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Collision physics plays a key role in understanding the properties of ultracold gases.
First, collisions ensure thermalization in trapped atomic samples, which is essential for
the success of evaporative cooling. Second, interactions between atoms determine the
equilibrium shape and the dynamics of the condensate once it is formed. Finally collisions
limit the achievable spatial densities via inelastic processes, which ultimately determine
whether a given atomic species may lead to Bose-Einstein condensation.

The purpose of the following lectures is to give a basic introduction to collision physics
with a special emphasis on the low temperature aspect of these interactions. We will
consider here only binary interactions between atoms since one of the remarkable prop-
erties of the physics of ultra-cold dilute gases is that all the macroscopic properties of the
system can be directly deduced from the two-body interaction potential. In particular
the essential concept of scattering length will be introduced and developped for some
simple potentials, using as practical examples experimental results obtained on atomic
cesium and rubidium.

The present lectures are complementary to the ones given by D. Heinzen where a
detailed comparison between the collisional properties of the various alkali atoms will
be found, together with explanations of the spectroscopic approaches used in the precise
determination of interatomic potentials.

1. – Scattering theory: a brief reminder

1.1. Collision between two particles. – We consider here an elementary collision process
between two particles 1 and 2 with the same mass M , interacting through the potential
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V (r1 − r2). The Hamiltonian of the system is therefore

Ĥ =
p̂21
2M

+
p̂22
2M

+ V (r̂1 − r̂2) .

Rather than working with these six degrees of freedom, we use the position and momen-
tum operators for the center-of-mass (R̂G and P̂ G) and for the relative variable (r̂ and
p̂):

(1)

{
R̂G = (r̂1 + r̂2)/2
P̂ G = p̂1 + p̂2

{
r̂ = r̂1 − r̂2
p̂ = (p̂1 − p̂2)/2

.

The Hamiltonian can then be written:

Ĥ =
P̂ 2

G

4M
+

p̂2

M
+ V (r̂) .

As expected, the center of mass moves as a free particle with a mass 2M . The interesting
collisional dynamics arises from the relative motion which corresponds to the scattering
of a particle (the so-called relative particle) with reduced massmr =M/2 by the potential
V (r̂). This is the problem that we now tackle.

1.2. The scattering amplitude. – To investigate the scattering properties of V (r), we
look for the eigenstates of the Hamiltonian of the relative motion with a well defined
positive energy Ek = h̄2k2/(2mr):

(2)
(

p̂2

2mr
+ V (r̂)

)
ψk(r) = Ek ψk(r) ,

where we assume that V (r) goes to zero when |r| goes to infinity.
We note b the range of action(1) of V (r). For |r| � b, we look for a solution of (2)

with the following asymptotic form:

(3) ψk(r) ∼ eik.r + f(k,n,n′)
eikr

r
,

where n = k/k, n′ = r/r. The physical meaning of this collision state is clear. It is the
superposition of an incident plane wave with momentum k (first part of (3)) and of a
scattered wave function (second part of (3)). At a given point r, the scattering amplitude
f(k,n,n′) depends on the energy of the particle through k, and on the incident direction
n and the observation direction n′ (see figure 1).

(1) For potentials which are zero outside a certain volume this definition is obvious. For other
potentials, decreasing for instance as r−6 (Van der Waals interaction) at infinity, the range will
be defined quantitatively in the following.
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Fig. 1. – Scattering of an incident wave packet propagating along the direction n by a potential
V (r) with a range b.

The central result of potential scattering is the following expression for the scattering
amplitude (see e.g. [1, 2]):

(4) f(k,n,n′) = − mr

2πh̄2

∫
e−ik′.r′

V (r′)ψk(r′) d3r′ ,

where k′ = kn′. This equation is implicit: it relates the value of the wave function ψk(r)
(or, in other words, the scattering amplitude) far from the scattering region, to values of
the same wave function inside the scattering region.

It is worth noting the following relation concerning the scattering amplitude:

(5) f(k,n,n′) = f(k,−n′,−n) ,

which arises from the time reversal symmetry of the problem [1].
From the value of the scattering amplitude one can then determine the differential

and the total scattering cross-sections for this potential:

(6)
dσ

dΩ
= |f(k,n,n′)|2 σ(k,n) =

∫
|f(k,n,n′)|2 d2n′ .

1.3. The low energy limit. – For small enough energies, the scattering process is
isotropic, at least if the potential decreases fast enough at infinity. The energy scale
below which this simplification occurs is directly related to the range b of the potential.
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For k � 1/b (or equivalently E � h̄2/(2mrb
2)), the scattering amplitude is independent

of the directions n and n′.
This essential result is quite clear from (4): the only r′ contributing to the integral

are such that |r′| ≤ b. Therefore |k′.r′| ≤ kb � 1, so that one can replace e−ik′.r′
by 1,

which means that the scattering amplitude is independent from the scattered direction
n′. Using (5), one then deduces that f(k,n,n′) is also independent from the incident
direction n.

Consequently, at low energy E � h̄2/(2mrb
2), the scattered wave is spherical:

ψk(r) ∼ eik.r + f(k)
eikr

r
.

1.4. The Born approximation. – The complete analysis of the scattering problem
requires the solution of the 3D Schrödinger equation which is often a tedious problem.
Therefore it is very useful to derive a quick estimate of the scattering properties of a
given potential using the Born approximation.

This approximation amounts to evaluate the scattering amplitude at first order in the
potential V . In (4), one can then replace the exact unknown wave function ψk(r′) by
the wave function at order zero in V (r), i.e. eik.r′

. One is then left only with

(7) f(k,n,n′) = − mr

2πh̄2

∫
ei(k−k′)·r′

V (r′) d3r′ ,

relating the scattering amplitude to the Fourier transform of the scattering potential
V (r). It is clear that such an approximation is meaningless for hard-core potentials,
which take infinite values in some finite regions of space.

2. – Radial potentials and partial wave expansion

At this stage of our discussion, the exact determination of the scattering amplitude
requires the solution of the three dimensional Schrödinger equation, which is quite tedious
except for very particular cases. The situation is considerably simplified for the case of
a spherically symmetric potential V (r) = V (r).

2.1. Scattering states and phase shifts. – For a radial potential V (r), it is clear from
symmetry arguments that the scattering amplitude depends only on the angle θ between
the two unit vectors n and n′ (cos θ = n.n′) so that we will write in the following
f(k,n,n′) ≡ f(k, θ).

