are set intogas density) and, hence, manifesting themselves only on a
motion mostly by an abrupt displacement of the traprather large time scale. The two coupled Gross-Pitaevskii
centers. The main goal of our work is to study theequations forp, and ¢, normalized to unity read

dynamics of spatial separation of the two condensates and

2
analyze how the system can acquire statistical properties iho, e = [_M YU, —
and reach a new equilibrium state. From a general point 2m
of view, we are facing the problem raised by Fermi, Pasta, n Noldol? 1
and Ulam [11]. They considered classical vibrations of s/:za,b geeNerldol™ | b @)

a chain of coupled nonlinear oscillators to analyze the
emergence of statistical properties in a system with a largelere g, = 47 h%a,./m are the coupling constants for
number of degrees of freedom. As was revealed later, thelastic interaction between atoms in the statesmde’, m
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is the atom mass, amd,, U, are the number of atoms and placementz, is sufficiently small, we linearize Eq. (1)
trapping potential for the condensate. As in the JILA with respect to small quantitiesg,, = (b, — ¢o)and
experiment, we choose the initial conditign , (0) = ¢, z0. Then, for the quantitpyp_- = ¢, — 6 ¢, describ-
where the (real) wave functio, corresponds to the ing the relative motion of the condensates, we obtain the
ground state of Eq. (1) with all atoms in thestate and no  equation

trap displacement. The chemical potential of this ground A

state is denoted gs. ihd, 6 = [—E +Up =+t Ng¢§}5¢ +5-,
We consider the: and b condensates in the Thomas-

Fermi regime fw < w) and assume the number of con- 3)

densate atoms/, = N, = N/2 [16]. The first set of with the source tern§_ = mw?zyz¢ho. For the quantity
our calculations is performed for the evolution of the ¢, = 6¢, + 8¢, we find an equation decoupled from
condensates in a spherically symmetric trapping potentia§ s~ and without source terms. Hence, the initial con-
Uo(r) = mw?r?/2 which atr = 0 is displaced along the dition 6 ¢ (r,0) = 0 allows us to putd ¢ (r,1) = 0 for
z axis by a distance,/2 for thea atoms and by-zy/2 for  ; = 0.
the b atoms. We present the results for the time depen- ForS_ = 0 Eq. (3) is the equation for the wave function
dence of the mean separation between the condensates,of a particle moving in the potentia = Uy — u +
u(t) = f &Er (a0 = 1p@, D). () Ng¢>§. Stationary solutions of this equation provide us
with the eigenmodes of oscillations of the condensates
For the curves in Fig. 1 the coupling constants gfe=  with respect to each other. In the Thomas-Fermi limit
gab = &b, and forzo = 0 our initial state is an equilib- the potentialV, originating from the kinetic energy of the
rium state atr = 0. In this state the Thomas-Fermi ra- condensate, is a smooth functionrghside the condensate
dius of the condensat®, = 2u/mw?)'/? serves as unit spatial regionr < Ry: V = h2(A¢o)/2m¢y < hiw. For
of length, and the shape @, is determined byu/fiw. r > R, this potential is close td/, — u and is much
Hence, forzy # 0 the dependence of the quantityR, on  steeper. Replacing by an infinite square well of radius
wt is governed by the parameteis'Zio andzy/Ry. Ry we obtain the energy spectrum of eigenmodes with
Our results reveal two key features of the evolutionlarge quantum numbers E,; = (7hw)*(2n + 1)?/164u,
dynamics. The first one, for a tiny displacemepf is  wherel is the orbital angular momentum. This explains
a periodic motion with slow frequencies which turn out the appearance of oscillations at a frequency much smaller
to be sensitive to small variations in the values of thethan w in our numerical calculations (see Fig. 1a), since
coupling constants. The other feature, for much largethe energy scale in the spectrum(isy)?/u < liw. For
20, but still zo < Ry, is a strong damping in the relative the latter reason we call these eigenmodes soft modes.
motion of the two condensates, as observed at JILA [14].Note that the soft modes for the relative motion of the two
In order to understand the physics behind the evolueondensates also exist in the spatially homogeneous case
tion pattern, we first perform a linear analysis of Eq. (1).where they have a free-particle spectrum [7].
For the case wherg,, = gu» = gv» = g, and the dis- As in our linear approach we havéd¢.(r,z) = 0,
Eq. (2) for the mean separation between the condensates
reduces tou(r) = 2 [d’r zpoRe{5 4}, and the contri-
@ .7 (B) bution tou(r) comes from the components 6fp_ with
i [ = 1,m; = 0. Solving Eg. (3) with the initial condition
8¢_(r,0) = 0, we obtainu(z) as a superposition of com-
ponents, each of them oscillating at an eigenfrequency of
a soft mode:

2mw?
w) =23 [ @ enzan
n=1 En

X [1 - cos(E;’;tﬂ, (4)

whereg, is the wave function of the soft mode with=
1,m; = 0 and main quantum number. Damping of
oscillations of u(¢) could, in principle, originate from
the interference between the components with different
_FIG_. 1. Mean separation between the condensates versus timein Eq. (4). However, the sourc§_ basically popu-

in isotropic traps forga, = g = g _and u/hw =292.  |5te5 only the lowest soft mode, irrespective of the

Relative displacementz, = 6.66 X 107*R, (a), and zo = . - o
717 X loszr; (b). Solid curves: Numeoric(al) integrat?on of Value of zo: the amplitude of oscillations at the lowest

Eq. (1). Dotted curves: Analytical prediction for (a) (see text), €igenfrequency in Eq. (4) (the term with= 1) greatly
and the linear model relying on Eq. (6) for (b). exceeds the sum of the amplitudes of other terms. Hence,
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these oscillations remain undamped. For the same reasanresult, the evolution of the condensate wave functions
their frequency and amplitude can be found with), ¢, and ¢, becomes chaotic. This can be seen from
replaced by the function¢, normalized to unity. Using Fig. 2 where we compare the spectral dengityv) =
the Thomas-Fermi approximation for the condensaté¢7 ! ]g dt n(0,t)expivt)|> of the density at the origin
wave function [17]:¢4(r) = 15(1 — r2/R3)/87Rg for  n(0, ) with an identically defined spectral densRy(») of
r < Ro, and¢o = Ofor r > Ry, we obtainE,; = 7 =  u(r) for the parameters in Fig. 1b afd= 110/w. The
(7/4) (hw)*/u which is very close t&E; = 1.62(iw)?>/  function R,(r) has a smooth envelope at large with
wn calculated numerically. Then, retaining only the peaks corresponding to the islands of regular motion. On
leading term £ = 1) in Eq.(4), we find u(r) = the contraryR,(v) exhibits pronounced peaksabf order
z0(4p/Thw)*[1 — codQ1)] shown in the dotted line w, without any smooth background. This picture provides
in Fig. 1a. As one can see, the condition of the lineara clear signature of stochastization in the system [13] and
regimeu < R, requires a very small displacement prompts us to represent each of the condensate wave func-
20 < (Fw/w)’ Ry, (5) tions in Eqg. (1) as a superposition of two constituents: (i)
- , . a slowly oscillating regular part conserving the phase co-
and already a moderatg as in Fig. 1b is sufficient 10 phorence properties and (i) a composition of high-energy
drive the system out of the linear regime. _ excitations characterized by stochastic motion. Only the
We have performed a similar linear analysis for thegq,y constituent contributes to such macroscopic quantities

case Where., # ga» # gop, bUt the relative difference asu(t), since the contribution of the fast stochastic part is
between the coupling constants is small. Also in this

h | il £ th averaged out.
case the sourcs. mostly generates oscillations of the o, analysis is consistent with the general statement