Let us denote z the direction of the incident wave function. To take advantage of the
symmetry of the problem, it is convenient to expand the incident and scattered wave
functions on a basis set of eigenfunctions of L̂2 and L̂z, where L̂ is the relative angular
momentum:

(8) ψk(r) =
∞∑

l=0

l∑
m=−l

Y m
l (θ, φ)

uk,l,m(r)
r

,
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where φ is the azimuthal angle around the z axis and the Y m
l (θ, φ) are the spherical

harmonic functions. The radial functions uk,l,m(r) are unknown at this stage.
Since the incident wave function is an eigenstate of L̂z with eigenvalue 0, the expansion

of eikz is independent of the azimuthal angle around the z axis (m = 0) and one gets
using standard angular momentum algebra:

(9) eikz ∼ 1
2ikr

∞∑
l=0

(2l + 1) Pl(cos θ)
(
(−1)l+1e−ikr + eikr

)
for kr � 1 ,

where the Pl(cos θ) are the Legendre polynomials. Therefore the plane incident wave is
a superposition of incoming waves Pl(cos θ) e−ikr/r and outgoing waves Pl(cos θ) eikr/r,
with a relative phase 0 or π depending on the parity of l.

The scattering state ψk(r) is asymptotically the sum of the incident wave function
and the outgoing wave f(k, θ) eikr/r. It can therefore be written:

(10) ψk(r) ∼ 1
2ikr

∞∑
l=0

(2l+1) Pl(cos θ)
(
(−1)l+1e−ikr + e2iδleikr

)
for |r| � b ,

where the coefficients e2iδl have a modulus equal to 1, or equivalently, the phase shifts δl

(defined here modulo π) are real. Indeed, due to the spherical symmetry of the potential,
there is a conservation of the flux for each partial wave.

2.2. The 1D radial Schrödinger equation. – The solution of the scattering problem
now amounts to the determination of the phase shifts δl(k). This is done by inserting
the expression (8) into (2), which gives a 1D Schrödinger equation for each radial wave
function uk,l(r) (we omit from now on the index m = 0). Assuming that uk,l(r)/r is
regular in r = 0, this equation is:

(11) u′′
k,l(r) +

(
k2 − l(l + 1)

r2
− 2mrV (r)

h̄2

)
uk,l(r) = 0 .

According to (10), we choose the following asymptotic form for its solution:

(12) uk,l(r) ∝ (−1)l+1e−ikr + e2iδleikr for r � b .

The scattering amplitude f(k, θ) and the scattering cross-section σ(k) are given by:

f(k, θ) =
1
2ik

∞∑
l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ)

and:

σ(k) =
∞∑

l=0

σl(k) with σl(k) =
4π
k2

(2l + 1) sin2 δl(k)
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Fig. 2. – Two scattering processes leading to the same final state for indistinguishable particles.

Such a 1D problem can easily be solved numerically, if not analytically.

2.3. Identical particles. – Up to now, we have considered distinguishable particles
assuming that we could discriminate (at least in principle) between the two scattering
diagrams of figure 2, corresponding respectively to a scattering amplitude f(k, θ) and
f(k, π − θ).

For identical particles, we have to take into account the (anti)symmetrisation principle
which states that Ψ(r1, r2) = ε Ψ(r2, r1) where ε = +1 (resp. −1) for polarized bosons
(resp. fermions). Using

Ψ(r1, r2) = eiKG.RG ψk(r) ,

where RG = (r1 + r2)/2 and r = r1 − r2, we find that ψk(r) = ε ψk(−r). The
(anti)symmetrized scattering state can then be written asymptotically (for k 	= 0):

(13) ψk(r) ∼ eikz + ε e−ikz

√
2

+
f(k, θ) + ε f(k, π − θ)√

2
eikr

r

so that the differential cross-section reads:

(14)
dσ

dΩ
= |f(k, θ) + ε f(k, π − θ)|2 ,

where θ varies in this case between 0 and π/2.
We now use the parity (1)l of spherical harmonic functions: the only partial waves

contributing to the scattering cross-section for polarized bosons (resp. fermions) cor-
responds to even (resp. odd) values of l. The (anti)symmetrization principle therefore
doubles the contribution of the even partial waves for bosons (the odd partial waves for
fermions) and cancels the contribution of the odd ones (the even ones for fermions):

Bosons: σ(k) =
8π
k2

∑
l even

(2l + 1) sin2 δl(k) ,(15)

Fermions: σ(k) =
8π
k2

∑
l odd

(2l + 1) sin2 δl(k) .(16)
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Fig. 3. – Potential entering into the 1D radial Schrödinger equation. (a) s-wave scattering. (b)
scattering with l > 0; we have plotted in dotted line the centrigugal barrier h̄2l(l + 1)/(2mrr

2).

2.4. The low energy limit. – For the partial wave l = 0, the potential entering into
the 1D Schrödinger equation (11) is simply the interatomic potential (figure 3a). For
other partial waves, this potential is superimposed with the centrifugal barrier h̄2l(l +
1)/(2mrr

2) (figure 3b). In the latter case, the relative particle with an energy E much
lower than the height of the resulting barrier will not “feel” the potential V (r) and it
will simply be reflected by the centrifugal barrier. We therefore expect qualitatively that
the scattering due to V (r) goes to zero for all partial waves but l = 0 at sufficiently low
energy.

More precisely, one finds that [1, 2]:

(17) δl(k) ∝ k2l+1 modulo π when k → 0

so that the cross-section for the partial wave l is such that:

(18) σl �=0(k) =
8π
k2
(2l + 1) sin2 δl ∝ k4l −→ 0 when k → 0 .

We recover the isotropy for low energy scattering that we had already found in the first
section. The corresponding cross-section can be written:

(19) lim
k→0

σl=0(k) = 8πa2 (bosons) ,

where the scattering length a is defined by

(20) a = − lim
k→0

tan δ0(k)
k

.

An important consequence of this result is that polarized fermions do not “see” each
other at low temperature. Indeed the scattering occurs only through partial waves l =
1, 3, . . . whose cross-section tends to zero at low temperature. This makes the evaporative
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cooling of a polarized fermionic gas quite difficult (see the contribution of G. Tino to this
volume for possible remedies to this problem).

Remarks:

• The isotropy of low energy scattering is true only if the potential decreases fast
enough at infinity. If it decreases as r−3 or slower, all partial waves contribute at
low energy (see below and [1]).

• Even for Van der Waals potentials varying as r−6, the statement (17) should be
taken with care. Indeed for power law potentials U(r) ∝ r−n, (17) is valid only if
2l + 3 < n, i.e l = 0 or l = 1 for the Van der Waals potential (n = 6). For partial
waves with 2l + 3 ≥ n, one finds δl(k) ∝ kn−2 modulo π (see e.g. [1], §124).

• For l 	= 0, there might be some quasi-bound states in the potential well close to r = 0
(see figure 3b). There will then be a scattering resonance if the incident relative
particle has an energy close to the energy of such a quasi-bound state, in complete
analogy with the Fabry-Perot resonance in optics. These shape resonances may
enhance strongly the contribution of l 	= 0 partial waves in an energy domain where
one would have expected naively a pure l = 0 scattering [3].

2.5. Scattering length and mean field energy. – To end this section, let us emphazize the
key role played by the concept of scattering length in the statistical physics description of
cold gases in general, and of Bose-Einstein condensation in particular. Provided the gas
is in the dilute regime (n |a|3 � 1 where n is the spatial density), and assuming it is cold
enough for the limit (19) to be valid, the many-body description of the gas can be shown
to depend only on the scattering length and not on the detailed interatomic potential.
In other words, two interatomic potentials corresponding to the same scattering length
lead to the same properties for the condensed gas, although they may have completely
different microscopic properties, one beeing attractive and the other one repulsive for
instance.

We illustrate this result using a refractive index approach [4], by analyzing how a
particle propagates in an atomic medium, assuming that the collisions occur at low
energy so that the scattering state for a given collisionnal process can be written:

(21) ψk(r) ∼ eik.r − a

r
eikr .

Suppose that a particle with momentum h̄K 	= 0 parallel to the z axis crosses at
right angle a slab of thickness L containing scatterers at rest with a spatial density n

(figure 4). We consider first the case where the incident particle has equal mass but is
not identical to the scatterers. The scattering state for a single collision event between
the particle (position rP ) and a scatterer located in r1, can be written using (1) and
(21):

(22) Ψ(rP , r1) = eiKzP − a

|rP − r1| e
iK|rP −r1|/2 eiK(zP+z1)/2 .
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Fig. 4. – An incident particle with mass M crosses a slab containing scatterers with spatial
density n. The transmitted wave is dephased with respect to the incident one by a phase shift
proportionnal to the scattering length a. This phase shift can be interpreted as resulting from
a potential energy 4πh̄2an/M exerted by the slab onto the incident particle (8πh̄2an/M if the
incident particle is identical to the particles in the slab).

Once the incident particle has crossed the slab, the state of the system is the superposition
of the initial state and of all the scattered waves resulting from the collisions of the
incident particle with the N atoms of the slab:

(23) Ψ(rP , r1, . . . , rN ) = eiKzP −
N∑

j=1

a

|rP − rj | e
iK|rP −rj |/2 eiK(zP+zj)/2 .

For simplicity we neglect here multiple scattering events.
We now evaluate the transmitted wave by projecting the state of the system onto the

subspace where all scatterers are still at rest:

(24) ψT (zP ) = eiKzP − n

∫
a

|rP − r1| e
iK|rP −r1|/2 eiK(zP+z1)/2 d3r1

where the integral over r1 is taken over the volume of the slab. Using cylindrical coordi-
nates along the z-axis, this integral can be exactly calculated and we find at first order
in the density n for z > L:

(25) ψT (zP ) = AeiKzP with A = 1− i
4πanL
K

� e−i 4πanL/K (Thin slab).

This simple phase shift can be interpreted as a modification δK of the incident particle
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wave vector when the particle is inside the slab:

(26) δK = −4πan
K

.

This change of momentum is equivalent to a change of kinetic energy inside the slab:

(27) δ

(
h̄2K2

2M

)
= −4πh̄

2an

M
.

In other words, the slab creates on the incident particle a potential energy:

(28) particle distinguishable from the scatterers: U =
4πh̄2an

M
.

If a is positive, this potential energy is positive: the particle slows down as it enters the
slab; the particle is effectively repelled from the slab. On the contrary, U is negative for
a negative a: the incident particle is in this case attracted by the slab and it accelerates
as it enters the slab.

Now, if the particle is identical to the scatterers, one has to symmetrize the initial
state (22). The rest of the calculation proceeds along the same lines and one gets (as
above) a result two times larger than for discernable particles:

(29) particle identical to the scatterers: U =
8πh̄2an

M
.

This potential is the one which appears when one considers the interaction between
condensate and above condensate particles.

3. – The scattering length for some simple potentials

As shown above, for low enough energy, the collisions are essentially occuring in the
s-wave regime, i.e. they correspond to an isotropic scattered wave. Moreover, when the
relative wave vector k (or the energy h̄2k2/(2mr)) tends to zero, the phase shift δ0(k)
for s-wave is proportional to k (modulo π) so that the scattering amplitude tends to a
constant:

f(k)
∥∥∥

s wave
=

eiδ0(k) sin δ0(k)
k

−→ −a when k → 0 .

The solution of the scattering problem at ultra-low energies therefore amounts to the
determination of a single quantity: the scattering length a.

Such a determination is in principle straightforward. We consider the 1D Schrödinger
equation corresponding to s-waves (l = 0 in (11)), and we look for a solution of this
equation with zero energy (putting uk=0,l=0(r) ≡ u(r) for simplicity):

(30) u′′(r)− 2mrV (r)
h̄2

u(r) = 0 ,
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Fig. 5. – (a) Square potential barrier. (b) Scattering length as a function of k0 =
√
2mrU0/h̄.

For large enough barriers (hard core potential), the scattering length is equal to the radius of
the core.

and with the asymptotic behaviour deduced from (12):

u(r) ∝ r − a for large r .

The physical meaning of the scattering length is then clear. Consider the scattering state
uk,l=0(r) and its asymptotic value ∝ sin(kr+δ0(k)). This asymptotic value has a series of
zeros rn(k) = (−δ0(k)+nπ)/k, where n is an integer. When k goes to zero, all the rn(k)
go to ±∞, except for one which tends to a (which can be either positive or negative).
An illustration of this will be given in fig.10 for the potential V (r) = −C6r

−6+C12r
−12.

We now derive the value of the scattering length for some basic potentials before
adressing in the next section the more realistic case of Van der Waals potentials.

3.1. The square potential barrier. – Consider the case of the square spherical barrier
represented in fig. 5a, where V (r) = V0 > 0 if r ≤ b and V (r) = 0 otherwise. The
solution of (30) is then straightforward:

u(r) = C1 (r − a) for r > b

u(r) = C2 sinh(k0r) for r ≤ b
,

where we have put k0 =
√
2mrV0/h̄ and where C1 and C2 are normalizing coefficients.

The continuity of u(r) and u′(r) in r = b then implies:

(31) a = b− tanh k0b
k0

.

This result is plotted in figure 5b. The scattering length is always positive. For large
enough barriers (k0b >> 1 or equivalently U0 � h̄2/(2mrb

2)), we recover the hard sphere
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Fig. 6. – (a) Square potential well. (b) Scattering length as a function of k0 =
√
2mrU0/h̄. The

scattering length can be positive or negative and it diverges for values of k0 corresponding to
the appearance of a new bound state in the well.

scattering problem; the scattering length in this case is just equal to the radius b of the
hard sphere core.

3.2. The square potential well. – Consider now a square potential well such that
U(r) = −U0 for r ≤ b (U0 > 0) and U(r) = 0 otherwise (figure 6a). The solution of (30)
is:

u(r) = C1 (r − a) for r > b

u(r) = C2 sin(k0r) for r ≤ b
,

from which we deduce:

(32) a = b− tan k0b
k0

.

The result (32) is plotted in fig. 6b. It is obviously more complicated than the result
found for a square barrier and it is useful for the following to keep in mind the following
remarks:

• For a small potential, i.e. k0b < π/2, the scattering length a is negative. The
condition k0b < π/2 corresponds to the case where U0 is too small to have a bound
state in the potential well.