p ) : €NGHat for a large population of various oscillation modes
V' < w. For arelative difference between the couplingihe nopjinear interaction between them leads to stochasti-
constants much smaller thaffiw/p)” the frequency  ,44i0n in the motion of excitations with sufficiently high
Q" coincides with the soft-mode frequend® found  nergy [13]. This allows us to employ the mechanism of
above. Otherwise the sign @f- = gu + 86 — 28av  stochastic heating [13] for explaining the damping of os-
becomes important. In particular, for positive- > tilations ofu(r): The mean-field interaction between the
|24 — g»»| already a moderate difference between they, gt siochastic and the slowly oscillating parts leads to en-
coupling constants stro_ngly increases th(_e frequefidy ergy transfer from the slow to the fast part.

compared tof. In this case we obtain undamped - The eyolution of the occupation numbers of the modes
oscillations at’ ~ (g-/gaa)"*w. Forg— <0, already ot e fast stochastic part is governed by kinetic equations
in the zo =0 case, a breathing mode in which the twoagL ] and eventually slows down. The rate of energy
condensates oscillate out of phase becomes unstable, alydy particle exchange between the two constituents then
the system evolves far from the initial state. Note thateqces. After a sufficiently long time only small linear
for a small difference between the coupling constants th@ciations of the condensates survive, mostly at the

conditio_ng, < 0 is equivalent to the criterion of spatial |;\vest eigenfrequency and the gas sample as a whole

separation 2of the condensates in the homogeneous cagg, 4 be thought of as being close to a steady state.

8aa8bb < &av [7,8] , , However, the damping of the remaining oscillations and
We now turn to the large, regime (Fig. 1b) where he iimate evolution of the fast stochastic part towards

we find a strong damping of the oscillations of the meang thermal equilibrium require an analysis beyond the
separation between the condensatés, Inordertoprove ean field approach. For the parameters in Fig. 1b, using
the key role of nonlinearity in this regime, we first attempt

a linear model assuming that the densitigs |? inside the
square brackets of Eq. (1) are not evolving: R, @ [R, (b)

ZNs’g££’|¢s’|2_’Ng|¢O|2- (6)

In contrast to the analysis which led to Eg. (4), the dis-
placement, is now explicitly included in the Hamiltonian
through the termstmw?zz9/2 in U, ;, and the number of
populated oscillation modes dependszgn However, for
the parameters in Fig. 1b we find that only a few modes
are populated, and the interference between them cannot
account for the damping found numerically (dotted versus
solid curve in Fig. 1b).

We argue that the damping in our calculations mostly 200 100 0 100 2004 2 o 2 4
originates from nonlinearity of the system, which in- vio vieo

creases the number and amplitude of populated oscillg=|G. 2. Spectral densitie®, () (a) and R,(») (b) for the
tion modes and provides an interaction between them. Agarameters in Fig. 1b arll = 110/ (see text).

arbitrary units
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the semiclassical Bogolyubov approach [18] and relyingand » components with increasing the trap displacement
on the conservation of energy and number of particlesand, hence, decreasing the final Bose-condensed fraction.
we find an equilibrium temperaturé., =~ 0.6 and a This work was partially funded by EC (TMR network
condensed fractioty,, = 0.9, for N = 5 X 10°. ERB FMRX-CT96-0002), by the Stichting voor Funda-
The last set of our calculations relates to the recenmenteel Onderzoek der Materie (FOM), by the Russian
JILA experiment [14] where the evolution of a two- Foundation for Basic Studies, by INTAS, and by NSF un-
component®’Rb condensate has been investigated. Irder Grant No. PHY94-07194. Laboratoire Kastler Brossel
the conditions of this experiment we solved numericallyis a unité de recherche de I'Ecole Normale Supérieure et
Eq. (1) by takinga,, = 55 A and the ratiog..:g.:  de I'Université Pierre et Marie Curie, associée au CNRS.
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