• If we increase continuously the well depth U0, we find that the scattering length
goes to infinity when k0b = π/2, i.e. when the potential is large enough to hold
a bound state. If we keep increasing U0, we find that such divergences occur for
all values of U0 such that k0b = (2n + 1)π/2, where n is an integer. Each of
these discrete values of U0 corresponds to the appearance of a new bound state in
the potential well. This relation between the divergence of the scattering length
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and the appearance of a bound state is quite general (Levinson theorem). These
resonances leading to a divergence of the scattering length are called zero-energy
resonances.

• When U0 is slightly lower than the threshold for the appearance of a new bound
state, the scattering length a is large and negative; if U0 is slightly larger than this
threshold, a is large and positive. This result is also general.

• Suppose that U0 is large enough so that there is a large number of bound states
(k0b � 1). Except for a very small domain of values of k0 in the vicinity of zero-
energy resonances, the scattering length a is positive and very close to the range
b of the potential well. We are therefore led to the rather surprizing result that a
deep square potential well is very likely to have the same scattering properties as
a large square potential barrier with equal range. This result is specific of square
well potentials.

3.3. Contact interaction: the pseudo-potential. – A priori the simplest interaction
between two particles is the contact interaction given by the potential:

V (r1 − r2) = g δ(r1 − r2) .

In particular, such a contact interaction is at the basis of the N -body approach to
quantum gases. Let us consider how such a δ(r) potential can be handled in scattering
theory.

If we just consider the limit of the two previous examples with U0 going to infinity,
b going to 0, and keeping the constant product 4π

3 b3 U0 = g, we find that the scattering
length a goes to zero. We recover here the statement that often appears in Quantum
Mechanics textbooks: “a 3D δ-potential does not lead to scattering”.

Remark: The Born approximation for the contact interaction does not lead to a
zero result. From (7), we find a scattering amplitude fBorn = −mrg/(2πh̄2) which is
independent of angle and energy. This result actually coincides with the zero-energy
limit of the result obtained with the regularization of the contact potential that we now
present.

A proper and non ambiguous way to deal with contact interaction is to use the
pseudo-potential [5]:

(33) V (r)ψ(r) = g δ(r)
∂

∂r
(rψ(r)) .

Let us comment briefly on this expression:

• If the wave function ψ(r) is regular in r = 0, this definition directly leads to:

(34) ψ regular in 0 : V (r)ψ(r) = g ψ(0)δ(r) ,
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which is the expected result for a contact interaction.

• If the wave function belongs to a larger class of functions, namely if it can be
written:

(35) ψ(r) =
u(r)
r

,

where u(r) is regular in r = 0, the action of V is still well defined:

(36) ψ of the type of (35) : V (r)ψ(r) = g

(
∂u

∂r

)
r=0

δ(r) .

Note that the simple contact potential g δ(r) acting on such functions (with u(0) 	=
0) would not give a sensible result, although these functions are perfectly admissible
as quantum states (e.g. they can be normalized without problem).

We now solve the Schrödinger equation for the pseudo-potential keeping in mind that
the class of solutions may include functions of the type (35). The expression of the
Laplacian operator acting on this class of functions has to be modified with respect to
what we used to write down (11). Using

ψ(r) =
u(0)
r

+
u(r)− u(0)

r
,

we obtain

(37) ∆ψ(r) = −4πu(0)δ(r) + 1
r

∂2u

∂r2
− 1

h̄2r2
L̂2ψ(r) .

For partial waves other than l = 0, one can easily check that the presence of the
centrifugal potential imposes that the wave function ψ(r) is regular and goes to 0 when
r goes to 0. Using (34), we then find that the pseudo-potential (33) has no effect for
these partial waves.

We consider now s-wave scattering from the pseudo-potential, so that we choose a
spherically symmetric wave function ψ(r) = u(r)/r. Inserting this wave function in the
Schrödinger equation, we obtain:

(38) − h̄2

2mr

(
−4πu(0)δ(r) + u′′(r)

r

)
+ g δ(r)u′(0) =

h̄2k2

2mr

u(r)
r

.

Separating the terms regular in r = 0 and the terms proportional to δ(r), we obtain

(39) u′′(r) + k2u(r) = 0 u(0) = − gmr

2πh̄2
u′(0) ,
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from which we deduce the s-wave scattering amplitude f(k) for any k and its relation
with the scattering length:

(40) f(k) = − a

1 + ika
with a =

gmr

2πh̄2
=

gM

4πh̄2

Since there is no scattering in partial waves other than the s-wave, the scattering
state is now completely determined:

(41) ψk(r) = eik.r − a

1 + ika

eikr

r
.

For the pseudo-potential, we find that the scattering length is directly proportional to
the strength g of the potential. Therefore the Born approximation coincides with the
zero-energy limit. This remarquable property greatly simplifies the treatment of the N -
body problem for ultra-cold gases, when one models the atom-atom interaction with this
pseudo-potential.

The total cross section for polarized bosons is easily derived from the previous results:

(42) σ(k) =
8πa2

1 + k2a2
,

which leads to the two asymptotic results for small and large k’s:

(43)
{

ka � 1 σ(k) � 8πa2

ka � 1 σ(k) � 8π/k2
.

The first line is just the usual result for ultra-low energy (19), while the second line
expresses the fact that at high energy, the cross-section reaches the maximal value allowed
for s-wave scattering (15): this is the so-called unitary limit.

4. – Van der Waals potentials

Up to now, we have only considered model potentials, which are rather far from
the real interaction which takes place between two neutral atoms. We now turn to the
more realistic case of a long range r−6 interaction corresponding to the Van der Waals
potential.

We will follow here the treatment of Gribakin and Flambaum who have considered
the case of a truncated r−6 potential (figure 7a):

(44)
{

V (r) = +∞ if r < rc

V (r) = −C6/r
6 if r ≥ rc

.

Of course such a potential does not describe properly the short range interaction of
the two atoms, but, as we show below, this does not change the main features of the
scattering properties at low energy.
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Fig. 7. – (a) Truncated Van der Waals potential. (b) Variations of the scattering length a for a
small change of the C6 coefficient (parameters for the cesium atom).

4.1. Characteristic length and energy for s-wave scattering. – The Schrödinger equa-
tion for s wave scattering (l = 0 in 11) can be cast in a dimensionless form:

(45) u′′ +
(
1
ρ6
+ (kac)2

)
u = 0 u(ρc) = 0 ,

where we have introduced the characteristic length:

(46) ac =
(
2mrC6

h̄2

)1/4

,

and where we have put:

ρ = r/ac ρc = rc/ac .

The length ac gives the typical scale for the scattering length, as we show below.
Consider as an example the case of cesium atoms (133Cs) prepared in the doubly

(electron+nucleus) polarized state (F = mF = 4). If we neglect the weak magnetic
dipole couplings, the atoms interact in this case only through the triplet potential. The
C6 coefficient is C6 = 6.6 10−76 J.m−6 [6] and the minimum of the triplet potential
occurs for a distance equal to ∼ 6 Å. We choose an rc close to this value. The value
of the characteristic length ac is quite large, ac = 107 Å, so that ρc � 1. This allows
the replacement of the solutions of (45) (Bessel functions for k = 0) by their asymptotic
values [7].

The length ac also enters in the determination of the energy range where s-wave
scattering is dominant. Consider the total (Van der Waals + centrifugal potential) for
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d-waves (p-wave scattering does not exist for polarized bosons)

Veff(r) = −C6

r6
+

3h̄2

mrr2
.

The height of the potential barrier due to the centrigugal force is then found to be
2
√
2h̄2/(mra

2
c), corresponding to a relative distance r = ac/21/4. Comparing this barrier

height with the incident energy h̄2k2/(2mr), we find that for kac < 2, the scattering
occurs essentially in s-waves (except for possible shape resonances), while for kac > 2
partial waves with higher angular momentum must be taken into account.

4.2. The scattering length. – In order to derive the scattering length a for the truncated
Van der Waals potential, we put as before k = 0 in (45) and we look for a solution varying
asymptotically as r − a. This procedure is described in detail in [7] so that we simply
give here the result:

(47) a � ãc (1− tanΦ) ,

where ãc is directly proportionnal to ac:

(48) ãc =
Γ(3/4)

2
√
2 Γ(5/4)

ac � 0.478 ac ,

and where the angle Φ depends on the hard core position:

(49) Φ =
a2c
2r2c

− 3π
8

.

The result (47) is valid when Φ� 1, which is indeed the case for cesium atoms (Φ � 140).
This validity condition requires that there are several bound states in the potential well,
since this number (equal to the number of divergences of a – Levinson theorem–) is given
by Φ/π.

The quasi-periodic variations of a with the C6 coefficient obtained using (47) are
plotted in fig. 7b. One sees that a depends critically on C6 (or on the hard core position),
since a change of 4 % of C6 is sufficient to introduce a new bound state in the potential
well and to change continuously a from +∞ to −∞. The type of variations given in fig.
7 are actually quite general. If one uses a softer core around r = 0 such as C12/r

12, one
recovers a quasi-identical figure with again an extreme sensitivity to the value of the C6

coefficient and to the core parameters.
For cesium atoms, the present knowledge of the interatomic atomic potential is not

sufficient to determine accurately the value of Φ (modulo π) and therefore to derive the
scattering length from (47). However this result has some virtues. First it shows that if
we assume a random distribution for Φ (the best way to express our ignorance...), the
probability for having a positive scattering length is 3/4 (nπ < Φ < (n + 3/4)π). This
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Fig. 8. – Variations of the s-wave cross section σ0(k) for the truncated Van der Waals potential
with ρc ≈ 0.06. The exact value of ρc is adjusted to obtain a/ac = ±0.5,±1.5,±5. We restrict
ourselves to k values such that k < 2a−1

c , corresponding to the range where s-wave scattering
is dominant. With short-dashed line we indicate the unitary limit σunit(k) = 8π/k2 and with
long-dashed lines the results from the pseudo-potential approach 8πa2/(1 + k2a2).

has to be contrasted with the case of the square well where a is very likely to be positive
if there are a large number of bound states in the well. Second it gives the natural scale
ãc (50 Å for Cs) for the scattering length. One sees that this “typical value” is much
larger than the size of an atom (a few Å at most).

4.3. The s-wave cross-section as a function of incident energy. – For the description
of a Bose-Einstein condensate, it is usually sufficient to know the scattering length as-
sociated with the interatomic potential. Indeed the temperatures corresponding to the
BEC transition are low enough to ensure that the s-wave phase shift δ0(k) varies as −ak
over the range of relevant relative wave vectors.

For the optimization of the evaporation sequences that (may) lead to the condensation,
one needs more informations on the atom-atom interactions. In particular one should
know the variations of the total cross-section with temperature (or with k). In this
paragraph, we outline the important features of these variations for the truncated Van
der Waals potential, keeping in mind that our conclusions are actually valid for other
types of core potentials as long as the long range part r−6 remains unchanged.

We concentrate here on the s-wave scattering since it is usually the relevant energy
domain over which evaporation is performed. We have plotted in fig. 8 the results for
σ0(k) for various scattering lengths a: a/ac = ±0.5, ±1.5, ±5. These different values
of a were obtained by varying slightly the core radius ρc around 0.06, which is typical
for cesium atoms (actually, very similar curves are obtained for a core radius twice as
large). The value of the s-wave phase shift is obtained using a numerical integration of
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(45) from the core radius up to values of r where the potential is negligible (r > 300ac).
The following points concerning fig. 8 should be emphasized:

• As expected, the s-wave cross-section tends to 8πa2 when k tends to zero.

• For positive values of a (left side of fig.8), the cross-section is close to the re-
sult 8πa2/(1 + k2a2) plotted in dashed lines. It is therefore a relatively good
approximation to replace the unknown cross-section by the one calculated for the
pseudo-potential.

• For negative a’s, the pseudo-potential result is a poorer approximation of σ0(k).
One notes in particular that for a/ac = −0.5 or −1.5, there is a value of k below
2a−1

c for which σ0(k) is zero. The mathematical reason for this vanishing cross-
section σ0(k) = (8π/k2) sin2 δ0(k) lies in the k-dependence of δ(k). For very low
k, δ(k) ∼ −ak (modulo π) is positive. However, for ka ∼ 1, the variations of
δ(k) do not depend on the precise value of a (at least if |a| is not too large) and
are approximately δ(k) ∼ −ack, leading to negative values for the phase shift.
Therefore there is a value k ≤ 1/ac where the phase shift δ0(k) is zero, leading to a
zero-scattering length. Such a zero-scattering length makes the evaporative cooling
of the gas quite difficult, since the thermalization rate around this point becomes
very long (see [3] for the discussion of this point for the particular case of 85Rb).

5. – The case of 1/r3 potential

As we already mentionned, the partial wave analysis and the asymptotic laws (17) and
(18) are valid only if the potential V (r) decreases fast enough at infinity. In particular, if
V (r) decreases as 1/r3 or slower, the differential scattering cross-section is not isotropic
anymore even in the limit of a zero-energy: all partial waves contribute even for k = 0.

This can be seen clearly if we consider a truncated r−3 potential [1]:

(50)
V (r) = −C3/r

3 r > b

V (r) = 0 r ≤ b

that we treat within the Born approximation:

f(k,n,n′) � − mr

2πh̄2

∫
ei(k−k′)·r′

V (r′) d3r′

=
2mrC3

h̄2

∫ ∞

|k−k′|b

sinu
u2

du

∼ −2mrC3

h̄2
log(|k − k′|b) .

The result, which diverges logarithmically for low energy, is clearly non-isotropic. One
can extract from it a characteristic length ac:

(51) ac =
2mrC3

h̄2
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which gives the typical “scattering length” for such a problem.
Such a r−3 potential is not just an academic counterexample. Since the alkali atoms

used in low temperature atomic physics have a permanent magnetic moment, two atoms
interact together with the standard dipole-dipole coupling:

(52) V (r) =
µ0
4πr3

(µ1.µ2 − 3(µ1.u)(µ2.u)) ,

where r = r1 − r2 and u = r/r. Although this potential is not as simple(2) as (50),
we can still get an order of magnitude of its scattering properties by putting in (51) the
corresponding value for C3: C3 = µ0µ

2
B/(4π), where µB is the Bohr magneton. After a

simple algebra, we get

a

aBohr
∼ 1
4
α2 M

me
,

where me is the electron mass.
The role of this potential might be important for the evaporative cooling of fermions.

As we already pointed out, the elastic cross-section for polarized fermions tends to zero
at low temperature if the atoms interact through a “standard” potential decreasing fast
enough at infinity (e.g. Van der Waals). On the contrary, for the magnetic dipole-dipole
interaction, the cross-section does not tend to zero even for polarized fermions and this
interaction can in principle lead to a significant evaporative cooling for Fermi gases.

For 6Li, the formula given above leads to ac ∼ 0.1 aBohr, which is clearly too small
to be useful (the corresponding cross-section would be 106 smaller than for 87Rb atoms
for instance). However, for atoms with a larger mass and a larger magnetic dipole
moment, this effect might be a significant help to achieve ultra-low temperatures for
Fermi systems. Let us also mention the recent theoretical work of Marinescu and You,
who have suggested to apply a static electric field to the system in order to polarize the
atoms and take benefit of an electric dipole-dipole interaction [9].

6. – How can one measure a scattering length?

The ab initio calculation of the scattering length from the knowledge of the interatomic
potential is usually not possible. Except for atomic hydrogen, the potentials for alkali
atoms are not known precisely enough to compute accurately a.

The most precise way to determine a is based on spectroscopic measurements, where
one measures the position of the highest bound levels in the interatomic potential. This
method, photoassociation spectroscopy, is described in detail in [3]. Note that it may be

(2) For the dipole-dipole potential, assuming that all magnetic moments are parallel to each
other, as it is the case in a magnetic trap, the Born approximation result does not lead to the
logarithmic divergence found for the isotropic r−3 potential, but it gives a finite result (see e.g.
[8]).
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Fig. 9. – Undamped oscillations of the center of mass of a rubidium cloud along one of the axes
of a harmonic magnetic trap. The continuous line is a sinusoidal fit to the experimental data.
The temperature of the cloud is T = 250 nK and there are 2.5×106 atoms. The collision rate is
∼ 2.6 s−1. From such a set of data, one can determine very precisely the oscillation frequency
(14.87 (±0.01) Hz in this case). These data have been obtained by J. Söding, D. Guéry-Odelin,
P. Desbiolles, and F. Chevy.

difficult to apply to some chemical elements. For instance, until very recently [10], no
photoassociation data was available for atomic cesium.

A “macroscopic” way to determine the elastic cross-section, i.e. the absolute value of
a, is to monitor the collisional dynamics of an atomic cloud confined in a trap. The cloud
is prepared out of thermal equilibrium and one compares the relaxation time towards
equilibrium with the predictions of a molecular-dynamics simulation.

It is worth noting that not all deviations from thermal equilibrium lead to relaxation.
Let us give two examples for this somehow subtle point. Consider first a cloud trapped in
a harmonic potential and suppose that the center of mass of the cloud is displaced from
the center of the trap. One might naively expect that the center of mass will undergo an
oscillation damped by atomic collisions. This is not the case. Assuming for simplicity an
isotropic trap with frequency ω/(2π) and using the Hamiltonian:

H =
N∑

i=1

(
p2i
2M

+
1
2
Mω2r2i

)
+
1
2

∑
i,j i �=j

V (ri − rj) ,

one can easily check that the evolutions of the center-of-mass position R and momentum
P are given by:

Ṙ = P /MT Ṗ = −MTω
2R

where MT is the total mass MT = NM . These two equations do not depend on the
interatomic potential and do not present any damping, as shown in figure 9.

The other undamped motion concerns the monopole oscillation in an isotropic har-
monic trap [11]. Suppose that one starts with a classical gas at thermal equilibrium
and that one changes suddenly the spring constant of the trap. One might expect that
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the breathing mode which is excited in this way should be damped after a few collision
times, allowing thus a measurement of this collision time. This is not the case and one
can check, at least within the description of the gas dynamics by the Boltzmann equation,
that this mode oscillates with no damping at the frequency 2ω/(2π).

Except for these two singular situations, the thermal relaxation in a harmonic trap
provides a simple way to evaluate scattering cross-sections. The cloud should be prepared
with a small deviation from equilibrium and one should concentrate on the longest time
constant for the relaxation process. A typical procedure is to prepare the cloud with an
average energy which is not the same along the three principal axes of the harmonic trap
[12, 13, 14] and to monitor the redistribution of energy among the three axes.

Consider for instance a TOP trap [15] for which one expects at equilibrium 〈x2〉 =
〈y2〉 = 8〈z2〉, where z is the axis of the quadrupole field of the TOP trap. The deviation
from equilibrium is produced by radio frequency evaporation which ejects atoms located
outside a volume close to a cylinder around the z axis. Therefore one produces in this
way a cloud with 〈x2〉 = 〈y2〉 < 8〈z2〉. From a numerical simulation based on molecular
dynamics, one finds that the relaxation time to equilibrium is of the order(3) of 3 γ−1

c ,
where the collision rate γc is defined by:

γc = n̄ v̄ σ n̄ =
∫
n2(r) d3r∫
n(r) d3r

v̄ =
4√
π

√
kT

M
.

Here n̄ stands for the average density in the trap (n̄ = n0/(2
√
2) for a Gaussian distri-

bution, n0 beeing the density at center) and v̄ is the average relative collision velocity.
The average density and the temperature are determined from the absorption image

of the cloud in the trap. From the measurement of γc, one can then deduce the value
of σ. Note that this approach is valid if the cross-section is constant for all relevant
relative velocities inside the thermal distribution of the cloud. In presence of a zero-
energy resonance, as it is the case for the cesium atom in the doubly polarized state, this
approach has to be modified in order to take into account the variations of σ with the
relative momentum k of the colliding atoms [14].

7. – Elastic vs. inelastic processes

Up to now, we have neglected inelastic collisions. As long as this is legitimate, the
achievement of Bose-Einstein condensation in a trapped sample is just a matter of time.
By setting the evaporation barrier well above the thermal energy kBT , atoms with high
energy, produced via binary elastic collisions, will continuously leave the trap, and the
phase space density of the remaining gas will increase: the BEC threshold will then
eventually be reached. Unfortunately, inelastic processes which constitute an additionnal
loss of atoms from the trap may render this achievement much more difficult.

(3) More precisely, the relaxation time varies from 2.4 γ−1
c to 3.4 γ−1

c , when the collision rate
γc varies from 0.01ωx (collision less regime) to ωx (hydrodynamic regime) (see also [16]).
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7.1. The three classes of inelastic processes. –

• Collisions of trapped atoms with background gas: these processes induce an ex-
ponential decay of the number of trapped atoms, Ṅ = −N/τ . Their role can be
reduced by improving the quality of vacuum. The trap lifetime τ is typically one or
several minutes. The condition for achieving runaway evaporation (increase of the
collision rate as the evaporation proceeds) is γcτ > 140, where γc is the collision
rate at the beginning of evaporation [17, 18, 19].

• Two-body spin dipolar relaxation (see e.g. [20, 21, 22]): the atoms in a magnetic
trap are confined with their magnetic moment antiparallel to the local magnetic
field (low-field seeking states). Indeed the trap is centered around a magnetic field
minimum, and the interaction of atoms with the field is: W = −µ·B(r) = +µB(r).
Now the magnetic interaction between two trapped atoms, given by (52), may lead
to a spin flip of one or of the two colliding atoms. This is energetically favourable
since it corresponds to a release of energy(4) of the order of µB(r).

• Three-body recombination (see e.g. [23, 24, 21]): when three trapped atoms are
close enough, two of them may form a molecule, the third one carrying away the
released momentum and energy. For trapped alkali atoms, this process plays only
a minor role for uncondensed clouds. For instance, for 87Rb in its low hyperfine
state, the measured rate is K3 = 4× 10−29 cm6s−1 [25], so that the corresponding
decay rate is smaller than 1/minute as long as the peak density in the trap does
not exceed 5× 1013 cm−3. On the contrary, these processes constitute an essential
source of losses for Bose-Einstein condensates [25].

7.2. The case of atomic cesium. – The magnitude of inelastic processes varies very
much from one atom to the other. In Paris, we have investigated in detail during the
past few years the case of 133Cs. This atom is of particular interest because the hyperfine
splitting between its two ground sublevels (angular momentum F = 3 and F = 4) is at
the basis of time and frequency standards. The achievement of a Cs BEC could lead to
a significant improvement of these standards. In addition Cs was initially considered to
be a very good candidate for BEC experiments [26].

Our setup is based on a double magneto-optical trap (MOT) system, ensuring both
an efficient loading of the magnetic trap (108 atoms in ∼ 2 seconds) and a good vacuum
at the location of this trap (< 10−10 mbar) [14]. Our results concerning both hyperfine
states F = 3 and F = 4 have been described in detail in recent publications so that we
only briefly outline them here.

For both hyperfine states, we have measured a large elastic cross section, correspond-
ing to a scattering length larger in absolute value than 140 Å for the upper hyperfine

(4) If the atoms are trapped in their upper hyperfine state, one or both atoms may emerge
from the collision in the lower hyperfine state; the energy gain is then much larger, equal to the
hyperfine splitting.
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state [14], and larger than 300 Å for the lower state [27]. This is much larger than
the “typical” scattering length expected from the cesium C6 coefficient (eqs. 46-48):
ãc � 50 Å. The occurence of such a quasi zero-energy resonance (see §3.2) is at first sight
very favourable for the achievement of BEC, since even a modest initial spatial density
should be sufficient to provide a large elastic collision rate and a strong evaporation.

Unfortunately for the achievement of BEC, we have also found, for both hyperfine
states, large inelastic rates due to two-body processes. This limited the maximal phase-
space density achievable in our experiment to ∼ 10−2. Let us briefly describe as an
example the measurement performed on the lower hyperfine state F = −mF = 3 [28].
Using radio-frequency evaporation, we prepared at time t = 0 an atomic cloud at a
well defined temperature. We then let the cloud sit in the trap with a “radio-frequency
shield” for a variable time. The radio-frequency allows to choose the effective trap depth
such that any atom having undergone a spin flip collision (gain of energy ∝ µB) escapes
from the trap. From the decay of the number of trapped atoms as a function of time
we can deduce the two-body inelastic collision rate. For a field B = 10−4 T and a
temperature T = 1 µK we measure a two-body rate ∼ 4 × 10−13 cm3s−1, which is at
least two orders of magnitude larger than for lighter alkalis such as Na or 87Rb. For the
upper hyperfine state the measured two-body rate is even larger (4 10−12 cm3s−1 at the
lowest temperature obtained for this state, i.e. 8 µK) [29].

Several physical reasons can be invoked to explain such large dipolar rates (for recent
quantitative theoretical accounts of the Cs experimental results, see [30, 31]).

First the large value for the scattering length enhances the occupation probability at
short distances for the low-energy collisional states of two Cs atoms. This favors any
inelastic process occuring at such short distances. An example of this effect is shown in
fig. 10, where we consider a potential varying as −C6r

−6+C12r
−12. The C6 coefficient is

equal to the value for Cs given above; the C12 coefficient is adjusted to give a minimum
of the interatomic potential around 6.4 Å, as for the real Cs-Cs interaction. A fine tuning
of this C12 coefficient allows one to vary the scattering length. In fig. 10, we have chosen
three values of C12, corresponding either to a “normal” scattering length, a = +50 Å,
or to “large ” scattering lengths, a = ±500 Å, and we have plotted the corresponding
scattering states. It is clear from this figure that, for the same normalization at infinity,
the amplitude of the scattering state at short interatomic distances is increased by a factor
∼ 10 (i.e. 500 Å / 50 Å) in the case of the large scattering lengths. This corresponds to
an increase by a factor 100 of the occupation probability at such short distances, where
inelastic processes are likely to take place.

Second there exists, in addition to the standard dipole-dipole interaction (52), an extra
spin-spin coupling, arising as a second-order effect in the electronic spin-orbit coupling
[22]. For heavy alkali such as Cs, this extra coupling can actually play a more important
role than the standard magnetic dipole-dipole interaction.

Finally, as pointed out in [30], a Feshbach resonance occurs in collisions between
cesium atoms prepared in the state F = 3, for a magnetic field of the order of a few
10−4 T. This resonance is responsible for the enhancement of both the elastic and inelastic
rates for the lower hyperfine state.
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Fig. 10. – Scattering states in a −C6r
−6+C12r

−12 potential. The C6 and C12 have been chosen
to match the long range part and the position of the minimum of the Cs-Cs potential. With a
fine tuning of the C12 coefficient, we adjust the scattering length to be equal to 50 Å –continuous
line– (the ãc value of (48)), to −500 Å–long dashed line–, and to +500 Å–short dashed line–.
We have plotted low energy scattering states, with the same normalization at infinity. For large
scattering lengths (|a| = 500 Å) the probability for having the two colliding atoms close together
is strongly enhanced.

To summarize, the achievement of BEC with 133Cs in a magnetic trap seems quite
difficult. For atoms prepared in the upper, doubly polarized ground level (F = 4) spin-
dipole relaxation induces hyperfine-changing collisions which prevent reaching a regime
of efficient evaporative cooling. For atoms prepared in the lower hyperfine state (F = 3),
one should run the magnetic trap at a bias field much smaller than the usual ones, which
are around 10−4 T, so that the energy gain µB in a spin flip will be reduced. We have
tried to run our magnetic trap with such a reduced bias field (10−5 T); unfortunately,
the lifetime τ of our sample was then considerably shortened (τ ∼ 5 s), preventing us
from achieving an efficient evaporative cooling. We think that this limitation was due
to technical magnetic noise, and that it could be circumvented in a carefully shielded
apparatus.

Two other options are possible to get a cesium BEC. The first one is to confine the
133Cs atoms in the lowest state mF = 3 of the F = 3 manifold by using a laser or a
hybrid laser-magnetic trap(5). In this case no binary inelastic process can occur, and the

(5) We recall that it is not possible to trap this high-field seeking state in a pure magnetic trap,
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Fig. 11. – Velocity distributions of a 87Rb gas. Both pictures represent the absorption of a
probe laser beam by the cloud after a 31 ms free fall. (a) Temperature above condensation:
isotropic velocity distribution. (b) Temperature below condensation: the anisotropic central
feature corresponds to a macroscopically occupied ground state. This figure was obtained by P.
Desbiolles, D. Guéry-Odelin, and J. Söding.

only limitations to the achievement of BEC will lie in the 3-body recombination process,
whose rate is currently unknown [32]. The scattering length for this state has recently
been predicted to be negative except for some particular values of the magnetic field
[30]. The achievement of a 133Cs BEC in such a trap and the study of the size of the
condensate as a function of B would therefore constitute a very stringent test of our
understanding of Cs-Cs cold collisions. The other option is to turn to another isotope
of cesium, 135Cs. The predicted scattering length is positive and the dipolar relaxation
rate should be much smaller than for 133Cs [30].

7.3. The case of atomic rubidium. – Fortunately not all alkali atoms behave like 133Cs
with respect to ultra-cold collisions, and it is now well known that evaporative cooling
of 87Rb, 7Li, and 23Na can lead to BEC [33, 34, 35].

Because of the similarities of the physical properties of Cs and Rb, it was relatively
easy to convert our experimental setup from one atomic species to the other. Keeping
the same vacuum setup and the same magnetic trap technology, we have achieved in our
double MOT system the loading of 109 87Rb atoms in the magnetic trap (oscillation fre-
quencies νx = 15.0 Hz, νy = νz = 244 Hz). After a 15 second radio-frequency evaporation
ramp, we reach the BEC threshold for a temperature 0.6 µK. The transition is observed

since one cannot produce a local maximum of magnetic field in vacuum.
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Fig. 12. – Variations of the condensed fraction Nc/N ,as a function of temperature, scaled by

the transition temperature for the ideal gas T
(0)
c (Data from J. Söding, D. Guéry-Odelin, P.

Desbiolles, F. Chevy, and I. Inamori).

by a standard time-of-flight technique, which gives the momentum distribution of the
trapped gas [33]. Above the transition, the momentum distribution is approximately
isotropic; below the transition, a strongly anisotropic feature appears at the center of the
distribution, reflecting the anisotropy of the confining potential, as shown in figure 11.

The number of atoms at the transition point is in our setup ∼ 3 × 106. In order
to analyze precisely our data, we follow a procedure similar to [36]. We determine the
temperature T of the cloud by fitting the wings of the uncondensed part of the velocity
dstribution by a Gaussian function. The number of atoms in the condensate (Nc) is
determined by fitting the central component with an inverted paraboloidal distribution,
corresponding to the Thomas-Fermi solution of the Gross-Pitaevski equation describing
the condensate, after the TOF expansion [37]. Finally the total number of atoms N is
determined from the integrated absorption of the cloud. The condensate fraction Nc/N

is plotted in fig. 12 as a function of T/T (0)
c (where T (0)

c is the critical temperature for
the ideal Bose-Einstein distribution). The clouds with no apparent condensed fraction
were fitted using a single Gaussian distribution. We measure a transition temperature
Tc � 0.86 (±0.10) T (0)

c , in good agreement with the predictions of [38] (Tc/T
(0)
c = 0.91).

8. – Conclusion

We have presented in this set of lectures the basics elements for understanding the
collisions which take place between ultra-cold atoms. This presentation is far from beeing
exhaustive. In particular we have not adressed the possible control of the collisional
properties of an atomic gas using light, or an electric or magnetic dc-field. We have also
adressed only briefly the complex problem of inelastic processes, taking as an example
the cesium atom; a more complete treatment of this problem would require a whole set
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of lectures for itself. We hope however that these notes may be helpful as an introduction
to this fascinating and lively subject of research.
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5354 (1985).
[7] G. F. Gribakin and V. V. Flambaum, Phys. Rev. A 48, 546 (1993).
[8] G. V. Shlyapnikov, J. T. M. Walraven, U. M. Rahmanov, and M. W. Reynolds, Phys. Rev.

Lett. 73, 3247 (1994).
[9] M. Marinescu and L. You, preprint (march 1998).
[10] A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Phys.

Rev. Lett. 80, 4402 (1998).
[11] L. Boltzmann, Wissenschaftliche Abhandlungen, Vol. II ; G. E. Uhlenbeck and G. W. Ford,

Lectures in Statistical Mechanics, American Mathematical Society (Providence, 1963).
[12] C. R. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt, and C. E. Wieman, Phys. Rev.

Lett. 70, 414 (1993).
[13] K. B. Davis, M.-O. Mewes, M. A. Joffe, M. R. Andrews, and W. Ketterle, Phys. Rev. Lett.

74, 5202 (1995).
[14] M. Arndt, M. Ben Dahan, D. Guéry-Odelin, M. W. Reynolds, and J. Dalibard, Phys. Rev.

Lett. 79, 625 (1997).
[15] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett. 74, 3352

(1995).
[16] H. Wu and C. J. Foot, J. Phys. B. 29, L321 (1996).
[17] J. T. M. Walraven, Proc. Scott. Univ. Summer Sch. Phys. 44.
[18] O. J. Luiten, M.W.Reynolds, and J.T.M.Walraven, Phys. Rev. A 53, 381 (1996).
[19] W. Ketterle and N. J. Van Druten, Advances in Atomic, Molecular, and Optical Physics,

37, 181 (1996).



COLLISIONAL DYNAMICS OF ULTRA-COLD ATOMIC GASES 29

[20] H. Boesten, A. J. Moerdijk, and B. J. Verhaar, Phys. rev. A 54, R29 (1996).
[21] A. J. Moerdijk and B. J. Verhaar, Phys. Rev. A 53, R19 (1996).
[22] F. H. Mies, C. J. Williams, P. S. Julienne, and M. Krauss, J. Res. Natl. Inst. Stand.

Technol. 101, 521 (1996).
[23] A. J. Moerdijk, H. Boesten, and B. J. Verhaar, Phys. Rev. A 53, 916 (1996).
[24] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov, Phys. Rev. Lett. 77, 2921 (1996).
[25] E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman,

Phys. Rev. Lett. 79, 337 (1997).
[26] E. Tiesinga, A. J. Moerdijk, B. J. Verhaar, and H. Stoof, Phys. Rev. A 46, R1167 (1992).
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